
Fine-tuning a Tabu Search Algorithm with
Statistical Tests

JIEFENG XU1, STEVE Y. CHIU2 and FRED GLOVER3

1Delta Technology Inc., 1001 International Boulevard, Atlanta, GA 30354, USA, 2GTE Laboratories,
Inc., 40 Sylvan Road, Waltham, MA 02254, USA and 3Graduate School of Business,

University of Colorado at Boulder, Boulder, CO 80309-0419, USA

Tabu Search is a metaheuristic that has proven to be very e�ective for solving various types of
combinatorial optimization problems. To achieve the best results with a tabu search algorithm, signi®-
cant bene®ts can sometimes be gained by determining preferred values for certain search parameters
such as tabu tenures, move selection probabilities, the timing and structure of elite solution recovery
for intensi®cation, etc. In this paper, we present and implement some new ideas for ®ne-tuning a tabu
search algorithm using statistical tests. Although the focus of this work is to improve a particular tabu
search algorithm developed for solving a telecommunications network design problem, the implications
are quite general. The same ideas and procedures can easily be adapted and applied to other tabu
search algorithms as well. # 1998 IFORS. Published by Elsevier Science Ltd. All rights reserved

Key words: Tabu search heuristic, statistical test, telecommunications network design.

1. INTRODUCTION

Tabu Search (TS) is a metaheuristic method that has proven to be very e�ective for many
combinatorial optimization problems. It employs adaptive memory and responsive exploration to
e�ectively search the solution space and to prevent it from being trapped in a local optimum
[see Glover and Laguna (1993) and Glover (1995) for comprehensive overviews of the TS
method]. Typically, a TS algorithm involves a set of parameters or options that need to be set
appropriately in order to achieve the best results. Such parameters or options include tabu
tenures, move selection probabilities, recovery strategies for intensi®cation, etc. The process of
®ne-tuning these parameters is often time-consuming and involves extensive computational
experiments.

Barr et al. (1995) address the important issues of designing and reporting on computational
experiments with heuristic methods, and consider that ``the selection of parameter values that
drive heuristics is itself a scienti®c endeavor, and deserves more attention than it has received in
the operations research literature''. The authors further claim that ®ning-tuning a heuristic is an
area where the scienti®c method and statistical analysis could and should be employed. This
paper presents a ®rst attempt to systematically ®ne-tune a TS algorithm using statistical analy-
sis. We employ some standard statistical tests and experimentation design techniques to improve
a speci®c TS algorithm that was proposed by Xu et al. (1996). Although the focus of this paper
is to improve the performance of this particular algorithm, the implications are general. The
same ideas and procedures can easily be employed to improve other heuristic methods as well.

The problem that the TS algorithm attempts to solve was motivated by a real-world telecom-
munications network design problem which was described in Lee et al. (1994). The problem can
be brie¯y described as follows. Consider a simple graph G = (V, E), where the set of nodes V is
partitioned into two disjoint subsets S and T, and the set of edges E = S�T[S�S. The nodes
in S are called Steiner nodes and the nodes in Tare called target nodes. In a feasible network de-
sign, each Steiner node is either selected or unselected and each target node has to be connected
to exactly one selected Steiner node directly by an edge. The selected Steiner nodes (called active
nodes) must also be interconnected to form a spanning tree themselves. Now suppose that there
is a cost associated with each edge in E and each node in S. We want to determine the optimal
network design that minimizes the total edge and node costs. The problem is referred to as the

Int. Trans. Opl Res. Vol. 5, No. 3, pp. 233±244, 1998
1998 IFORS. Published by Elsevier Science Ltd

All rights reserved. Printed in Great Britain
0969-6016/98 $19.00+0.00PII: S0969-6016(98)00017-3

233

Steiner Tree-Star problem (STS). A precise mathematical formulation of the problem is given in
Appendix A.

This paper is organized as follows. Section 2 describes a probabilistic TS algorithm that was
®rst proposed in Xu et al. (1996) for solving the network design problem. This is the algorithm
that we want to improve by using the statistical tests in this paper. Section 3 introduces two
speci®c statistical tests that will be used to ®ne-tune the TS algorithm. A tree based search pro-
cedure for the best tabu parameter values is also described. Section 4 addresses the implemen-
tation issues and reports the computational results. Various options for improving the algorithm
are examined in detail in this section. Finally, Section 5 summaries our ®ndings and concludes
the paper.

2. THE PROBABILISTIC TS BASED HEURISTIC

In this section, we brie¯y outline the algorithm that was proposed in Xu et al. (1996). The inter-
ested readers are referred to that paper for details. Our TS algorithm starts at an arbitrary in-
itial solution. At each iteration, a set of candidate neighborhood moves is evaluated and a
``best'' move is selected. A new solution is then generated by taking the selected move. During
each iteration, certain neighborhood moves will be considered as tabu moves and are thus
excluded from the candidate list. Typically, a non-tabu move with ``good'' evaluation (which
can be determined either deterministically or probabilistically) is selected, although aspiration
criteria can allow us to select a tabu move if it is particularly attractive. The algorithm termi-
nates when a pre-de®ned number of iterations elapses. We now provide a brief discussion of the
following ®ve major components of the algorithm: neighborhood structure and moves, move
evaluation and error correction, TS memories, probabilistic move selection, and advanced
restarting and recovery.

