
 
 

Chapter 9 

ADAPTIVE MEMORY SEARCH GUIDANCE FOR 
SATISFIABILITY PROBLEMS 

Arne Løkketangen1 and Fred Glover2 
1Molde College, Molde, Norway,  arne.lokketangen@himolde.no； 
2Leeds School of Business, University of Colorado at Boulder, USA,  
 fred.glover@colorado.edu 

Abstract: Satisfiability problems (SAT) are capable of representing many important real-
world problems, like planning, scheduling, and robotic movement.  Efficient 
encodings exist for many of these applications and thus having good solvers for 
these problems is of critical significance. We look at how adaptive memory and 
surrogate constraint processes can be used as search guidance for both 
constructive and local search heuristics for satisfiability problems, and how 
many well-known heuristics for SAT can be seen as special cases. We also 
discuss how adaptive memory learning processes can reduce the customary 
reliance on randomization for diversification so often seen in the literature. 
More specifically, we look at the tradeoff between the cost of maintaining extra 
memory search guidance structures and the potential benefit they have on the 
search. Computational results on a portfolio of satisfiability problems from 
SATLIB illustrating these tradeoffs are presented. 
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1. Introduction 
Many important real-world problems can be represented as satisfiability 

problems. These include planning, scheduling and robotic movement, and 
efficient encodings exist for many of these. Efficient solvers for these 
problems are thus of critical significance. SAT has thus received substantial 
attention in recent years, and efficient SAT solvers exist. 

What sets SAT apart from other combinatorial optimization problems is 
that SAT is basically a feasibility problem. Once a variable assignment is 
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found that satisfies all the clauses (see Section 2), the problem is solved, and 
this condition is readily detected. In SAT there is thus no guidance from the 
normal objective function. Guidance is customarily instead based on the 
amount of infeasibility, usually by counting the number of unsatisfied clauses 
for a given solution, possibly modified by the clause length.    

There are many approaches to solving the SAT problem. Constructive 
methods range from complete tree-search (DPL - Davis-Putnam-Loveland , 
see Davis , Logemann and Loveland, 1962, Davis and Putnam, 1960), to 
constructive heuristics like GRASP (Resende and Feo, 1996) and surrogate 
constraint based learning heuristics (Løkketangen and Glover, 1997). Most 
heuristic solvers for SAT are based on local search starting from randomly or 
otherwise constructed starting solutions. For a nice overview of many of the 
heuristics for SAT, see Hoos (1998). See also Section 4. 

The work presented in this paper is based on previous work by the authors 
on the satisfiability problem, where the basic framework and search 
mechanisms was developed . For details, see Løkketangen and Glover (1997). 

We will show how the judicious use of surrogate constraint based local 
search guidance, with the augmentation of adaptive memory structures for 
short and long-term learning and forgetting, provides superior search 
guidance, at an extra computational cost per iteration. Many of the popular 
heuristics for SAT can be derived as special cases, and we show that 
additional heuristic power results by considering more general forms of this 
guidance framework. We also discuss how adaptive memory processes can 
reduce the customary reliance on randimazation for diversification so often 
seen  in the literature. 

We report computational tests that compare solution attempts both in 
terms of execution time and number of local search steps, using a set of state-
of-the-art local search heuristics that are augmented by varying degrees of 
search guidance, and adaptive memory capabilities. The tradeoffs between 
the increased solution time required by fuller reliance on adaptive memory, 
and the reduced numbers of iterations that are required to obtain feasible 
solutions, are illustrated on a portfolio of satisfiability problems taken from 
SATLIB (see SATLIB). 

