
ID Walk: A Candidate List Strategy
with a Simple Diversification Device

Bertrand Neveu1, Gilles Trombettoni1, and Fred Glover2

1 Projet COPRIN, CERTIS-I3S-INRIA
Route des lucioles, BP 93, 06902 Sophia Antipolis, France
{Bertrand.Neveu,Gilles.Trombettoni}@sophia.inria.fr
2 Leeds School of Business, University of Colorado, Boulder

CO 80309-0419, USA
Fred.Glover@colorado.edu

Abstract. This paper presents a new optimization metaheuristic called
ID Walk (Intensification/Diversification Walk) that offers advantages for
combining simplicity with effectiveness. In addition to the number S
of moves, ID Walk uses only one parameter Max which is the maximum
number of candidate neighbors studied in every move. This candidate
list strategy manages the Max candidates so as to obtain a good tradeoff
between intensification and diversification.
A procedure has also been designed to tune the parameters automati-
cally. We made experiments on several hard combinatorial optimization
problems, and ID Walk compares favorably with correspondingly simple
instances of leading metaheuristics, notably tabu search, simulated an-
nealing and Metropolis. Thus, among algorithmic variants that are de-
signed to be easy to program and implement, ID Walk has the potential
to become an interesting alternative to such recognized approaches.
Our automatic tuning tool has also allowed us to compare several variants
of ID Walk and tabu search to analyze which devices (parameters) have
the greatest impact on the computation time. A surprising result shows
that the specific diversification mechanism embedded in ID Walk is very
significant, which motivates examination of additional instances in this
new class of “dynamic” candidate list strategies.

1 Introduction

Local search is widely used in combinatorial optimization because it often yields
a good solution in reasonable time. Among the huge number of metaheuristics
that have been designed during the last decades, only a few can obtain a good
performance on most problems while managing a small number of parameters.

The goal of our work was to obtain a new computationally effective meta-
heuristic by performing a study of the most intrinsic phase of the search process,
the phase that examines a list of candidates (neighbors) for the next move. This
study has led us to design a new, simple and very promising candidate list strat-
egy (CLS) to provide a metaheuristic that implements local search devices in
the neighborhood exploration phase.

Several CLS procedures have been designed in the past, particularly in con-
nection with tabu search [8]. The ID Walk (Intensification/Diversification Walk)

M. Wallace (Ed.): CP 2004, LNCS 3258, pp. 423–437, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

424 Bertrand Neveu, Gilles Trombettoni, and Fred Glover

metaheuristic presented in this paper can be viewed as an extension of the
AspirationPlus CLS approach [8] that is endowed with a simple and efficient
diversification mechanism, called SpareNeighbor below, to exit from local min-
ima.

Roughly, ID Walk performs S moves and returns the best solution found dur-
ing the walk. Every time ID Walk selects a move, it examines at most Max candi-
date neighbors by selecting them randomly one by one. If the cost of a neighbor
x′ is less than or equal to the cost of the current solution x, then x′ is cho-
sen for the next move (rudimentary intensification effort). If no neighbor has
been accepted among the Max examined, then one of these candidates, with a
cost worse than the one of x, is chosen for the next move (rudimentary diver-
sification device). Two variants perform this simple diversification process by
setting a specific value to a parameter called SpareNeighbor. In the first variant
ID(any), where SpareNeighbor is set to any, any previously rejected candidate
is randomly selected (among the Max visited neighbors). In the second variant
ID(best), where SpareNeighbor is set to best, a best (or rather less worsening,
in terms of cost) previously rejected candidate is selected.

The first part of the paper introduces the ID Walk candidate list strategy.
Section 2 gives a detailed description of the two variants of ID Walk. Performed
on a large sample of benchmarks, ID Walk compares very favorably with cor-
respondingly simple instances of leading metaheuristics, notably tabu search,
simulated annealing [11] and Metropolis [2].

The second part of this paper tries to understand the role of key intensifica-
tion and diversification parameters in the optimization process. Section 3 uses
tabu search, several variants of ID Walk, and our automatic tuning tool to learn
more about the impact of parameters on the computation time. Two CLS devices
are studied along with the tabu list. This first analysis performed on numerous
instances from different problem classes reveals that the SpareNeighbor diver-
sification device used by ID Walk and tabu search has generally a crucial impact
on performance.

2 Description of ID Walk and Comparison
with Leading Metaheuristics

This section describes the two main variants of ID Walk, introduces a straight-
forward tool used to tune automatically easy to program metaheuristics and
reports the experimental results performed on a large sample of problems.

2.1 Description of ID Walk

Without loss of generality, the following pseudo-code description assumes that
ID Walk solves a combinatorial minimization problem.

The move selection is the main contribution of ID Walk and Max is a simple
parameter for imposing a ratio between intensification and diversification efforts:

– First, the parameter is often useful to limit the number of neighbors visited
in problems with large neighborhoods, to avoid an exhaustive search.

