

Chapter 9

ADAPTIVE MEMORY SEARCH GUIDANCE FOR
SATISFIABILITY PROBLEMS

Arne Løkketangen1 and Fred Glover2
1Molde College, Molde, Norway, arne.lokketangen@himolde.no；
2Leeds School of Business, University of Colorado at Boulder, USA,
 fred.glover@colorado.edu

Abstract: Satisfiability problems (SAT) are capable of representing many important real-
world problems, like planning, scheduling, and robotic movement. Efficient
encodings exist for many of these applications and thus having good solvers for
these problems is of critical significance. We look at how adaptive memory and
surrogate constraint processes can be used as search guidance for both
constructive and local search heuristics for satisfiability problems, and how
many well-known heuristics for SAT can be seen as special cases. We also
discuss how adaptive memory learning processes can reduce the customary
reliance on randomization for diversification so often seen in the literature.
More specifically, we look at the tradeoff between the cost of maintaining extra
memory search guidance structures and the potential benefit they have on the
search. Computational results on a portfolio of satisfiability problems from
SATLIB illustrating these tradeoffs are presented.

Keywords: Adaptive Memory, Local Search, Satisfiability Problems

1. Introduction
Many important real-world problems can be represented as satisfiability

problems. These include planning, scheduling and robotic movement, and
efficient encodings exist for many of these. Efficient solvers for these
problems are thus of critical significance. SAT has thus received substantial
attention in recent years, and efficient SAT solvers exist.

What sets SAT apart from other combinatorial optimization problems is
that SAT is basically a feasibility problem. Once a variable assignment is

2

found that satisfies all the clauses (see Section 2), the problem is solved, and
this condition is readily detected. In SAT there is thus no guidance from the
normal objective function. Guidance is customarily instead based on the
amount of infeasibility, usually by counting the number of unsatisfied clauses
for a given solution, possibly modified by the clause length.

There are many approaches to solving the SAT problem. Constructive
methods range from complete tree-search (DPL - Davis-Putnam-Loveland ,
see Davis , Logemann and Loveland, 1962, Davis and Putnam, 1960), to
constructive heuristics like GRASP (Resende and Feo, 1996) and surrogate
constraint based learning heuristics (Løkketangen and Glover, 1997). Most
heuristic solvers for SAT are based on local search starting from randomly or
otherwise constructed starting solutions. For a nice overview of many of the
heuristics for SAT, see Hoos (1998). See also Section 4.

The work presented in this paper is based on previous work by the authors
on the satisfiability problem, where the basic framework and search
mechanisms was developed . For details, see Løkketangen and Glover (1997).

We will show how the judicious use of surrogate constraint based local
search guidance, with the augmentation of adaptive memory structures for
short and long-term learning and forgetting, provides superior search
guidance, at an extra computational cost per iteration. Many of the popular
heuristics for SAT can be derived as special cases, and we show that
additional heuristic power results by considering more general forms of this
guidance framework. We also discuss how adaptive memory processes can
reduce the customary reliance on randimazation for diversification so often
seen in the literature.

We report computational tests that compare solution attempts both in
terms of execution time and number of local search steps, using a set of state-
of-the-art local search heuristics that are augmented by varying degrees of
search guidance, and adaptive memory capabilities. The tradeoffs between
the increased solution time required by fuller reliance on adaptive memory,
and the reduced numbers of iterations that are required to obtain feasible
solutions, are illustrated on a portfolio of satisfiability problems taken from
SATLIB (see SATLIB).

The layout of this extended abstract is as follows. This introduction is
followed in Section 2 by a description of the SAT problem. In Section 3 we
look at surrogate constraints, while a brief outline of SAT solvers is presented
in Section 4. Our choice of search guidance mechanisms is described in
Section 5, and the computational results in are in Section 6, followed by the
conclusions in Section 5.