The layout of this extended abstract is as follows. This introduction is 
followed in Section 2 by a description of the SAT problem. In Section 3 we 
look at surrogate constraints, while a brief outline of SAT solvers is presented 
in Section 4. Our choice of search guidance mechanisms is described in 
Section 5, and the computational results in are in Section 6, followed by the 
conclusions in Section 5. 
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2. The SAT Problem 

The Satisfiability problem originates from the realm of logic theorem 
proving, and was the first problem proven to be NP-Complete (Cook 1971). 
All other NP-Complete problems can be reduced to SAT in polynomial time. 
The SAT problem can be defined as follows. Given the logical function, 
consisting of combinations of disjunctions, conjunctions and negations of a 
set of variablesals (x1, …, xN), then the SAT problem is to find a set of truth 
assignments to the literals that will make Φ( x ) true (or false): 

The logical function Φ(x) is usually represented in CNF, Conjunctive 
Normal Form. Φ(x) then consists of a set of conjunctions of clauses ci(x), 
written 1 2 Mc c cΦ = ∧ ∧L , where each clause is a disjunction of 
complemented and uncomplemented variables, called literals, with M being 
the number of clauses. As a simple example, let Φ(x) be  the following 
formula containing 3 variables and 5 clauses: 

 
Φ(x)=( x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (¬x1 ∨ ¬ x2) ∧ (x1 ∨ ¬ x3) 

2.1 Mathematical Formulation 
To get to the more customary mathematical formulation, replace true/false 

with 1/0, disjunction with +, representing each conjunction as a separate 
constraint row. Let literals be represented by xj and their complements by 1 - 
xj. This gives  us:  

 
     Ax ≥ b 

     x binary  
   where   A is an m*n matrix of 0´s, 1´s and −1´s 

    and   b and x are n*1 column vectors.  
 
The ith constraint of the system,  
 
   Aix ≥ bi  

 
has the property that the number of −1´s in the row vector Ai equals 

1 − bi, where bi is an integer ≤ 1. 
To get a more convenient representation, we split each variable xi into its 

complemented and uncomplemented occurrences, we get the following 
constraint set for the example, with the variable pair zi and zi# represents xi: 

 

1: ( ) ( ,..., )N

true
SAT x x x

false


Φ = Φ = 
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z1 + z2             ≥ 1  (w1)   
z1     + z3          ≥ 1  (w2)  
     z2  + z3          ≥ 1  (w3)  
          z4  + z5    ≥ 1  (w4) 
z1              + z6 ≥ 1  (w5)  
 

(The w’s are weights used for learning purposes in surrogate constraint 
evaluations, see the next section):  

Our final model is then  
 

1Dz ≥      (2.1) 
   # 1i iz z+ =    (2.2) 
 
where D is the 0-1 matrix obtained by substituting the z’s for the xi’s. The 

last constraint (2.2) is handled implicitly in the search heuristics we describe. 

3. Surrogate Constraints 
A Surrogate Constraint (SC) is a weighted linear combinations of the 

original problem constraints (Glover, 1977), and provides a powerful way to 
capture constraint information to be used for search guidance. The basic use 
of SC methods for both constructive and local search heuristics for SAT is 
described in Løkketangen and Glover (1997).  

Given the transformed constraint set of (2.1), we introduce a nonnegative 
vector w of weights wi, to generate a surrogate constraint  

 
    sz ≥ so  
 
where s = wD and so = Σw. The surrogate constraint therefore results by 

weighting each constraint row j by wi and summing. Assuming (as is the case 
initially in our searches) that all the wi’s are 1, we get the following surrogate 
constraint from the example (other weightings will of course result in a 
different SC): 

 
3z1 + 2z2 + 2z3 + z4 + z5  + z6  ≥ 5  
 
This surrogate indicates that the best would be to set z1  to 1, and thus 

select x1 to be true. If one also considers that the pair (z1, z4) really represents 
the same variable, x1, and both cannot simultaneously be set, we can form a 
derived surrogate constraint by replacing sj with sj − Min(sj,sj#) in the 
surrogate constraint evaluation. We then get: 
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2z1 + z2 + z3 ≥ 2 
 
indicating even stronger that x1 should be set to true. In the event of ties, 

we choose the variable with the maximum sj − sj# value.  
We will use (derived) surrogate constraint based search guidance for the 

local searches, augmented by various levels of adaptive memory capabilities. 

