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Abstract: Agent-based models have had a remarkable impact in many areas of science, 
engineering and business. To achieve their full potential, however, these models must be 
extended to meet challenges of optimization that have so far been sidestepped or left 
unattended. Because classical optimization procedures are incapable of handling the complex 
problems that give rise to this challenge, a need arises for agent-based models to draw support 
from the field of metaheuristics.  
Accordingly, this situation motivates the creation of Metaheuristic Agent Processes (MAPs) 
that integrate agent-based models with metaheuristic procedures, and thereby offer a means 
for achieving further advances through the use of agent-based technology. In this paper, we 
demonstrate that fundamental metaheuristic strategies already encompass inherent agent-
based components, providing a natural foundation for the form of integration necessary to 
produce MAPs. In addition, we identify a particular class of discrete optimization models that 
exhibits useful links to agent-based systems, and whose successful applications invite further 
exploration within the MAP context. 

1.1 INTRODUCTION: AGENT-BASED MODELS AND 
OPTIMIZATION 

Agent-based Models (ABMs) are gaining widespread recognition for their 
role in analyzing complex activities. The underlying structure of ABMs 
varies, but they are generally conceived to consist of autonomous software 
objects that interact within an environment. Agents are often described as 
having behaviors and missions by which they may affect the environment as 
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well as each other, and they are notably subject to being combined to create 
interactive simulations and models.  
Abstract characterizations of ABMs, however, may be viewed chiefly as 
“after-the-fact” attempts to group together ideas that are intuitively conveyed 
by the agent terminology. While a thoroughly precise and universally 
agreed-upon definition of agent-based models may not exist, the relevance of 
ABMs in science and industry is manifested in its diverse applications. 
These include explorations into the transmission of diseases, the operation of 
ecosystems, the dynamics of supply chains, the fluctuations and trends of 
financial markets, the behavior of economic sectors, the patterns of 
migrations, the flows of metropolitan traffic and the interactions of chemical 
and bio-physical processes.  
 
Within these numerous and varied systems, two essential elements come 
conspicuously to the fore: the need for complex simulations and the need for 
highly adaptive optimization. The relevance of complex simulations1 has 
been long been recognized, and has received extensive attention in agent-
based modeling – as evidenced by the existence of public domain libraries 
for generating simulations from an agent-based perspective.2 On the other 
hand, the relevance of optimization has been significantly underplayed. No 
doubt this is because the structure of many agent-based systems cannot 
easily be captured by classical optimization models, due to conditions of 
non-linearity, discreteness and/or uncertainty that are often present in these 
systems.  
 
In fact, the current role of optimization in agent-based modeling is entirely 
analogous to the role it assumed within the general field of simulation only a 
few years ago, as a result of these same factors – inapplicability of classical 
models, non-linearity, combinatorial complexity and uncertainty. Within the 
simulation industry, practitioners struggled for years in an attempt to handle 
the compelling issues of optimization simply by means of trial-and-error 
analysis. The simulation literature often claimed to have “optimized” various 
system components, based on nothing more than a series of guesses and 
brute force re-trials. Today, this picture has dramatically changed, thanks to 
the newly-emerged metaheuristic procedures that are now routinely being 
used in the simulation industry, and that are creating solutions of vastly 
greater quality and utility than were previously possible. The leading 

 
＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿ 
1  Complexity in this case is manifested in the outcomes of the simulation, though not 
necessarily in the elements and operations that compose it. 
2  A prominent example is the Swarm Simulation System (www.swarm.org). An award-

winning commercial authoring tool for creating agent-based models is provided by 
AgentSheets (www.agentsheets.com). 
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provider of this technology to the simulation industry, OptTek Systems, 
reports over 50,000 applications of its metaheuristic search software (e.g., 
see www.opttek.com).  
 
In the same way as occurred in the earlier applications of optimization in the 
simulation area, optimization within agent-based models is still approached 
for the most part by resorting to a series of educated guesses about the values 
of various input control parameters and decision variables. There is no 
globally coordinated mechanism for identifying parameter values that yield 
outcomes of high quality. In particular, the possibility of conducting an 
intelligent search for high quality solutions by using an appropriate 
metaheuristic framework is still largely unrecognized. 

1.2 METAHEURISTIC AGENT PROCESSES 

A significant opportunity exists to expand the scope and power of agent-
based models by integrating them with metaheuristics. We refer to the result 
of such integration as Metaheuristic Agent Processes (MAPs). From a 
strictly technical point of view, the creation of MAPs involves nothing 
revolutionary, since it corresponds to the same type of advance already made 
in the realm of simulation. Such a development is all the more natural 
because of the close alliance between simulation and agent-based models, 
where simulation is pervasively used to capture the dynamics and investigate 
the implications of many forms of ABMs. Taking advantage of this fact by 
creating metaheuristic agent processes to improve the quality and value of 
information derived from agent-based models would mark a significant step 
forward.  
 
