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Abstract

We present a parametric approach for solving fixed-charge problems first sketched in Glover (1994). Our imple-
mentation is specialized to handle the most prominently occurring types of fixed-charge problems, which arise in
the area of network applications. The network models treated by our method include the most general members
of the network flow class, consisting of generalized networks that accommodate flows with gains and losses.
Our new parametric method is evaluated by reference to transportation networks, which are the network structures
most extensively examined, and for which the most thorough comparative testing has been performed. The test set
of fixed-charge transportation problems used in our study constitutes the most comprehensive randomly generated
collection available in the literature. Computational comparisons reveal that our approach performs exceedingly
well. On a set of a dozen small problems we obtain ten solutions that match or beat solutions found by CPLEX 9.0
and that beat the solutions found by the previously best heuristic on 11 out of 12 problems. On a more challenging
set of 120 larger problems we uniformly obtain solutions superior to those found by CPLEX 9.0 and, in 114 out of
120 instances, superior to those found by the previously best approach. At the same time, our method finds these
solutions while on average consuming 100 to 250 times less CPU time than CPLEX 9.0 and a roughly equivalent
amount of CPU time as taken by the previously best method.
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1. Introduction

Diverse and exceedingly widespread applications of the fixed-charge problems arise in
optimization theory and practice. Documented practical applications include natural gas
pipeline systems (Rothfarb, et al., 1970), offshore platform drilling (Balas and Padberg,
1976), bank account location (Cornuejols et al., 1977), distribution center location (Noz-
ick and Turnquist, 1998a and 1998b), telecommunication network switching (Luna et al.,
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1987), and network design (Mirzain, 1985; Crainic, Frangioni, and Gendron 2001). The
largest and undoubtedly the most significant body of these problems arise in network-related
applications, as discussed in Glover Klingman and Phillips (1992).

The capacitated fixed-charge problem may be written in the form

FC Minimize xo[FC] = cx + F(x)

Subject to Ax = b

U ≥ x ≥ 0

where F(x) = ∑
(Fj (x j ) : j ∈ N ) and N denotes the index set of x . The “fixed charge”

function Fj (x j ) is expressed by Fj (x j ) = Fj , a positive constant, if x j > 0 and by Fj (x j )
= 0 if x j = 0. We may allow for the case where not all components of x are fixed charge
variables by defining a separate index set for these variables. This introduces a trivial
bookkeeping change in our following development, and thus for simplicity of notation we
refer to N as if each variable carries an associated fixed charge. (We could also stipulate
that Fj = 0 for variables without fixed charges.) The problem FC may also be written as a
0–1 mixed integer program by introducing a 0–1 vector z = (z j : j ∈ N ) and letting F =
(Fj : j ∈ N ), to give

FC-MIP Minimize xo[FC] = cx + Fz

Subject to Ax = b

Uz ≥ x ≥ 0

z = {0, 1}

In the past four decades, a host of exact and approximation approaches have been offered
for solving fixed-charge problems. The observation of Hirsch and Dantzig (1968), which
showed that optimal solutions to the fixed-charge problem occur at extreme points, opened
a fertile area for developing a class of exact methods. These and other types of exact meth-
ods include cutting plane approaches (Rousseau, 1973), vertex ranking strategies (Murty,
1968; McKeown, 1975), and a number of branch and bound approaches with penalty based
search tree pruning mechanisms and capacity improvement techniques (Gray, 1971; Ken-
nington, 1976; Kennington and Unger, 1976; Fisk and McKeown, 1979; McKeown and
Sinha, 1980; Barr, Glover and Klingman, 1981; McKeown, 1981; Cabot and Erenguc,
1984; and 1986; Schaffer, 1989; McKeown and Ragsdale, 1990; Palekar, Karwan and
Zionts, 1990; Lamar and Wallace, 1997; Bell, Lamar and Wallace, 1999; Glover, Amini,
and Kochenberger, 2003; and Ortega and Wolsey, 2003). Inherent exponential growth of
computational effort required by the exact methods for fixed-charge problems in general
and for its network instances in particular has confined these applications to problems with
a low level of complexity, typically having limited size and restricted ranges of the fixed-
charges.

These practical limitations have occasioned a considerable research effort focusing on
approximation approaches, heuristics and metaheuristics. These methods take advantage
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of various strategies; some utilizing relaxation approaches (Wright et al., 1989 and 1991)
and others employing extreme point search techniques and embedded network procedures
(Balinski, 1961; Kuhn and Baumol, 1961; Denzler, 1964; Dwyer, 1966; Cooper and Drebes,
1967; Cooper, 1975; Walker, 1976; Stienberg, 1970 and 1977; Shetty, 1990; Diaby, 1991;
Khang and Fujiwara, 1991; Sun and McKeown, 1993; Gottlieb and Eckert, 2002; Adlakha
and Kowalski, 2003). A notable metaheuristic approach, a tabu search method by Sun et al.
(1998), has established itself as the best method for solving a collection of fixed-charge
transportation network problems that constitutes the largest body of randomly generated
problems in the literature.

The present work is based on a solution design proposed in the ghost image process
(GIP) approach by Glover (1994). GIP can be applied to a wide variety of optimization
problems. For example, an interesting application of GIP ideas in the context of calcu-
lating the minimum covariance determinant estimators has been developed by Woodruff
(1995).

Within the context of fixed-charge networks, the proposed GIP design involves a param-
eterization of the objective function that is progressively modified and coordinated with
a metaheuristic improvement procedure that incorporates basic tabu search notions. With
regard to the parameterized objective function, related ideas have also recently been pro-
posed by Kim and Pardalos (1999 and 2000), utilizing essentially the same form of the
objective but excluding the metaheuristic improvement strategies introduced in the earlier
paper. An improved approach integrating the Kim and Paradalos method with Lagrangian
perturbation and strategies inspired by tabu search has more recently been applied to mul-
ticommodity fixed-charge network problems in Gendron, Potvin, and Soriano (2003a and
2003b) and Crainic, Gendron, and Hernu (2004). As we show, the inclusion of a simple
version of these strategies, coordinated with the basic parametric updating ideas of the
original GIP proposal, yields a remarkably effective method for fixed charge transportation
networks.

The remainder of this paper is organized as follows. A background discussion of the
parametric ghost image process, and a parametric GIP algorithmic development for the
fixed-charge network problem is presented in Section 2. Section 3 describes implemen-
tation strategies. Computational experiments, including a discussion of testbed problem
characteristics, hardware platform, and solution results are presented in Section 4. Finally,
Section 5 summarizes our conclusions.

2. The parametric GIP approach

The general form of parametric ghost image processes encompasses a wide range of features
that derive from a collection of problem solving principles detailed in Glover (1994). In
this paper we focus only on the specifics of applying the GIP framework to fixed-charge
problems.

Within this setting, our approach exploits the FC problem by introducing a non-negative
parameter vector v= (v j : j ∈ N ) and an associated parameterized cost vector given by
c(v) = (c j + Fj/v j : j ∈ N ) to give a parametric linear programming relaxation of the
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fixed-charge problem

LP(v) Minimize xo(v) = c(v)x

Subject to Ax = b

U ≥ x ≥ 0

Let p j = Fj/v j denote the “parameterized penalty” associated with c j . Then we also
write c(v) = (c j + p j : j ∈ N ), and note that p j allocates the fraction 1/v j of the fixed
cost Fj to the total cost of x j . We apply the convention that a denominator v j close to 0
(smaller than a chosen ε value) translates into setting p j = M, where M is a large positive
number.

At an extreme, where all v j = ∞ (hence all p j = 0), we have c(v) = c, and obtain the
simple linear programming relaxation

LP : Minimize xo = cx

Subject to : Ax = b

U ≥ x ≥ 0

The method sketched in Glover (1994) begins by solving LP, and then solves a succession
of problems LP(v) produced by progressively modifying and updating v j in alternation with
applying an improvement method for enhancing the solution to LP(v), utilizing adaptive
memory strategies from tabu search.

An outline of the parametric GIP method for the FC problem can be described as follows.
Each solution obtained throughout these steps is evaluated as a candidate for the best solution
x∗ currently found.

Step 0: Solve LP, yielding an optimum solution as a first candidate for x∗, and set v ← U.

Step 1: Solve LP (v), yielding a solution x ′.
Step 2: Starting from x ′, use restriction to obtain a refined solution and apply an

Improvement Method to obtain a further refined solution x ′′.
Step 3: Update v as a function of its current value and x ′′. If a maximum allowed iteration

is not reached return to Step 1. Otherwise, terminate the process with the best solution
x∗ at hand.

