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1. Introduction 

Human activities are destroying the natural world at an 
ever increasing rate. As a result of environmental degrada- 
tion, the global biological system is in crisis. Although 
efforts have been made to protect endangered species, 
resources available for preserving biological diversity, or 
biodiversity, are limited. It is therefore important that 
conservation expenditures be allocated in the most effi- 
cient manner possible. 

To ensure the optimal allocation of resources for the 
preservation of biological diversity, it is necessary to de- 
fine the term diversity. As one of the central themes in 
ecology, diversity appears to be a simple, straightforward 
concept of which people have an intuitive grasp. However, 
there has been considerable debate on its definition. The 
problem is further complicated by the fact that a bewilder- 
ing number of indices have been devised for measuring 
biodiversity. 

According to Magurran,’ diversity measures take into 
account two factors: species richness, i.e., number of 
species and evenness, i.e., how equally abundant the species 
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are. However, as pointed out by Norton,’ conservationists 
almost invariably view diversity as species richness. Bio- 
logical diversity is desirable since many species have 
actual or potential economic benefits to man.3 Moreover 
maximizing biodiversity will lead to a natural portfolio 
diversification of future options for finding new sources of 
food and/or medicine.4s5 Finally, the preservation of ge- 
netic diversity is a frequent concern to geneticists and 
biochemists.697 

In the existing literature, a significant amount of discus- 
sion has been devoted to the economic aspect of diversity 
conservation. For example, economists have conducted 
extensive analyses to estimate the value, direct or indirect, 
of saving species that will ultimately become extinct.’ 
Another issue of growing concern is how to allocate 
limited funding among various conservation activities to 
optimize some diversity-related goal.’ 

The remainder of the paper is organized as follows. In 
Section 2 the current literature on biological diversity is 
reviewed. In Section 3 we propose an operational frame- 
work within which the concept of diversity is quantifiable 
as well as measurable. Basing the computation of diversity 
on a interspecies dissimilarity measure, in Section 4 we 
develop a quadratic zero-one integer programming model 
with the objective of maximizing biodiversity subject to 
resource constraints, which is subsequently converted into 
an equivalent linear model in Section 5. In Section 6 we 
present a simple application of the model to the preserva- 
tion of diversity in the crane family. Following the intro- 
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duction of an alternative measurement of biodiversity in 
Section 7, a comparison is made between the two ap- 
proaches examined in this paper using a real example on 
DNA divergence in hominoid species. Finally in Section 8 
we conclude that mathematical modelling of biological 
diversity is an important area where significant progress 
can be made both in theoretical development and in real- 
world applications. 

2. Literature survey 

Biological diversity refers to the richness and equal abun- 
dance of species. The study of biodiversity intrigued many 
of the early investigators of the natural world, and it 
continues to stimulate the minds of biologists today.‘091’ 
Magurran’ provides a succinct summary of the relevant 
work on ecological diversity, including a practical guide to 
the measurement of ecological diversity. Solow et al.‘* 
give a critique of some simple proposals for measuring 
biodiversity. They also suggest a new approach for analyz- 
ing a number of conservation issues. In his recent study, 
Weitzman’ develops a diversity function that satisfies a 
basic dynamic programming equation. Moreover, a novel 
index of taxic diversity has been introduced by Vane- 
Wright et a1.13 and applied to the evaluation of wildlife 
conservation. 

During the recent efforts in preserving biological diver- 
sity, researchers have drawn upon the tools of mainstream 
resource economics to assess the benefits of individual 
species.14 Ray,” on the other hand, emphasizes the impor- 
tance of higher-taxon diversity. Along the same line, 
Eiswerth and Haney’ have shown how the consideration 
of interspecies genetic difference might affect the alloca- 
tion of limited budget among habitats for preserving eco- 
logical diversity. 

Given the volume of relevant research on biological 
diversity, few previous studies have employed the tools in 
mathematical programming to address the issue of diver- 
sity maximization. This paper aims at the formulation of 
the maximum biodiversity problem as an integer program 
as well as the solution of such an optimization model. A 
comparative study will also be performed to show how 
different approaches to diversity measurement can lead to 
different conclusions. 