The integration required to produce effective MAPs rests on principles 
already well-known and applied within many segments of the metaheuristic 
community. Indeed, some metaheuristic procedures are founded on 
metaphors that call to mind the notions and terminology of agent-based 
systems, and some proponents of these metaheuristics have already sought to 
have their work viewed as a contribution to the ABM area.3 However, such 
contributions are still limited in scope, and contributions of a more 

 
＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿ 
3 These metaheuristics are grouped by the label of “swarm intelligence” or “particle swarm 
optimization,” and widely portrayed by the metaphor of bees swarming about a hive. 
Interesting and perhaps unexpected bonds to certain other types of methods are evidenced by 
the fact that this search metaphor was originally introduced in the literature of tabu search and 
adaptive memory programming (see, e.g., Glover (1996) and Glover and Laguna (1997)). A 
website on particle swarm optimization can be found at www.particleswarm.com.  
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substantial nature are not only possible but greatly needed. The opportunity 
to make gains by the creation of MAPs rests on the same types of 
metaheuristic advances that have made it possible to handle the complex 
conditions of non-linearity, discreteness and uncertainty in other realms. Our 
thesis is that MAPS include agent-based processes of solving problems (i.e., 
agent-based algorithms) and also agent-based representatives of complex 
systems we try to optimize. 
 
The next sections set out to accomplish three things. First, we demonstrate 
an intimate connection whereby certain long-standing metaheuristic 
strategies may be viewed as instances of agent-based processes themselves. 
From this standpoint, there are compelling precedents for a broader 
integration of metaheuristics and agent-based models to produce MAPs. 
Second, within this development we also identify recent innovations that 
hold promise for further enriching the realm of metaheuristic agent processes. 
Within this context, we discuss the opportunity for next steps that can 
usefully expand the application of agent-based models by their integration 
with metaheuristics. Finally, we demonstrate that a class of 0-1 quadratic 
optimization models has close ties to agent-based systems, and observe that 
the highly successful application of these models motivates a fuller 
exploration of their connection with ABMs. 

1.3 METAHEURISTIC PROCESSES CONCEIVED AS 
AGENT-BASED SYSTEMS 

We illustrate a few selected metaheuristic strategies that have conspicuous 
interpretations as agent-based systems. Notably, the first two of these 
strategies we discuss emerged long before the notions of agent-based models 
were popularized. On the basis of these interpretations, it will be clear that 
many other metaheuristic strategies can likewise be viewed as instances of 
an agent-based framework. Thus, while agent-based modeling and 
optimization have up to now remained somewhat insulated from each other, 
the two fields can productively be viewed as interrelated through the design 
of metaheuristics and, in particular, through the realm of MAPs. 
 
We begin by stepping back in time to examine a set of strategies from the 
1960s that has motivated the development of more recent ideas. In their 
original form, these strategies were designed to generate solutions within the 
setting of job shop scheduling by creating improved local decision rules. The 
first of these approaches (Crowston, et al., 1963) sought to create improved 
rules by selecting probabilistically from a collection of known rules so that 
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different rules will be applied at different decision points throughout the 
process of generating a schedule constructively. As complete solutions 
(schedules) are produced by this approach, the decision rules that are more 
often used to create the solutions of higher quality receive greater increases 
in the probabilities for applying them in future passes.  
 
The process can be viewed from as a metaheuristic agent process as shown 
in Fig. 1.1. The decision rules (of which there may be many) operate as 
agents, and at each step of constructing a solution the agents enter into a 
“probabilistic competition” to determine which rule is allowed to augment 
the current solution to create an expanded solution for the next stage. The 
process repeats until completing the generation a new solution, whereupon 
the updated probabilities are calculated and the procedure begins once more 
with the null solution, to launch another construction. (For simplicity, we do 
not try to show all connections in this or subsequent figures, or to identify 
stopping rules, as typically based on numbers of iterations and/or quality of 
solutions obtained.)   

 
Figure 1.1.  Probabilistic Decision Learning MAP 

 
It is to be noted that this type of approach can readily be applied in many 
other settings, as a multi-start metaheuristic. Also, in the case where 
different decision rules are used to choose among alternative neighborhoods, 
the approach can be envisioned as an instance of a probabilistic form of 
strategic oscillation (Glover and Laguna, 1997; Gendreau, 2003) or as a 
variable neighborhood search procedure (Hansen and Mladenovic, 2003). 
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A related, but somewhat more effective method (Glover, 1963) replaces the 
approach of probabilistically choosing among a basic collection of rules by 
instead creating new rules that are explicitly different from all members of 
the collection, using a process of parametric combination. The basic rules are 
first re-expressed to yield an evaluation metric compatible with the notion of 
creating a weighted combination, and then each new pass systematically 
modifies the weights used to combine rules on preceding passes. The design 
of this approach later became encapsulated in surrogate constraint methods, 
by combining constraints instead of decision rules, and also more recently 
embodied in scatter search procedures (see the surveys respectively of 
Glover (2003) and Glover, Laguna and Marti (2000)). 
 
From the perspective of a metaheuristic agent process, the rules to be 
combined may again be viewed as the agents. The diagrammatic outline in 
Fig. 1.2 also refers to the more general form of the process that includes 
surrogate constraint and evolutionary scatter search approaches, by allowing 
constraints and solutions to be agents instead of decision rules. In this type 
of process we may conceive of an additional agent entering the picture (a 
“marriage agent”) as the means for creating the weighted combination of the 
components. Another generalization operates here, because the procedure is 
not only concerned with augmenting partial solutions (in successive stages 
of construction), but also with transforming complete solutions directly into 
other complete solutions. The augmentation repeats until creating a complete 
solution, while the direct transformation creates a new solution at each step. 
At this point, the new weights are produced for the next pass, and the 
procedure iterates until satisfying a chosen stopping criterion. An instance of 
this approach called a “ghost image process” has produced the best known 
solutions for an extensive test-bed of fixed charge transportation problems 
(Amini, 2003). 
 