In the following, we give details of these steps as adapted to the present context. Through-
out this exposition we use the convention of identifying the value of the (nonlinear) fixed
charge objective function xo[FC] for a given trial solution vector x (e.g., x = x ′, x ′′, etc.)
as xo[FC: x]. The values Uo and U j defined below are used as estimated upper bounds for
x j that will be introduced to replace the original bound U j in certain calculations of the
algorithm.

Step 0: Solve the linear program LP and create an initial parameter vector v .

Additional Notation:
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Iter: the current iteration of the algorithm,
λ: the current value of a scalar constant, where 0 ≤ λ ≤ 1,
λmin: the minimum value for λ, where 0 ≤ λmin ≤ λmax,
ziter: the current number of non-improving iterations,
viter: the first number of iterations for which the parameter vector v is updated

based on one strategy, while in the remaining iterations another strategy is
used,

x∗: the best solution found so far. (We assume the fixed charge objective function
value for this solution, xo[FC:x∗], is automatically updated whenever
x∗ changes.)

We also make reference to:

Uo: a scalar identifying the maximum x j value in the first solution to
the problem LP.

U j : a scalar identifying the maximum value obtained the variable x j within
the first viter iterations of the search process,

Maxiter: the maximum allowable iterations for the algorithm.

Initialization Steps:

0.1. Set Iter ← 0, ziter ← 0, λ ← λmin, and v ← U .
0.2. Solve LP, yielding an optimal linear solution x ′.
0.3. Initialize x∗ ← x ′.
0.4. Set Uo ← Max{x ′

j : j ∈ N } and U j ← x ′
j , j ∈ N .

Step 1: Generate and solve LP (v) to obtain a new trial solution x′.

Steps:

1.1. Set Iter ← Iter + 1.
1.2. If Iter > Max iter, then terminate the process with the best solution found so far, x∗,

and its associated objective function value, xo[FC:x∗]
1.3. Solve LP(v) by linear programming post-optimization, yielding an optimal solution

x ′.
1.4. For the associated fixed-charge objective value xo[FC:x ′] if xo[FC:x ′] < xo[FC:x∗],

then set x∗ ← x ′.
1.5. If Iter ≤ viter then update U j ← Max (U j , x ′

j ), for each j ∈ N .

Step 2: Improve the current solution x′.

Additional Notation:
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τ : the number of non-improving iterations after which the search is terminated,
B: the index set of basic variables in the current solution, x , where B⊂ N,
NB: the index set of current nonbasic variables in the current solution, x , where

N = B ∪ NB, and
M : a large positive number.

Steps:

2.1. Phase I: Refinement by LP Restriction.

2.1.1. By reference to x ′ from Step 1, set v j ← 0 if x ′
j > 0; and v′

j ← M if x ′
j = 0,

for j = 1, . . . , N .

2.1.2. Starting from the LP basis that produced x ′, identify and post-optimize the
problem LP(v), yielding an optimal solution x ′′.

2.1.3. If xo[FC:x ′′] < xo[FC:x∗], then set x∗ ← x ′′.
2.1.4. If Iter ≤ viter then update

U j ← Max(U j , x ′′
j ), for each j ∈ N .

2.2. Phase II: Improvement Phase.

2.2.1. Consider the current FC basis representation, yielding x ′′.

2.2.2. Set v ← 0, hence, the current objective function for LP(v) is xo(v) = cx′′.

2.2.3. Set j∗ ← 0, and xoj∗ ← ∞, initializing the index of a “best” nonbasic variable
x j∗ and its associated objective function change xoj∗ (improving if negative),
caused by a pivot that brings x j∗ into the current basis for LP(v). (This basis
can change in step 2.2.5 below.) Also, set k∗ ← 0, initializing the index of a
current basic variable xk∗ that will leave the basis when x j∗ enters.

2.2.4. Solve LP(v) and consider each variable x j , j ∈ NB as a potential candidate to
enter the current basis.

2.2.4.1. Conduct a ratio test to determine the outgoing basic variable xk and de-
termine the change r j in the objective function value of LP(v) caused
by the associated pivot exchanging x j and xk . If x j stays nonbasic by
moving from one of its bounds (lower or upper) to the other, then no
basic variable xk is selected to leave the basis, coded by setting k = 0
(as in the initialization of k∗).

2.2.4.2. Determine the net impact of the potential pivot on the objective func-
tion xo[FC:x ′′] (as a result of changing x ′′) calculated by

xoj = r j +
∑

(Gh : h ∈ P)
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where P is the set of arcs on the basis exchange path determined by and
including the arc for the entering variable x j , and where Gh is defined
relative to the fixed charge Fh by the following pivot transitions:1

xh = 0 to xh > 0 : Gh = Fh

xh > 0 to xh = 0 : Gh = −Fh

xh unchanged : Gh = 0.

2.2.4.3. If xoj < xoj∗ then set j∗ ← j (and hence xoj∗ ← xoj ).

2.2.5. If xoj∗ < 0 then perform the pivot with variable pair ( j∗, k∗). Also, identify
the associated new basic solution and designate it to be the solution x ′′. Then
go to Step 2.2.3 to pursue further improvement.

2.2.6. Else, if xoj∗ ≥ 0 then

2.2.6.1. If xo[FC:x ′′] < xo[FC:x∗] then set x∗ ← x ′′, and ziter ← 0.
2.2.6.2. Else, if xo[FC:x ′′] ≥ xo[FC:x∗] then set ziter ← ziter + 1.

2.2.7. If ziter = τ then terminate the search process with the best solution found x∗

and its associated objective function value xo[FC:x∗] at hand.
2.2.8. If Iter ≤ viter then update

U j ← Max(U j , x ′′
j ), for each j ∈ N .

Step 3: Use the improved solution x′′ to update the parameter vector v.

Additional Notation:

λmax: the maximum value for λ, where 0 ≤ λmax ≤ 1,
λ�: the λ increment, where 0 < λ� ≤ λmax,
λliter: the last iteration number at which the current λ is being incremented by λ�,
λiter: the number of iterations after which the current λ is being incremented by λ�,
ω: the greater than zero multiplier used in updating the parameter vector v′,

Steps:

3.1 If Iter − λliter = λiter then set λ ← λ + λ� and λliter = Iter.
3.2 If λ > λmax then terminate the search process with the best solution found x∗ and its

associated objective function value xo[FC:x∗] at hand.
3.3 If Iter ≤ viter then for j ∈ N update the parameter vector as follows:

v′
j ← λωUo + (1 − λ)x ′′

j

3.4 Else, for j ∈ N update the parameter vector as follows:

v′
j ← λωU j + (1 − λ)x ′′

j
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3.5 If v = v′ then diversify the parameter vector as follows:

v′
j ← λ(U j − x ′′

j ) + (1 − λ)v j

3.6 Set v ← v′ and go to Step 1.

Note that U j in Step 3.5 is the original bound for x j , as opposed to the proxy bound U j

in Step 3.4
In the initialization step, Step 0, the original linear programming relaxation LP is solved

obtaining an optimal solution, x ′. The best solution is initialized with x ′ and its associated
objective function with the “true” objective function, including both variable and fixed
charges. Also, to initiate alternative formulas for updating the parameter vector v, the
constant Uo is initialized to be the largest x j value obtained in solving LP. In addition, the
maximum solution value for each variable x j is recorded in U j .

In Step 1, if the iteration counter exceeds a pre-determined maximum value, Maxiter,
then the search process is terminated with the best solution x∗

o and its associated objective
function value x∗

o [FC]. Otherwise, starting from the most recently solved previous instance
of LP(v) (which on the initial iteration corresponds to LP), the new trial problem LP(v) is
solved to obtain an optimum solution, x ′. The “true” fixed-charge objective function value
for x ′ is calculated and the new trial solution replaces the incumbent solution if its “true”
objective function is better than x∗

o [FC]. We continue to update the values U j designated to
maintain the maximum value attained by x j for the first viter iterations.

To investigate the potential for further improvement to the current solution, x ′, in Step
2-Phase I the objective function coefficients of the variables with nonzero and (virtually)
zero values are set to their variable costs and M , respectively, resulting in the specified
form of LP(v), which is then solved by post-optimization, yielding x ′′. The main purpose of
setting the cost of variables with the zero values in the trial solution to M is to maintain their
values at zero during the current post-optimization process, and the variables alternatively
could simply be masked during this step. Following the calculation of the true objective
function value that accounts for fixed costs, the new solution replaces the incumbent, if it
turns out to be a better solution. Also, in Phase I the value U j , identifying the maximum
value for each x j throughout the first viter iterations, is updated.