4. On Solving SAT 
In this section we will look briefly at the most common constructive and 

iterative local search paradigms for solving SAT, and some of the existing 
solvers. For a nice overview of many of the heuristics for SAT, see Hoos 
(1998), and the bibliography at SATLIB. There are myriads of different 
solvers for SAT, but most falls into one of the broader categories, and shares 
most features with other solvers. 

4.1 Constructive Methods 
Within the constructive solver class, there is a big distinction between 

complete methods, guaranteeing to prove that a formula is satisfiable or not, 
and heuristic methods designed to try to find a solution if one exists. The best 
known complete method for SAT is DPL – Davis-Putnam-Loveland (Davis, 
Logemann and Loveland, 1962, Davis and Putnam, 1960). This is a 
deterministic tree-search with backtracking. The problem with this approach 
is the limited size of the problem instances that can be solved in reasonable 
time.  

A constructive search usually contains the following elements and search 
flow: 
1. All variables initially unassigned 
2. Construct solution by assigning a truth-value to one variable at the time. 

(Neighborhood is the set of remaining unassigned variables). 
3. When no feasible assignments can be made: 

– Full Backtrack (complete method - DPL)  
– Limited backtracking with restart - (DPL with restarts) 

4. Finish construction and: 
– Submit to (limited) local search and restart – (GRASP, SC-Learn) 

5. Need move evaluation guidance. This is usually based on change in 
feasibility.. 

6. For restart-methods, guidance should be modified by history (SC-Learn) 
Among constructive heuristic methods are GRASP (Resende and Feo, 

1996), DPL with restarts (Gomes, Selman and Kautz, 1998), and SC-Learn, a 
surrogate constraint based learning heuristics (Løkketangen and Glover, 
1997). 
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DPL with restart (Gomes, Selman and Kautz, 1998) is a DPL-based tree-

search with limited backtracking, and only in the bottom of the search tree. 
This work is inspired by the phenomenon of heavy-tailed cost distributions, in 
that at any time during the experiment there is a non-negligible probability of 
hitting a problem that requires exponentially more time to solve than any that 
has been solved before (Gomes et. al. 1998). Instead of risking spending such 
a long time futilely searching, the search is restarted, but different, controlled 
randomized choices are made in the new search. 

GRASP - Greedy Randomized Adaptive Search Procedure (Resende and 
Feo, 1996),. This is a constructive heuristic followed by a short greedy local 
search, trying all combinations of improving flips. It can be called a shotgun 
method, as its aim is generate a diverse set of solutions quickly, some of 
which might be the solution. The basic heuristic for assigning one variable 
value is: 
– For each unassigned variable, count the number of clauses that are 

satisfied by assigning it True (and similarly for False).  
– Sort the values. Select randomly among the top half evaluations (or max 

50). 
This corresponds to a basic Surrogate Constraint using uniform 

weighting,, and no normalization. There is also no learning, or use of 
memory, between restarts. 

SC-Learn (Løkketangen and Glover, 1997) uses adaptive memory 
structures to learn between runs. More specifically, it gives added focus on 
the clauses that have been difficult to satisfy so far. Surrogate constraints are 
used for move evaluations. 

4.2 Iterative Local Search Methods 
All of the iterative local search methods for SAT are incomplete methods, 

in that the non-existense of a solution can not be proven. An iterative local 
search usually contains the following elements and search flow: 
1. All variables are assigned a truth-value at all times 
2. The starting solution (or starting point) is usually based on a random 

assignment to the variables or based on a construction heuristic. 
3. A move is the flip of a variable. A flip means assigning the opposite value 

to a variable. (i.e. change 1 → 0 or 0 → 1). 
4. The search neighborhood is either the full set of variables, or just those 

