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ABSTRACT— Metaheuristics — general search procedures whose principles allow them 
to escape the trap of local optimality using heuristic designs — have been successfully 
employed to address a variety of important optimization problems over the past few 
years. Particular gains have been achieved in obtaining high quality solutions to 
problems that classical exact methods (which guarantee convergence) have found too 
complex to handle effectively. Typically a metaheuristic method is crafted to suit the 
particular characteristics of the problem at hand, exploiting to the extent possible the 
structure available to enable a fruitful and efficient search process. An alternative to this 
problem specific solution approach is a more general methodology that recasts a given 
problem into a common modeling format, permitting solutions to be derived by a 
common, rather than tailor-made, heuristic method. 
 
The optimization folklore strongly emphasizes the unproductive consequences of 
converting problems from a specific class to a more general representation, since the 
“domain-specific structure” of the original setting then becomes invisible and can not be 
exploited by a method for the more general problem representation. Nevertheless, there is 
a strong motivation to attempt such a conversion in many applications to avoid the 
necessity to develop a new method for each new class. We demonstrate the existence of a 
general problem representation that frequently overcomes the limitation commonly 
ascribed to such models. Contrary to expectation, when a specially structured problem is 
translated into this general form, it often does not become much harder to solve, and 
sometimes becomes even easier to solve provided the right type of solution approach is 
applied. 
 
The model with this appealing property is the unconstrained binary quadratic binary 
programming problem, accompanied by the device of introducing quadratic infeasibility 
penalty functions to handle constraints. Not only is this model capable of representing a 
wide range of “special case” problem classes, but it can be advantageously exploited by 
adaptive memory (tabu search) metaheuristics and associated evolutionary (scatter 
search) methods. Computational outcomes disclose the effectiveness of this combined 
modeling and solution approach for problems from a diverse collection of challenging 
settings. 
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1. Introduction: 
 
The unconstrained quadratic program can be written in the form: 
 

QUIP: xQxxf =)(min  
where Q is an n by n matrix of constants and x is an n-vector of binary variables. QUIP is 
notable for its ability to represent a significant variety of important problems. The  
applicability of this representation has been reported in diverse settings such as social 
psychology (Harary [19]), financial analysis (Laughunn, [23], McBride and Yormak, [25]), 
computer aided design (Krarup and Pruzan [22]), traffic management (Gallo et al. [7], 
Witsgall, [32]), machine scheduling (Alidaee, Kochenberger, and Ahmadian, [1]), cellular 
radio channel allocation (Chardaire and Sutter [6]), and molecular conformation (Phillips 
and Rosen [30]). Moreover, many combinatorial optimization problems pertaining to 
graphs such as determining maximum cliques, maximum cuts, maximum vertex 
packing, minimum coverings, maximum independent sets, and maximum independent 
weighted sets are known to be capable of being formulated by the QUIP problem as 
documented in papers of Pardalos and Rodgers [28], and Pardalos and Xue [29]. 
 
The application potential of QUIP is yet substantially greater than this, however, due to 
reformulation methods that enable certain constrained models to be re-cast in the form 
of QUIP. Hammer and Rudeanu [16] and Hansen [17] show that any quadratic (or linear) 
objective in bounded integer variables and constrained by linear equations can be 
reformulated as a QUIP model. Our purpose is to report results that disclose this wide 
array of potential reformulations into the QUIP format is not merely a representational 
novelty, but is a source of practical consequences. The following material draws upon 
recent findings in by Kochenberger, Glover, Alidaee, and Amini [21] and in Glover, 
Kochenberger, Alidaee and Amini [12]. 
 
2. Transformations: 

 
We take as our starting point the constrained problem 
 

xQxx =0min
 

                                                 subject to 
 

Ax = b, x binary 
 
This model describes both the quadratic and linear case since the linear case results 
when Q is a diagonal matrix. Problems with inequality constraints can also be put into 
this form by representing their bounded slack variables by a binary expansion. These 
constrained quadratic optimization models are converted into equivalent QUIP models by 
adding a quadratic infeasibility penalty function to the objective function in place of 
explicitly imposing the constraints Ax = b. 
 

( ) ( )bAxbAxPxQxx t −−+=0  

cxDxxQx ++=  

cxQx += ˆ  
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where the matrix D and the additive constant c result directly from the matrix 
multiplication indicated. Dropping the additive constant, the equivalent unconstrained 
version of our constrained problem becomes 
 

binaryxxQxPENQUIP ,ˆmin:)(  
 
From a theoretical standpoint, a suitable choice of the penalty scalar P can always be 
chosen such that the optimal solution to QUIP(PEN) is the optimal solution to the original 
constrained problem. (Hammer and Rudeanu [16]). Similar theoretical outcomes apply to 
many types of representations other than the QUIP model, of course, and the issue of 
interest is whether there is any practical merit in undertaking such a transformation in 
the QUIP case. The same question arises by reference to another transformation, which 
likewise falls within the context of the QUIP model. 
 