To further improve the current solution, x ′′, Phase II focuses on the basis representa-
tion provided by the LP solution that produced x ′′. First, the current objective function
coefficient vector is replaced by the original variable cost vector, c in defining the current
LP(v) (i.e., v is set to the 0 vector) so that each solution will be evaluated relative to the
original variable costs. Next, through a tentative pivot exploration process, each nonbasic
variable is considered as a potential entering variable, x j, a ratio test is conducted to deter-
mine the associated leaving variable, xk ,, followed by calculation of the associated (total)
fixed-charge objective function change, z jk , for a basis exchange involving the variable pair
indexed by ( j, k). At the completion of the tentative pivot explorations, the variable pair
that yields the greatest reduction in the total cost, including changes in the fixed charges,
is selected for pivoting followed by post-optimization. To further improve the current so-
lution, the process returns to the tentative pivot exploration phase, using the current basis
representation.
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The tentative pivot exploration continues until no further improving pivots are available.
At this stage, again the true fixed-charge objective function value for the optimum solution
at hand is calculated. If the new solution improves upon the best, it replaces the incumbent
solution and the process moves to Step 3 to update the parameter vector. Otherwise; if
the process arrives at Step2–Phase II for τ iterations without gaining any improvement in
the best solution found, then the parametric ghost image process is halted. If the solution
process is not terminated, the values U j are updated and the algorithm moves to Step 3.

In Step 3, the value of constant λ is incremented every λiter iterations by the increment
λ�. If the updated value of λ exceeds the maximum value that λ can attain, λmax, then the
algorithm terminates with the current best solution at hand. To update the parameter vector,
two formulas are applied. The first formula, applied within the first viter iterations, is the
one applied to the current improved solution obtained in Step 2–Phase II, involving x ′′,
the constant Uo, and a pre-determined multiplier, ω. For the remaining iterations of the
algorithm, the second formula is used, which differs from the first one by replacing the first
two constants, Uo and ω, in the first term with the value U j —representing the maximum
value attained by each decision variable in the first viter iterations. In both formulas, the
second term takes advantage of the current improved solution, x ′′. Also, when the updated
parameter vector v′ is the same as the previous vector v, diversification is achieved by a
formula that incorporates the upper bound array U, x ′′, and the current parameter vector,
v.After the parameter vector is updated, the process returns to Step 1 to generate and solve
a new trial problem with the updated parameter vector.

Additional comments on the method’s rationale

We elaborate briefly on the overall rationale of the method to tie the previous observations
together. First, the different solutions generated by the method are related in the following
manner. The original LP relaxation, LP, provides a lower bound solution, x ′ in Step 0. Given
the basis provided by x ′ and setting v = U , LP (v) is post-optimized to obtain x ′. Note that
Step 0 is considered an initialization step and the bulk of the algorithm iterates between
Steps 1 and 3. Given a new ghost image vector, v′, produced by Step3, we solve in Step
1 a new ghost image of the original problem, LP(v), providing the solution x ′. Given the
x ′ basis, we solve the associated new LP(v) problem defined in Step 2.1.1 to obtain a new
solution x ′′. Given the basis thus obtained, we create and solve a restricted ghost image
problem LP(v) by setting some v j values to M to force the 0-valued x ′ variables to remain
0. (Remaining v j values are set to 0, and hence have no effect on the problem.) This yields
a potentially (though not necessarily) better solution x ′′ that we submit to an improvement
process to produce x ′′.

It may also be useful to comment on the motivation behind the two different ways
of updating v. The first update is the more straightforward one, relying on an implicit
assumption that a single value of Uo in the update formula provides a meaningful bound for
all the variables involved. Consequently, in the second update formula we use a separate U j

value for each fixed charge variable in order to be more responsive to differences among
the variables. We conjectured originally that a single Uo value may be best for the larger
problems. Our findings, however, show that using both formulas (in conjunction) led to
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improved solution quality on average across all problem sizes relative to the solutions
provided by using either a single Uo value or the individual upper bound value, U j .

3. Implementation in a generalized network context

While our experimental focus is on the fixed-charge transportation problem, we have de-
signed a more general implementation that applies to fixed charge problems using general-
ized networks. In this section, we discuss characteristics of a solver applied to optimize or
post-optimize a series of such problems

At the heart of our implementation for the fixed-charge transportation problem is a two-
multiplier generalized network solver, GN2, developed by Glover (1996). The solver is
capable of providing solutions to uncapacitated and capacitated generalized and pure net-
works. The modular characteristics of the GN2 procedure facilitates the implementation
of heuristic/metaheuristic approaches. The current implementation extends the capabili-
ties of GN2 to solve the class of fixed-charge generalized and pure network problems.
Transformation strategies introduced by Glover, Klingman, and Phillips (1992) further al-
low fixed-charge optimization and other 0–1 optimization problems that at first seem to
bear no connection with networks to be handled by the generalized network fixed-charge
formulation, and thus provide access to a wide range of additional applications.

It is important to note that throughout the parametric GIP solution process there is only one
problem that requires optimization from scratch, the original linear programming relaxation
LP in Step 0. The remaining problems generated throughout the solution process differ only
in their objective function coefficients, and hence can be handled by post-optimization. This
translates into significant solution time improvement.

The algorithmic description presented in the previous section gives a basic implementa-
tion strategy used in Step 2.2 for the Phase II improvement process. In reality, our imple-
mentation differs slightly from this description. We apply a strategy that is somewhat more
involved than simply using the “most improving” rule in selecting nonbasic arcs for the
tentative pivot exploration step. The efficiency of this latter rule diminishes as the problem
size increases, and hence to be made effective, the rule must be amended by embodying
it within a candidate list strategy. A variety of such candidate list strategies are proposed
in connection with tabu search, including aspiration plus, elite, successive filter, sequential
fan, and bounded change candidate lists (Glover and Laguna, 1997). In our present imple-
mentation, we exploit the Elite Candidate List (ECL) strategy which begins by identifying
a subset of nonbasic variables associated with the tentative pivots that create the greatest
improvements (positive or negative). On successive stages of the exploration of tentative
pivots, attention is restricted to members of this list in making the current evaluation to
find the nonbasic variable that provides the most attractive current pivot alternative—the
alternative that is actually implemented during the current stage of execution. The list is
updated after a certain number of pivots are implemented, scanning a predetermined num-
ber of nonbasic variables in a manner similar to that of constructing the list initially. The
parameters of the elite candidate list are the list size, the number of nonbasic variables to
scan for refreshing the list, and the maximum number of nonbasic variables to select from
the list before refreshing, denoted by lsize, lscan, and lmax, respectively.
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It is to be emphasized that we rely on notions employed in tabu search only in a very
simple and rudimentary way. In this sense our approach constitutes a preliminary investi-
gation, since the door is evidently open to incorporating a variety of more advanced tabu
search strategies in the improving phase. Nevertheless, we have established that the cur-
rent improvement approach coordinates with the parametric updating process to produce a
highly effective procedure.

To carry out this coordination, the solution process can be implemented as a multi-start
strategy or as an extended sequential approach. In a multi-start strategy, the process is
executed for a sequence of consecutively updated scalars λ. For each value of λ in the
sequence, the problem instance at hand is solved and the best solution found is updated. In
this strategy, the best solution found for a value of λ does not provide a starting solution
for the next value in the sequence. The extended sequential method, by contrast, spends a
certain number of iterations using one value of the scalar λ before incrementing λ by λ� to
give the value used for the next λiter iterations. In this case, the best solution obtained from
previous stages provides a starting solution for the current stage. We have coordinated the
improvement procedure with parametric updating in our study by means of the extended
sequential strategy.

4. Computational experiments, results, and analysis

Our algorithm is implemented in Compaq©R Visual FORTRAN, Professional Edition, Ver-
sion 6.1, under Microsoft©R Visual Studio, Version 6.0. In compilation of the code, the “Full
Optimization” option is utilized. The hardware platform for code development, compila-
tion, and computational experiments is a Dell, Latitude Laptop, Pentium III, 1 GHZ, with
256K Cache running on Windows©R 2000 operating system.

To investigate relative computational effectiveness, solution time and quality, of the
current parametric GIP approach against the alternative methods requires the availability of
a comprehensive fixed-charge transportation problem (FCTP) testbed, and access to the best
solution quality and time for the testbed obtained by competing method(s). Although the
search for an effective solution procedure for the FCTP has been in progress in the past four
decades, throughout most of this time no common testbed and associated solution results
have been available to researchers. Recently, however, a comprehensive FCTP testbed with
different problem sizes and ranges of complexity has been provided by Sun et al. (1998).
The FCTP testbed was used to conduct computational comparisons of their effective tabu
search approach against competing exact and approximation methods.