that appear in unsatisfied clauses. 
5. Move evaluation is based on changes in feasibility. I.e. select moves that 

reduce the number of unsatisfied clauses. This measure can be modified 
by history. 
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6. The move selection is greedy (i.e. take the best move according to the 

move evaluation). 
7.  A random restart is applied after a certain number of moves, to diversify 

the search after stagnation 
8. The stopping criterion is a simple time limit, a cutoff on the number of 

allowable flips or the identification of a solution.   
There are extremely many iterative local search methods for SAT. Among 

the first,and most well-known, are GSAT (Selman, Levesque and Mitchell, 
1992), and the whole family of  search methods derived from it. (Walksat, 
GSAT+Tabu, Novelty,…). For an overview, see Hoos (1998).  These 
methods are generally very simple and have fast iterations. Random restarts 
are usually employed when restarting. 

GSAT starts from a randomly generated starting solution. The moves are 
variable flips. Move evaluation is based on the change in the number of 
satisfied clauses. (Choose randomly among ties). Don’t allow downhill 
(worsening) moves. Do a random restart after a certain number of flips.This 
corresponds to using the derived surrogate constraint, without the SC choice 
rule (for ties). 

Novelty (McAllester, Selman and Kautz, 1997). This is considered one of 
the best local search heuristics for SAT. Each iteration a violated clause is 
selected randomly. Then the best (in terms of improved infeasibility) variable 
to flip in this clause is identified. (In the case of ties, select the least recently 
flipped variable). If this variable is not the most recently flipped, flip it. 
Otherwise select the next best variable with probabibility p, and with 
probability 1-p select the best variable. This heuristic works very well on 
random 3-sat. 

SC-Learn (Løkketangen and Glover, 1997) starts from a randomly 
generated starting solution. The moves are variable flips. A simple tabu 
search is added to avoid move reversals. Diversification is with the 
modification of clause weights used in the surrogate constraint based move 
evaluations.  

5. Search Guidance Structures and Mechanisms 
In this section we will look at enhancements to the iterative SC-Learn 

heuristics (Løkketangen and Glover, 1997). More specifically we will look at 
adding forgetting to the learning, sensitivity to learning weights and the 
introduction of controlled randomization in the move selection. We will also 
look at examples of how the different search mechanisms are far from 
independent, and that when adding a new search mechanism, the already 
implemented ones can change behaviour. 
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All the gathering of information about the search development during the 

search process, updating of the adaptive memory structures, and the 
processing of the gathered information takes additional computing time. The 
purpose of this is to provide better search guidance, thus needing fewer 
iterations to get to the solution. (Note that the solution can be reached in at 
most N steps, where N is the number of variables. The actual number of flips 
needed by many of the local search methods are often several orders of 
magnitude larger). It is therefore of interest to look at this trade-off between 
randomization and use of adaptive memory structures for search guidance and 
diversification. A new heuristic, SC-RN is developed, and will be described 
below.  

5.1 Learning  
We use frequency based information to modify the clause weights in a 

judicious way. Given the current solution vector, we know that at least one of 
the variables in one of the violated clauses has the wrong value, and hence 
place an emphasis on changing values of these variables. We do this in the 
SC framework by increasing the weights of the violated clauses every 
iteration. (This was also used in Løkketangen and Glover, 1997, and a 
different weighting scheme was tried in Frank, 1996). We have found that the 
increment used is not important, and a value of 1 is used in the tests. 
Preliminary testing has also shown that resetting these weights at fixed 
intervals has no discernible effect. 

5.2 Forgetting  
The accuracy of the information embedded in the clause weights vanes 

over time, and should have decreasing impact. This is accomplished by 
increasing the weight used in the learning process slightly every iteration. 
This leads to a discounting of the oldest values. Preliminary testing have 
shown that the value of the forgetting (or discounting) increment likewise is 
not important as long as it is significantly smaller than the actual weights.  