Adaptive Memory Search Guidance for Satisfiability Problems 3

2. The SAT Problem

The Satisfiability problem originates from the realm of logic theorem
proving, and was the first problem proven to be NP-Complete (Cook 1971).
All other NP-Complete problems can be reduced to SAT in polynomial time.
The SAT problem can be defined as follows. Given the logical function,
consisting of combinations of disjunctions, conjunctions and negations of a
set of variablesals (x1, …, xN), then the SAT problem is to find a set of truth
assignments to the literals that will make Φ(x) true (or false):

The logical function Φ(x) is usually represented in CNF, Conjunctive
Normal Form. Φ(x) then consists of a set of conjunctions of clauses ci(x),
written 1 2 Mc c cΦ = ∧ ∧L , where each clause is a disjunction of
complemented and uncomplemented variables, called literals, with M being
the number of clauses. As a simple example, let Φ(x) be the following
formula containing 3 variables and 5 clauses:

Φ(x)=(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (¬x1 ∨ ¬ x2) ∧ (x1 ∨ ¬ x3)

2.1 Mathematical Formulation
To get to the more customary mathematical formulation, replace true/false

with 1/0, disjunction with +, representing each conjunction as a separate
constraint row. Let literals be represented by xj and their complements by 1 -
xj. This gives us:

 Ax ≥ b

 x binary
 where A is an m*n matrix of 0´s, 1´s and −1´s

 and b and x are n*1 column vectors.

The ith constraint of the system,

 Aix ≥ bi

has the property that the number of −1´s in the row vector Ai equals

1 − bi, where bi is an integer ≤ 1.
To get a more convenient representation, we split each variable xi into its

complemented and uncomplemented occurrences, we get the following
constraint set for the example, with the variable pair zi and zi# represents xi:

1: () (,...,)N

true
SAT x x x

false


Φ = Φ = 


4

z1 + z2 ≥ 1 (w1)
z1 + z3 ≥ 1 (w2)
 z2 + z3 ≥ 1 (w3)
 z4 + z5 ≥ 1 (w4)
z1 + z6 ≥ 1 (w5)

(The w’s are weights used for learning purposes in surrogate constraint
evaluations, see the next section):

Our final model is then

1Dz ≥ (2.1)
 # 1i iz z+ = (2.2)

where D is the 0-1 matrix obtained by substituting the z’s for the xi’s. The

last constraint (2.2) is handled implicitly in the search heuristics we describe.

3. Surrogate Constraints
A Surrogate Constraint (SC) is a weighted linear combinations of the

original problem constraints (Glover, 1977), and provides a powerful way to
capture constraint information to be used for search guidance. The basic use
of SC methods for both constructive and local search heuristics for SAT is
described in Løkketangen and Glover (1997).

Given the transformed constraint set of (2.1), we introduce a nonnegative
vector w of weights wi, to generate a surrogate constraint

 sz ≥ so

where s = wD and so = Σw. The surrogate constraint therefore results by

weighting each constraint row j by wi and summing. Assuming (as is the case
initially in our searches) that all the wi’s are 1, we get the following surrogate
constraint from the example (other weightings will of course result in a
different SC):

3z1 + 2z2 + 2z3 + z4 + z5 + z6 ≥ 5

This surrogate indicates that the best would be to set z1 to 1, and thus

select x1 to be true. If one also considers that the pair (z1, z4) really represents
the same variable, x1, and both cannot simultaneously be set, we can form a
derived surrogate constraint by replacing sj with sj − Min(sj,sj#) in the
surrogate constraint evaluation. We then get:

Adaptive Memory Search Guidance for Satisfiability Problems 5

2z1 + z2 + z3 ≥ 2

indicating even stronger that x1 should be set to true. In the event of ties,

we choose the variable with the maximum sj − sj# value.
We will use (derived) surrogate constraint based search guidance for the

local searches, augmented by various levels of adaptive memory capabilities.

4. On Solving SAT
In this section we will look briefly at the most common constructive and

iterative local search paradigms for solving SAT, and some of the existing
solvers. For a nice overview of many of the heuristics for SAT, see Hoos
(1998), and the bibliography at SATLIB. There are myriads of different
solvers for SAT, but most falls into one of the broader categories, and shares
most features with other solvers.

4.1 Constructive Methods
Within the constructive solver class, there is a big distinction between

complete methods, guaranteeing to prove that a formula is satisfiable or not,
and heuristic methods designed to try to find a solution if one exists. The best
known complete method for SAT is DPL – Davis-Putnam-Loveland (Davis,
Logemann and Loveland, 1962, Davis and Putnam, 1960). This is a
deterministic tree-search with backtracking. The problem with this approach
is the limited size of the problem instances that can be solved in reasonable
time.