ID Walk: A Candidate List Strategy with a Simple Diversification Device 425

algorithm ID Walk (S: number of moves, Max: number of neighbors,
SpareNeighbor : type of diversification)

Start with a configuration x
BestConfiguration ← x
for i from 1 to S do

Candidate ← 1
RejectedCandidates ← ∅
Accepted? ← false
while (Candidate ≤ Max) and (not Accepted?) do

x′ ← Select (Neighborhood(x), any)
if cost(x′) ≤ cost(x) then

Accepted? ← true

else
RejectedCandidates ← RejectedCandidates ∪ {x′}

end
Candidate ← Candidate +1

end
if Accepted? then

x ← x′

else
x ← Select (RejectedCandidates, SpareNeighbor)

end
if cost(x) < cost(BestConfiguration) then BestConfiguration ← x

end.
return BestConfiguration

end.

– Second, Max must be sufficiently large to allow the search to pursue better
solutions in an aggressive way (intensification).

– Third, Max must be sufficiently small to allow the search to exit from local
minima (diversification).

We have designed two variants of ID Walk that embedd two different ways
for exiting from local minima, and thus two degrees of diversification. These
variants differ only on the way a candidate is chosen when none of them has
been accepted (in the while loop), that is, they differ on the SpareNeighbor
parameter.

The Variant ID(any)

ID(any) (Intensification/Diversification Walk with Any “spare” neighbor) cor-
responds to the algorithm ID Walk called with SpareNeighbor equal to any. In
this case, the Select function chooses any neighbor among the Max previously
rejected candidates. This neighbor is randomly selected.

The Variant ID(best)

ID(best) (Intensification/Diversification Walk with Best “spare” neighbor) cor-
responds to the algorithm ID Walk called with SpareNeighbor equal to best. In

426 Bertrand Neveu, Gilles Trombettoni, and Fred Glover

this case, the Select function chooses a best neighbor (i.e., with a lowest cost
for the objective function) among the Max rejected candidates.

Note that a variant of tabu search also uses a parameter SpareNeighbor
set to best. The behavior of the TS used in this paper is similar to the one of
ID(best) in case all the studied candidates have not been accepted because they
are all tabu and do not meet the aspiration criterion: instead of getting stuck,
TS and ID(best) move to the best neighbor, in terms of cost. (More common
variants of TS select a neighbor that has least recently or least frequently been
selected in the past, breaking ties by reference to cost.)

2.2 Automatic Parameter Tuning Procedure

We have implemented a straightforward procedure for tuning the two parameters
of ID Walk. In accordance with experimental observations, we have assumed,
somewhat naively, that for a given walk length S, there exists one value for Max
that maximizes the performance, i.e., that gives the best average cost of the
solution. We suspected however that the best value of Max depends on S, so
that the implemented procedure for tuning Max is called every time the number
of moves is increased. The principle of the automatic tuning procedure is the
following:

1. S ← S0 (the walk length S is initialized)
2. Until a maximum running time is exceeded:

(a) Tune Max by running the algorithm ID Walk on reduced walk lengths
S/K. Let Ni be the value found for the parameter.

(b) Run the algorithm ID Walk(S, Ni,SpareNeighbor).
(c) S ← F × S

In the experiments presented below, S0 = 106 moves, K = 50, and we have
chosen an increasing factor F = 4. Note that we restart from scratch (i.e., from
a new configuration) when moving from Sj to Sj+1. Only the lattest value of
Max is reused.

Thus, every phase i, performed with a given walk length S, includes a step (a)
tuning Max and a solving step (b) keeping Max constant. Runs in steps (a) and (b)
are performed with a given number of trials (e.g., 10 trials). In the tuning step
(a), P = 10 different parameter values are tried for Ni in a dichotomous way.
The number of moves of our tuning procedure is then:

∑maxiter
i=1 S0(1+P/K)F i

The tuning step (a) is perfomed as follows. Starting from an initial value for
Max (depending on the metaheuristic), Max is divided by 2 or multiplied by 2
until a minimum is reached, in terms of cost. The value of Max is then refined in
a dichotomous way.

Our automatic tuning procedure is also applied to other algorithms with one
parameter such as Metropolis and simulated annealing with a linear temperature
decrease. In this case, the (initial) temperature replaces the parameter Max in
the above description.

This tuning procedure has also been extended to tune algorithms with two
parameters (in addition to the number S of moves), such as the tabu search and
more sophisticated variants of ID Walk that will be introduced in Section 3.

ID Walk: A Candidate List Strategy with a Simple Diversification Device 427

2.3 Experiments and Problems Solved

We have performed experiments on 21 instances issued from 5 categories of
problems, generally encoded as weighted MAX-CSPs problems with two different
neighborhoods, which yields in fact 35 instances. Graph coloring instances are
proposed in the DIMACS challenge [16]. We have also tested CELAR frequency
assignment problems [5] 1, a combinatorial game, called Spatially-balanced Latin
Square, and random Constraint Satisfaction Problems (CSPs).

Several principles are followed in this paper concerning the experimental part.
First, we compare metaheuristics that have at most two parameters. Indeed, the
simple versions of the leading metaheuristics have only a few parameters and the
procedure described above can tune them automatically. Second, for the sake of
simplicity, we have not tested algorithms including restart mechanisms. This
would make our automatic tuning procedure more complicated. More impor-
tant, the restart device, although often useful, is in a sense orthogonal to the CLS
mechanisms studied in this article that are applied during the move operation.
Third, no clever heuristics have been used for generating the first configuration
that is generally randomly produced, or only incorporates straightforward con-
siderations2. In addition, for three among the five categories of tested problems,
two different neighborhoods with specific degrees of intensification are used.