2.1. Neighborhood structure

We consider three types of moves. Those of the ®rst type are called constructive moves since
they add a currently inactive Steiner node to the current solution. Once the set of active Steiner
nodes is determined, a feasible solution can easily be constructed by connecting the active
Steiner nodes using a spanning tree and by linking the target nodes to their nearest active
Steiner nodes. Moves of the second type are called destructive moves since they remove a cur-
rently active Steiner node from the current solution. The third type of moves, called swap
moves, exchange an active Steiner node with an inactive Steiner node. Clearly, the swap moves
induce a more signi®cant change in the current solution and hence require a more complex
evaluation. For this reason, we execute the swap moves less frequentlyÐonce for every n1 iter-
ations (for perturbation) and consecutively n2 times when the search fails to improve the current
solution for a pre-speci®ed number of iterations (for intensi®cation).

2.2. Move evaluation and error correction

To evaluate a potential move, we need to estimate the cost of the resulting new solution. For a
constructive move, we simply connect the new Steiner node to the closest active Steiner node in
the current solution to form a new solution. For a destructive move, we consider only those
active Steiner nodes with degree less than or equal to three in the current solution since the
removal of such a node creates at most three disconnected components, and a new solution can
easily be reconstructed. The swap move can be viewed as a combination of the constructive and
destructive moves. The error introduced by the preceding estimates can be corrected by running
a minimum spanning tree algorithm. We apply this error correction procedure every few iter-
ations and also whenever a new ``best'' solution is found. Throughout the algorithm, we main-
tain a set of elite solutions that represent the ``best'' solutions found so far. The error correction
procedure is also applied to these solutions periodically.

J. Xu et al.ÐFinetuning a Tabu Search Algorithm234

2.3. TS memory

Our TS algorithm uses both a short term memory and a long term memory to prevent the
search from being trapped in a local minimum and to intensify and diversify the search. The
short term memory operates by imposing restrictions on the set of solution attributes that are
permitted to be incorporated in (or ``changed by'') candidate moves. More precisely, a node
added to the solution by a constructive move is prevented from being deleted for a certain num-
ber of iterations, and likewise a node dropped from the solution by a destructive move is pre-
vented from being added for a certain (di�erent) number of iterations. For constructive and
destructive moves, therefore, these restrictions ensure that the changes caused by each move will
not be ``reversed'' for the next few iterations. For each swap move, we impose tabu restrictions
that a�ect both added and dropped nodes.

The number of iterations during which a node remains subject to a tabu restriction is called
the tabu tenure of the node. We establish a relatively small range for the tabu tenure, which
depends on the type of move considered, and each time a move is executed, we select a speci®c
tenure randomly from the associated range. A move is classi®ed tabu if it is prevented as a
result of the tabu status of its attributes (the nodes added or dropped, according to the case). In
more complex settings, the tabu classi®cation can be a function of the tabu status of multiple
attributes. We also use an aspiration criterion to override the tabu classi®cation whenever the
move will lead to a ``very good'' solution.

The long term memory is a frequency based memory that depends on the number of times
each particular node has been added or dropped from the solution. We use this type of memory
to discourage type of changes that have already occurred frequently (and consequently to encou-
rage changes that have occurred less frequently). This represents a particular form of frequency
memory based on attribute transitions (changes). Another type of frequency memory is based
on residence, i.e., the number of iterations that nodes remain in or out of solution.

2.4. Probabilistic choice

At each iteration, a ``best'' candidate move is selected probabilistically as suggested in Glover
and Lùkketangen (1994). First, all neighborhood moves (including tabu moves) are evaluated. If
the move with the highest evaluation satis®es the aspiration criterion, it will be selected.
Otherwise, we consider the list of moves ordered by their evaluations. For this purpose, tabu
moves are considered to be moves with highly penalized evaluations. We select the top move
with a probability p and reject the move with probability 1ÿ p. If it turned out that we rejected
a move, then we consider the next move on the list in the same fashion. If it turned out that no
move was selected at the end of this process, we will select the top move anyway. In practice,
the number of moves that need to be considered can be reduced to a relatively small number d
because the probability of selecting one of the d best moves is very high (equal to 1ÿ (1ÿ p)d).
We can also make the selection probability vary with the quality of the move by changing it to
pb1rÿb2 , where r is the ratio of the current move evaluation to the value of the best solution
found so far, and b1 and b2 are two positive parameters. The new ®ne-tuned probability will
increase the chance of selecting ``good'' moves.