5.3 Tabu Tenure and the Non-independence of Search 
Mechanisms 

Our search uses the basic tabu criterion of not to flip a variable that has 
recently been flipped. (A good treatment of tabu search is in Glover and 
Laguna, 1997). One problem is to determine the optimal, or best, tabu tenure 
in terms of some problem parameter, like the number of variables. Mazure, 
Saïs and Grégoire (1997) added a simple tabu criterion as described above to 
GSAT (naming the new method TSAT). One of their findings was a linear 
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relationship between the optimal tabu tenure and problem size, according to 
the following formula: 

 
TTOPT = 0.01875 ∗ N + 2.8125 
 

with N being the number of variables for random hard 3-SAT instances.  
We similarly tried different values of TT combined with the basic learning 

scheme on the test instance aim-50-2_0-yes-2 taken from SATLIB. This 
problem has 50 variables, and is not very difficult. Table 9.1 shows the rate of 
success for 5 runs from random starting positions with a maximum of 5000 
flips, and varying TT, using a weight increment of 1. The table indicates a 
best TT of 10.  
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Figure 9.1. Search performance for TT with discounted learning 

When rerunning the same test, but with discounting of the learning 
weights (using an increment of 0.1), we get the results of Table 9.1. The 
solution is now found for all values of TT between 2 and 16. In Figure 9.1 is 
shown the average search effort (in terms of flips) for each of the TT’s where 
a solution was found for all runs. This graph shows clearly that even though 
the search always finds the optimal solution for a TT value in the range 2 to 
17, it uses far more iterations for the larger values of the TT. The best values 
for the TT are 2 or 3, while without discounting this value is much larger. The 
addition of the discounting mechanism clearly changes the effective TT 
values, and . has a great stabilizing effect. 
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Table 9.1. Effect of TT with simple learning 

TT Rate of Success 
5 2/5 

10 5/5 
15 4/5 
20 3/5 
 

Table 9.2. Effect of TT with discounted learning 
TT Rate of success Avg. no of iterations 
1 9/10 - 
2 10/10 599 
3 10/10 584 
4 10/10 664 
5 10/10 946 
6 10/10 1189 
7 10/10 1082 
8 10/10 1372 
9 10/10 1606 
10 10/10 2367 
11 10/10 1832 
12 10/10 3152 
13 10/10 2095 
14 10/10 4040 
15 10/10 2041 
16 10/10 3996 
17 8/10 - 
20 6/10 - 
 
For the tests in Section 6 a short, fixed tabu tenure of value 4 was used. 

This choice avoids stumbling back in the previously visited search path, given 
that the local neighborhood evaluations typically consist of many equal 
values and forms a local plateau, even when learning and forgetting is 
employed. The value of the tabu tenure does not appear sensitive to changes 
within a modest range. The tabu mechanism thus has a very local function, 
while the learning and forgetting provides the necessary diversification. 

5.4 Probabilistic Move Acceptance 
The only diversification present in our SC guided search is the random 

selection between the moves that tie for the best evaluation. More than one 
move may tie for this, but many fewer ties occur when the learning and 
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forgetting mechanisms are employed than when only the SC evaluations are 
used. This leads to less diversification in the search. 

Since our guidance is not perfect, there is no guarantee that the actual best 
move gets the best evaluation. Assuming our move evaluations have some 
merit, we select probabilistically among the best moves, disproportionately 
favoring those with higher evaluations (see Løkketangen and Glover, 1996). 
The process selects the best move with probability p, and if the move is 
rejected then applies the same selection rule to the next best, etc. This gives 
rise to an exponentially decreasing move acceptance. 

5.5 Choice of Starting Solution 
We ran preliminary tests comparing starting from randomly generated 

truth assignments to the variables, and the best solution found after 10 
iterations of the constructive search with learning as described in 
Løkketangen and Glover (1997). With 10 runs on each problem, we did not 
find any significant difference between the results. One reason why the 
constructed starting point did not yield better results might be that the 
different solutions from the constructive phase for the same problem tend to 
be similar, such that bad trends might be amplified.  