Random CSPs

We have used the generator of random uniform binary CSPs designed by Bessière
[1] to generate 30 CSP instances with two different densities. All are satisfiable
instances placed before the complexity peak. Ten (resp. twenty) instances in
the first (resp. second) category have 1000 (resp. 500) binary constraints, 1000
variables with a domain size 15, and tightness 50 (resp. 88). A tightness 50 means
that 50 tuples over 225 (15× 15) do not satisfy the constraints.

These constraint satisfaction instances are handled as optimization MAX-
CSPs: the number of violated constraints is minimized during the search and a
solution is given by a configuration with cost 0.

The usual definition of neighborhood used for CSPs is chosen here: a new
configuration x′ is a neighbor of the current configuration x if both have the
same values, except for one variable v which takes different values in both con-
figurations. More precisely, we define two different neighborhoods:

– (VarConflict) Configurations x and x′ are neighbors iff v belongs to a
violated constraint.

– (Minton) Following the Min-conflict heuristics proposed by Minton et al. [15],
v belongs to a violated constraint, and the new value of v in configuration x′

is different than the old value and produces the lowest number of conflicts.

1 Thanks to the “Centre d’électronique de l’Armement”.
2 For the latin square problem, a line contains the n different symbols (in any order);

for the car sequencing, the initial assembly line contains the n cars (in any order).

428 Bertrand Neveu, Gilles Trombettoni, and Fred Glover

Graph Coloring Instances
We have selected three graph coloring instances from the two most difficult cat-
egories in the catalogue: the le450 15c with 450 nodes and 16680 edges, the
le450 25c with 450 nodes and 17425 edges, and the more dense flat300 28
instance with 300 nodes and 21695 edges. All instances are embedded with spe-
cially constructed best solutions having, respectively, 15, 25 and 28 colors.

In this paper, graph coloring instances are encoded as MAX-CSP: variables
are the vertices in the graph to be colored; the number d of colors with which
the graph must be colored yields domains ranging from 1 to d; vertices linked by
an edge must be colored with different colors: the corresponding variables must
take different values. Coloring a graph in d colors amounts in minimizing the
number of violated constraints and finding a solution with cost 0.

The two neighborhoods VarConflict and Minton defined above are used.

CELAR Frequency Assignment Instances
We have also selected the three most difficult instances of radio link frequency
assignment [5]: celar6, celar7 and celar8. These instances are realistic since
they have all been built from different sub-parts of a real problem. The celar6
has 200 variables and 1322 constraints; the celar7 has 400 variables and 2865
constraints; the celar8 has 916 variables and 5744 constraints.

The variables are the frequencies to be assigned a value which belong to a
predefined set of allowed frequencies (domain size about 40). The constraints are
of the form |xi − xj | = δ or |xi − xj | > δ. Our encoding is standard and creates
only the even variables in the CSP along with only the inequalities3.

The objective function to be minimized is a weighted sum of violated con-
straints. Note that the weights of the constraints in celar7 belong to the set
{1, 102, 104, 106}, making this instance highly challenging. In addition to these
problems, we have solved the celar9 and celar10 instances which have the same
type of constraints and also unary soft constraints which assign some variables to
given values. All the instances are encoded with the VarConflict neighborhood.

Spatially-Balanced Latin Square
The latin square problem consists in placing r different symbols (values) in each
row of a r × r square (i.e., grid or matrix) such that every value appears only
once in each row and in each column. We tried an encoding where the latin
square constraint on a row is satisfied and a specific neighborhood: swap in a
row two values which take part in a conflict in a latin square column constraint.
A simple descent algorithm (with allowed plateaus) can quickly find a solution
for a latin square of size 100. This suggests that there are no local minima.

The spatially-balanced latin square problem [9] must also solve additional
constraints on every value pair: the average distance between the columns of two
values in each row must be equal to (r + 1)/3. The problem is challenging for
both exact and heuristic methods. An exact method can only solve the problem
for sizes up to 8 and 9. A simple descent algorithm could not solve them. As
shown in the experiments below, TS and ID(best) can solve them easily.
3 A bijection exists between odd and even variables. A simple propagation of the

equalities allows us to deduce the values of the odd variables.

ID Walk: A Candidate List Strategy with a Simple Diversification Device 429

Car Sequencing

The car sequencing problem deals with determining a sequence of cars on an
assembly line so that predefined constraints are met. We consider here the nine
harder instances available in the benchmark library CSPLib [7]. In these in-
stances, every car must be built with predefined options. The permutation of
the n cars on the assembly line must respect the following constraints: consider
every option oi; for any sequence of q(oi) consecutive cars on the line, at most
p(oi) of them must require option oi, where p(oi) and q(oi) are two integers
associated to oi. A neighbor is obtained by simply permuting two cars on the
assembly line. Two neighborhoods have been implemented:

– (NoConflict) Any two cars can be permuted.
– (‘‘VarConflict’’) Two cars c1 and c2 are permuted such that c2 is ran-

domly chosen while c1 violates the requirement of an option oi, that is, c1

belongs to a sub-sequence of length q(oi) containing more than p(oi) cars
with oi.