2.5. Intensi®cation by recovery

We implement a variant of the advanced restarting and recovery strategy in which the recovery
of the elite solution is postponed until the last stage of the search. The elite solutions, the K best
solutions found so far, are recovered in reverse order from the worst solution to the best sol-
ution. The recovery of each solution launches a search that constitutes a ®xed number of iter-
ations. The worst elite solution is replaced immediately if a better solution is found. After each
solution is recovered, all tabu restrictions are removed and reinitialized. (Some TS recovery
strategies, which we do not consider here, also recover portions of the memory associated with
the solutions recovered.)

International Transactions in Operational Research Vol. 5, No. 3 235

3. FINE-TUNING TS ALGORITHM WITH STATISTICAL TESTS

In this section, we describe a procedure for ®ne-tuning a TS algorithm based on statistical tests.
For a given TS algorithm, we de®ne factors to be the independent parameters or options whose
values need to be determined, and de®ne treatments to be the candidate settings (values) for any
given factor. All speci®c combinations of factors and treatments are always tested on the same
set of representative problem instances called test problems. We examine the factors sequentially
according to their a priori importance and attempt to ®nd the ``best'' treatment for each factor
based on the test results. (Note that the order in which factors are examined is important since
it may impact the total number of tests required for our ®ne-tuning procedure.) However, direct
comparisons between di�erent runs are always di�cult if the results from one run do not com-
pletely dominate those from the other runs for all test problems. Since the underlying distri-
bution of the test results is often unknown, comparisons of the average test results is also
imperfect. Therefore we introduce two statistical tests to analyze the test results under a certain
con®dence level.

3.1. Friedman's test

If we assume for a given factor, the ``noise'' in test results yielded by various treatments is
drawn independently from the same continuous unknown distribution, then Friedman's test can
be used to test the signi®cance of the ``treatment e�ect''. The null hypothesis is no treatment
e�ect, that is, the di�erence in test results is caused by the randomness rather than by di�erent
treatments. The readers are referred to Devore (1991) and Hetimansperger (1984) for details
about Friedman's test. Let xij be the test result yielded by treatment i for test problem j for
i = 1, , I and j= 1, . . . ,J. For each problem j, rank the results xij (i= 1, . . . ,I) from 1 to I
according to their goodness. Let Rij denote the rank of xij. (If ties occur, each tied entry receives
the same rank, equal to the average of the ranks received by the tied entries as if the ties were
broken arbitrarily. For example, the rank vector for the test results [(100, 99, 100, 101) is (2.5,
1, 2.5, 4)]. Then the test statistic is computed by:

Fr � 12
XI
i�1

R2
i:=�IJ�I� 1�� ÿ 3J�I� 1�

where Ri.=
PJ

j�1 Rij. In practice, for moderate values of J, the test statistic Fr has approximately
a chi-squared distribution with Iÿ 1 degrees of freedom when the null hypothesis is true.
Therefore, we reject the null hypothesis if the computed test statistic exceeds the critical value
w2a,Iÿ1 at the con®dence level 1ÿ a.

If the null hypothesis is rejected in Friedman's test, which means the various parameter set-
tings will have an e�ect on the performance of the algorithm, a comparison between any two
treatments i1 and i2 is conducted to see if one dominates the other. The treatment i1 is con-
sidered to be better (with smaller mean and rank sum) than treatment i2 at the con®dent level
1ÿ a if

Ri2:rRi1: � za*
�����������������������
JI�I� 1�=6

p
where za is the 100(1ÿ a)th percentile of the standard normal distribution.

To ®nd the best treatment for a factor, we only need to compare each treatment to the one
with the smallest rank sum Rimin:. Thus, if Ri. Rimin: � za*

�����������������������
JI�I� 1�=6p

, we consider treatment i
to be inferior to the treatment imin and eliminate it from future experiments. Otherwise, we
accept treatment i as one of the possible best settings for this factor. Iÿ 1 comparisons are
required to ®nd the best treatments.

3.2. Wilcoxon's test for paired observations

In this test, we compare two independent runs that have di�erent treatments for the factors pre-
viously tested. Since both runs are tested on the same problem set, we assume that both test

J. Xu et al.ÐFinetuning a Tabu Search Algorithm236

result series have continuous distributions that di�er only with respect to their means. This
assumption will allow us to use the Wilcoxon signed-ranked test (see Devore, 1991) to see if the
di�erence between the two runs is signi®cant. Assume that runs A and B yield the result series
XA and XB, respectively. Then the null hypothesis is H0:mD=0, where D=X

AÿXB and mD rep-
resents the mean of D.

The test employs the signed-ranked statistic s+, which can be calculated as follows: ®rst disre-
gard the signs of the components of D corresponding to the test problems, and rank the com-
ponents in order of increasing magnitude of their absolute values. Then calculate s+ as the sum
of the ranks associated with the positive D components (where s+=0 if all components are non-
positive). We reject H0 at the con®dence level 1ÿ a when s+rd1, or when s+RJ(J + 1)/2ÿ d1,
where d1 is the upper-tail critical value which can be obtained as described in Devore (1991). If
H0 is rejected by the test and s+rd1, we conclude that the mean of XA is greater than that of
XB, which implies that run B outperforms run A. Likewise, if s+RJ(J + 1)/2ÿ d1, then we con-
clude that run A dominates run B.