We refer to the preceding general transformation as transformation # 1. A very important 
special class of constraints that arise in many applications can be handled by an 
alternative approach, given below, which we call transformation #2. 
 
Many problems have considerations that isolate two specific alternatives and prohibit 
both from being chosen. That is, for a given pair of alternatives, one or the other but not 
both may be chosen. If xj and xk are binary variables denoting whether or not alternatives 
j and k are chosen, the standard constraint that allows one choice but precludes both is: 

1≤+ xx kj  

 
Then, for a positive scalar P, adding the penalty function Pxjxk to the objective function is 
a simple alternative to imposing the constraint is a traditional manner. This penalty 
function has sometimes been used by to convert certain optimization problems on graphs 
(e.g., the maximum clique problem) into an equivalent QUIP model. Its potential 
application, however, goes far beyond graph problems as we demonstrate in later 
sections of this paper. 
 
3. Examples: 

 
Before highlighting a variety of problem classes to which we have successfully applied the 
foregoing transformation approaches, we give two small examples from classical problem 
settings to provide concrete illustrations: 
 

Example 1:  Set Partitioning. 
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and x binary. Applying transformation #1 with P = 10 gives the equivalent QUIP model: 
 
 

binaryxxQxPENQUIP ,ˆmin:)(  
 
where the additive constant, c, is 40 and 
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Solving QUIP(PEN) by the method of Glover et al. [11]1 we obtain an optimal solution 
151 == xx  for which 60 =x . In the straightforward application of transformation #1 to 

this example, it is to be noted that the replacement of the original problem formulation by 
the QUIP(PEN) model did not involve the introduction of new variables. In many 
applications, transformation #1 and transformation #2 can be used in concert to produce 
an equivalent QUIP model, as demonstrated next. 

Example 2: P-Median Problem: 

                       The P-Median problem can be modeled as: 
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1 Almost any method will work for this simple example. 
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where ijc  is the weighted distance from facility i to demand node j, 1=jy  if a facility is 

located at location j, and 1=ijx  if demand node i is assigned to the facility at location j. 
The first two sets of constraints can clearly be accommodated by transformation #1. The 
last set of constraints can be handled by transformation #2 by a “trick” of replacing the y 
variables by their compliments. (This same approach can be employed to model many 
fixed charge problems.) 
 
To illustrate, consider the 12 variable example with m = n = 3, p = 2 and the C matrix 
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For P = 20, the additive constant c is 80 and the Q̂  matrix for the equivalent QUIP model 
is 
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Solving QUIP(PEN) gives 131961 ===== yyxxx  for which 10 =x , which is optimal for 
the original problem. 

 

 
4. Solution Approaches: 
 
Due to its computational challenge and application potential, QUIP has been the focus of 
a considerable number of research studies in recent years, including both exact and 
heuristic solution approaches. Notable recent studies addressing QUIP are those by 
Williams [31], Pardalos and Rodgers [27], Boros, Hammer and Sun [5], Chardaire and 



 

                  5 
 

Sutter [6], Glover, Kochenberger and Alidaee [14], Glover, Kochenberger, Alidaee, and 
Amini [11], Alkhamis, Hasan and Ahmed [2], Beasley [4], Lodi, Allemand and Liebling 
[24], Amini, Alidaee and Kochenberger [3], and Glover, Amini, Kochenberger and Alidaee 
[3]. Other promising work is reported by Katayama, Tani and Narihisa [20] and Merz and 
Freisleben [26]. These various studies approach the problem by branch and bound, 
decomposition, tabu search, simulated annealing, and evolutionary methods such as 
genetic algorithms and scatter search. Each of these approaches exhibits some degree of 
success. However, the exact methods degrade rapidly with problem size, and have 
meaningful application to general QUIP problems with no more than 100 variables. For 
larger problems, heuristic methods are required. Two methods we have found to be 
particularly successful for a wide variety of problems are based on tabu search and on 
the related evolutionary strategy scatter search [3]. In the following we highlight our tabu 
search approach. 

4.1 Tabu Search Overview: 
 
Our TS method for QUIP is centered around the use of strategic oscillation, which 
constitutes one of the primary strategies of tabu search. The variant of strategic 
oscillation we employ may be sketched in overview as follows. 
 