2.4 Compared Optimization Metaheuristics

We have compared ID Walk with correspondingly simple versions of leading opti-
mization metaheuristics that manage only a few parameters. All algorithms have
been developed within the same software system [17]. Our platform INCOP is im-
plemented in C++ and the tests have been performed on a PentiumIII 935 Mhz
with a Linux operating system. All algorithms belong to a hierarchy of classes
that share code, so that sound comparisons can be made between them.

Our Metropolis algorithm is standard. It starts with a random configuration
and a walk of length S is performed as follows. A neighbor is accepted if its
cost is lower than or equal to the current configuration. A neighbor with a cost
higher than the current configuration is accepted with a probability function of a
constant temperature. When no neighbor is accepted, the current configuration
is not changed. Our simulated annealing SA approach follows the same schema,
with a temperature decreasing during the search. It has been implemented with
a linear decrease from an initial temperature (given as parameter) to 0.

Our simple TS variant is implemented as follows: a tabu list of recently ex-
ecuted moves avoids coming back to previous configurations. The aspiration
criterion is applied when a configuration is found that is better than the current
best cost. The two parameters of this algorithm are the tabu list length (which
is fixed) and the size of the examined neighborhood. The best neighbor which is
not tabu is selected.

2.5 Results

This section reports the comparisons between ID(any), ID(best), simulated
annealing (SA), Metropolis and tabu search (TS) on the presented problems.
20 among the 35 instances make no significant difference between the tested
algorithms and the corresponding results are thus reported in Appendix A.

Note that the goal of these experiments is to compare simple versions of the
leading metaheuristics implemented in the same software architecture. We do

430 Bertrand Neveu, Gilles Trombettoni, and Fred Glover

not compare with the best metaheuristics on every tested instance. In particular,
ad-hoc metaheuristics obtain sometimes better results than our general-purpose
algorithms do (see below). However, due to the efficient implementation of our
library INCOP and due to the advances provided by ID Walk, very good results
are often observed. More precisely:

– As shown below, ID(any) is excellent on CELAR instances and is compet-
itive with state-of-the-art algorithms [12, 20, 13, 3]. The only slightly better
general-purpose metaheuristic is GWW idw, a more sophisticated population-
based algorithm with four parameters [18].

– Several ad-hoc algorithms obtain very good results on the 3 tested graph
coloring instances [16, 4, 6]. However, the results obtained by ID(best) and
TS are impressive on le450 15c. Also, our TS, and our SA with more time [17],
can color for the first time flat 300 28 0 in 30 colors.

– ID(best) and TS obtain even better results than the complicated variants
of SA used by the designers of the balanced latin square problem [9].

– On car sequencing problems, we obtain competitive results as compared to
the local search approach implemented in the COMET library [14] and the
ant colony optimization approaches described in [10] (although the lattest
seems faster on the easiest car sequencing instances).

CELAR Instances

Table 1. Comparisons between algorithms on CELAR instances. The first column
contains the best bound ever found for the instance (not proven for celar7 and celar8).
The second column reports the time per trial in minutes. For the other columns, each
cell contains the average cost (left) on 10 or 20 trials, and the best cost (right). The
numbers are reported minus the value of the best known bound, i.e., 0 means that the
bound has been obtained.

Bound T ID(any) ID(best) Metropolis SA TS

celar6 3389 14 58 0 470 304 1659 517 778 150 389 227

celar7 343592 6 29742 406 8.6 105 487406 5.6 106 2.5 106 9 105 113301 9 105 376787
celar8 262 50 29 5 131 73 108 38 19 2 84 38
celar9 15571 3 0 0 801 671 2188 416 69 0 644 249
celar10 31516 1 0 0 323 0 59 0 0 0 0 0

The results show that ID(any) is clearly superior to others. The only exception
concerns celar8 for which SA is better than ID(any). The following remarks
highlight the excellent performance of ID(any):

– ID(any) can reach the best kwown bound for all the instances. With more
available time, the best bound 262 is reached for celar8 and bounds less than
343600 can be obtained on the challenging celar7 that has a very chahuted
landscape (with constraint violation weights ranging from 1 to 106).

– Only a few ad-hoc algorithms can obtain such results on celar6 and celar7
[12, 20], while all the tested algorithms are general-purpose.

– The excellent result on celar9 (10 sucesses on 10 trials) is in fact obtained
in 7 s, instead of 3min for others. The excellent result on celar10 is in fact
obtained in 1 s, instead of resp. 47 s and 34 s for SA and TS.

ID Walk: A Candidate List Strategy with a Simple Diversification Device 431

Graph Coloring Instances

Table 2. Comparisons between algorithms on graph coloring instances. For le450 15c,
a cell contains the average time required per trial in seconds and the number of times
(on 10 trials) the graph can be colored in 15 colors (into parentheses). For le450 25c,
a cell contains the average cost (left) and the best cost (right) among the ten trials,
obtained in 800 seconds per trial. The numbers are reported minus 25, i.e., 0 means
that the graph has been colored in 25 colors.