5.6 A New Method – SC-RN 
Our full method with learning and forgetting spend a lot of time in 

maintaining the adaptive memory structures.  
Move evaluation is very costly in the SC Learn method with added 

forgetting. The problem is the “forgetting” part, as this increments the 
learning weights. This requires a full evaluation of the SC’s are after every 
flip. (Preliminary testing using incremental update, ignoring the slightly 
changed weight values, gave very bad results). 

Considering that in every unsatisfied clause at least one of the variables 
has the wrong value, we form a reduced neighbourhood consisting only of the 
variables in the unsatisfied clauses. The new method can be labelled 
SCLFPRN – Surrogate Constraint based move evaluation with Learning and 
Forgetting, Probabilistic move acceptance and Reduced Neighborhood. For 
short we call it SC – RN. 

6. Computational Results 
We investigate the tradeoff issues when applying different levels of 

adaptive memory mechanisms, and also when using guidance based on 
surrogate constraints for various neighborhood sizes. The testing reported in 
this section is intended to illustrate these tradeoffs. For purposes of 
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comparison we chose three heuristics. As a representative for a method using 
rather myopic search guidance, but with very fast iterations, we chose 
Novelty (McAllester, Selman and Kautz, 1997), hereafter called NOV. The 
iterative SC-Learn heuristic (Løkketangen and Glover, 1997) was augmented 
with forgetting and probabilistic move acceptance and called SC-W. As an 
intermediary we used the method described in Section 5.6, SC-RN, as it uses a 
smaller neighbourhood than SC-W, thus basing its decisions on less 
information. 

6.1 Test Setup 
Testing has been done on benchmark SAT-problems, both structured and 

randomized, taken from SATLIB (see SATLIB). The problem sizes range 
from 48 variables ∗ 400 clauses to 4713 variables ∗ 21991 clauses. 

As all the methods include a probabilistic parameter, p, we chose one of 
the simpler test cases from SATLIB, jnh, to tune this parameter individually 
for each heuristic, and keep it fixed for all subsequent tests. The best values 
(and thus the values used) for p are shown in Table 9.3. 

Table 9.3. Best values for p 
 p 
SC-W 0.8 
SC-RN 0.6 
NOV 0.8 

 
We tested each heuristic from random starting solutions, using different 

random seeds, with 10 runs per test case. We allowed in general up to 107 
iterations for Novelty, 106 for SC-RN and 105 for SC-W. Restarts were not 
used. A fixed TT of 4 was used. The results are both in term of flips and time. 
The tests have been run on a 300 MHz Pentium III running Windows 98 (The 
sub-second timing is thus somewhat inaccurate). 

6.2  Test Results 
The results are shown in Tables 9.4, 9.5 and 9.6. For each test case is 

shown the size (in terms of variables and clauses), and the average number of 
flips and the corresponding time used for each of the three heuristics.  

A dash in the flips column indicates that the heuristic failed to find a 
solution for at least on of the tries, with the actual number of successful runs 
are shown in the flips column. 

Table 9.4 shows the results for some of the smaller test cases. Not 
surprisingly NOV is very good on the random 3-SAT instance uf100-100, 
spending virtually no time in finding the solution. SC-RN spends more flips 
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and time, while SC-W is comparable with NOV in terms of flips, but not on 
time. 

The rest of the test cases in the table are structured, par-8-1 is a parity 
problem encoding, and par-8-1-c is a compressed version of he same 
problem. The ais test cases are taken from a problem in music theory (all 
interval series). On these problems SC-W is clearly most successful, only 
having 2 unsuccessful runs, while NOV does rather badly. 

