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Abstract. The number partitioning problem has proven to be a challenging problem for
both exact and heuristic solution methods. In this paper we present a new modeling and
solution approach that consists of re-casting the problem as an unconstrained quadratic
binary program that can be solved by efficient metaheuristic methods. Our approach
readily accommodates both the common two-subset partition case as well as the more
general case of multiple subsets. Preliminary computational experience is presented
illustrating the attractiveness of the method.
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1. Introduction

The number partitioning problem (NPP), being one of Garey and Johnson’s
[3] six basic NP-complete problems, has been the subject of considerable
research in recent years. In the simplest case, the problem consists of
partitioning a set of numbers into two subsets such that the sums of the
numbers in each subset are as close as possible. The more general case of
NPP seeks to partition the original set into n subsets (n >2) such that the
sums for each set are as close to each other as possible. Most of the work
reported in the literature has been directed to the two-subset case. This
problem is known to be computationally challenging and except for small
instances, is most productively approached by heuristic means.
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The literature contains several papers describing methods for solving
NPP. One of the most widely referenced methods is the differencing method
(DM) of Karmarkar and Karp [11] which in O(n log n) for the 2-subset case.
Several computational studies, including those of Johnson, et. al., [10] and
Arguello et. al., [1] report that DM outperforms, in terms of both solu-
tion quality and computation time, alternative methods such as Simulated
Annealing and GRASP. Due to it’s effectiveness, Korf [13] employs DM to
produce initial solutions for an improvement method that is reported to
be very successful on a large variety of partitioning problems. An analysis
of various published methods for NPP can be found in the paper by Gent
and Walsh [4].

In this paper we present a new way of modeling and solving a variety
of NPPs. Several versions of the number partitioning problem, each a
generalization of the one preceding it, are considered. We show that each
version of NPP can be cast into the common modeling framework of the
unconstrained quadratic binary program (UQP). In turn, this common
formulation enables solutions by recently developed metaheuristics for this
model.

The unconstrained quadratic program can be written in the form:

UQP:min f(x) = xQx

where Q is an n by n matrix of constants and x is an n-vector of binary
variables. UQP is notable for its ability to represent a significant number
of important problems. A discussion of a wide variety of applications can
be found in Kochenberger, Glover, Alidaee, and Rego [12].

Our purpose here is to show how this versatile model can be used to
model and solve number partitioning problems. In the sections below,
we illustrate the use of UQP for various number partitioning problems.
Preliminary computational experience is presented for the two-subset case.

2. The Two Subset Case

The most common version of NPP involves partitioning a set of numbers
into two subsets such that the subset sums are as close to each other as
possible. We model this problem as follows:

Consider a set of numbers S = {s1, s2, s3, ..., sm}. The goal is to partition
S into two subsets such that the subset sums are as close to each other as
possible. Let

xj = 1 if sj is assigned to subset 1; 0 otherwise. Then sum1, subset 1’s
sum is
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sum1 =
m∑

j=1

sjxj and the sum for subset 2 is sum2 =
m∑

j=1

sj−
m∑

j=1

sjxj .The

difference in the sums is then given by

diff =
m∑

j=1

sj − 2
m∑

j=1

sjxj = c− 2
m∑

j=1

sjxj .

We approach the goal of minimizing the absolute value of diff by minimiz-
ing

diff2 =

c− 2
m∑

j=1

sjxj


2

= c2 + 4xQx

where
qii = si (si − c) qij = sisj

Dropping the additive and multiplicative constants, our optimization prob-
lem becomes simply

UQP : minxQx

As a foundation for applying the UQP model to solve NPP, we first review
solution methodologies created for UQP.

2.1. Solution approaches for UQP

Due to its computational challenge and application potential, UQP has
been the focus of a considerable number of research studies in recent years,
including both exact and heuristic solution approaches. These various pa-
pers approach UQP by branch and bound, decomposition, semidefinite
programming and cutting planes, tabu search, simulated annealing, evo-
lutionary methods such as genetic algorithms and scatter search, as well
as simple one-pass heuristic methods. Each of these approaches exhibits
some degree of success and could in principle be utilized to solve problems
reformulated as UQP. However, the exact methods degrade rapidly with
problem size, and have meaningful application to general UQP problems
with no more than a few hundred variables. For larger problems, heuristic
methods are required.