Neighborhood #col ID(any) ID(best) Metropolis SA TS

le450 15c VarConflict 15 99 (10) 151 (8) 220 (0) 82 (3) 112 (10)

le450 15c Minton 15 27 (10) 8 (10) 108 (10) 74 (6) 3 (10)

le450 25c VarConflict 25 3.3 2 3.6 2 4.1 3 5.9 2 2.3 0

le450 25c Minton 25 3.2 3 3.5 2 3.2 2 3.8 2 2.6 1

TS obtains generally the best results, especially on le450 25c. It can even color
le450 25c once in 800 s with the VarConflict neighborhood.

ID(any) and ID(best) also obtain good results, especially on le450 15c.

Spatially-Balanced Latin Square Instances

Table 3. Comparisons between algorithms on spatially-balanced latin square instances.
Each cell contains the average time in seconds per trial (over 10 trials). For blatsq8,
all the algorithms always find a solution (10/10). For blatsq9, the number of successes
(between 0 to 10) is indicated into parentheses.

ID(any) ID(best) Metrop. SA TS

blatsq8 23 1.5 10 15 2.8

blatsq9 998 (6) 5 (10) 26 (10) 46 (10) 9 (10)

These tests show that ID(best) and TS clearly dominate the others.

Car Sequencing Instances

Table 4 collapses the results obtained on the two most difficult instances of car
sequencing (in the CSPLib): pb10-93 and pb16-81.

The reader can first notice that the results obtained with the more “aggres-
sive” neighborhood are better for all the metaheuristics. The trend is confirmed
on the other instances in appendix, although this is not systematic.

Table 4. Comparisons between algorithms on car sequencing instances. Each cell con-
tains the average time in seconds per trial (over 10 trials) and the number of successes
into parentheses (between 0 to 10).

Neighborhood ID(any) ID(best) Metrop. SA TS

pb10-93 NoConflict 759 (0) 1842 (6) 737 (6) 697 (0) 5902 (4)

pb10-93 VarConflict 1330 (1) 442 (10) 509 (7) 709 (4) 1400 (9)

pb16-81 NoConflict 2450 (8) 499 (10) 945 (10) 592 (9) 580 (9)

pb16-81 VarConflict 603 (2) 188 (10) 677 (10) 1039 (9) 99 (10)

432 Bertrand Neveu, Gilles Trombettoni, and Fred Glover

On these instances, ID(best) give the best results (twice) or is only twice
slower than the best one, that is Metropolis or TS. ID(any) and SA are less
effective.

Summary

On the 15 instances tested above (some of them being encoded with two different
neighborhoods), we can conclude that:

– ID(any) dominates others on 4 CELAR and 1 graph coloring instances.
– ID(best) dominates others on 1 spatially-balanced latin square instance and

2 car sequencing instances. It is also generally good when TS is the best.
– Metropolis dominates others on only 1 car sequencing instance and is some-

times very bad.
– SA dominates others only on celar8 and is sometimes very bad.
– TS dominates others on 3 graph coloring instances, 1 spatially-balanced latin

square instance and 1 car sequencing instance.

As a result, TS gives the best results on these instances, although it is bad
on some CELAR problems, especially celar7.

We should highlight the excellent results obtained by the “best” metaheuris-
tic among ID(any) and ID(best) on all the instances: one version of ID Walk is
the best for 8 over the 15 tested instances, and is very efficient on 5 others (gen-
erally ID(best)). They are only clearly dominated by TS on the graph coloring
instance le450 25c (with the 2 implemented neighborhoods).

2.6 Using the Automatic Tuning Tool in Our Experiments

Our tuning tool has allowed us to perform the large number of tests gathered
above. The robustness of the tuning process depends on the tested problem and
metaheuristic. Car sequencing instances seem more difficult to be tuned auto-
matically. Also, the tool is less reliable when applied with SA and metaheuristics
with two parameters (TS and more sophisticated variants of ID Walk), so that a
final manual tuning was sometimes necessary to obtain reliable results. The com-
plexity times reported above do not include the tuning time. However, note that
more than 80% of them have been obtained automatically. Especially, Table 5
reports the overall time spent to obtain the results of ID(best) and ID(any) on
the 15 instances above. This underlines that all the results, except 1, have been
obtained automatically.

For readers who wish to investigate ID Walk on their own, Table 6 gathers
the values selected for Max in our experiments.

Table 5. Total time (tuning+solving) in minutes spent on the 15 instances by ID Walk.
(N), (V) and (M) denote the different neighborhoods, resp., NoConflict, VarConflict,
Minton.

Instance celar6 celar7 celar8 celar9 celar10 blatsq8 blatsq9 pb10-93(N)
ID(any) manual 147 666 36 2 7 311 142
ID(best) 414 200 702 45 51 2.5 4.5 524

Instance pb10-93(V) pb16-81(N) pb16-81(V) le 15c(V) le 15c(M) le 25c(V) le 25c(M)
ID(any) 295 611 164 117 24 429 223
ID(best) 89 374 75 67 4 251 186

ID Walk: A Candidate List Strategy with a Simple Diversification Device 433

Table 6. Values computed for the Max parameter by the automatic tuning tool (except
for celar6).