The Sun et al. study found the Palekar, Karwan, and Zionts (1990) approach to be gen-
erally the most effective of the exact methods and the Steinberg (1970 and 1977) approach
to be generally the most effective of the heuristic search procedures. Hence, they com-
pared effectiveness of their tabu search method against these two selected approaches.
Their computational experiments on their comprehensive FCTP testbed show that the ef-
ficiency of the tabu search procedure, on very small and easy problem sets, is compara-
ble to the solution time required by the competing heuristic in obtaining solutions of the
same or better quality. However, for testbed problems of larger size and higher degree
of complexity, the tabu search method was three to four times faster than the heuristic
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Table 1. Fixed-charge transportation testbed problems characteristics.

Range of fixed costs

Problem size Total supply Problem type Lower limit Upper limit

10 × 10 10,000 A 50 200

10 × 20 15,000 B 100 400

15 × 15 15,000 C 200 800

10 × 30 15,000 D 400 1,600

50 × 50 50,000 E 800 3,200

30 × 100 30,000 F 1,600 6,400

50 × 100 50,000 G 3,200 12,800

H 6,400 25,600

approach, and found significantly better solutions for all problem instances. Implementa-
tion of the tabu search approach was in FORTRAN and all computational experiments were
conducted on the IBM 9672, Model E01, mainframe computer with VM/CMS operating
system.

Availability of the FCTP testbed, access to the Sun et al. TS implementation, and the fact
that the Sun et al. tabu search method was established as the most effective approximation
approach for the FCTP has motivated us to carry out comparative testing using the same
FCTP testbed. This testbed includes eight problem types, A through H, each in seven
problem sizes. For a given problem size, problem types differ from each other by the range
of fixed costs, which increases upon progressing from problem type A through problem
type H. Each problem type includes 15 randomly generated problems. All problems are
100% variable and fixed cost dense. The variable costs range over the discrete values from
3 to 8. The seven problem types present different levels of difficulty for alternative solution
approaches. The problem sizes, types, supplies/demands, and fixed costs ranges are shown
in Table 1. Using problem input files provided by Sun et al. (1998), problem instances are
generated by a modified version of NETGEN (Klingman, Napier and Stutz, 1974; Barr,
Glover, and Klingman, 1981).

For computational experiments, two sets of run parameters are used, common and specific
run parameters. The common run parameters have the same values in solving all problem
instances while the values of specific run parameters are determined based on the problem
instance size. The common parameters include λmin, λmax, λ�, ω, and τ with values equal to
0.25, 0.35, 0.01, 2, and 3, respectively. The specific run parameters encompass λiter, Maxiter,
viter, lsize, lscan, and lmax. Given a value for λiter, Maxiter is set to (λmax −λmin + 1) λiter. Also,
viter is assigned the value Maxiter/4. Hence, we set the values of run parameters associated
with the elite candidate list as follows: lscan = d, lsize = 0.10d, and lmax = 0.05d, where d
is the number of demand nodes in an FCTP instance.

While some of the specific run parameters related to the elite candidate list, including
lsize, lscan, and lmax, are associated with the generalized network solver, the remaining run
parameters are specific to the GIP procedure. Selection of values for the three candidate
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lists’ specific run parameters is based on the past three decades of studies on network
optimization, requiring no calibrations. Calibrations of the remaining specific and common
run parameters were conducted by applying a systematic approach.

Our computational experimental plan divided the testbed problems into two subclasses.
The first six problem sizes constitute a preliminary “small and easy” set and the seventh
problem size constitutes a “large and difficult” set. To calibrate run parameters, from each
problem size within the first class, we randomly selected two problem instances, creating a
subset of 12 “small and easy” problems. Also, from the second class, we randomly selected
three problem instances from each of the eight problem types, A through H, obtaining a
subset of 24 preliminary “large and difficult” problems. Given the “small and easy” subset,
we solved the problems with [λmin, λmax] where the lower and upper values of interval range
within interval [0.0, 0.90], while allowing (a) the value of λ� to range (in sequence) over
the values 0.10, 0.07, 0.05, 0.03, 0.02, and 0.01; (b) the value of λiter to range from 100 to
500, in increments of 100; and (c) the ω value to increase from 2 to 10, in increments of 2.
The value of τ was set to Maxiter, in all run parameter combinations.

For each of the run parameter combinations, we recorded the problems best objective
function obtained, the CPU times to reach the best solutions found, and the total execution
CPU times. Comparing the results for all run parameter combinations, we identified the
combination that resulted in the largest number of new best solutions. The final parameter
calibrated was τ . Given the chosen run parameter combination, we re-solved the “small
and easy” problem subset with the value of τ ranging from 1 to 10, in increments of 2. The
best of the run parameter combinations identified was used in the proceeding comparative
computation experiments for the “small and easy” problem subset.

To determine the best run parameter combination for the “large and difficult” subset, we
applied a similar calibration strategy. Knowing that the subset includes larger and more
complex problems, the only change we introduced in the calibration was to extend the
upper values of λiter from 500 to 1000. The best run parameter combination identified in
the calibration process was then utilized in solving the entire set of 120 “large and difficult”
testbed problems, presented below.

Our first computational experiment includes a representative subset of the first six problem
sizes, including two randomly selected problem instances from each size. Henceforth, we
refer to this sample problem set as the (final) “small and easy” set. It is important to note
that this problem subset is different from the preliminary one we randomly selected for the
purpose of the parametric GIP calibration. This sample problem set, is solved by CPLEX
9.0 twice. The first run does not take advantage of the AMPL pre-processing option and the
mixed-integer programming solver pre-processing option, while the second run activates
the pre-processing options for both AMPL and the MIP solver. The maximum time limit
for CPLEX 9.0 imposed on these runs was 11,000 CPU seconds, 1000 times the average
solution time of the same problem set with the parametric GIP method.

Problem size and ID, objective function values, lowest CPU time for the best solutions
found by the two runs, and lowest total execution CPU times for both runs are reported
in Table A-1 in the appendix. A comparison of the objective functions indicates that both
pre-processing options found optimal solutions for the first eight problems in the set. Nei-
ther of the two runs found optimal solutions to the four remaining problems within the
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Table 2. Specific run parameters for the first computational experiment.

Specific Run Parameters

Problem size (s, d) λiter Maxiter lscan = d lsize = 0.10d lmax = 0.05d

10 × 10 100 1,100 10 1 1

15 × 15 200 2,200 15 2 1

10 × 20 300 3,300 20 2 1

10 × 30 300 3,300 30 3 1

50 × 50 300 3,330 50 5 2

30 × 100 300 3,300 100 10 5

maximum CPU time limit. For three out of four remaining problems, CPLEX 9.0 with
the pre-processing option found solutions better than the run without pre-processing. The
minimum, maximum, and average CPU time for the best solutions found are 0.02, 10.77,
and 2.79, respectively. Also, the minimum, maximum, and average execution CPU times
are 0.11, 11,000, and 3.69, respectively.

Given the same sample testbed problems and the best objective function values and
CPU times provided by CPLEX 9.0 from the first experiment, the second computational
experiment focused on comparing relative performances of CPLEX 9.0, the Sun et al. (1998)
TS code, and the parametric GIP implementation. The run parameters applied to solve the
problem set by the TS code are the same ones reported by Sun et al. (1998). The specific run
parameters used for the parametric GIP code in this experiment are shown in Table 2. Also,
a maximum CPU time limit similar to the first experiment was imposed on CPLEX 9.0.
The computational results for this experiment, summarized in Table 3, show the problem
size and ID, the best objective function values found, the best solution CPU times, and the
execution CPU times for the three solution methods.

Examination of Table 3 indicates that the optimal solutions found by CPLEX 9.0 for five
out of twelve problem instances are matched by the two competing methods. For two other
testbed problems, the solutions found by the parametric GIP are verified to be optimal by
CPLEX 9.0. For the same two problems the TS method finds solutions of lower quality. The
solution quality of another pair of problems obtained by CPLEX 9.0 were not matched by
the other two methods. For the three largest size problems in the set, the parametric method
obtained solutions of higher quality than CPLEX 9.0 and the TS method.