The method alternates between constructive phases that progressively set variables to 1 
(whose steps we call “add moves”) and destructive phases that progressively set variables 
to 0 (whose steps we call “drops moves”). To control the underlying search process, we 
use a memory structure that is updated at critical events, identified by conditions that 
generate a subclass of locally optimal solutions. Solutions corresponding to critical 
events are called critical solutions. 
 
A parameter span is used to indicate the amplitude of oscillation about a critical event. 
We begin with span equal to 1 and gradually increase it to some limiting value. For each 
value of span, a series of alternating constructive and destructive phases is executed 
before progressing to the next value. At the limiting point, span is gradually decreased, 
allowing again for a series of alternating constructive and destructive phases. When span 
reaches a value of 1, a complete span cycle has been completed and the next cycle is 
launched. 
 
Information stored at critical events is used to influence the search process by penalizing 
potentially attractive add moves (during a constructive phase) and inducing drop moves 
(during a destructive phase) associated with assignments of values to variables in recent 
critical solutions. Cumulative critical event information is used to introduce a subtle long 
term bias into the search process by means of additional penalties and inducements 
similar to those discussed above. A complete description of the framework for the method 
is given in Glover, Kochenberger, Alidaee and Amini [11]. 
 

5. Computational Experience: 
 
Our results of applying the tabu search and associated scatter search metaheuristics to 
combinatorial problems recast in QUIP form have uniformly attractive in terms of both 
solution quality and computation times. As intimated earlier, although our methods are 
designed for the completely general form of QUIP, without any specialization to take 
advantage of particular types of problems reformulated in this general representation, 
our outcomes have typically proved competitive with or even superior to those of 
specialized methods designed for the specific problem structure at hand. Our broad base 



 

                  6 
 

of experience with QUIP as a modeling and solution framework includes a substantial 
range of problem classes including: 
 

-Quadratic Assignment Problems 
-Capital Budgeting Problems 
-Multiple Knapsack Problems 
-Task Allocation Problems (distributed computer systems) 
-Maximum Diversity Problems 
-P-Median Problems 
-Asymmetric Assignment Problems 
-Symmetric Assignment Problems 
-Side Constrained Assignment Problems 
-Quadratic Knapsack Problems 
-Constraint Satisfaction Problems (CSPs) 
-Set Partitioning Problems 
-Fixed Charge Warehouse Location Problems 
-Maximum Clique Problems 
-Maximum Independent Set Problems 
-Maximum Cut Problems 
-Graph Coloring Problems 
-Graph Partitioning Problems 
 

Details of our experience with these and other problems are documented in the paper by 
Kochenberger, Glover, Alidaee, and Rego [21]. We are currently solving problems via QUIP 
with more than 10,000 variables in the quadratic representation. The significance of this 
is underscored by that fact that the well-known transformation of the binary quadratic 
representation into a binary linear programming representation produces problems 
containing more than 50,000,000 zero-one variables. Currently we are working on 
enhancements that will permit larger instances to be solved. 

 
6. Summary: 
 
We have demonstrated how a variety of disparate combinatorial problems can be solved by first re-casting 
them into the common modeling framework of the unconstrained quadratic binary program. Once in this 
unified form, the problems can be solved effectively by adaptive memory tabu search metaheuristics and 
associated evolutionary (scatter search) procedures. 
 
Our findings challenge the conventional wisdom that places high priority on preserving linearity and 
exploiting specific structure. Although the merits of such a priority are well-founded in many cases, the 
QUIP domain appears to offer a partial exception. In forming QUIP(PEN), we destroy any linearity that the 
original problem may have exhibited. Moreover, any exploitable structure that may have existed originally is 

“folded” into the Q̂  matrix, and the general solution procedure we apply takes no advantage of it. 
Nonetheless, our solution outcomes have been remarkably successful, yielding results that rival the 
effectiveness of the best specialized methods. 
 
This combined modeling/solution approach provides a unifying theme that can be applied in principle to all 
linearly constrained quadratic and linear programs in bounded integer variables, and the computational 
findings for a broad spectrum of problem classes raises the possibility that similarly successful results may be 
obtained for even wider ranges of problems. As the research community continues to provide improved 
solution methodologies for the QUIP model, the unified framework that QUIP represents for modeling and 
solving combinatorial problems via reformulation will become an increasingly attractive alternative to 
traditional specialized representations. These developments, with their apparent promise, open up a new set 
of research challenges and opportunities for the optimization community.   
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