There are evidently a variety of possible variations that likewise fit within 
the same agent-based design, such as permitting different weights to be 
applied at different stages of construction or according to different 
environments. Likewise, as in the case of the process depicted in Fig. 1.1, 
the decision rules can refer to rules for choosing neighborhoods and the 
approach can also be used as a schematic for a multi-start method. Finally, 
we observe that the approaches of Fig. 1.1 and Fig. 1.2 can be merged, to 
create a probabilistic variation of a parametric combination process. 
 
Within the framework of evolutionary approaches, an important extension of 
scatter search procedures is represented by path relinking methods (see, e.g.,  
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Figure 1.2.  Parametric Decision Combination MAP 

 
Glover, Laguna and Marti (2000) and Yagiura, Ibaraki and Glover (2002), 
Ribeiro and Resende (2005)). Path relinking combines solutions by 
generating paths in neighborhood spaces instead of Euclidean spaces as 
occurs in scatter search. To provide fuller generality, we treat rules and 
solutions alike as agents, thereby encompassing path relinking methods that 
use both transitional and constructive neighborhoods. (Transitional 
neighborhoods define moves that transform complete solutions into other 
complete solutions, while constructive neighborhoods define moves that 
transform incomplete (partial) solutions into more nearly complete 
solutions.) The same representation, under appropriate qualification, can also 
capture the approach of referent domain optimization (Glover and Laguna 
(1997) and Mautor and Michelon (1998)). The depiction of these approaches 
as metaheuristic agent processes is given in Fig. 1.3. 
 
Path relinking using transitional neighborhoods is embodied in this diagram 
by focusing on solutions as agents. At each step, a subset selection process is 
applied (which can also be viewed as performed by an agent), and the 
solutions in the subset are joined by moving from selected initiating 
solutions through neighborhood space toward other members of the subset, 
which provide guiding solutions for determining the trajectory. New 
solutions are culled from this procedure by an intermediate selection step 
and subjected to an improvement process. Finally, an evaluation filter 
decides which of the resulting solutions enters the set of agents to be 
considered for the next round, by replacing previous agents that are 
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Figure 1.3.  Path Relinking / Referent Domain MAP 

 
dominated according to intensification and diversification criteria. (As 
previously noted, not all connections are shown, in order to keep the 
diagrams from being cluttered.) Applications of this approach are surveyed 
in Glover, Laguna and Marti (2000, 2003). 
 
A slightly altered focus where rules also take the role of agents occurs in a 
form of path relinking involving the use of constructive neighborhoods. In 
this case, solutions and rules are intermingled, by a design where the guiding 
solutions provide “votes” (i.e., components of an overall evaluation) that 
determine which solution element is the next in sequence to be added by the 
constructive process. Destructive as well as constructive neighborhoods are 
typically incorporated in such designs. This type of approach has recently 
been applied effectively in the context of satisfiability problems by Hao, 
Lardeux and Saubion (2003), yielding new best solutions to a number of 
benchmark problems. A variant applied in conjunction with ejection chain 
neighborhoods by Yagiura et al. (2002) succeeds in generating solutions for 
generalized assignment problems that are not matched by any other 
procedure. 
 
Referent Domain Optimization is captured by this diagram under the 
condition where the new solutions produced by the solution combination 
mechanism are subdivided into components (domains), and the improvement 
process tightly constrains some of these components while subjecting the  
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Figure 1.4.  Filter-and-Fan MAP 

 
remaining problem to an intensified improvement procedure, typically an 
exact solution method. Other forms of referent domain optimization sketc 
hed in Glover and Laguna (1997) can be represented by straightforward 
modifications of the diagram.   
 
Our final illustration of a metaheuristic from the standpoint of an agent-
based process concerns the Filter-and-Fan procedure (Glover, 1998; 
Greistorfer, Rego and Alidaee, 2003). This approach operates with solutions 
as agents to produce the MAP representation shown in Fig. 1.4, which 
portrays a single iterative stage of the procedure. Each iteration begins by 
performing a fan step whereby each agent (solution) generates a subset of 
descendants in its neighborhood. The solutions carry individual memories 
(of the type customarily used in tabu search) which are used to separate and 
remove certain descendants (Filter A). The system as a whole also carries an 
associated global memory that removes additional descendants (Filter B). 
Finally, evaluation criteria based on intensification and diversification 
eliminate certain remaining solutions (Filter C), and those solutions that 
survive the gauntlet generate an updated solution pool for re-applying the 
process. After a chosen number of steps, the method recovers a restricted 
subset of solutions from earlier steps that resulted in the best solution(s) in 
the final pool. The recovered solutions then compose the starting solution 
pool for the next stage of the process. The investigation of Greistorfer, Rego 
and Alidaee (2003) discloses that this approach proves exceedingly effective 
for solving facility location problems.  
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1.4 GENERAL OBSERVATIONS ON MAP 

REPRESENTATIONS 

The representations of metaheuristics as MAPs illustrated in the preceding 
section are intended to be suggestive rather than exhaustive. Evidently, their 
form can be adapted to create agent-based representations of a variety of 
other metaheuristic approaches. For example, we may conceive associated 
constructions for representing processes that might be called Neural MAPs, 
Genetic MAPs, Evolutionary MAPs, Ant Colony MAPs, Variable 
Neighborhood MAPs, and so forth.  
 