Now suppose there are several factors for tests and each factor involves several treatments.
We attempt to ®nd the overall best factor-treatment con®gurations for the algorithm. Assuming
the covariance between various factors is limited, we propose the following procedure for
searching the best con®gurations. If the covariance is signi®cantly large, then more complicated
experimental design techniques such as Latin Square Design (see Mead, 1988) may be required.
More precisely, we assume that the factors exhibit a conditional dominance property where,
under the ordering in which they are considered (arranged by decreasing importance), if a set of
test outcomes dominates another at a given level, each descendant of the ®rst set of outcomes
will also dominate each descendant of the other set of outcomes at higher levels. Small covari-
ances provide an indication that such an assumption is likely to hold. We describe the procedure
to ®nd the best factor-treatment con®gurations as follows.

Tree Growing And Pruning Method

Step 1 Suppose that there are k factors for tests and they are ranked in order of decreasing importance, F= (F1,
F2, . . . ,Fk). Chose a set of treatments, Ti=(Ti1,Ti2, . . . ,Titi), for each factor Fi.

Step 2 Initiate the search tree by considering factor F1 at the root node, which is also considered the unique initial leaf
node. De®ne level i= 1.

Step 3 For every currently existing leaf node at level i, grow ti branches where each branch represents one of the
treatments in Ti. Run the test problems for each branch and collect the test results, thereby creating a leaf node
at level i+ 1. The nodes at level i lose their status as leaf nodes.

Step 4 For each set of leaf nodes (at level i+ 1) that share the same parent node, use Friedman's test to determine
the best treatments. Prune (eliminate) any leaf nodes that are inferior to the best treatments.

Step 5 For each pair of currently remaining leaf nodes that do not share a parent node, and which has not yet been
examined at this step, apply the Wilcoxon test. If the members of the pair under investigation are signi®cantly
di�erent, prune the one which is inferior.

Step 6 i= i+ 1. If i>k, go to Step 7; else go to Step 3.

Step 7 Every currently remaining leaf node represents one of the best con®gurations for the algorithm. Terminate.

At each level i of the foregoing procedure, the ith factor is considered, and Friedman's test
and Wilcoxon's test are used to eliminate the inferior treatments from future consideration. We
illustrate this procedure with our application in the next section. It should be noted that even if
the assumptions underlying the procedure are not entirely validated, so that the screening tests
are not guaranteed to yield the dominating sets of treatments at the chosen con®dence levels,
these tests nevertheless a�ord a strategy to yield ``good'' sets of treatments.

4. COMPUTATIONAL RESULTS

The TS algorithm with various factor-treatment con®gurations were tested on nineteen test pro-
blems generated in Xu et al. (1996). These are STS problems de®ned on grid graphs which were
shown to be very hard to solve. The TS algorithm with the speci®c factor-treatment con®gur-
ation described in Xu et al. (1996) serves as a base algorithm for applying the ®ne-tuning design
of this study. We measure the bene®t derived from our ®ne-tuning strategies in relation to the

International Transactions in Operational Research Vol. 5, No. 3 237

results obtained by the base algorithm (though of course worse algorithmic instances might pre-
sumably be chosen for comparison, which would increase the relative attractiveness of our
improvements). For each run of the algorithm over the nineteen problems, we report the results
as the percentage improvement of the objective function values produced by the current run
over those produced by the base algorithm. This normalization gives a conservative basis for
comparison that eliminates the di�erences in solution magnitudes between di�erent test pro-
blems.

In this study, we ®ne-tune the following ®ve factors ordered by their importance (conceived in
a conditional sense rather than an absolute sense): the tabu tenures, the base probability for
move selection, the ®ne-tuned probability for move selection, the recovery strategy, and the fre-
quency of activating swap moves.

The base algorithm is designated as Run 0 and each subsequent run is designated as Run 1,
Run 2, . . . , etc. For the sake of brevity, only the relevant rank sums or test statistics are
reported. We do not report the computational times of the di�erent runs since they are insensi-
tive to the ®ve factors.

4.1. Tabu tenure

In the base algorithm, the tabu tenures are generated randomly within certain intervals that
depend on the move types. Since a constructive move of adding a node to the active node set
(denoted as A) introduces a ®xed cost, and thus makes the move appear less attractive than a
destructive move, a longer tabu tenure is assigned to avoid destructive moves. In the base algor-
ithm, the tabu tenure interval is (Barr et al., 1995; Glover, 1995) for the constructive moves and
(Devore, 1991; Glover and Lùkketangen, 1994) for the destructive moves. A tenure of (Barr et
al., 1995; Glover, 1995) is assigned to the two constituent constructive and destructive moves
that together compose swap moves. These choices appeared to be quite e�ective in our previous
study (Xu et al., 1996).