3. Measurement of diversity 

From our perspective, a sensible approach to biological 
diversity involves two steps: first selecting a measure of 
dissimilarity and then calculating diversity. Let N = {l, 2, 
. ..) n} be an index set and let S = {si: i EN) be a set of 
operational taxonomic units (OTUs) in biological taxon- 
omy. l6 Further let d: S X S + R’ be a distance function 
which satisfies the following conditions: 

d(si, s,) 20, i, jgN 

d(si, si) =O, iEN 

d(si, sj) =d(Sj, si), i, HEN 

The quantity d(si, s,) represents the dissimilarity, or 
distance, between si and sj. It is a function of the differ- 
ences between the two OTUs with respect to some at- 
tributes of interest, such as petal color,‘6 unison ca11,17 the 
number of gene substitutions per 10cus,~~ and so on. 
According to these conventions, we define Z, the diversity 
of the elements over any subset I of N, as the sum of the 
distances between each distinct pair of OTUs in this 
subset. In particular, let P(Z) = {(i, j): i, j E I and i <j}. 
Then we may express Z as 

Z=X[d(si, sj): (i, j) EP(Z)] 

Such a quantitative definition of diversity will be used 
in the sequel, except in Section 7 where an alternative 
approach to the measurement of biodiversity is utilized. 
Our goal in general will be to identify a best (maximally 
diverse) subset I of elements in N. 

4. Mathematical formulations for preserving biological 
diversity 

Consider the situation in which a conservation planner is 
to allocate resources to preserve the biological diversity in 
a habitat. Given a limited endowment for conservation, he 
is confronted with the problem of determining which 
species to protect so that the biological diversity in the 
region is maximized. 

Suppose there are n species in the habitat designated by 

sr> s2, ..., and s,,. It is assumed that, due to limitations of 
resources available, only a total amount of b > 0 is avail- 
able and c, > 0 is the amount of the resource required to 
preserve species si, i EN. We define a binary variable xi 
for each species, where xi = 1 indicates that species si 
will be preserved and x, = 0 otherwise, i EN. Finally, for 
P(Z) as previously defined, let P = P(N). A quadratic 
zero-one programming model for maximizing biodiversity 
is then 

(Ml) 

MaximizeZ=x[d(si, s~)x~_x~: (i, j) EP] 

subject to 

c[cixi: iEN]<b 

.xi~ (0, I}, iEN 

Apparently, the foregoing problem is trivial if only two 
species are to be preserved. We simply rank all the inter- 
species distances in descending order. Then, beginning 
with the top of the list, the first pair of species should be 
selected for which the preservation requirement does not 
exceed the total amount of resource available. In other 
words, we should choose to preserve the first pair of 
species sp and sq so that cp + cq I b. However it can be 
shown by scaling that the general maximum biodiversity 
problem is reducible to the maximum diversity problem 
examined by Kuo et a1.19 which has been shown to be 
NP-hard.20 Consequently the maximum biodiversity prob- 
lem is NP-hard as well; namely (Ml) is so intractable that 
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no existing algorithms can be applied to obtain (and 
verify) the optimal solution within a reasonable amount of 
time as a polynomial function of the problem size. 

5. Linearization of nonlinear zero-one programs 

Although several algorithms are available for solving 
quadratic integer programs such as (M1),2’-24 they are 
relatively inefficient even for medium-sized problems and 
have not found widespread use in real-life applications. In 
order for nonlinear models to be solved effectively, it is 
desirable that they be transformed into equivalent linear 
models. Toward this end it can be established that, based 
on the results of Glover and Woolsey,25 (Ml) can be 
converted into the following linear integer program: 

(M21 

Maximize Z = 2 [ d( S17 “j)Yij’ (i, i) EP] 

subject to 

c[cixi: iEN]lb 

xi+xj-yi,sl, (i, j)EP (1) 
-Xi+yijIO, (i,j)EP 

-xj+yij<o, (i,j)EP 

YijlO, (i, j) EP 

x~E{O, l}, iEN 

We note that since d(s,, sj) 2 0 for all (i, j) E P, 
constraint (11 will be nonbinding at an optimal solution 
and hence can be disregarded. Thus (M2) reduces to (M3) 
presented below: 

(M3) 

MaximizeZ=z[d(si, s,)yij: (i, j) EP] 

Table 1. Species list of the crane family. 