The depiction of metaheuristics as MAPs has the benefit of clarifying the 
connection that already exists between metaheuristic procedures and the 
realm of agent-based models. On the other hand, these representations also 
suffer a significant limitation, by embodying a level of abstraction that loses 
track of details that are critical for producing the most effective methods. 
Among a wide range of procedures that might be portrayed within the same 
representational framework, only a small subset will reach or surmount the 
level of performance achieved by the methods that have motivated these 
MAP diagrams. 
 
The foregoing representations are also incomplete in another respect, 
resulting from their restricted focus on metaheuristics in isolation from other 
types of agent-based processes. The methods produced by this restricted 
focus might be called “antecedent MAPs,” or α-MAPs, to distinguish them 
from the more ambitious MAPs that integrate metaheuristics with agent-
based models of other forms. It is worth re-emphasizing that this integration 
is essential to accomplish the goal of bringing optimization to bear on ABMs. 
 
Notably, an important step toward creating fully integrated MAPs has been 
effected by the creation of a library of functions, called the OptQuest Engine, 
that integrates optimization with simulations that have an entirely general 
form. The library is not limited to serving as a tool for academic research, 
but has been widely used in practical applications and has been adopted by 
nearly all major providers of commercial simulation software. (For 
background on these developments, see April et al. (2003a, 2003b), Laguna 
and Marti (2002), Kelly and Laguna (1999).) Consequently, it is a natural 
next step to structure such metaheuristic processes to handle the specific 
manifestations of simulation that occur in agent-based modeling. 
Adaptations of this form can be tailored to yield integrated MAPs that 
exploit the features of different classes of applications, thereby increasing 
their usefulness. The resulting higher-order MAPs afford the opportunity to 
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significantly extend the capabilities of current agent-based methods, by 
making it possible to deal more effectively and comprehensively with 
environments attended by uncertain events, and to perform improved 
analyses of systems involving agents that behave according to 
probabilistically defined parameters. The ability of metaheuristics to handle 
complex nonlinearities and combinatorial relationships provides additional 
motivation for creating MAPs that go beyond the current “grope-in-the-
dark” applications of what-if analysis in ABMs, and  opens the door to the 
benefits of advanced optimization capabilities for agent-based modeling. 

1.5 A FUNDAMENTAL AGENT-BASED 
OPTIMIZATION MODEL 

We briefly sketch an optimization model that has a natural link to agent-
based models, and that can be used to capture interactions of a variety of 
agent-based systems. The model, called the binary quadratic programming 
(BQP) problem, can be expressed as follows. Given an n x n matrix Q of 
constants, we seek an n-dimensional vector x of variables to  

 
BQP:  Minimize (or maximize) xo = xQx 

subject to 

x binary 

Although there are no constraints other than the binary restriction on x, 
standard transformations make it possible to include many types of 
constraints (including linear equality constraints) directly in the objective 
function by modifying the entries of Q. Well known applications of the BQP 
model include Quadratic Assignment Problems, Capital Budgeting Problems, 
Multi-dimensional Knapsack Problems, Task Allocation Problems 
(distributed computer systems), Maximum Diversity Problems, P-Median 
Problems, Asymmetric Assignment Problems, Symmetric Assignment 
Problems, Side Constrained Assignment Problems, Quadratic Knapsack 
Problems, Constraint Satisfaction Problems (CSPs), Set Partitioning 
Problems, Fixed Charge Warehouse Location Problems, Maximum Clique 
Problems, Maximum Independent Set Problems, Maximum Cut Problems, 
Graph Coloring Problems, Graph Partitioning Problems and a variety of 
others. 
 
Note that in speaking of the BQP model as a MAP model, we are introducing 
a concept that goes beyond the customary notion of an agent-based process, 
which is restricted to refer to a type of algorithm or computational design. 
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From the current point of view, we consider that a model deserves (or 
benefits from) an agent-based interpretation if it can be expressed in a 
natural way as the outcome of an interaction among agents. The BQP model 
provides an “idealized form” of a MAP model in the following sense. First, 
in a simplified form, the model is concerned with possible behaviors of 
agents we index by the symbol j, whose actions are represented by a policy 
set that consists of two alternatives, coded by the values 0 and 1. The choice 
among these alternatives in this situation is represented by the assignment xj 
= 0 and xj = 1, respectively. The result of interaction among agents is 
captured in the Q matrix. More precisely, the Q matrix is the evaluator for all 
possible interactions. We seek a policy by each agent from its policy set that 
yields the best outcome according to the objective function. 
 
Actually, the interactions specified in the Q matrix imply that the policy set 
for each agent is more general that suggested by the preceding simplified 
description. To identify this broader interpretation, we may consider a policy 
set P(j) for each agent j that consists of multiple options i ε P(j), where agent 
j chooses policy i if and only if xij = 1. In this case the x vector consists of 
the binary variables xij and for each j the problem contains the additional 
multiple choice restriction 

 

∑ =∈ 1.    )P(j)i  :x( ij  

The choice by agent j of a specific policy from P(j) determines the response 
to each possible policy choice by every other agent according to the entries 
of the Q matrix. The effects of all possible pairwise interactions among 
policy choices receive consideration in this manner. The resulting model can 
also be viewed in the context of game theory as a Discrete Option Game. 
The additional multiple choice restrictions, to handle the situation where 
some players can choose among more than two policies, have a form that 
permits them to be embedded within the Q matrix in a straightforward way 
to yield an instance of the BQP model that can be solved highly efficiently. 
 