Table 9.4. Smaller test-cases 
Problem vars clauses NOV 

f 
NOV

t 
SC-RN

f 
SC-RN

t 
SC-W 

f 
SC-W 

t 
max-flips   107  106  105  
uf100-100 100 430 371 0 1090 0.1 397 0.01 
par8-1-c 64 254 1149 0 4484 0.5 1070 .13 
par-8-1 350 1149 1/10 - 8/10 - 9/10 - 
ais6 61 581 0/10 - 3326 0.1 465 0.1 
ais8 265 5666 0/10 - 187850 9.5 6269 1 
ais12 1141 10719 0/10 - 0/10 - 9/10 -  
 

Table 9.5. Intermediate test-cases 
Problem vars clauses NOV 

f 
NOV 

t 
SC-RN 

f 
SC-RN 

t 
SC-W 

f 
SC-W 

t 
max-flips   107  106  105  
uf200-100 200 860 8860 0.2 64608 0.1 397 0.1 
flat100_3_0 300 1117 9060 0.2 5/10 - 3882 1.5 
sw100-10-p4 500 3100 2/10 - 89502 3.7 11075 10 
sw100-10-p6 500 3100 2/10 - 5/10 - 4/10 - 
anomaly 48 261 124 0 164 0 135 0 
medium 116 953 852 0.1 331 0 445 0.1 
 

Table 9.5 shows the next set of results, for small to intermediate test cases. 
Interestingly, SC-W uses many fewer flips on the random 3-SAT instance 
uf200-100 than NOV, even being faster. In general SC-W needs fewer flips 
on most of the instances. NOV does reasonably well on these instances, while 
SC-RN is slightly worse. 
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Table 9.6. Large structured test-cases 
Problem vars clauses NOV 

f 
NOV 

t 
SC-RN 

f 
SC-RN 

t 
SC-W 

f 
SC-W 

t 
max-flips   107  106  105  
bw_large.a 459 4675 60299 1.4 5571 1 5132 6.5 
bw_large.b 1087 13772 4.79 M 105 31048 10.4 56611 198 
logistics.a 828 6718 0/10 - 2/10 - 18922 50 
logistics.b 843 7301 0/10 - 102465 14 23565 50 
logistics.c 1141 10719 0/10 - 91739 59 21248 103 
logistics.d 4713 21991 0/10 - 88091 26 72600 470 
 

In Table 9.6 are results for the runs on large structured instances. SC-W 
seems very good on these, while NOV fails on the logistics instances. SC-RN 
does quite well, only failing on logistics.a.  

As can be seen from the results, SC-W solves most test cases, but spends a 
long time per iteration. It seems particularly good on the large structured 
instances. This is according to expectations, as the learning mechanisms learn 
structure. 

SC-RN needs more flips, and is more unstable. It solves most structured 
instances, while showing bad performance on some random problem classes. 
Each iteration is much faster than SC-W. This is the behaviour we would 
expect, as it bases its search guidance on a smaller neighbourhood, and thus 
less information, than SC-W 

NOV fails on bigger instances, and on instances having a lot of structure. 
This is not very surprising, as NOV does not have any memory mechanisms 
to capture structure. It does use recency information, but only within a clause, 
and then only to choose between the two (locally) best variables. In clauses 
with only 3 variables, this seems to work very well, but NOV clearly has 
problems with problems having longer clauses and problems with structure. 

7. Conclusions 
The heuristics we describe rely on a set of advanced mechanisms for their 

working. Testing clearly shows that care should be taken when combining 
mechanism, often necessitating changes in their customary settings.  

The computational testing clearly illustrates that the use of surrogate 
constraints provides good guidance. The addition of simple learning gives 
greatly improved results. Discounted learning (forgetting) is effective, and 
has a stabilizing effect. As is expected, best results are obtained for the 
structured test cases. The extra cost in maintaining memory and guidance 
structures thus seems well spent on several classes of test instances.  
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Appropriate guidance structures based on surrogate constraint evaluations, 
incorporating adaptive memory guidance based on recency, frequency, 
learning and forgetting – thus yield results that compare favourably with 
state-of-the-art randomized local search heuristics for SAT. 
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