A constructive search usually contains the following elements and search
flow:
1. All variables initially unassigned
2. Construct solution by assigning a truth-value to one variable at the time.

(Neighborhood is the set of remaining unassigned variables).
3. When no feasible assignments can be made:

– Full Backtrack (complete method - DPL)
– Limited backtracking with restart - (DPL with restarts)

4. Finish construction and:
– Submit to (limited) local search and restart – (GRASP, SC-Learn)

5. Need move evaluation guidance. This is usually based on change in
feasibility..

6. For restart-methods, guidance should be modified by history (SC-Learn)
Among constructive heuristic methods are GRASP (Resende and Feo,

1996), DPL with restarts (Gomes, Selman and Kautz, 1998), and SC-Learn, a
surrogate constraint based learning heuristics (Løkketangen and Glover,
1997).

6

DPL with restart (Gomes, Selman and Kautz, 1998) is a DPL-based tree-

search with limited backtracking, and only in the bottom of the search tree.
This work is inspired by the phenomenon of heavy-tailed cost distributions, in
that at any time during the experiment there is a non-negligible probability of
hitting a problem that requires exponentially more time to solve than any that
has been solved before (Gomes et. al. 1998). Instead of risking spending such
a long time futilely searching, the search is restarted, but different, controlled
randomized choices are made in the new search.

GRASP - Greedy Randomized Adaptive Search Procedure (Resende and
Feo, 1996),. This is a constructive heuristic followed by a short greedy local
search, trying all combinations of improving flips. It can be called a shotgun
method, as its aim is generate a diverse set of solutions quickly, some of
which might be the solution. The basic heuristic for assigning one variable
value is:
– For each unassigned variable, count the number of clauses that are

satisfied by assigning it True (and similarly for False).
– Sort the values. Select randomly among the top half evaluations (or max

50).
This corresponds to a basic Surrogate Constraint using uniform

weighting,, and no normalization. There is also no learning, or use of
memory, between restarts.

SC-Learn (Løkketangen and Glover, 1997) uses adaptive memory
structures to learn between runs. More specifically, it gives added focus on
the clauses that have been difficult to satisfy so far. Surrogate constraints are
used for move evaluations.

4.2 Iterative Local Search Methods
All of the iterative local search methods for SAT are incomplete methods,

in that the non-existense of a solution can not be proven. An iterative local
search usually contains the following elements and search flow:
1. All variables are assigned a truth-value at all times
2. The starting solution (or starting point) is usually based on a random

assignment to the variables or based on a construction heuristic.
3. A move is the flip of a variable. A flip means assigning the opposite value

to a variable. (i.e. change 1 → 0 or 0 → 1).
4. The search neighborhood is either the full set of variables, or just those

that appear in unsatisfied clauses.
5. Move evaluation is based on changes in feasibility. I.e. select moves that

reduce the number of unsatisfied clauses. This measure can be modified
by history.

Adaptive Memory Search Guidance for Satisfiability Problems 7

6. The move selection is greedy (i.e. take the best move according to the

move evaluation).
7. A random restart is applied after a certain number of moves, to diversify

the search after stagnation
8. The stopping criterion is a simple time limit, a cutoff on the number of

allowable flips or the identification of a solution.
There are extremely many iterative local search methods for SAT. Among

the first,and most well-known, are GSAT (Selman, Levesque and Mitchell,
1992), and the whole family of search methods derived from it. (Walksat,
GSAT+Tabu, Novelty,…). For an overview, see Hoos (1998). These
methods are generally very simple and have fast iterations. Random restarts
are usually employed when restarting.

GSAT starts from a randomly generated starting solution. The moves are
variable flips. Move evaluation is based on the change in the number of
satisfied clauses. (Choose randomly among ties). Don’t allow downhill
(worsening) moves. Do a random restart after a certain number of flips.This
corresponds to using the derived surrogate constraint, without the SC choice
rule (for ties).