The interpretation of the BQP model in the agent-based setting, where it 
provides a fundamental class of agent-based models, is useful in relation to 
the discussion of MAPs in the preceding sections. (We caution that the term 
“agent based model” has acquired the connotation of not being a model at all 
in the sense we speak of here, since it refers simply to a way of 
characterizing a computational scheme.) Specifically, the agent-based 
interpretation attached to the BQP model establishes a connection that 
enhances the relevance of integrating metaheuristic processes with agent-
based designs to produce MAPs for several reasons. First, metaheuristic 
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methods have proved by far the most effective methods for solving BQP 
problems (see, e.g., Kochenberger et al., (2004)).  Moreover, the typical 
perspective regarding agent-based approaches, which does not envision the 
possibility of optimizing over the range of agent behaviors, becomes greatly 
broadened by means of the BQP model, for which optimization is 
meaningful and achievable within a practical sense. Finally, we note that the 
BQP model provides a framework that captures key problem areas that many 
efforts previously described as “agent-based modeling,” have sought to 
address.  Applications in such diverse areas as organization change, team 
building, and the study of international conflicts (see for example the works 
of Levinthal (1997), Solow, et. al. (2002) and Axelrod and Bennett (1993)) 
which have typically been modeled in terms of Rugged Landscapes can 
alternatively be modeled and analyzed via BQP. Finally, there is another 
way in which the agent-based interpretation of the BQP model is relevant to 
our present concerns. As we will show shortly, the method we have used to 
solve the BQP model itself has a convenient description as a metaheuristic 
agent process. Before proceeding to such a description, however, we 
elaborate on features of the BQP model (and the outcomes of solving it) that 
further motivate its consideration as a fundamental class of models. 
 
Robustness of BQP 
 
The application potential of BQP is extraordinarily robust due to 
reformulation methods that enable certain constrained models to be re-cast in 
the form of BQP. Boris and Hammer (1991, 2002), Hammer and Rudeanu 
(1968), Hansen (1979), and Hansen et. al. (1993) show that any quadratic (or 
linear) objective in bounded integer variables and constrained by linear 
equations can be reformulated as a BQP model.  This recasting into BQP is 
accomplished by imposing quadratic infeasibility penalties in place of the 
linear constraints as described below: 

 
Transformation to the BQP Form 
 
Many practical combinatorial optimization problems can be modeled as 
constrained optimization problems of the form 

 
xQxx =0min  

                           subject to 
 

binaryxbxA ,=  
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The foregoing model accommodates both quadratic and linear objective 
functions since the linear case results when Q is a diagonal matrix 
(observing that xj

2 = xj when xj is a 0-1 variable).  Problems with inequality 
constraints can also be put into this form by introducing bounded slack 
variables to convert the inequalities into equations, and representing these 
slack variables by corresponding binary expansions. The constrained 
quadratic optimization models are then converted into equivalent BQP 
models by adding a quadratic infeasibility penalty function to the objective 
function as an alternative to explicitly imposing the constraints bAx = . The 
general approach to such re-casting, which we call Transformation 1, is 
given below: 
  
Transformation 1.  Let P be a positive scalar penalty value, to yield 

( ) ( )
cxDxxQx

bAxbAxPxQxx t

++=
−−+=0  

cxQx += ˆ  
where the matrix D and the additive constant c result directly from the 
matrix multiplication indicated.  Upon dropping the additive constant, the 
equivalent unconstrained version of our constrained problem becomes 
 

binaryxxQxPENBQP ,ˆmin:)(  
 

From a theoretical standpoint, a suitable choice of the penalty scalar P can 
always be chosen so that the optimal solution to BQP(PEN) is the optimal 
solution to the original constrained problem.  As reported in Kochenberger, 
et. al. (2004), valid and computationally stable penalty values can be found 
without difficulty for many classes of problems, and a wide range of such 
values work well. 
 
In addition to the modeling possibilities introduced by Transformation 1, a 
very important special class of constraints that arise in many applications can 
be handled by an alternative approach, given below. 

 
Transformation 2. This approach is convenient for problems with 
considerations that isolate two specific alternatives and prohibit both from 
being chosen.  That is, for a given pair of alternatives, one or the other but 
not both may be chosen. If xj and xk are binary variables denoting whether or 
not alternatives j and k are chosen, the standard constraint that allows one 
choice but precludes both is: 
 

1≤+ kj xx  



Metaheuristic Agent Processes (MAPs) 15
 
Then, adding the penalty function kj xPx  to the objective function is a 
simple alternative to imposing the constraint in a traditional manner. For 
problems with a linear objective function having all nonnegative coefficients, 
at least one positive, the scalar P (with respect to Transformation 2) can be 
chosen as small as the largest objective function coefficient [5]. This penalty 
function has sometimes been used by to convert certain optimization 
problems on graphs into an equivalent BQP model (see Pardalos and Xue 
(1994)). Its potential application, however, goes far beyond these settings as 
demonstrated in this paper. Variable upper bound constraints of the form 

iij yx ≤  can be accommodated by Transformation 2 by first replacing each 
iy  variable by 1 – iy ', where iy ' is the complementary variable that equals 

1 when iy  = 0 and equals 0 when iy  = 1. The opportunity to employ this 
modeling device in the context of Transformation 2 makes it possible to 
conveniently model a variety of additional problem types.  
 