Below we highlight our tabu search heuristic [5,6] which has proven to be
very successful on a wide variety of UQP instances and that was used to
produce the computational results presented later in the paper. Reference
[12] gives an overview of other solution approaches for UQP.
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2.2. Tabu search overview

Our TS method for UQP is centered around the use of strategic oscillation,
which constitutes one of the primary strategies of tabu search. The variant
of strategic oscillation we employ may be sketched in overview as follows.
The method alternates between constructive phases that progressively set
variables to 1 (whose steps we call “add moves”) and destructive phases
that progressively set variables to 0 (whose steps we call “drops moves”).
To control the underlying search process, we use a memory structure that is
updated at critical events, identified by conditions that generate a subclass
of locally optimal solutions. Solutions corresponding to critical events are
called critical solutions.

A parameter span is used to indicate the amplitude of oscillation about
a critical event. We begin with span equal to 1 and gradually increase
it to some limiting value. For each value of span, a series of alternating
constructive and destructive phases is executed before progressing to the
next value. At the limiting point, span is gradually decreased, allowing
again for a series of alternating constructive and destructive phases. When
span reaches a value of 1, a complete span cycle has been completed and
the next cycle is launched. The search process is typically allowed to run
for a pre-set number of span cycles.

Information stored at critical events is used to influence the search pro-
cess by penalizing potentially attractive add moves (during a constructive
phase) and inducing drop moves (during a destructive phase) associated
with assignments of values to variables in recent critical solutions. Cumu-
lative critical event information is used to introduce a subtle long term bias
into the search process by means of additional penalties and inducements
similar to those discussed above. A complete description of the framework
for the method is given in Glover, Kochenberger, Alidaee and Amini [5].

Example: We illustrate the approach on a simple example. Consider
the set of 8 numbers

S = {25, 7, 13, 31, 42, 17, 21, 10}
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Following the development above, we have that c2 = 27, 556 and the equiv-
alent UQP problem is min x0 = xQx with

Q =



−3525 175 325 775 1050 425 525 250
175 −1113 91 217 294 119 147 70
325 91 −1989 403 546 221 273 130
775 217 403 −4185 1302 527 651 310
1050 294 546 1302 −5208 714 882 420
425 119 221 527 714 −2533 357 170
525 147 273 651 882 357 −3045 210
250 70 130 310 420 170 210 −1560


Solving with our tabu search heuristic gives x = (0, 0, 0, 1, 1, 0, 0, 1) for
which x0 = −6889 yielding perfectly matched sums of 83.

2.3. Computational experience

The standard comparison in the literature for new approaches to the num-
ber partitioning problem is with the differencing method (DM) of Kar-
marker and Karp [11], which has proven to be both fast and effective in
several comparative studies. Due to its prominence in the literature, we
include it here as a benchmark as well. The results reported here are on
modest sized random problems of size m = 25 and m = 75. Five instances
of each size are considered with the elements drawn randomly from the in-
terval (50,100). Each of the 10 problems was solved by our UQP approach
as well as the method of Karmarker and Karp. The results are shown in
Table 1. For each problem, our tabu search heuristic was run for 20 “span”
cycles.

The solutions shown in Table 1 indicate that our method dominates DM
in terms of solution quality. For five of the problem instances, our approach
found partitions with equal sums (differences of 0). For the other five
problems, our method produced partitions whose sums differed by only
1.We suspect these later results are optimal as well. In contrast to this,
DM was unable to produce equal sum partitions for any of the problems,
yielding solutions with unequal sums of substantial margins across all ten
problems. Solution times, shown in seconds on a Pentium 333 laptop, are
roughly the same for both methods.
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Table 1. Subset sum differences and times.