In this study we examine a di�erent criterion that assigns tabu tenures based on the relative
sizes of A and �A(=S±A). That is, longer tenures are given to moving a node from the larger set
to the smaller set, because there are more options for these moves than for moves of the oppo-
site type. Let random(a,b) denote the function that returns an integer between a and b randomly,
and let |S| be the cardinality of the set S. Then the tabu tenure in this study is generated as fol-
lows:

tabu_drop_tenure = max { 1, random(c1*|A|/|�A|, �c1*|A|/|�A|)} (for the constructive move of
adding node x, to prevent x from being dropped), tabu_add_tenure = max {1, random (c2*|�A|/
|A|, c2*|�A|/|A|)} (for the destructive move of dropping node y, to prevent y from being added).

As in the base algorithm, the tabu tenures for the two constituent moves that compose the
swap moves are set to be the same as that for tabu_drop_tenure. Because the ratio of |A|/|�A| and
�A|/|A| may be fractional, we need to examine a range of values of c1, �c1, c2 and �c2 to determine
the best setting. Thus, eighteen candidate settings (Run 1, . . . , Run 18) are tested. Their values
and the resulting rank sums are presented in Table 1.

From Table 1, we compute Friedman's test statistic fr=82.640 which is greater than
w20:1,17=24.769 and discloses that the above eighteen settings will have an e�ect on the outcome
at the con®dence level 0.90. Since Run 15 has the minimum rank sum, we prune each other Run

Table 1. Tests on tabu tenures

Run 1 2 3 4 5 6 7 8 9

(c1,c1) (2,5) (1,3) (1,3) (2,5) (2,5) (3,7) (3,7) (5,9) (3,7)
(c2,c2) (1,3) (1,3) (2,5) (2,5) (3,7) (2,5) (3,7) (3,7) (5,9)
Ri. 271.5 229.5 228.5 234.5 261 201 185.5 206.5 191
Run 10 11 12 13 14 15 16 17 18
(c1,c1 (5,9) (7,11) (7,11) (5,9) (9,13) (9,13) (7,11) (11,15) (11,15)
(c2,c2) (5,9) (5,9) (7,11) (7,11) (7,11) (9,13) (9,13) (9,13) (11,15)
Ri. 160.5 154.5 143 155.5 154.5 89 132 142.5 108.5

J. Xu et al.ÐFinetuning a Tabu Search Algorithm238

i at the con®dence level 0.90 such that Ri.rRimin:+za*
�����������������������
JI�I� 1�=6p � 131:12. Therefore, only

Run 15 and Run 18 survive for future consideration.
From these two best settings, we ®nd that there is no need to discriminate among the constant

terms ((c1, c1) versus (c2, c2)) for di�erent move types because the ratio terms make much more
signi®cant di�erences and thereby impose greater restrictions for moves that transferred a node
from a larger set to a smaller set. Furthermore, the lower and upper bounds de®ning the inter-
vals from which tabu tenures are drawn preferably are larger than those previously suggested in
Glover and Laguna (1993). Part of reason for this comes from our making use of the relative
size ratio in the current design. The larger bounds produce more appropriate tabu tenures when
the ratio is a small fractional number.

4.2. Base probability for move selection

Here we attempt to determine whether the probabilistic TS choice rule outperforms the determi-
nistic TS choice rule, (which simply chooses the best non-tabu move if the aspiration criterion is
not satis®ed), and, if so, to determine the best value for the base probability p in the probabilis-
tic TS algorithm.

In order to see the e�ects produced by the di�erent values of the base probability p, we dis-
able the ®ne-tuned probability function in the base algorithm (this implies b1=0 and b2=ÿ 1.0)
and choose the following six treatments for the factor p: 0.25, 0.28, 0.30, 0.32, 0.35 and 1.0. The
®rst ®ve treatments are possible p values clustered around 0.3 (the most commonly used p
value), and the last treatment actually represents the deterministic TS algorithm. For each of the
unpruned nodes Run 15 and Run 18, we initiate six branches. The rank sums are summarized in
Tables 2 and 3, respectively.

From Table 2, Friedman's test statistic is fr=26.740>w20:1,6=9.236, which means that the
value of p will a�ect the outcome at the con®dence level 0.90. Since Run 20 has the minimum
rank sum, we prune each Run i at the con®dence level 0.90 such that
Ri.rRimin:+za*

�����������������������
JI�I� 1�=6p � 56:91. Therefore, all runs except Run 20 are pruned. In addition,

we observe that the rank sum from Run 24 is signi®cantly larger than that of Run 20, implying
that the probabilistic TS approach strongly dominates the deterministic TS approach in this set-
ting.

Friedman's test statistic from Table 3 is fr=14.677, also con®rming the evident in¯uence
exerted by the p values. However, this time only Run 30 is pruned. For Runs 25 through 29,
Run 25 has the minimum rank sum, but it is not small enough to dominate the others.