The constraint associated with Transformation 2 appears in many important 
applications which leads us to single it our here as an important alternative to 
Transformation 1.  We note, however, that many other problem-specific 
special cases exist that yield quadratic equivalent representations.  We 
illustrate this later in the paper when we discuss results we have obtained for 
the max 2-SAT problem.  
 
Examples 
 
Before highlighting some of the solution methods reported in the literature 
for BQP, we give two small examples from classical NP-hard problem 
settings to provide concrete illustrations.  

 
Example 1: Set Partitioning 

 The classical set partitioning problem is found in applications that range 
from vehicle routing to crew scheduling.  As an illustration, consider the 
following small example: 
   

6543210 2323min xxxxxxx +++++=   

subject to 

1
1

1
1

6421

543

6532
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all xj binary.  
Applying Transformation 1 with P =10 gives the equivalent BQP model: 

 
binaryxxQxPENBQP ,ˆmin:)(  

 

where the additive constant, c, is 40 and 
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This simple example of BQP(PEN) can be solved by any of a variety of 
methods. (The illustrative problems of this paper are solved  by the Tabu 
Search method of Glover et al. [11,12], and solution statistics for benchmark 
test problems are cited later.) In this case an optimal solution is given by 

151 == xx , (all other variables equal to 0) for which 60 =x . In the 
straightforward application of Transformation 1 to this example, it is to be 
noted that the replacement of the original problem formulation by the 
BQP(PEN) model did not involve the introduction of new variables. In many 
applications, Transformation 1 and Transformation 2 can be used in concert 
to produce an equivalent BQP model, as demonstrated next. 

 

Example 2: The K-Coloring Problem 

Vertex coloring problems seek to assign colors to nodes of a graph such that 
adjacent nodes are assigned different colors.  The K-coloring problem 
attempts to find such a coloring using exactly K colors. A wide range of 
applications ranging from frequency assignment problems to printed circuit 
board design problems can be represented by the K-coloring model. 
 
Such problems can be modeled as satisfiability problems using the 
assignment variables as follows:  

  
 Let ijx  to be 1 if node i is assigned color j, and to be 0 otherwise.   
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1 

5 2 

4 3 

Since each node must be colored, we have 

 ∑ ==
=

K

j
ij nix

1
,...,11                                               (1.1) 

where n is the number of nodes in the graph. A feasible coloring requires 
that adjacent nodes are assigned different colors.  This is accomplished by 
imposing the constraints 

                   Kpxx jpip ,...,11 =≤+                                        (1.2) 

for all adjacent nodes (i,j) in the graph.  

This problem can be re-cast into the form of BQP by using Transformation 1 
on the assignment constraints of (1.1) and Transformation 2 on the 
adjacency constraints of (1.2).  No new variables are required. Since the 
model consisting of (1.1) and (1.2) has no explicit objective function, any 
positive value for the penalty P will do.  The following example gives a 
concrete illustration of the re-formulation process. 
 
Consider the following graph and assume we want find a feasible coloring of 
the nodes using 3 colors. 
 
  
                              
 
 
                                                                  
 
 
 
 
 
 
 
 
Our satisfiablity problem is that of finding a feasible binary solution to: 

 
 

5,11321 ==++ iiii xxx                                      (1.3) 
 

3,11 =≤+ pjpip xx                                               (1.4) 
                               (for all adjacent nodes i and j) 
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In this traditional form, the model has 15 variables and 26 constraints.  To 
recast this problem into the form of BQP, we use Transformation 1 on the 
equations of (1.3) and Transformation 2 on the inequalities of (1.4). 
Arbitrarily choosing the penalty P to be 4, we get the equivalent problem: 

 
xQxPenBQP ˆmin:)(  

 
where the Q̂ matrix is: 
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Q̂

 
Solving this unconstrained model, xQx ˆ , yields the feasible coloring: 

 
01,,,,,

5341332211 == xotherall ijxxxxx  
 

This approach to coloring problems has proven to be very effective for a 
wide variety of coloring instances from the literature.  An extensive 
presentation of the xQx approach to a variety of coloring problems, 
including a generalization of the K-coloring problem considered here, is 
given in Kochenberger, Glover, Alidaee and Rego (2002) 
 
Solution Approaches to BQP 

 
Due to its computational challenge and application potential, BQP has been 
the focus of a considerable number of research studies in recent years, 
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including both exact and heuristic solution approaches.  Recent papers report 
on the branch and bound (exact) approaches as well as a variety of modern 
heuristic methods including simulated annealing, genetic algorithms, tabu 
search, and scatter search. (See Kochenberger, et. al. (2004) for references to 
these and other works.) Each of these approaches exhibits some degree of 
success. However, the exact methods degrade rapidly with problem size, and 
have meaningful application to general BQP problems with no more than 
100 variables. (A notable exception to this for the Ising spin glass problem is 
discussed in De Simone, et. al. (1995).  For larger problems, heuristic 
methods are usually required. Several proposed heuristics, including the 
DDT method of Boros, Hammer and Sun (1989) and the “one-pass” 
procedures of Glover, Alidaee, Rego and Kochenberger (2002) have proven 
to be effective in certain instances. Two methods we have found to be 
particularly successful for a wide variety of problems are based on tabu 
search (see Glover and Laguna (1997), Glover, et. al. (1999) and Glover, et. 
al. (1998)) and on the related evolutionary strategy scatter search of Glover 
(1998). In the following section we highlight our tabu search approach 
which was used to produce the computational results referenced later in this 
paper. 
 