The CPU time ranges and averages for the best solutions found by CPLEX 9.0, TS
method, and the parametric GIP approach are 0.02 to 10,767 with an average of 2,791, 0 to
4.39 with an average of 0.60, and 0 to 36.60 with an average of 6.34, respectively. For the
same codes, the execution CPU time ranges and averages are 0.11 to 11,000 with an average
of 3,691, 0.03 to 15.87 with an average of 3.52, and 0.18 to 39.97 with an average of 11.18,
respectively. The average CPU time to find the best solution and the average execution CPU
times indicate that the TS method runs faster than the two other codes, followed by the
parametric GIP method, and CPLEX 9.0.

It is important to note that the relative efficiency of the TS and the parametric GIP
approaches are affected by differences in the implementation strategies applied in the two
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codes. The use of a specialized transportation network solver, as used in the TS code,
versus a generalized network solver, as used in the GIP code, improves the solution CPU
time.

To provide additional challenges for the three competitive codes, the third, fourth, and
fifth computational experiments focused on the “largest” and “difficult” problems offered
in the testbed, a 50 × 100 problem set. The problem size set with s = 50 and d = 100
includes eight problem types, where each type includes 15 randomly generated problems,
giving a total of 120 test problem instances. For the third computational experiment, we
selected a subset of 24 problems from the testbed of 120 “large” and “difficult” instances,
where problems five, ten, and fifteen were chosen from each of the eight problem types.
The purpose of this experiment is to investigate the relative performance of CPLEX 9.0
where no pre-processing option is included versus the case when pre-processing option
is activated for both AMPL and the mixed-integer programming solver. We set the max-
imum CPU time limit for each problem to 19,000 CPU seconds, which is equal to the
100 times of the overall average CPU time of the parametric GIP approach for solving the
entire set of 120 “large” and “difficult” problem set. Table A-2, in the appendix, shows
the solution results for the third experiment. The results indicate that CPLEX 9.0 was not
able to obtain optimal solution for any of the 24 problem instances within the maximum
time limit. For 10 out of 24 problems, the best solutions were found by excluding the pre-
processing option, while for the remaining 14 problems the best solutions were found when
pre-processing option was utilized. The last two columns in Table A-2 show the CPU times
required to reach the best solutions found and the total execution times. The minimum, max-
imum, and average CPU seconds to obtain the best solutions are 3,650.16, 18,346.50, and
13,606.75, respectively.

Given the best solutions found by CPLEX 9.0 (the better of the two obtained by including
and excluding the pre-processing option), the objective of computational experiment number
4 was to compare relative performances of the three codes on the set of 24 selected “large”
and “difficult” problems instances. In solving the problem subset by the TS method, we
applied the run parameters utilized by Sun et al. (1998). The parametric GIP code used
the same common run parameters to solve this problem set as the ones used for previous
computational experiments: λiter = 700, lscan = d, lsize = 0.10 d, lmax = 0.05 d, and
Maxiter = (λmax − λmin + 1)λiter = 7, 700. The solution results obtained by the three
approaches are summarized in Table 4. These results reveal that the parametric GIP approach
found 24 solutions of higher quality than CPLEX 9.0, and 23 better solutions than the ones
found by the TS method. A comparison of the TS code against the CPLE 9.0 discloses
that the TS approach found solutions of higher quality than CPLEX 9.0 in 18 out of the
24 instances. The average CPU time required to reach the best solution found by each
particular method was 13,606.75 seconds for CPLEX 9.0, 7.59 seconds for the TS method
and 115.52 seconds for the GIP method, while the average total execution CPU times for
the three methods are 19,000 seconds, 35.38 seconds, and 190.67 seconds, respectively.
Again, it is important to note that the solution times for the GIP method should be divided
by a factor of somewhere between 4 and 12 in order to be compared appropriately to the
times reported for the TS code.
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Table 4. Solution results for a sample of “difficult” FCTPs.

CPLEX 9.0 Sun et al. (1998) Parametric GIP

Problem Best Best Exec. Best Best Exec. Best Best Exec.
ID O.F.V. time time O.F.V. time time O.F.V. time time

N3004 167,328 9,606.45 19,000 167,581 7.49 33.08 167,275 110.80 194.51

N3009 167,423 11,029.10 19,000 167,206 30.79 30.79 167,193 17.61 110.50

N300E 169,621 12,898.60 19,000 169,865 6.90 28.90 169,375 61.71 155.39

N3104 179,715 16,175.40 19,000 179,828 0.00 42.36 179,230 135.50 211.28

N3109 178,016 8,235.38 19,000 178,077 0.00 38.18 177,599 34.44 134.07

N310E 180,551 18,251.20 19,000 180,273 11.24 47.55 179,763 88.85 190.15

N3204 202,503 12,222.30 19,000 201,748 8.67 42.21 201,089 78.87 184.59

N3209 199,672 12,406.90 19,000 199,160 8.49 29.43 198,262 161.34 215.64

N320E 201,365 10,755.60 19,000 201,583 6.21 38.14 200,178 63.29 172.56

N3304 244,496 16,512.70 19,000 243,778 40.03 40.03 241,295 119.31 208.32

N3309 241,870 17,645.30 19,000 238,961 11.03 34.61 238,233 92.41 197.42

N330E 241,239 17,926.40 19,000 241,727 0.00 44.41 238,434 153.18 197.21

N3404 324,783 14,327.20 19,000 316,053 3.84 44.56 314,941 126.28 191.29

N3409 318,978 18,346.50 19,000 315,370 0.00 31.81 312,060 130.11 200.84

N340E 319,028 17,493.10 19,000 316,113 4.53 32.62 311,349 157.64 207.81

N3504 471,897 14,154.40 19,000 458,946 9.87 28.63 454,244 125.64 205.35

N3509 469,705 13,707.50 19,000 453,419 4.39 27.47 451,451 112.08 199.47

N350E 469,890 15,471.50 19,000 451,834 1.76 32.40 449,546 116.12 210.32

N3604 761,440 13,324.30 19,000 731,657 13.78 28.66 719,948 193.04 208.90

N3609 744,103 12,634.70 19,000 717,733 9.56 27.83 713,193 154.76 208.72

N360E 747,799 14,649.90 19,000 722,009 3.49 30.48 712,120 158.4 211.16

N3704 1,314,480 12,673.20 19,000 1,247,729 0.00 40.40 1,230,928 57.01 172.40

N3709 1,285,720 3,650.16 19,000 1,220,415 0.00 39.13 1,211,783 167.97 187.12

N370E 1,291,020 12,464.30 19,000 1,219,003 0.00 35.33 1,220,285 156.00 201.02

Min. 167,328.00 3,650.16 19,000 167,206.00 0.00 27.47 167,193.00 17.61 110.50

Max. 1,314,480.00 18,346.50 19,000 1,247,729.00 40.03 47.55 1,230,928.00 193.04 215.64

Ave. 453,860.08 13,606.75 19,000 439,169.50 7.59 35.38 435,823.92 115.52 190.67

Std. 375847.82 3491.40 0.00 353,378.06 9.68 6.09 350,537.06 45.56 25.80

∗CPU time (seconds) on Dell, Latitude, Pentium III, Laptop.
∗∗CPLEX 9.0 reports the best solutions found by Presolve option.

The final computational experiment includes a relative performance analysis of the two
competing metaheuristics, the TS code and the parametric GIP implementation on the entire
set of 120 “large” and “difficult” test problem instances. This experiment excluded CPLEX
9.0 due to its inferior performance both in solution time and solution quality shown in the
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Table 5. Summary solution results for the types a through h “difficult”
FCTPs.

Problem Number of test Number of better Number of worse
type problems sols. found sols. found

A 15 14 1

B 15 15 0

C 15 15 0

D 15 15 0

E 15 15 0

F 15 15 0

G 15 14 1

H 15 11 4

Total: 120 114 6

previous experiments. The run parameters for both the TS code and the parametric GIP
code used in this experiment are the same as the previous experiment. Tables A-A through
A-H in the appendix show detailed computational results for problem types A through
H. Each table includes information about problem instance ID number, solution results
provided by the competing method, the best objective function values and solution time
generated by the parametric ghost image processes method, and relative objective function
improvements gained by the new approach. Also, included in each table are the columns’
min, max, average, and standard deviation.