ID SUM difference DM time SUM difference xQx time
via DM via xQx

NP25.1 30 < 1 sec 0 < 1 sec
NP25.2 36 < 1 sec 0 < 1 sec
Np25.3 35 < 1 sec 1 < 1 sec
NP25.4 28 < 1 sec 0 < 1 sec
NP25.5 26 < 1 sec 0 < 1 sec
NP75.1 23 < 1 sec 1 1 sec
NP75.2 31 < 1 sec 1 1 sec
NP75.3 25 < 1 sec 1 1 sec
NP75.4 24 < 1 sec 0 1 sec
NP75.5 23 < 1 sec 1 1 sec

3. Partitioning with Multiple Subsets

The problem of the previous section can be generalized to accommodate
n > 2 partitions. As before, the goal is to assign numbers to subsets
such that the subset sums are as close to each other as possible. For
this more general case, we start with a constrained model containing as-
signment equations ensuring that each number is assigned to one of the
subsets. This constrained model is then re-cast into the form of UQP
by introducing quadratic infeasibility penalties into the objective function
as an alternative to the explicit imposition of the assignment constraints.
This approach, shown by Kochenberger, Glover, Alidaee, and Rego [12] to
be very successful in a wide variety of other problem classes, is presented
below:

As before, we start with a set of m numbers S = {s1, s2, ...., sm} to be
partitioned into n subsets. Let xij = 1 if element siis assigned to subset j,
0 otherwise.

The sum for subset j (sumj) is given by

sumj =
n∑

i=1

sixij

and we seek to minimize

x0 = (sum1 − sum2)
2 + (sum1 − sum3)

2 + ... + (summ−1 − summ)2 (1)
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subject to
n∑

j=1

xij = 1 i = 1,m (2)

Since the objective of (1) is quadratic in the assignment variables, we can
re-write (1) as x0 = xQx where x = (x11, x12, ..., x1n, x21, ..., xmn) is the
binary vector of length m by n and Q is the square, symmetric matrix
resulting from combining terms in (1). Our model is now of the form

min x0 = xQx

subject to
Ax = b x binary

This constrained model, following the general reformulation put forth by
Hammer and Rudeana [7], can then be re-cast as an unconstrained quadratic
model by imposing the constraints implicitly via quadratic penalties added
to the objective function. Specifically, for a positive scalar P, we have

x0 = xQx + P (Ax− b)t (Ax− b) = xQx + xDx + c = xQ̂x + c

where the matrix D and the additive constant c result directly from the
matrix multiplication indicated. Dropping the additive constant, the equiv-
alent unconstrained version of our constrained problem becomes

UQP (PEN) : min xQ̂x, x binary

and we see that the multiple subset case considered in this section, like the
two subset case of section 2, can be modeled by UQP. A suitable choice
of the scalar penalty P, for the general application of this re-formulation
approach, can always be chosen so that the optimal solution to UQP(PEN)
is the optimal solution to the original constrained problem. (Hammer and
Rudeanu [7], Hansen [8], Hansen, et., al. [9] and Boros and Hammer [2]).
We illustrate the procedure in the following example.

3.1. Multiple subset examples

Consider the set of numbers S = {15, 3, 7, 11, 7, 5, 21, 9, 13, 7, 5, 15, 23, 14, 13,
13, 27, 15, 9, 9, 17, 10, 11, 19, 8} to be partitioned into subsets of size n = 3,
4, & 5 such that their subset sums are as close as possible. (i.e., 3 separate
problems.)

For each case, the transformation to xQ̂x is accomplished using an ar-
bitrarily chosen penalty value of P = 900. Solving UQP for each case
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results in the assignments shown in Table 2. For each case, the numbers in
the “subset assignment” column are the subset indices of the assignments
made. For example, for the n = 3 case, the first number (15) is assigned to
subset #3, the second number (3 ) is assigned to subset #1, and so forth.
The assignments shown are very well balanced with subset sums of 102,
102, and 102 respectively for the n = 3 case, 76, 76, 77, and 77 for the n =
4 case, and 62, 61, 61, 61 and 61 for the n = 5 case.