Instance celar6 celar7 celar8 celar9 celar10 blatsq8 blatsq9 pb10-93(N)
ID(any) 125 125 120 256 225 175 212 2800
ID(best) 15 7 29 45 16 125 71 1110

Instance pb10-93(V) pb16-81(N) pb16-81(V) le 15c(V) le 15c(M) le 25c(V) le 25c(M)
ID(any) 1200 900 562 40 4 100 6
ID(best) 468 579 179 20 3 93 6

3 Variants

Several variants of ID Walk have been designed to better understand the role
of different devices on performance. Section 3.1 describes these variants and
Section 3.2 perform some experiments that lead to significant results.

3.1 Description of Variants

In addition to the number S of moves, the variants ID(a,g) and ID(b,g) have
only one parameter (like ID(any) or ID(best)), while ID(a,t) and ID(a,m)
have two (like TS).

Variant ID(a,t) (ID(any) with a Tabu List)

ID(a,t) is ID(any) endowed with a tabu list of fixed length. One of the Max
neighbor is accepted iff its cost is better than or equal to the current cost and
is not tabu.

Variant ID(a,g) (“Greedy” Variant of ID(any))

At every move, ID(a,g) examines the Max candidates: it selects the best neighbor
among the Max candidates if one of them improves or keeps the current cost;
otherwise it randomly selects any of them.

Remark: This variant is allowed by the original move procedure4 implemented
in the INCOP library [17]. More precisely, INCOP allows the user to define a mini-
mum number Min of neighbors that are visited at every move, among which the
best accepted candidate is returned. Without going into details, Min is set to 0
(or 1) in the variants above and is set to Max in the “greedy” variants.

Variant ID(b,g) (“Greedy” Variant of ID(best))

ID(b,g) selects the best neighbor among the Max candidates (Min=Max). ID(b,g)
is similar to a TS with no tabu list (or a tabu list of null length).

Other variants could be envisaged. In particular, many well known devices
could enrich ID Walk, such as strategic oscillation (i.e., making Max vary with
time). However, the aim of the next section is to compare the impact on perfor-
mance of the following three mechanisms:

– the Min parameter,
– the SpareNeighbor diversification device,
– the tabu list.

4 The Min parameter is also used in the Aspiration Plus strategy.

434 Bertrand Neveu, Gilles Trombettoni, and Fred Glover

3.2 First Comparison Between Local Search Devices
There is no need to go into details to discover a significant result in the local
search field. The impact of the SpareNeighbor parameter on performance is
highly crucial, while it is unused in most metaheuritics and implicit (and fixed
to best) in a simple form of tabu search. The result is clear on three categories
of problems (among five): CELAR, latin square and car sequencing. Therefore
we believe that this diversification device should be studied more carefully in
the future and incorporated in more metaheuristics. This surprising result also
explains the success of ID(any) and ID(best) (in disjoint cases especially).

On the opposite, we can observe that the impact of Min is very weak.
We can finally observe that the tabu list is very effective for graph coloring

instances, but the effect on the other categories of problems is not clear.
Note that all the metaheuristics have a good behavior on the uniform random

CSP instances. The results are thus reported in Appendix A.
To sum up, 1 category of problems does not discriminate the tested devices,

1 category takes advantage on the tabu list, and 3 categories are well handled
by this new SpareNeighbor diversification device.

Impact of Parameter SpareNeighbor

Table 7 has been arranged so that columns on the left side correspond to
metaheuristics with SpareNeighbor=any, while columns on the right side cor-
respond to metaheuristics with SpareNeighbor=best. The impact of parameter
SpareNeighbor is very significant on CELAR, latin square and car sequencing
problems, for which several orders of magnitude can sometimes be gained by
choosing any (for CELAR) or best (for latin square and car sequencing).

Table 7. Measuring the impact of Min, SpareNeighbor and the tabu list on perfor-
mance. Every cell has the same content as described in the previous tables (only the
average cost appears for celar7). The last column p-q gives the length p of the TS

tabu list and the length q of the ID(a,t) tabu list.