Drawing on the Tables A-A through A-H, solution summary results for the 50 × 100
testbed problems are presented in Tables 5–7. Table 5 indicates that the parametric GIP
method was successful in obtaining solutions of higher quality for 114 out of the 120
problem instances in the types A through H sets. Table 6 shows the objective function
improvement or deterioration for types A through H problem sets. The table also identifies
the problem types, the best objective function and percentage improvement, and average
and average percentage improvement. Also, for the 6 problems for which better solutions
were not found, the table includes the objective function worst and percentage deteriora-
tion, and average and average percentage deterioration. In addition, the table presents the
min, max, and average values for the columns, and reveals that the best percentage im-
provement in the objective function value obtained by the parametric GIP approach ranges
between 0.36 and 2.99%, averaging 1.55%. The minimum, maximum, and average per-
centage improvements in the objective function for the subset of 114 problems are 0.02,
0.13, and 0.06%, respectively. As the problem set becomes more complex and its members
become harder to solve, the improvement in the objective function gained by the parametric
GIP approach increases. In addition, Table 6 shows that the worst percentage deterioration
in the objective function value obtained by the parametric GIP method ranges between
0.02 and 0.45%. The minimum, maximum, and average percentage deteriorations in the
objectives for the subset of 29 problems are 0.02, 0.45, and 0.06%, respectively. As an
overall performance indicator, the average percentage improvement in solutions obtained
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Table 7. Summary execution CPU time for the types A through H “Difficult” FCTPs.

Sun et al. (1998) Parametric GIP
solution CPU time (secs.) Solution CPU time (secs.)

Problem ID Min Max Ave Min Max Ave
Relative

speed

A 27.38 40.38 33.14 110.50 204.43 176.44 5.32

B 30.25 47.55 37.97 120.21 212.18 181.43 4.78

C 29.29 54.21 39.13 134.98 220.96 195.60 5.00

D 30.90 47.34 37.82 157.40 210.07 191.03 5.05

E 27.48 44.56 34.75 99.57 207.86 181.35 5.22

F 27.47 38.85 31.77 172.93 212.77 196.93 6.20

G 26.24 36.01 30.81 104.18 218.51 176.21 5.72

H 24.35 43.97 32.55 110.62 225.03 185.74 5.71

Min 223.36 352.87 277.95 1,010.39 1,711.81 1,484.72 4.78

Max 24.35 36.01 30.81 99.57 204.43 176.21 6.20

Ave 30.90 54.21 39.13 172.93 225.03 196.93 5.37

∗CPU time on Dell, Latitude, Pentium III, Laptop.

by the parametric GIP method for the 114 problems of types A through H equals the
average percentage deterioration observed in the objective function of the remaining six
problems.

With regard to the execution solution CPU times, a review of Table A-A through A-H
reveals that in every problem instance the TS method outperformed the parametric GIP
approach. A summary of solution CPU times for the eight problem types is shown in Table
7. The table includes the minimum, maximum, and average execution CPU times for both
the TS and the parametric GIP approaches. Also, the table shows minimum, maximum, and
average values for each column. In addition, the table includes the relative speed of the TS
versus the parametric GIP method. From this table, we can conclude that for each problem
type the min, max, and average CPU times associated with the TS approach is smaller than
the ones provided by the parametric GIP method. The relative speed column indicates that
the TS code is faster than the parametric GIP code by 4.78 to 6.20 times, averaging a speed
factor of 5.37. Accounting for the expected difference in times that magnifies the solution
time for the GIP code by a factor of 4 to 12, the TS code and the GIP code may be seen to
perform at about the same level of efficiency in solving the “large” and “difficult” problem
instances.

5. Summary and conclusions

In the early 90s, the ghost image process (GIP) approach was proposed as a progres-
sively staged process for solving a variety of optimization problems, based on a collection
of solution principles derived from tabu search and adapted to the setting of staged
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solution methods. A specific instance of this approach utilizing a progressive modifi-
cation of a parameterized objective function was proposed for fixed-charge problems.
The current study utilizes a version of this design as a foundation for solving fixed-
charge pure and generalized network problems. Our work specifically focuses on com-
putational testing of the fixed-charge transportation problem, which is the most widely
examined class of fixed-charge problems in the literature. Our computational experiments
compare our approach with CPLEX 9.0 and the approach of Sun et al. (1998) that has
previously been found to be the most effective procedure for fixed-charge transporta-
tion problems across the most comprehensive problem testbed available in the
literature.

The first computational experiment, which focus on representative problem instances
from the six smallest and easiest-to-solve problem sets, shows that the parametric GIP
approach obtains solutions whose quality matches or exceeds that of the best solutions
obtained by CPLEX 9.0 and the Sun et al. (1998) method in all but two instances. Also, the
solution efficiency of our parametric GIP method proves to be roughly 250 times greater than
that of CPLEX 9.0, but 3 times less than that of TS method. Accounting for implementation
differences that reduce the speed of the GIP code by a factor of 4 to 12 compared to
the TS code (by using a general purpose solver for two-multiplier generalized networks
versus a solver specialized for transportation networks, and by not exploiting re-pricing
processes in the generalized network approach), the GIP code and the TS code may be
considered approximately equal in efficiency in solving the “small” and “easy” problem
instances.

Our second comparative experiment include a sample of 24 “large” and ‘difficult” prob-
lems from the testbed. For all problem instances in this experiment, the parametric GIP
approach found higher quality solutions than those obtained by CPLEX 9.0. Also, the GIP
approach obtained 23 solutions of higher quality than those provided by the TS method,
which in turn obtained better solutions than CPLEX 9.0 in 18 of the 24 cases. The para-
metric GIP code proved approximately 100 times more efficient than CPLEX 9.0, but was
slower than the Sun et al. (1998) method by a factor of roughly 5. Again, this falls within
the expected factor of 4 to 12, and hence after adjusting for this factor, the GIP and the TS
methods may be considered to run at roughly comparable levels of efficiency in solving the
subset of “large” and “difficult” problems. However, the efficiency differences compared
to CPLEX 9.0 are likely to be somewhat greater than indicated since the CPLEX runs were
truncated after reaching a pre-set iteration limit.

Our third and more comprehensive computational experiment focuses on the entire
set of “large” and “difficult” problems (the seventh set) from the testbed, having eight
problem subsets with different degrees of complexity. This experiment includes a com-
parison between the two metaheuristics and CPLEX 9.0 was excluded due to its infe-
rior performance in the previous experiments. In this case, the new GIP method found
solutions of higher quality for 114 out of 120 problem instances. The GIP method ran
from 4.78 to 5.71 times slower than the TS method, again making the methods roughly
comparable in efficiency after adjusting for the expected 4 to 12 difference
factor.
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The most conspicuous avenue for potential future improvement of our method lies in re-
placing its Phase 2 improvement process, which presently makes only very limited recourse
to notions from tabu search, with a process that relies on more advanced tabu search strate-
gies such as those adapted to the fixed charge setting in Sun et al. (1998), Gendron, Potvin
and Soriano (2003), and Crainic, Gendron, and Hernu (2004). In addition, further improve-
ment of the competing metaheuristic approaches compared in this study may be gained
from more effective implementation strategies, including a coordinated post-optimization
strategy and a more advanced re-pricing technique for the parametric GIP approach. Such
enhancements also paves the way for treating more general model applications with greater
effectiveness. Since our implementation is not specialized to transportation problems, but
rather incorporates a two-multiplier generalized network solver that handles problems of
considerably greater generality, enhancements to the present design will have immediate
implications for solving problems from this broader domain. Well-known model transfor-
mation techniques permit the members of this domain to encompass fixed-charge and other
0–1 optimization problems that at first seem to bear no connection with networks, and thus
open the door to a wide range of additional applications.

Appendix

Table A-1. CPLEX 9.0 solution results for a sample of “Easy” FCTPs.

Best Solution Found Solution time

Problem size (s, d) Problem ID Presolve = 0 Presolve = 1 Best solution time Exec. time

10 × 10 N104 40,258 40,258 0.05 0.11

N107 42,029 42,029 0.02 0.33

15 × 15 N204 54,502 54,502 2.56 2.70

N207 53,596 53,596 4.75 5.37

10 × 20 N304 56,366 56,366 0.15 1.00

N307 49,742 49,742 0.50 4.61

10 × 30 N504 57,130 57,130 26.64 237.33

N507 52,903 52,903 19.81 43.57

50 × 50 N1004 163,669 163,599 10,766.50 11,000

N1007 162,327 162,300 10,451.20 11,000

30 × 100 N2004 104,046 104,061 4,851.22 11,000

N2007 104,331 104,147 7,372.78 11,000

Min. 40,258 40,258 0.02 0.11

Max. 163,669 163,599 10,767 11,000

Ave. 78,408 78,386 2,791 3,691

Std. 44739.63 44714.02 4364.52 5398.27

∗CPU time (seconds) on Dell, Latitude, Pentium III, Laptop.
∗∗Presolve was set for both AMPL and SOLVER.
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Table A-2. CPLEX 9.0 solution results for a sample of “Difficult” FCTPs.

Best solution found Solution time (secs.)