Table 2. Multiple subset results.

n = 3 case n = 4 case n = 5 case
Number Number Subset Subset Subset
Index Assignment Assignment Assignment

1 15 3 2 2
2 3 1 3 1
3 7 3 1 3
4 11 2 2 1
5 7 1 3 5
6 5 1 4 2
7 21 2 3 1
8 9 2 2 4
9 13 2 2 3
10 7 3 4 3
11 5 3 1 5
12 15 3 3 4
13 23 3 4 3
14 14 2 4 5
15 13 3 3 5
16 13 1 4 5
17 27 1 1 4
18 15 2 4 2
19 9 2 2 2
20 9 1 1 5
21 17 3 1 2
22 10 2 3 4
23 11 1 1 3
24 19 1 2 1
25 8 1 3 1
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The results given in table 2 show the assignment of all elements (num-
bers), confirming that the penalty used was in fact sufficiently large to yield
feasible assignments. Note that the UQP problems solved to produce the
results of table 2 were of size 75 variable, 100 variable, and 125 variables
respectively. The largest of these were solved in less than 2 seconds on a
Pentium 333 laptop by our tabu search heuristic [5].

4. Non-Homogeneous Case

To motivate this section, consider a machine loading problem where a set
of m jobs must be assigned to n machines such that the aggregate loading
of the machines is as level as possible. If the machines are identical, job
times are independent of the assignments made and the problem can be
correctly modelled and solved by the representation given in the previous
section.

A more general machine loading problem, however, would allow for non-
identical machines and machine dependent job times. The development
of the previous section can easily be modified to accommodate this more
general problem setting as indicated below:

Our problem is to level the loading of m jobs assigned to n machines
where tij = the time required to accomplish job i on machine j. Following
our earlier development, let xij = 1 if job i is assigned to machine j, 0
otherwise. Then the total time (load) of the jobs assigned to machine j is:

Tj =
m∑

i=1

tijxij j = 1, n

and we want to minimize the aggregate squared deviation, T0

T0 = (T1 − T2)
2 + (T1 − T3)

2 + ... + (Tn−1 − Tn)2

subject to
n∑

j=1

xij = 1 i = 1,m

By exactly the development of the previous section, this model can be re-
cast into the form of min xQ̂x. Note that for the machine loading problem
context considered here, we may have additional constraints that job as-
signments must satisfy in addition to simply ensuring that each job gets
assigned. Such constraints, provided that they are linear, can be “folded”
into the Q̂ matrix via additional quadratic penalties to once again yield an
equivalent representation in the form of xQ̂x.



144 B. ALIDAEE, F. GLOVER, G. A. KOCHENBERGER AND C. REGO

4.1. Related applications

Our focus in the development given above was to indicate how various
versions of the number partitioning problem seeking equal subset sums
could be modelled and solved via the common UQP framework. Additional
partitioning problems, closely related to those considered above, can also
be productively addressed by this approach. For instance, consider the
problem where each subset has a pre-determined target sum, tarj , and
we seek a partition of the original set into n subsets that minimizes the
aggregate deviation from these target values.

Utilizing sumj and xij as defined earlier, we have the problem

min x0 = (sum1 − tar1)
2 + (sum2 − tar2)

2 + ... + (sumn − tarn)2

subject to
n∑

j=1

xij = 1 i = 1,m

which by the developments illustrated earlier can be readily re-cast into
UQP.

5. Summary

In this paper we have introduced the unconstrained quadratic program
(UQP) as a new and fruitful representation of various forms of the number
partitioning problem. This model (xQx) is shown to be robust in its ability
to accommodate problem variations, affording an opportunity to solve any
or all problem versions by a single solution method.

In addition to introducing a new model for this class of problems, we
have presented preliminary computational experience demonstrating the
attractiveness of our tabu search method for solving number partitioning
problems via the xQx representation. Our outcomes show that this ap-
proach is both conceptually and computationally attractive.
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