Novelty (McAllester, Selman and Kautz, 1997). This is considered one of
the best local search heuristics for SAT. Each iteration a violated clause is
selected randomly. Then the best (in terms of improved infeasibility) variable
to flip in this clause is identified. (In the case of ties, select the least recently
flipped variable). If this variable is not the most recently flipped, flip it.
Otherwise select the next best variable with probabibility p, and with
probability 1-p select the best variable. This heuristic works very well on
random 3-sat.

SC-Learn (Løkketangen and Glover, 1997) starts from a randomly
generated starting solution. The moves are variable flips. A simple tabu
search is added to avoid move reversals. Diversification is with the
modification of clause weights used in the surrogate constraint based move
evaluations.

5. Search Guidance Structures and Mechanisms
In this section we will look at enhancements to the iterative SC-Learn

heuristics (Løkketangen and Glover, 1997). More specifically we will look at
adding forgetting to the learning, sensitivity to learning weights and the
introduction of controlled randomization in the move selection. We will also
look at examples of how the different search mechanisms are far from
independent, and that when adding a new search mechanism, the already
implemented ones can change behaviour.

8

All the gathering of information about the search development during the

search process, updating of the adaptive memory structures, and the
processing of the gathered information takes additional computing time. The
purpose of this is to provide better search guidance, thus needing fewer
iterations to get to the solution. (Note that the solution can be reached in at
most N steps, where N is the number of variables. The actual number of flips
needed by many of the local search methods are often several orders of
magnitude larger). It is therefore of interest to look at this trade-off between
randomization and use of adaptive memory structures for search guidance and
diversification. A new heuristic, SC-RN is developed, and will be described
below.

5.1 Learning
We use frequency based information to modify the clause weights in a

judicious way. Given the current solution vector, we know that at least one of
the variables in one of the violated clauses has the wrong value, and hence
place an emphasis on changing values of these variables. We do this in the
SC framework by increasing the weights of the violated clauses every
iteration. (This was also used in Løkketangen and Glover, 1997, and a
different weighting scheme was tried in Frank, 1996). We have found that the
increment used is not important, and a value of 1 is used in the tests.
Preliminary testing has also shown that resetting these weights at fixed
intervals has no discernible effect.

5.2 Forgetting
The accuracy of the information embedded in the clause weights vanes

over time, and should have decreasing impact. This is accomplished by
increasing the weight used in the learning process slightly every iteration.
This leads to a discounting of the oldest values. Preliminary testing have
shown that the value of the forgetting (or discounting) increment likewise is
not important as long as it is significantly smaller than the actual weights.

5.3 Tabu Tenure and the Non-independence of Search
Mechanisms

Our search uses the basic tabu criterion of not to flip a variable that has
recently been flipped. (A good treatment of tabu search is in Glover and
Laguna, 1997). One problem is to determine the optimal, or best, tabu tenure
in terms of some problem parameter, like the number of variables. Mazure,
Saïs and Grégoire (1997) added a simple tabu criterion as described above to
GSAT (naming the new method TSAT). One of their findings was a linear

Adaptive Memory Search Guidance for Satisfiability Problems 9

relationship between the optimal tabu tenure and problem size, according to
the following formula:

TTOPT = 0.01875 ∗ N + 2.8125

with N being the number of variables for random hard 3-SAT instances.
We similarly tried different values of TT combined with the basic learning

scheme on the test instance aim-50-2_0-yes-2 taken from SATLIB. This
problem has 50 variables, and is not very difficult. Table 9.1 shows the rate of
success for 5 runs from random starting positions with a maximum of 5000
flips, and varying TT, using a weight increment of 1. The table indicates a
best TT of 10.

0
500

1000
1500
2000
2500
3000
3500
4000
4500

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tabu Tenure

A
vg

. n
o.

 o
f i

te
ra

tio
ns

Figure 9.1. Search performance for TT with discounted learning

When rerunning the same test, but with discounting of the learning
weights (using an increment of 0.1), we get the results of Table 9.1. The
solution is now found for all values of TT between 2 and 16. In Figure 9.1 is
shown the average search effort (in terms of flips) for each of the TT’s where
a solution was found for all runs. This graph shows clearly that even though
the search always finds the optimal solution for a TT value in the range 2 to
17, it uses far more iterations for the larger values of the TT. The best values
for the TT are 2 or 3, while without discounting this value is much larger. The
addition of the discounting mechanism clearly changes the effective TT
values, and . has a great stabilizing effect.