Problem ID Presolve = 0 Presolve = 1 Best Solution time Exec. time

N3004 167,328 167,416 9,606.45 19,000

N3009 167,423 167,530 11,029.10 19,000

N300E 169,719 169,621 12,898.60 19,000

N3104 179,715 179,757 16,175.40 19,000

N3109 178,058 178,016 8,235.38 19,000

N310E 180,551 180,858 18,251.20 19,000

N3204 202,566 202,503 12,222.30 19,000

N3209 199,672 200,174 12,406.90 19,000

N320E 201,499 201,365 10,755.60 19,000

N3304 245,804 244,496 16,512.70 19,000

N3309 242,303 241,870 17,645.30 19,000

N330E 242,531 241,239 17,926.40 19,000

N3404 324,783 325,003 14,327.20 19,000

N3409 319,978 318,978 18,346.50 19,000

N340E 320,987 319,028 17,493.10 19,000

N3504 478,177 471,897 14,154.40 19,000

N3509 469,705 471,769 13,707.50 19,000

N350E 469,890 469,969 15,471.50 19,000

N3604 763,554 761,440 13,324.30 19,000

N3609 744,103 752,846 12,634.70 19,000

N360E 747,799 750,687 14,649.90 19,000

N3704 1,318,810 1,314,480 12,673.20 19,000

N3709 1,297,060 1,285,720 3,650.16 19,000

N370E 1,305,320 1,291,020 12,464.30 19,000

Min. 167,328 167,416 3,650.16 19,000.00

Max. 1,318,810 1,314,480 18,346.50 19,000.00

Ave. 455,722 454,487 13,606.75 19,000.00

Std. 378720.4 376212.4 3491.40 0.00

∗CPU time (seconds) on Dell, Latitude, Pentium III, Laptop.
∗∗Presolve was set for both AMPL and SOLVER.
∗∗∗Best solution time is determined based on CPLEX 9.0 best results.
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Table A-A. Solution results for the Type A “Difficult” FCTPs.

Sun et al. (1998) Parametric GIP

Problem ID Best O.F.V. Best time Exec. time Best O.F.V. Best time Exec. time
O.F.V.

improvement

N3000 168,460 0.00 33.44 168,057 89.20 193.23 403

N3001 166,930 0.00 40.38 166,678 120.04 178.12 252

N3002 167,888 24.17 37.31 167,919 83.53 195.38 (31)

N3003 168,847 5.05 27.38 168,434 35.83 144.81 413

N3004 167,581 7.49 33.08 167,275 110.80 194.51 306

N3005 168,251 3.75 37.84 167,639 161.48 195.59 612

N3006 166,287 18.12 31.56 165,862 89.37 179.85 425

N3007 167,845 15.05 32.85 167,364 79.11 196.17 481

N3008 165,944 28.34 28.34 165,576 86.87 187.98 368

N3009 167,206 30.79 30.79 167,193 17.61 110.50 13

N300A 167,895 25.00 29.54 167,358 55.32 142.26 537

N300B 168,807 8.56 35.68 168,504 152.01 175.73 303

N300C 165,765 32.10 32.11 165,295 90.68 192.61 470

N300D 166,295 37.89 37.89 166,217 160.87 204.43 78

N300E 169,865 6.90 28.90 169,375 61.71 155.39 490

Min. 165,765.00 0.00 27.38 165,295.00 17.61 110.5 (31.00)

Max. 169,865.00 37.89 40.38 169,375.00 161.48 204.43 612.00

Ave. 167,591.07 16.21 33.14 167,249.73 92.96 176.44 341.33

Std. 1,185.49 12.69 3.94 1,156.16 42.70 26.56 191.39

∗CPU time (seconds) on Dell, Latitude, Pentium III, Laptop.

Table A-B. Solution results for the Type B “Difficult” FCTPs.

Sun et al. (1998) Parametric GIP

Problem ID Best O.F.V. Best time Exec. time Best O.F.V. Best time Exec. time
O.F.V.

improvement

N3100 179,672 35.79 43.89 179,019 104.74 192.27 653

N3101 178,518 15.08 34.88 177,861 79.69 190.51 657

N3102 179,021 0.00 33.77 179,007 88.12 190.77 14

N3103 179,278 15.74 31.33 179,017 178.34 212.18 261

N3104 179,828 0.00 42.36 179,230 135.50 211.28 598

N3105 178,714 12.78 42.55 178,160 58.84 147.71 554

N3106 177,304 0.00 46.67 176,546 141.36 183.65 758

N3107 178,567 18.27 30.25 177,904 193.58 206.68 663

N3108 176,540 4.05 36.27 176,266 156.38 185.68 274

N3109 178,077 0.00 38.18 177,599 34.44 134.07 478

N310A 179,432 5.89 32.80 178,703 118.83 188.21 729

N310B 180,020 16.14 34.38 179,647 31.05 120.21 373

N310C 176,106 13.78 36.55 175,850 69.59 162.26 256

N310D 178,287 14.60 38.10 177,328 139.22 205.80 959

N310E 180,273 11.24 47.55 179,763 88.85 190.15 510

Min. 176,106.00 0.00 30.25 175,850.00 31.05 120.21 14.00

Max. 180,273.00 35.79 47.55 179,763.00 193.58 212.18 959.00

Ave. 178,642.47 10.89 37.97 178,126.67 107.90 181.43 515.80

Std. 1,233.76 9.69 5.47 1,227.19 49.55 28.03 244.03

∗CPU time (seconds) on Dell, Latitude, Pentium III, Laptop.
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Table A-C. Solution results for the Type C “Difficult” FCTPs.

Sun et al. (1998) Parametric GIP

Problem ID Best O.F.V. Best time Exec. time Best O.F.V. Best time Exec. time
O.F.V.

improvement

3200 201,441 8.83 31.67 199,611 136.85 185.97 1,830

3201 199,720 31.54 49.61 198,843 173.35 206.12 877

3202 201,728 22.17 33.54 199,986 159.73 195.94 1,742

3203 200,648 25.44 34.54 199,338 142.91 220.96 1,310

3204 201,748 8.67 42.21 201,089 78.87 184.59 659

3205 199,576 30.98 54.21 198,764 157.08 210.42 812

3206 198,305 4.77 43.47 197,383 44.40 134.98 922

3207 200,195 18.68 39.88 198,006 115.06 208.88 2,189

3208 197,043 13.09 42.55 196,558 105.82 209.44 485

3209 199,160 8.49 29.43 198,262 161.34 215.64 898

320A 201,041 0.00 35.33 197,924 196.01 201.10 3,117

320B 202,682 29.29 29.29 201,108 81.63 187.57 1,574

320C 198,738 22.63 36.73 196,264 136.61 210.73 2,474

320D 199,738 3.55 46.42 198,158 99.29 189.05 1,580

320E 201,583 6.21 38.14 200,178 63.29 172.56 1,405

Min. 197,043.00 0.00 29.29 196,264.00 44.40 134.98 485.00

Max. 202,682.00 31.54 54.21 201,108.00 196.01 220.96 3,117.00

Ave. 200,223.07 15.62 39.13 198,764.80 123.48 195.60 1,458.27

Std. 1,531.90 10.76 7.32 1,472.82 43.87 21.60 733.48

∗CPU time (seconds) on Dell, Latitude, Pentium III, Laptop.

Table A-D. Solution results for the Type D “Difficult” FCTPs.

Sun et al. (1998) Parametric GIP

Problem ID Best O.F.V. Best time Exec. time Best O.F.V. Best time Exec. time
O.F.V.

improvement

3300 240,209 31.09 34.80 239,115 180.85 210.02 1,094

3301 241,428 4.10 33.86 238,570 49.70 159.56 2,858

3302 240,555 0.00 39.57 239,876 128.86 197.97 679

3303 237,274 22.66 40.18 237,204 54.62 157.40 70

3304 243,778 40.03 40.03 241,295 119.31 208.32 2,483

3305 241,594 6.99 36.97 237,920 113.12 187.67 3,674

3306 237,461 47.34 47.34 236,061 174.36 197.88 1,400

3307 238,483 0.00 33.18 236,150 106.06 210.07 2,333

3308 236,800 16.06 33.91 234,479 64.34 159.81 2,321

3309 238,961 11.03 34.61 238,233 92.41 197.42 728

330A 242,350 11.87 38.09 242,000 112.47 187.10 350

330B 243,341 0.00 36.71 241,009 168.38 205.16 2,332

330C 237,911 0.00 30.90 235,173 131.85 201.58 2,738

330D 237,071 0.00 42.69 236,002 186.26 188.27 1,069

330E 241,727 0.00 44.41 238,434 153.18 197.21 3,293

Min. 236,800.00 0.00 30.9 234,479.00 49.70 157.4 70.00

Max. 243,778.00 47.34 47.34 242,000.00 186.26 210.07 3,674.00

Ave. 239,929.53 12.74 37.82 238,101.40 122.38 191.03 1,828.13

Std. 2,379.06 15.75 4.58 2,288.02 44.72 18.20 1,125.27

∗CPU time (seconds) on Dell, Latitude, Pentium III, Laptop.
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Table A-E. Solution results for the Type E “Difficult” FCTPs.