Although not pursued by us here, we note that an alternative approach is to 
solve BQP as a continuous non-linear optimization problem within the unit 
cube. This allows other heuristic/approximation methods based on 
continuous optimization methodologies to be applied (see Boris and 
Hammer (1991), Boris and Prekopa (1989) and Rosenberg (1972)).    

 
Tabu Search Overview as a MAP process 

 
Our TS method for BQP is centered around the use of strategic oscillation, 
which constitutes one of the primary strategies of tabu search. We offer the 
description below as an example of a MAP solution process that operates via 
the interaction of several functional agents. 
 
The method alternates between constructive phases that progressively set 
variables to 1 (whose steps we call “add moves”) and destructive phases that 
progressively set variables to 0 (whose steps we call “drops moves”). The 
add moves are created by a “constructive agent” who identifies high quality 
potential add moves from an environment of available options.  In a similar 
fashion, drop moves are created and managed by a “destructive agent.” To 
control the underlying search process, we use a memory structure that is 
updated at critical events, characterized by conditions that generate a 
subclass of locally optimal solutions. Solutions corresponding to critical 
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events are called critical solutions. These functions are handled by a “critical 
event agent” that identifies when critical events occur and then performs the 
appropriate updates of memory.  
 
A parameter span is used to indicate the amplitude of oscillation about a 
critical event. The operations involving this parameter are managed by a 
“span agent” that begins by setting span equal to 1 and gradually increases it 
to some limiting value. For each value of span, the span agent directs the 
constructive and destructive agents to perform a series of constructive and 
destructive phases, in alternation, before progressing to the next value. When 
span reached its limiting point, its guiding agent reverses the process so that 
span is gradually decreased in value, once again accompanied by invoking a 
series of alternating constructive and destructive phases. When span reaches 
a value of 1, a complete span cycle has been completed and the span agent 
launches the next cycle.  
 
Information stored at critical events is used by a “tabu neighborhood 
restriction agent” (or simply “tabu agent,” for short) to influence the search 
process by penalizing potentially attractive add moves during a constructive 
phase and inducing drop moves during a destructive phase. These penalties 
and inducements are associated with assignments of values to variables in 
recent critical solutions. The tabu agent also uses cumulative critical event 
information to introduce a subtle long term bias into the search process by 
means of additional penalties and inducements similar to those discussed 
above.  
 
The activities of these agents are orchestrated by the direction of a “macro 
managing agent” that provides the coordination required for a successful 
search process. A complete description of the framework for our 
metaheuristic method is given in Glover, Kochenberger, Alidaee and Amini 
(1999). 
 
Relevance of the MAP Interpretation for the BQP Problem 

 
Evidently, the tabu search procedure for the BQP problem can be described 
without reference to a MAP framework, as in the case of other metaheuristic 
agent processes, and indeed as in the case of agent-based processes generally, 
which can readily be formulated as distributed computational designs where 
the activities of the agents are simply the functions of various subroutines. 
However, there is a virtue in the agent-based formulation that comes from its 
emphasis on processes that have a natural interpretation as being carried out 
by certain guiding entities that the literature has come to label with the agent 
terminology. Such an emphasis invites the designers of the associated 
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methods to organize them in certain modularly structured ways that proves 
useful for visualizing their function and for extending them to create more 
advanced versions. For example, a new function can be provided by 
introducing a new agent, together with rules for interacting with the problem 
environment and selected other agents. (The agent-based literature often 
refers to agent-based processes as if the agents operate in complete 
autonomy from each other. This is an oversimplification that applies only 
under restricted circumstances.) 
 
The advantages that come from using an agent-based orientation to describe 
and structure various computational processes lead us to anticipate that 
advantages may also accrue to ferreting out structures within mathematical 
models that can be interpreted from an agent-based perspective, as we have 
done with the BQP model. We now describe the outcomes that further 
suggest the BQP model may occupy a privileged position among the realm 
of models to which an agent-based interpretation can be usefully applied. 

 
Computational Experience 

Our results of applying the tabu search and associated scatter search 
metaheuristics to combinatorial problems recast in BQP form have been 
uniformly attractive in terms of both solution quality and computation times. 
Although our methods are designed for the completely general form of BQP, 
without any specialization to take advantage of particular types of problems 
reformulated in this general representation, our outcomes have typically 
proved competitive with or even superior to those of specialized methods 
designed for the specific problem structure at hand. By way of illustration, 
we present some representative results for a set of max 2-SAT test problems 
taken from the literature.  Details of our experience with other problems will 
appear in future papers. 
 