We now have six remaining nodes at this level, one descending from Run 15 and the other
®ve from Run 18. We apply the Wilcoxon test to the resulting ®ve pairs. The test statistics are
listed in Table 4.

The critical value d1 for a=0.098 is 128 (see Devore, 1991). Therefore, all runs except Run 20
are pruned for a = 0.1 and p is now ®xed to 0.28.

Table 2. Tests on p for Run 15

Run 19 20 21 22 23 24

p 0.25 0.28 0.30 0.32 0.35 1.0
Ri. 58.5 42.5 72.5 58.0 69.0 98.5

Table 3. Tests on p for Run 18

Run 25 26 27 28 29 30
p 0.25 0.28 0.30 0.32 0.35 1.0
Ri. 57.0 67.0 59 58.5 63.5 94.0

International Transactions in Operational Research Vol. 5, No. 3 239

4.3. Fine-tuned probability for move selection

We devise seven treatments to search for the best settings of b1 and b2. The last six treatments
represent various combinations of b1 and b2 values while the ®rst treatment (b1=0 and
b2=ÿ 1.0) represents the case without a ®ne-tuned option (Run 20). Table 5 summarizes the
rank sums obtained.

From Table 5, we compute Friedman's test statistic fr=16.821>w20:1,6=10.645. This treatment
e�ect is signi®cant at the con®dence level 0.90. Since Run 33 has the minimum rank sum, we
prune any runs at the con®dence level 0.90 if their rank sums are no less than
Rimin: � za*JI�I� 1�=6 � 66:045. Therefore, only Run 33 survives for future consideration.

Although Run 33 (the run with a ®ne-tuned option) is statistically ``better'' than Run 20 (the
run without a ®ne-tuned option), care must be taken when using the ®ne-tuned option. In fact,
Run 20 has the second minimum rank sum. Statistically speaking, it is not ``worse'' than Runs
31, 35 and 36, and is consistently ``better'' than Runs 32 and 34. This means that the ®ne-tuned
option is not necessarily always better than the simple base probability option. A signi®cant
amount of e�ort is required to ®nd the best b1 and b2 values when using the ®ne-tuned option.
For simplicity and robustness, the option without ®ne tuning has much to commend it.

4.4. Recovery strategy

We now study the performance of various recovery strategies designated as A, B, C, and D.

Strategy AÐthe strategy used in the base algorithm.
Strategy BÐThis recovery process starts with the worst solution in the elite list and pro-

ceeds towards the best, as in Strategy A. However, the list is updated when the new solution
is better than the worst of the remaining solutions. The new solution is inserted in an appro-
priate position on the list (according to its objective value) and the worst one is removed.
After recovering from the best solution in the list, the search continues until either the termin-
ation condition is satis®ed or a new best solution emerges as the next recovering solution.

Strategy CÐThis strategy starts from the best solution in the list and proceeds towards the
worst (opposite to Strategy A and B). The list is updated the same way as in Strategy B.
After recovering from the worst solution in the list, the search continues until the termination
condition is satis®ed.

Strategy DÐThis is the ``no restart'' strategy. The search terminates when the termination
condition is satis®ed.

The rank sums of the tests are listed in Table 6. Note that the test for Strategy A duplicates
Run 33 of the previous level.

Table 4. Wilcoxon tests on p

Pair (20, 25) (20, 26) (20, 27) (20, 28) (20,29)
s+ 128 149 136 130 132

Table 5. Tests on b1 and b2

Run 20 31 32 33 34 35 36

b1 0 1.0 1.1 0.9 1.0 1.1 0.9
b2 ÿ1.0 0.15 0.15 0.15 0.20 0.20 0.20
Ri. 67.0 71.5 95.0 49.0 93.0 77.5 79.0

Table 6. Tests on recovery strategy

Run 33 37 38 39

Strategy A B C D
Ri. 34.5 46.5 48 61

J. Xu et al.ÐFinetuning a Tabu Search Algorithm240

In Table 6, fr=11.132>w20:1,3=6.251. The e�ects produced by various recovery strategies are
evident at the con®dence level 0.9. We prune Runs 37, 38 and 39 because their rank sums are
greater than R33.+za*

�����
JI
p �I� 1�=6 � 44:680. Furthermore, Strategy D (no-restart strategy) is

signi®cantly worse than any recovery strategy, indicating that the recovery strategy is a very
e�ective intensi®cation strategy for the TS algorithm in this problem domain.

4.5. Frequency of performing swap moves

Our TS algorithm oscillates between the two elementary (constructive and destructive) moves
and the swap moves. The swap moves are performed either once in every n1 iterations (for peri-
odic perturbation), or performed consecutively n2 times (for conditional oscillation) if the search
cannot improve the solution for the past 200 iterations. We set n1=7 and n2=5 in the base al-
gorithm (as in Run 33). We attempt to ®nd the best settings for n1 and n2 by comparing the six
di�erent settings as shown in Table 7.