10

Table 9.1. Effect of TT with simple learning

TT Rate of Success
5 2/5

10 5/5
15 4/5
20 3/5

Table 9.2. Effect of TT with discounted learning
TT Rate of success Avg. no of iterations
1 9/10 -
2 10/10 599
3 10/10 584
4 10/10 664
5 10/10 946
6 10/10 1189
7 10/10 1082
8 10/10 1372
9 10/10 1606
10 10/10 2367
11 10/10 1832
12 10/10 3152
13 10/10 2095
14 10/10 4040
15 10/10 2041
16 10/10 3996
17 8/10 -
20 6/10 -

For the tests in Section 6 a short, fixed tabu tenure of value 4 was used.

This choice avoids stumbling back in the previously visited search path, given
that the local neighborhood evaluations typically consist of many equal
values and forms a local plateau, even when learning and forgetting is
employed. The value of the tabu tenure does not appear sensitive to changes
within a modest range. The tabu mechanism thus has a very local function,
while the learning and forgetting provides the necessary diversification.

5.4 Probabilistic Move Acceptance
The only diversification present in our SC guided search is the random

selection between the moves that tie for the best evaluation. More than one
move may tie for this, but many fewer ties occur when the learning and

Adaptive Memory Search Guidance for Satisfiability Problems 11

forgetting mechanisms are employed than when only the SC evaluations are
used. This leads to less diversification in the search.

Since our guidance is not perfect, there is no guarantee that the actual best
move gets the best evaluation. Assuming our move evaluations have some
merit, we select probabilistically among the best moves, disproportionately
favoring those with higher evaluations (see Løkketangen and Glover, 1996).
The process selects the best move with probability p, and if the move is
rejected then applies the same selection rule to the next best, etc. This gives
rise to an exponentially decreasing move acceptance.

5.5 Choice of Starting Solution
We ran preliminary tests comparing starting from randomly generated

truth assignments to the variables, and the best solution found after 10
iterations of the constructive search with learning as described in
Løkketangen and Glover (1997). With 10 runs on each problem, we did not
find any significant difference between the results. One reason why the
constructed starting point did not yield better results might be that the
different solutions from the constructive phase for the same problem tend to
be similar, such that bad trends might be amplified.

5.6 A New Method – SC-RN
Our full method with learning and forgetting spend a lot of time in

maintaining the adaptive memory structures.
Move evaluation is very costly in the SC Learn method with added

forgetting. The problem is the “forgetting” part, as this increments the
learning weights. This requires a full evaluation of the SC’s are after every
flip. (Preliminary testing using incremental update, ignoring the slightly
changed weight values, gave very bad results).

Considering that in every unsatisfied clause at least one of the variables
has the wrong value, we form a reduced neighbourhood consisting only of the
variables in the unsatisfied clauses. The new method can be labelled
SCLFPRN – Surrogate Constraint based move evaluation with Learning and
Forgetting, Probabilistic move acceptance and Reduced Neighborhood. For
short we call it SC – RN.

6. Computational Results
We investigate the tradeoff issues when applying different levels of

adaptive memory mechanisms, and also when using guidance based on
surrogate constraints for various neighborhood sizes. The testing reported in
this section is intended to illustrate these tradeoffs. For purposes of

12

comparison we chose three heuristics. As a representative for a method using
rather myopic search guidance, but with very fast iterations, we chose
Novelty (McAllester, Selman and Kautz, 1997), hereafter called NOV. The
iterative SC-Learn heuristic (Løkketangen and Glover, 1997) was augmented
with forgetting and probabilistic move acceptance and called SC-W. As an
intermediary we used the method described in Section 5.6, SC-RN, as it uses a
smaller neighbourhood than SC-W, thus basing its decisions on less
information.

6.1 Test Setup
Testing has been done on benchmark SAT-problems, both structured and

randomized, taken from SATLIB (see SATLIB). The problem sizes range
from 48 variables ∗ 400 clauses to 4713 variables ∗ 21991 clauses.