Instance Neigh. ID(a) ID(a,t) ID(a,g) ID(b) ID(b,g) TS p-q

celar6 VarC 58 0 60 0 96 0 470 304 408 308 389 227 1-6

celar7 VarC 3 104 4 104 4.8 104 8.6 105 8 105 9 105 50-48

celar8 VarC 29 5 37 13 38 16 131 73 91 54 84 38 2-45

celar9 VarC 0 0 0 0 0 0 801 671 36 313 644 249 15-12

celar10 VarC 0 0 0 0 0 0 323 0 0 0 0 0 2-5

le 15c VarC 99 (10) 18 (10) 92 (10) 151 (8) 152 (6) 112 (10) 72-56

le 15c Mint. 27 (10) 1 (10) 4 (10) 8 (10) 14 (10) 3 (10) 45-10

le 25c VarC 3.3 2 3.3 2 3.7 3 3.6 2 2.8 1 2.3 0 2-4

le 25c Mint. 3.2 3 2.4 1 4.1 2 3.5 2 2.8 2 2.6 1 2-4

blatsq8 VarC 99 171 84 2 4 4 0-2

blatsq9 VarC 1410(5) 1581(5) 972(1) 40(10) 16(10) 16(10) 0-3

pb10-93 NoC 759(0) 4301(0) 5979(0) 1842(6) 1698(2) 5902(4) 1-1

pb10-93 VarC 1330(1) 5381(0) 1457(0) 442(10) 1264(10) 1400(9) 1-1

pb16-81 NoC 2450(8) 894(2) 1763(0) 499(10) 1182(10) 580(9) 1-2

pb16-81 VarC 603(2) 890(0) 862(1) 188(10) 236(10) 99(10) 1-4

ID Walk: A Candidate List Strategy with a Simple Diversification Device 435

On car sequencing instances, we can notice that a good performance is ob-
tained by setting SpareNeighbor to best and by using a VarConflict neighbor-
hood. Both trends indicate that the notion of intensification is very significant.

Impact of the Tabu List

The observations are especially based on the comparison between ID(b,g) and
TS since ID(b,g) can be viewed as TS with a null tabu list. The comparison
between ID(any) and ID(a,t) is informative as well. The interest of the tabu
list is not clear on CELAR and car sequencing problems. The impact of the
tabu list seems null on latin square when SpareNeighbor is set to best since
the automatic tuning procedure selects a list of length 0. It is even slightly
counterproductive when SpareNeighbor = any. On the opposite, the gain in
performance of the tabu list is quite clear on graph coloring for which ID(a,t)
and our TS variant obtain even better results than ID(any) and ID(b,g) resp.

Weak Impact of Parameter Min

The reader should first understand that the parameter Min set to Max allows a
more aggressive search but is generally more costly since all the neighbors are
necessarily examined.

The observations are especially based on the comparison between ID(any)
(Min=0) and ID(a,g) (Min=Max) on one hand, and ID(best) and ID(b,g)
on the other hand. First, the impact on performance of setting Min to 0 or
Max seems negligible, except for 4 instances (among 15+15): celar7, le450 15c
(VarConflict), pb10-93 (VarConflict) and pb16-81 (NoConflict). Second, it is
generally better to select a null value for Min, probably because a large value is
more costly. Third, we also made experiments with another variant of ID(any)
where Min can be tuned between 0 and Max. This variant did not pay off, so that
the results are not reported in the paper.

This analysis suggests to not pay a great attention to this parameter and
thus to favor a null value for Min in metaheuritics.

4 Conclusion

We have presented a very promising candidate list strategy. Its performance has
been highlighted on 3 over the 5 categories of problems tested in this paper.
Moreover, a first analysis has underlined the significance of the SpareNeighbor
diversification device that is ignored by most of the metaheuristics.

All the metaheuristics compared in this paper have two points in common
with ID Walk. They are simple and have a limited number of parameters. More-
over, they use a specific mechanism to exit from local minima.

Our study could be extended by analyzing the impact of random restart
mechanisms. In particular, it would allow us to compare ID Walk with the GSAT
and the WALKSAT [19] algorithms used for solving the well-known SAT problem
(satisfiability of logical propositional formula). Note that WALKSAT is equipped
with specific intensification and diversification devices.

ID Walk can be viewed as an instance of the AspirationPlus strategy, where
parameters Min and Plus (see [8]) are set to 0, and where the aspiration level can

436 Bertrand Neveu, Gilles Trombettoni, and Fred Glover

be adjusted dynamically during the search: the aspiration level (threshold) for
ID Walk always begins at the value of the current solution, but when none of the
Max candidates qualify, the aspiration level is increased to the value of “any” can-
didate (SpareNeighbor=any) or of the “best” one (SpareNeighbor=best). Since
the value of Min is not important (with “static” aspiration criteria) and since we
have exhibited a significant and efficient instance of a dynamic AspirationPlus
strategy, this paper strongly suggests the relevance of investigating additional
dynamic forms in this novel and promising class of strategies.

In particular, the SpareNeighbor parameter can be generalized to take a
value k between 1 (any) and Max (best), thus selecting the “best of k randomly
chosen moves”. Another variant would select any of the k best candidates.

Acknowledgments

Thanks to Pascal Van Hentenryck for useful discussions on preliminary works.

References

1. C. Bessière. Random Uniform CSP Generators.
http://www.lirmm.fr/ bessiere/generator.html.

2. D. T. Connolly. An improved annealing scheme for the qap. European Journal of
Operational Research, 46:93–100, 1990.

3. S. de Givry, G. Verfaillie, and T. Schiex. Bounding the optimum of constraint
optimization problems. In Proc. CP97, number 1330 in LNCS, 1997.

4. R. Dorne and J.K. Hao. Tabu search for graph coloring, T-colorings and set T-
colorings. In Meta-heuristics: Advances and Trends in Local Search Paradigms for
Optimization, pages 77–92. Kluwer Academic Publishers, 1998.

5. A. Eisenblätter and A. Koster. FAP web - A website about Frequency Assignment
Problems. http://fap.zib.de/.

6. P. Galinier and J.K. Hao. Hybrid evolutionary algorithms for graph coloring.
Journal of Combinatorial Optimization, 3(4):379–397, 1999.