Table 7 shows the apparent dominance of Run 33 over the other ®ve settings. Friedman's test
statistic gives fr=16.902>w20:1,5 � 9:236. We prune all Runs 40 through 44 since their rank sums
exceed the critical value of R33.+za*

�����������������������
JI�I� 1�=6p � 53:41. Using the medium frequency of per-

forming swaps in this situation works better than the other choices.
The foregoing search procedure for the best factor-treatments con®guration is depicted in

Fig. 1. The number at each node in the search tree represents the run number, the ``X'' on a
branch indicates that its leaf node is pruned by Friedman's Test while the ``XX'' means that the
leaf node is pruned by the Wilcoxon test.

Table 7. Tests on frequency of performing the swap moves

Run 33 40 41 42 43 44

n1 7 7 4 4 10 10
n2 5 10 5 10 5 3
Ri. 39.0 70.5 77.5 60.0 74.0 78.0

Fig. 1. Search tree of the ®ne-tuning procedure.

International Transactions in Operational Research Vol. 5, No. 3 241

In Fig. 1, only 44 runs in total are required, as compared to a total of 18144 runs required by
complete enumeration. Although the time saving is enormous in this case, the degree of this sav-
ing depends on the power of the statistical tests to prune nodes, which is in turn constrained by
the con®dence level 1-a. More runs may be required if a smaller a is used. In this study, we
choose a = 0.1 as a good compromise for pitting accuracy against computational expense.

Finally, we report the improvement achieved by our ®ne-tuned algorithm over the base algor-
ithm. Table 8 lists the objective function values of the nineteen test problems for both the base
algorithm (Run 0) and the best improved algorithm (Run 33). For comparative purposes, we
also list the best objective function value for each test problem over the 44 runs as the best
upper bound.

Table 8 shows that Run 33, the selected ®ne-tuned algorithm, signi®cantly improves upon the
base algorithm. For the nineteen test problems, it yields improved solutions in fourteen cases,
tied solutions in four cases and a slightly worse solution in only one case. The average percen-
tage improvement over the nineteen problems is 4.89%. Given the fact that our base algorithm
already yields very good solutions as shown in Xu et al. (1996), the magnitude of the improve-
ment obtained is noteworthy. (Such a di�erence can translate into signi®cant cost savings in
practical applications.) Furthermore, in comparison with the best upper bound, Run 33 yields
``the-best-of-all'' solutions in three cases. All solutions obtained by Run 33 are on average only
0.75% worse than the best upper bounds.

5. CONCLUSION

In this paper, we propose a systematic procedure to ®ne-tune a TS algorithm, employing the
statistical tests to eliminate settings which prove to be inferior. We then conduct a compu-
tational study of this procedure to ®ne-tune a speci®c algorithm (already shown to be highly
successful) for solving a telecommunications network design problem. The outcomes of this
study lead to the following conclusions: (1) tabu tenures based on dynamic relative neighbor-
hood sizes work better than those generated from a ®xed interval, and larger tabu tenures
should be assigned to discourage nodes from being transferred from the larger set to the smaller
set; (2) a probabilistic TS choice rule consistently outperforms a deterministic choice rule and
the base probability p = 0.28 is the best in this study; (3) the base probability can be further
®ne-tuned by linking it to the ``goodness'' of the candidate moves, but the two parameters
involved must be carefully selected; (4) a recovery strategy is a very e�ective intensi®cation strat-
egy, and a circular elite solution list produced the best form of such a strategy in our study; (5)

Table 8. Overall performance of the ®ne-tuned algorithm

Test Problem
(n�m)

Basic Algorithm
Solution (Run 0)

Best Algorithm
Solution (Run 33)

Percentage of Run
33 to Run 0 Best Upper Bound

Percentage of Run
33 to Best Upper

Bound
(50� 50) 50712 50712 100.00 50712 100.00

(100� 125) 138522 109021 78.70 108940 100.07
(125� 100) 52432 52432 100.00 52007 100.82
(100� 300) 80633 72146 89.47 71958 100.26
(150� 250) 178537 168017 94.11 167384 100.38
(200� 200) 318339 281810 88.53 278054 101.35
(250� 150) 273318 266037 97.34 265966 100.03
(300� 100) 549320 549320 100.00 549320 100.00
(125� 500) 214853 196238 91.34 192389 102.00
(225� 400) 407349 378542 92.93 378542 100.00
(325� 300) 666542 628757 94.33 623406 100.86
(425� 200) 818524 794722 97.09 794275 100.06
(175� 450) 275923 256531 92.97 252119 101.75
(275� 350) 409245 389175 95.10 379036 102.67
(375� 250) 206567 205268 99.37 203131 101.05
(475� 150) 2067345 2067345 100.00 100.00 100.00
(400� 500) 858599 869444 101.26 856727 101.48
(500� 400) 653521 651271 99.66 644783 101.01
(450� 450) 792166 751228 94.83 747719 100.47
Average ± ± 95.11 ± 100.75

J. Xu et al.ÐFinetuning a Tabu Search Algorithm242

the performance of our TS algorithm is in¯uenced by the frequency of performing swap moves
that are used for the perturbation and oscillation purposes, and the medium frequency proves
superior to the other choices for performing these swap moves.