Max 2-SAT Results 

Several authors (Hammer and Rudeanu (1968), Hansen and Jaumard (1990), 
Boros and Hammer (2002)) have established the connection between SAT 
problems and nonlinear penalty functions. The special case of Max 2-SAT is 
particularly well suited for this approach as it leads naturally to an xQx 
representation.  Our experience, as shown below, indicates that this is a very 
attractive way to approach this class of problems.   
 
For a 2-SAT problem, a given clause can have zero, one, or two negations, 
each with a corresponding (classical) linear constraint. Each linear constraint, 
in turn, has an exact quadratic penalty that serves as an alternative to the 
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linear constraint. The three possibilities and their constraint/penalty pairs 
are: 

(a) No negations:   

Classical constraint: 1≥+ ji xx  
Exact Penalty: )1( jiji xxxx +−−  
 

(b) One negation:  

Classical constraint: 1≥+ ji xx  

Exact Penalty: )( jij xxx −  
 

(c) Two negations:  

Classical constraint: 1≥+ ji xx  

Exact Penalty: )( ji xx  
 
It is easy to see that the quadratic penalties shown are zero for feasible 
solutions and positive for infeasible solutions. Thus, these special penalties 
can be used to readily construct a penalty function of the form of xQx simply 
by adding the penalties together.  We have found this approach to be very 
effective.  Table 1.1 shows the results we obtained via this approach on a set 
of test problems from the literature. 

 
As shown in the table, by re-casting each Max 2-SAT instance into the form 
of xQx and solving the resulting unconstrained quadratic binary program 
with our Tabu Search heuristic, we were able to find best known solutions 
very quickly to all test problems considered.  By way of contrast, the method 
of Borchers and Furman took a very long time on several problems and was 
unable to find best known results for several instances in the allotted 12 hour 
time limit.  In addition to the problems of Table 1.1 above, we have 
successfully applied this approach to randomly generated problems with as 
many as 1000 variables and more than 10,000 clauses where best known 
results are found in roughly one minute of computation time. 
 
The results shown in Table 1.1 above serve as strong evidence of the 
attractiveness of the xQx approach for the problems considered.  
Considering both solution quality and the time taken to produce these 
solutions, this approach is very competitive with special purpose methods 
constructed specifically for max 2-Sat problems.  We note in passing that 
similar performance relative to special purpose methods has been obtained 
for the other problem classes singled out earlier in the paper as well.   
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Table 1.1.  Problems from Borchers & Furman (1999) 

                              Best 
                             known         xQx          xQx        Maxsat3      Maxsat 
 n               m         solution     solution       time     solution         time 
50 100 4 4 < 1 4 .4 
50 150 8 8 < 1 8 1.5 
50 200 16 16 < 1 16 116.2 
50 250 22 22 < 1 22 652.4 
50 300 32 32 < 1 32 8,763 
50 350 41 41 < 1 NA > 12 hr 
50 400 45 45 < 1 NA > 12 hr 
50 450 63 63 < 1 NA > 12 hr 
50 500 66 66 < 1 NA > 12 hr 

100 200 5 5 < 2 5 3.2 
100 300 15 15 < 2 15 13,770 
100 400 29 29 < 2 NA > 12 hr 
100 500 44 44 < 2 NA > 12 hr 
100 600 ? 65 < 2 NA > 12 hr 
150 300 4 4 < 3 4 4.1 
150 450 22 22 < 3 NA > 12 hr 
150 600 38 38 < 3 NA > 12 hr 

 
Remarks: 
1. All times in seconds unless noted otherwise. 
2. Maxsat is an exact method developed by Borchers & Furman 
3. Maxsat results obtained on IBM RS/6000-590 
4. xQx results obtained on a 1.6 MHZ PC. 
5. Each xQx run was for 50 SPAN cycles 
6. Problem 100_600 was previously unsolved. 

 
 
Summary 
 
We have demonstrated how a variety of disparate combinatorial problems 
can be solved by first re-casting them into the common modeling framework 
of the unconstrained quadratic binary program. Once in this unified form, the 
problems can be solved effectively by adaptive memory tabu search 
metaheuristics and associated evolutionary (scatter search) procedures. We 
are currently solving problems via BQP with more than 50,000 variables in 
the quadratic representation and are working on enhancements that will 
permit larger instances to be solved.   
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Our findings challenge the conventional wisdom that places high priority on 
preserving linearity and exploiting specific structure. Although the merits of 
such a priority are well-founded in many cases, the BQP domain appears to 
offer a partial exception. In forming BQP(PEN), we destroy any linearity 
that the original problem may have exhibited. Moreover, any exploitable 
structure that may have existed originally is “folded into” the Q̂  matrix, and 
the general solution procedure we apply takes no advantage of it. 
Nonetheless, our solution outcomes have been remarkably successful, 
yielding results that rival the effectiveness of the best specialized methods. 
 
This combined modeling/solution approach provides a unifying theme that 
can be applied in principle to all linearly constrained quadratic and linear 
programs in bounded integer variables, and the computational findings for a 
broad spectrum of problem classes raises the possibility that similarly 
successful results may be obtained for even wider ranges of problems. As 
our methods for BQP continue to improve with ongoing research, the BQP 
model offers a representational tool of particular promise. 
 
The novel fact that this model has a natural connection with agent-based 
systems, and provides an idealized instance of a MAP model, invites its 
exploration within alternative contexts that exploit the links to agent-based 
processes in additional ways. 
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