As all the methods include a probabilistic parameter, p, we chose one of
the simpler test cases from SATLIB, jnh, to tune this parameter individually
for each heuristic, and keep it fixed for all subsequent tests. The best values
(and thus the values used) for p are shown in Table 9.3.

Table 9.3. Best values for p
 p
SC-W 0.8
SC-RN 0.6
NOV 0.8

We tested each heuristic from random starting solutions, using different

random seeds, with 10 runs per test case. We allowed in general up to 107
iterations for Novelty, 106 for SC-RN and 105 for SC-W. Restarts were not
used. A fixed TT of 4 was used. The results are both in term of flips and time.
The tests have been run on a 300 MHz Pentium III running Windows 98 (The
sub-second timing is thus somewhat inaccurate).

6.2 Test Results
The results are shown in Tables 9.4, 9.5 and 9.6. For each test case is

shown the size (in terms of variables and clauses), and the average number of
flips and the corresponding time used for each of the three heuristics.

A dash in the flips column indicates that the heuristic failed to find a
solution for at least on of the tries, with the actual number of successful runs
are shown in the flips column.

Table 9.4 shows the results for some of the smaller test cases. Not
surprisingly NOV is very good on the random 3-SAT instance uf100-100,
spending virtually no time in finding the solution. SC-RN spends more flips

Adaptive Memory Search Guidance for Satisfiability Problems 13

and time, while SC-W is comparable with NOV in terms of flips, but not on
time.

The rest of the test cases in the table are structured, par-8-1 is a parity
problem encoding, and par-8-1-c is a compressed version of he same
problem. The ais test cases are taken from a problem in music theory (all
interval series). On these problems SC-W is clearly most successful, only
having 2 unsuccessful runs, while NOV does rather badly.

Table 9.4. Smaller test-cases
Problem vars clauses NOV

f
NOV

t
SC-RN

f
SC-RN

t
SC-W

f
SC-W

t
max-flips 107 106 105
uf100-100 100 430 371 0 1090 0.1 397 0.01
par8-1-c 64 254 1149 0 4484 0.5 1070 .13
par-8-1 350 1149 1/10 - 8/10 - 9/10 -
ais6 61 581 0/10 - 3326 0.1 465 0.1
ais8 265 5666 0/10 - 187850 9.5 6269 1
ais12 1141 10719 0/10 - 0/10 - 9/10 -

Table 9.5. Intermediate test-cases
Problem vars clauses NOV

f
NOV

t
SC-RN

f
SC-RN

t
SC-W

f
SC-W

t
max-flips 107 106 105
uf200-100 200 860 8860 0.2 64608 0.1 397 0.1
flat100_3_0 300 1117 9060 0.2 5/10 - 3882 1.5
sw100-10-p4 500 3100 2/10 - 89502 3.7 11075 10
sw100-10-p6 500 3100 2/10 - 5/10 - 4/10 -
anomaly 48 261 124 0 164 0 135 0
medium 116 953 852 0.1 331 0 445 0.1

Table 9.5 shows the next set of results, for small to intermediate test cases.
Interestingly, SC-W uses many fewer flips on the random 3-SAT instance
uf200-100 than NOV, even being faster. In general SC-W needs fewer flips
on most of the instances. NOV does reasonably well on these instances, while
SC-RN is slightly worse.

14

Table 9.6. Large structured test-cases
Problem vars clauses NOV

f
NOV

t
SC-RN

f
SC-RN

t
SC-W

f
SC-W

t
max-flips 107 106 105
bw_large.a 459 4675 60299 1.4 5571 1 5132 6.5
bw_large.b 1087 13772 4.79 M 105 31048 10.4 56611 198
logistics.a 828 6718 0/10 - 2/10 - 18922 50
logistics.b 843 7301 0/10 - 102465 14 23565 50
logistics.c 1141 10719 0/10 - 91739 59 21248 103
logistics.d 4713 21991 0/10 - 88091 26 72600 470

In Table 9.6 are results for the runs on large structured instances. SC-W
seems very good on these, while NOV fails on the logistics instances. SC-RN
does quite well, only failing on logistics.a.

As can be seen from the results, SC-W solves most test cases, but spends a
long time per iteration. It seems particularly good on the large structured
instances. This is according to expectations, as the learning mechanisms learn
structure.