No. Common name Latin name 

1 South African Balearica regulorum 

2 Demoiselle Anthropoides Virgo 

3 Blue Anthropoides paradisea 
4 Wattled Bugeranus carunculatus 
5 Siberian Grus carunculatus 
6 Sandhill Grus leucogeranus 
7 Sarus Grus antigone 

8 Australian Grus rubicunda 
9 White-naped Grus vipio 

10 Eurasian Grus grus 
11 Hooded Grus monachus 
12 Whooping Grus americana 

13 Black-necked Grus nigricollis 

14 Japanese Grus japonensis 
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subject to 

z:[cix,: iEN]<b 

-xi+yijIO, (i, j) EP 

--x,+y,,IO, (i, j) EP 

yijrO, (i, j) EP 

x~E{O,~}, iEN 

(M3) can be further refined using the observations of 
Glover 26,27 but its present form gives a useful formulation 
for treating the maximum biodiversity problem. 

6. An application 

In this section, we will describe an application of the 
maximum biodiversity model to the conservation of the 
crane family under resource constraints. We will use (M3), 
the simplest linearized form of the model, and show how 
particular concerns can be addressed by incorporating ad- 
ditional constraints into the formulation. 

According to Peters,28 most researchers agree that there 
are 14 existing species of crane, though Walkinshaw29 has 
considered the African crowned cranes as the 15th species. 
These have been listed in Table 1.‘2,30 

Suppose a new wildlife preservation program is initi- 
ated to protect cranes. The total funding is $1 million and 
it costs $150,000 to conserve any of the 14 existing crane 
species. The problem is to determine which species should 
be preserved so that the biological diversity is maximized. 

To begin, we need information about the extent to 
which a crane species differs from the others. While in 
literature no single approach to diversity measurement 
captures all the dimensions of interspecies dissimilarity, 
geneticists have used a number of methods to measure the 
distinctiveness between taxa.” We will employ data on 
the differences between the DNA sequences of different 
species resulting from the DNA-DNA hybridization 
method.31 The genetic distances, which are calculated as 
the delta median melting points between homologous and 
heterologous hybrids, between each pair of the 14 crane 
species have been summarized in Table 2,‘2s30 where 
average melting points have been used to establish the 
symmetry of the distance matrix. 

In light of the maximum biodiversity model (M31, the 
problem of determining which species of crane to conserve 
can be formulated as the following mixed linear integer 
program: 

(M4) 

MaximizeZ = 3.75y,,, + 3.85y,,, + . . . +0.65~,~,r~ 

(2) 

subject to 

150,000x, + 150,000x, + . . . + 150,000x,, 

5 1,000,000 

-%+Y,,*~O 

-x1 +y1,3 5 0 
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-x13 + Y13,14 s 0 

--x2 + Yl,, 2 0 

-x3 +y1,3 5 0 

-x14 + Y13,14 5 0 

Yl,,, Yl,,, ...7 Y13,1420 

Xl, x2, . . . . x14 E {0,1> 

Using LIND032 to solve the problem, we obtain an 
optimal solution of (XT, ,x2*, XT, x4*, x; , x6*, x; , x8*, 
x;, .q*o, x1*1, q*z, x1*3, x;,> = (1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 
0, 0, 0) with a total diversity of Z * = 34.5. The result 
indicates that the subset of cranes exhibiting the highest 
degree of biodiversity consists of South African, blue, 
wattled, Siberian, sarus, and hooded. 

According to Johnsgard,33 among the 14 existing species 
of crane, the Siberian crane (#5) and the whooping crane 
(#12) are considered endangered. While the current opti- 
mal choice includes the former, it omits the latter. It might 
be desirable that all the members of a given subset of 
species, indexed by J c N, be preserved. More generally, 
we may seek to assure that at least a certain minimum 
number L(J) of the species from this subset be conserved. 
This can be handled by adding the constraint z[ xi: i E J] 
L L(J) to the model. If we do this for J = (5, 12) and 

L(J) = 2 to ensure the preservation of Siberian and 
whooping cranes, the optimal solution of (x;, xi, x;, 
x:7 x5 > * x;, x;, x;, x;, Xl>, x;,, x1*2, Xl>, XT,> = (1, 0, 
1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0) shows that the following six 
species should be protected: South African, blue, wattled, 
Siberian, sarus, and whooping. The total biological diver- 
sity for this collection of cranes is Z * = 33.65. Upper 
bounds on numbers of species from a given subset can be 
accommodated in a similar way, thus making certain that 
particular subsets are not “over-represented” in the opti- 
mal solution. 