The statistically ®ne-tuned algorithm yields strictly improved solutions for over 73% (14 out
of 19) of the test problems by comparison to the base algorithm which was previously the best
known heuristic. In only one instance the new version obtains a (very slightly) worse solution
than the base algorithm. We conclude that our ®ne-tuning approach using statistical tests can
be a useful procedure for enhancing algorithmic design.

AcknowledgementsÐThis research was supported in part by the Air Force O�ce of Scienti®c Research AASERT grant
F49620-92-J-0248.DEF.

REFERENCES

Barr, R. S., B.L. Golden, J.P. Kelly, M.G.C. Resende and W.R. Steart (1995) Designing and Reporting on
Computational Experiments with Heuristic Methods, Journal of Heuristics Vol. 1.

Devore, J. L. (1991) Probability and Statistics for Engineering and the Sciences, Third Edition, Brooks/Cole Publishing
Company, Paci®c Grove, California.

Glover, F. (1995) Tabu Search Fundamentals and Uses, Working Paper, Graduate School of Business, UNiversity of
Colorado at Boulder, Boulder, CO.

Glover, F. and Laguna, M. (1993) Tabu Search. In Modern Heuristics for Combinatorial Problems, ed. C. Reeves.
Blackwell Scienti®c Publishing.

Glover, F. and Lùkketangen, A. (1994) Probabilistic Tabu Search for Zero±One Mixed Integer Programming Problems,
Working Paper, Graduate School of Business, University of Colorado at Boulder, Boulder, CO.

Hetimansperger, T. P. (1984) Statistical Inference Based on Ranks, John Wiley Sons, Inc.
Lee, Y., Lu, L., Qiu, Y. and Glover, F. (1994) Strong formulations and cutting planes for designing digital data service

networks. Telecommunication Systems 2, 261±274.
Mead, R. (1988) The Design of Experiments: Statistical Principles for Practical Applications, Cambridge University

Press, Cambridge, UK.
Xu, J., Chiu, S. Y. and Glover, F. (1996) Probabilistic tabu search for telecommunications network design.

Combinatorial Optimization: Theory and Practice 1 (1), 69±94.

APPENDIX A

In this appendix, we formulate the STS problem as a 0±1 integer programming problem as follows. First we de®ne:
T : set of target nodes
S : set of Steiner nodes
cij : cost of connecting target node i to Steiner node j
djk : cost of connecting Steiner nodes j and k
bj : cost of activating Steiner node j.

The decision variables of this formualtion are:
xij : a binary variable equal to 1 if and only if target node i is linked to Steiner node j
yjk : a binary variable equal to 1 if and only if Steiner node j is linked to Steiner node k
zj : a binary variable equal to 1 if and only if Steiner node j is selected to be active.

The model is then

minimize X
i2T

X
j2S

cijx ij �
X
i2S

X
k > j
k 2 S

djkyjk �
X
i2S

bjzj �A1�

subject to: X
j2S

x ij � 1, i 2 T, �A2�

x ijRzj, i 2 T, j 2 S, �A3�

yjkR�zj � zk�=2, j<k, j, k 2 S, �A4�X
j2S

X
k 2 R
k > j

yjk �
X
j2S

zj ÿ 1, �A5�

International Transactions in Operational Research Vol. 5, No. 3 243

X
j2S

X
k > j
k 2 S

yjkR
X

j2fRÿwg
zj, w 2 R, R � S, jSjr3, �A6�

x ij 2 f0,1g, i 2 T, j 2 S, �A7�

yjk 2 f0,1g, k > j, j,k 2 S, �A8�

zj 2 f0,1g, j 2 S: �A9�
In this formulation, the objective function (A1) seeks to minimize the sums of the connection cost between target

nodes and Steiner nodes, the connection cost between Steiner nodes, and the setup cost for activating Steiner nodes.
Constraint (A2) speci®es the star topology such that each target node must be connected to exactly one Steiner node.
Constraint (A3) indicates that the target node can only be connected to the active Steiner node. Constraint (A4) stipu-
lates that two Steiner nodes can be connected if and only if both nodes are active. Constraints (A5) and (A6) express the
spanning tree structure over the active Steiner nodes. In particular, (A5) speci®es the condition such that the number of
edges in a spanning tree equals one less than the number of nodes, while (A6) is an anti-cycle constraint that also com-
pels the connectivity for each active Steiner node via the spanning tree. Constraints (A7), (A8) and (A9) state the nonne-
gativity and discrete requirements for the variables. All decision variables are de®ned as binary.

J. Xu et al.ÐFinetuning a Tabu Search Algorithm244