SC-RN needs more flips, and is more unstable. It solves most structured
instances, while showing bad performance on some random problem classes.
Each iteration is much faster than SC-W. This is the behaviour we would
expect, as it bases its search guidance on a smaller neighbourhood, and thus
less information, than SC-W

NOV fails on bigger instances, and on instances having a lot of structure.
This is not very surprising, as NOV does not have any memory mechanisms
to capture structure. It does use recency information, but only within a clause,
and then only to choose between the two (locally) best variables. In clauses
with only 3 variables, this seems to work very well, but NOV clearly has
problems with problems having longer clauses and problems with structure.

7. Conclusions
The heuristics we describe rely on a set of advanced mechanisms for their

working. Testing clearly shows that care should be taken when combining
mechanism, often necessitating changes in their customary settings.

The computational testing clearly illustrates that the use of surrogate
constraints provides good guidance. The addition of simple learning gives
greatly improved results. Discounted learning (forgetting) is effective, and
has a stabilizing effect. As is expected, best results are obtained for the
structured test cases. The extra cost in maintaining memory and guidance
structures thus seems well spent on several classes of test instances.

Adaptive Memory Search Guidance for Satisfiability Problems 15

Appropriate guidance structures based on surrogate constraint evaluations,
incorporating adaptive memory guidance based on recency, frequency,
learning and forgetting – thus yield results that compare favourably with
state-of-the-art randomized local search heuristics for SAT.

References

Cook, S.A. (1971) “The Complexity of Theorem-Proving Procedures,”
Proceedings of the Third ACM Symposium on Theory of Computing. 151–
158.

Davis, M., G. Logemann and D. Loveland (1962) “A Machine Program for
Theorem Proving,” Comm. ACM, 5:394–397.

Davis, M. and H. Putnam (1960) ”A Computing Procedure for Quantification
Theory,” Journal of ACM, 7:201–215.

Frank, J. (1996) ”Weighting for Godot: Learning Heuristics for Gsat,”
Proceedings of the13th International Conference on Artificial Intelligence,
338–343.

Hoos, H. (1998) “Stochastic Local Search - Methods, Models, Applications,”
Ph.D. Dissertation, Fachbereich Informatik, Technische Universität
Darmstadt.

Glover, F. (1977) “Heuristics for Integer Programming using Surrogate
Constraints,” Decision Sciences 8:156–166.

Glover, F. and M. Laguna (1997) Tabu Search. Kluwer Academic Publishers.
Gomes, C., B. Selman, K. McAloon and C. Tretkoff (1998) “Randomization

in Backtrack Search: Exploiting Heavy-Tailed Profiles for Solving Hard
Scheduling Problems”. In Proceedings AIPS-98.

Gomes, C., B. Selman and H. Kautz (1998) “Boosting Combinatorial Search
Through Randomization,” In Proceedings AAAI98.

Løkketangen, A. and F. Glover (1997) “Surrogate Constraint Analysis–New
Heuristics and Learning Schemes for Satisfiability Problems,”
Satisfiability Problem: Theory and Applications. DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, 35:537–572.

Løkketangen, A. and F. Glover (1996) Probabilistic Move Selection in Tabu
Search for 0/1 Mixed Integer Programming Problems. Metaheuristics:
Theory and Applications, Kluwer Academic Publishers, 467–489.

McAllester, D., B. Selman and H. Kaut (1997) “Evidence for Invariants in
Local Search,” In Proceedings AAAI97.

Mazure, B., L. Saïs and É. Grégoire (1997) Tabu Search for SAT. In
Proceedings AAAI 97.

Resende, M. and T. Feo (1996) “A GRASP for Satisfiability,” in Cliques,
Coloring and Satisfiability. The Second DIMACS Implementation
Challenge, D.S. Johnson and M.A. Trick (eds.), DIMACS Series on
Discrete Mathematics and Theoretical Computer Science, 26:499–520,
American Mathematical Society.

SATLIB – The Satisfiability Library.
http://www.intellektik.informatik.tu-darmstadt.de/SATLIB/

Selman, B., H.J. Levesque and D. Mitchell (1992) “A New Method for
Solving Hard Satisfiability Problems,” Proceedings AAAI 92, 440–446.