7. I. Gent and T. Walsh. CSPLib: a benchmark library for constraints. In Proc. of
Constraint Programming CP’99, 1999.

8. F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.
9. C. Gomes, M. Sellmann, C. van Es, and H. van Es. The challenge of generating

spatially balanced scientific experiment designs. In Proc. of the first CPAIOR
conference, LNCS 3011, pages 387–394, 2004.

10. J. Gottlieb, M. Puchta, and C. Solnon. A study of greedy, local search and ant
colony optimization approaches for car sequencing problems. In Proc. of the Evo-
COP conference, LNCS 2611, pages 246–257, 2003.

11. S. Kirkpatrick, C. Gellat, and M. Vecchi. Optimization by simulated annealing.
Science, 220:671–680, 1983.

12. A. Kolen. A genetic algorithm for frequency assignment. Technical report, Uni-
versiteit Maastricht, 1999.

13. A. Koster, C. Van Hoesel, and A. Kolen. Solving frequency assignment problems
via tree-decomposition. Technical Report 99-011, Universiteit Maastricht, 1999.

14. L. Michel and P. Van Hentenryck. A constraint-based architecture for local search.
In Proc. of the OOPSLA conference, 2002.

ID Walk: A Candidate List Strategy with a Simple Diversification Device 437

15. S. Minton, M. Johnston, A. Philips, and P. Laird. Minimizing conflict: a heuris-
tic repair method for constraint satisfaction and scheduling problems. Artificial
Intelligence, 58:161–205, 1992.

16. C. Morgenstern. Distributed coloration neighborhood search. In David S. John-
son and Michael A. Trick, editors, Cliques, Coloring, and Satisfiability: Second
DIMACS Implementation Challenge, 1993, volume 26, pages 335–357. American
Mathematical Society, 1996.

17. B. Neveu and G. Trombettoni. INCOP: An Open Library for INcomplete Com-
binatorial OPtimization. In Proc. Int. Conference on Constraint Programming,
CP’03, LNCS 2833, pages 909–913, 2003.

18. B. Neveu and G. Trombettoni. When Local Search Goes with the Winners. In Int.
Workshop CPAIOR’2003, pages 180–194, 2003.

19. B. Selman, H. Kautz, and B. Cohen. Local search strategies for satisfiability test-
ing. In Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Chal-
lenge. Theoretical Computer Science, vol. 26, AMS, 2003.

20. C. Voudouris and E. Tsang. Solving the radio link frequency assignment problem
using guided local search. In Nato Symposium on Frequency Assignment, Sharing
and Conservation in Systems(AEROSPACE), 1998.

A Results over Less Discriminating Benchmarks

Table 8. Comparing metaheuristics on the 20 remaining instances: 4 random CSPs,
2 graph coloring instances, and 14 car sequencing instances. Every cell has the same
content as described in the previous tables. For random CSPs, the time includes the
tuning step (see Section 2.2) and a run is interrupted as soon as a solution is found.

Instance Neigh. ID(a) ID(a,t) ID(a,g) ID(a,m) ID(b) ID(b,g) TS Metr. SA

csp1 VarC 91 110 228 88 165 – 121 200 105

csp1 Mint. 127 69 197 253 77 – 64 99 172

csp2 VarC 86 61 211 206 115 – 118 101 245

csp2 Mint. 49 76 126 161 98 – 67 42 43

flat 28 VarC 5.1 4 5.7 4 4.7 3 5.7 5 5.4 5 4.7 3 5 3 5.5 3 6.5 5

flat 28 Mint. 4.5 4 4.9 4 5 4 4.4 3 5.3 4 5 4 5.1 0 4.3 3 5.5 4

pb4-72 NoC 49 32 379 49 96 173 130 40 57

pb4-72 VarC 93 118 143 132 15 41 29 30 126

pb6-76 NoC 0.2 0.1 0.7 1.2 0.2 0.5 0.4 0.2 0.4

pb6-76 VarC 0.1 0.4 0.2 0.15 0.1 0.4 0.4 0.3 1.0

pb19-71 NoC 4 11 28 9 6 14 31 5 10

pb19-71 VarC 3 4 9 3 2 4 4 5 7

pb21-90 NoC 12 22 40 12 6 14 13 10 4

pb21-90 VarC 5 4 13 2 2 5 4 3 9

pb26-82 NoC 22 107 466 70 55 290 150 22 25

pb26-82 VarC 177 291 96 57 15 28 22 25 141

pb36-92 NoC 59 107 866 71 51 103 86 76 241

pb36-92 VarC 64 50 146 43 9 18 23 16 30

pb41-66 NoC 4 5 33 4 7 20 24 8 9

pb41-66 VarC 1.4 1.6 7.1 1.4 0.7 3.2 1.7 0.7 0.7

	1 Introduction
	2 Description of ID Walk and Comparison with Leading Metaheuristics
	2.1 Description of ID Walk
	2.2 Automatic Parameter Tuning Procedure
	2.3 Experiments and Problems Solved
	2.4 Compared Optimization Metaheuristics
	2.5 Results
	2.6 Using the Automatic Tuning Tool in Our Experiments

	3 Variants
	3.1 Description of Variants

	4 Conclusion
	Acknowledgments
	References
	A Results over Less Discriminating Benchmarks