Sun et al. (1998) Parametric GIP

Problem ID Best O.F.V. Best time Exec. time Best O.F.V. Best time Exec. time
O.F.V.

improvement

3400 314,664 12.08 30.79 312,137 3.86 99.57 2,527

3401 314,568 30.12 39.20 309,548 166.67 204.21 5,020

3402 317,426 10.36 31.60 314,136 86.46 177.59 3,290

3403 306,564 0.00 27.48 305,622 137.67 207.86 942

3404 316,053 3.84 44.56 314,941 126.28 191.29 1,112

3405 314,182 0.00 34.66 311,120 171.22 189.40 3,062

3406 308,776 1.86 27.91 308,427 31.48 128.46 349

3407 305,782 24.08 41.57 305,442 76.28 186.30 340

3408 312,399 15.87 30.73 308,179 129.18 182.53 4,220

3409 315,370 0.00 31.81 312,060 130.11 200.84 3,310

340A 317,228 0.00 37.29 316,336 72.51 170.83 892

340B 316,352 5.64 36.68 314,486 108.63 185.11 1,866

340C 310,844 0.00 34.58 308,288 108.62 198.96 2,556

340D 309,496 2.59 39.80 308,479 184.79 189.42 1,017

340E 316,113 4.53 32.62 311,349 157.64 207.81 4,764

Min. 305,782.00 0.00 27.48 305,442.00 3.86 99.57 340.00

Max. 317,426.00 30.12 44.56 316,336.00 184.79 207.86 5,020.00

Ave. 313,054.47 7.40 34.75 310,703.33 112.76 181.35 2,351.13

Std. 3,859.69 9.44 5.02 3,353.41 51.44 29.87 1,570.61

∗CPU time (seconds) on Dell, Latitude, Pentium III, Laptop.

Table A-F. Solution results for the Type F “Difficult” FCTPs.

Sun et al. (1998) Parametric GIP

Problem ID Best O.F.V. Best time Exec. time Best O.F.V. Best time Exec. time
O.F.V.

improvement

3500 457,658 0.00 29.88 450,795 66.58 172.93 6,863

3501 454,374 2.02 33.25 445,767 197.87 198.73 8,607

3502 451,039 0.00 38.85 449,374 72.80 183.67 1,665

3503 439,546 30.72 32.42 438,734 203.01 212.77 812

3504 458,946 9.87 28.63 454,244 125.64 205.35 4,702

3505 452,509 18.74 34.70 448,007 66.91 176.13 4,502

3506 447,534 25.64 29.24 442,903 62.25 176.31 4,631

3507 443,375 6.54 29.82 439,880 127.01 212.16 3,495

3508 450,745 0.00 33.12 447,131 181.06 186.79 3,614

3509 453,419 4.39 27.47 451,451 112.08 199.47 1,968

350A 459,302 24.64 30.49 455,810 117.07 187.09 3,492

350B 457,231 0.00 34.07 453,736 98.91 211.64 3,495

350C 451,829 9.46 31.12 449,021 118.22 211.48 2,808

350D 451,829 9.47 31.14 449,021 116.93 209.08 2,808

350E 451,834 1.76 32.40 449,546 116.12 210.32 2,288

Min. 439,546.00 0.00 27.47 438,734.00 62.25 172.93 812.00

Max. 459,302.00 30.72 38.85 455,810.00 203.01 212.77 8,607.00

Ave. 452,078.00 9.55 31.77 448,361.33 118.83 196.93 3,716.67

Std. 5,482.32 10.48 2.85 4,931.86 45.14 14.95 1,996.33

∗CPU time (seconds) on Dell, Latitude, Pentium III, Laptop.



PARAMETRIC GHOST IMAGE PROCESSES FOR FIXED-CHARGE PROBLEMS 333

Table A-G. Solution results for the Type G “Difficult” FCTPs.

Sun et al. (1998) Parametric GIP

Problem ID Best O.F.V. Best time Exec. time Best O.F.V. Best time Exec. time
O.F.V.

improvement

3600 713,866 22.33 31.33 713,202 140.81 199.62 664

3601 722,657 2.36 34.62 709,804 94.50 178.03 12,853

3602 716,002 4.25 29.34 704,514 19.51 104.18 11,488

3603 702,926 8.07 29.05 698,859 204.77 211.93 4,067

3604 731,657 13.78 28.66 719,948 193.04 208.90 11,709

3605 710,327 0.00 36.01 701,139 148.87 185.72 9,188

3606 715,812 13.49 30.27 711,073 25.39 137.38 4,739

3607 701,699 2.52 34.61 696,387 174.97 218.51 5,312

3608 705,938 16.91 26.24 709,132 42.01 140.18 (3,194)

3609 717,733 9.56 27.83 713,193 154.76 208.72 4,540

360A 730,942 0.00 30.16 729,011 29.41 116.60 1,931

360B 727,058 0.00 31.87 718,435 132.13 174.39 8,623

360C 725,348 0.00 30.85 716,833 78.04 173.74 8,515

360D 725,348 0.00 30.85 716,833 78.15 174.06 8,515

360E 722,009 3.49 30.48 712,120 158.4 211.16 9,889

Min. 701,699.00 0.00 26.24 696,387.00 19.51 104.18 (3,194.00)

Max. 731,657.00 22.33 36.01 729,011.00 204.77 218.51 12,853.00

Ave. 717,954.80 6.45 30.81 711,365.53 111.65 176.21 6,589.27

Std. 9,654.85 7.23 2.64 8,626.68 63.30 36.46 4,525.92

∗CPU time (seconds) on Dell, Latitude, Pentium III, Laptop.

Table A-H. Solution Results for the Type H “Difficult” FCTPs.

Sun et al. (1998) Parametric GIP

Problem ID Best O.F.V. Best time Exec. time Best O.F.V. Best time Exec. time
O.F.V.

improvement

3700 1,253,875 0.00 33.09 1,217,475 178.18 188.25 36,400

3701 1,237,126 17.43 24.35 1,217,557 158.15 206.75 19,569

3702 1,230,006 20.04 26.20 1,211,000 81.35 179.78 19,006

3703 1,213,135 0.00 42.93 1,213,202 17.97 110.62 (67)

3704 1,247,729 0.00 40.40 1,230,928 57.01 172.40 16,801

3705 1,242,727 8.95 33.00 1,223,852 107.19 198.19 18,875

3706 1,240,640 0.00 30.05 1,233,656 99.53 187.55 6,984

3707 1,213,414 22.13 43.97 1,193,304 145.94 225.03 20,110

3708 1,220,714 1.47 28.59 1,222,297 178.48 194.78 (1,583)

3709 1,220,415 0.00 39.13 1,211,783 167.97 187.12 8,632

370A 1,255,481 3.33 26.29 1,256,831 153.14 170.28 (1,350)

370B 1,243,265 17.17 30.30 1,229,574 120.68 177.22 13,691

370C 1,243,686 1.45 27.29 1,229,667 176.72 191.00 14,019

370D 1,243,686 1.45 27.33 1,229,667 181.08 196.17 14,019

370E 1,219,003 0.00 35.33 1,220,285 156.00 201.02 (1,282)

Min. 1,213,135.00 0.00 24.35 1,193,304.00 17.97 110.62 (1,583.00)

Max. 1,255,481.00 22.13 43.97 1,256,831.00 181.08 225.03 36,400.00

Ave. 1,234,993.47 6.23 32.55 1,222,738.53 131.96 185.74 12,254.93

Std. 14,379.28 8.48 6.44 14,062.23 49.92 25.03 10,586.74

∗CPU time (seconds) on Dell, Latitude, Pentium III, Laptop.
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Note

1. The basis exchange path, excluding the arc for x j , can include up to two cycles in the GN setting. In all of
these transitions, x j starts at either 0 or U j and xk ends at either 0 or Uk . In the degenerate case where no flow
change occurs, r j and all Gh are 0, and both x j and xk remain at one of their two bounds, but exchange their
nonbasic/basic status.
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