It is sometimes important to impose a minimum inter- 
species genetic distance in the conservation of wildlife 
when polymorphism is a major concern or when there is a 

Table 2. Genetic distances among crane species. 

danger of inbreeding in populations isolated in nature 
reserves. We can meet this additional requirement by 
replacing each of the objective function coefficients in the 
maximum biodiversity model that lie below a chosen value 
t with -M, where t represents the threshold value of 
genetic distance and M is an extremely large positive 
number. For instance, suppose that in the previous illustra- 
tion the genetic distance between each distinct pair of the 
crane species to be preserved must be at least t = 1.18. To 
maximize the biological diversity and yet satisfy the addi- 
tional constraint, we make the following replacements in 
equation (2) of (M4): d(s 
-9999 d(s s )= -99;; “3’;(,9Y”s”“i:‘“$9$;t 

can’be slrowi;h$ the ophmai s’ilutioF;o iie new pioblem 
calls for the preservation of the following six species of 
crane with a total diversity of 34.2: South African, blue, 
wattled, Siberian, sandhill, and Japanese. 

If, however, the conservation planner wishes to maxi- 
mize the minimum genetic distance between each pair of 
the cranes to be preserved, the following “maximin” 
biodiversity model can be utilized to achieve the goal: 

(M5) 

Maximize Z = w 
subject to 

150,000x, + 150,000x, + . . . +150,000x1, 

2 1,000,000 

(M-3.75)y,,,+w_<M 

(M-3.85)yl,,+w<M 

&f-0.65));,,;,, + w<M 

-x1 fYl.2 5 0 

-x1 + Y,,, 5 0 

-x13 + Y13,14 5 0 

-x2+y1,2<0 

-x3 + Y,,, 5 0 

1 0.00 3.75 3.85 4.10 3.55 3.90 3.70 3.60 3.60 3.55 4.05 3.65 3.55 3.80 
2 3.75 0.00 0.50 1.10 1.80 1.35 1.50 1.15 1.05 1.00 1.05 1.25 1.50 1.55 
3 3.85 0.50 0.00 1.25 1.90 1.30 1.75 1.00 1.15 1.05 1.20 1.30 1.15 1.75 
4 4.10 1.10 1.25 0.00 1.55 1.20 1.50 1.40 1.35 1.10 1.60 1.30 1.25 1.40 

5 3.55 1.80 1.90 1.55 0.00 1.45 1.15 1.50 1.60 1.25 1.55 1.65 1.50 1.65 
6 3.90 1.35 1.30 1.20 1.45 0.00 1.40 1.20 1.10 1.10 1.45 1.40 1.75 1.55 
7 3.70 1.50 1.75 1.50 1.15 1.40 0.00 0.60 0.50 1.15 1.80 1.45 1.50 1.40 

8 3.60 1.15 1.00 1.40 1.50 1.20 0.60 0.00 0.65 1.10 1.40 1.50 1.75 1.35 
9 3.60 1.05 1.15 1.35 1.60 1.10 0.50 0.65 0.00 1.10 1.15 1.35 1.30 1.05 
10 3.55 1.00 1.05 1.10 1.25 1.10 1.15 1.10 1.10 0.00 0.20 0.15 0.60 0.35 
11 4.05 1.05 1.20 1.60 1.55 1.45 1.80 1.40 1.15 0.20 0.00 0.35 0.60 0.55 
12 3.65 1.25 1.30 1.30 1.65 1.40 1.45 1.50 1.35 0.15 0.35 0.00 0.65 0.65 
13 3.55 1.50 1.15 1.25 1.50 1.75 1.50 1.75 1.30 0.60 0.60 0.65 0.00 0.65 
14 3.80 1.55 1.75 1.40 1.65 1.55 1.40 1.35 1.05 0.35 0.55 0.65 0.65 0.00 
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Table 3. Species list of six higher primates. 

No. Common name Latin name 

1 Human Homo sapiens 
2 Common chimpanzee Pan troglodytes 
3 Gorilla Gorilla gorilla 
4 Orangutan Pongo pygmaeus 
5 Common gibbon Hylobates lar 
6 Siamang gibbon Hylobates syndactylus 

-x14 + Y13,14 5 0 

Yl,2, Y1.37 ...’ Y13,14 - >o 

x1, x2, . . . . x14 E {O, 1) 

The LINDO solution turns out to be (XT, xl, xl, xi, 
* * * * 

x;, x6, x,, x~, x9, &, x;), x;2, x;3> x;,, = (1, 0, 1, 

1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0) with a total biodiversity of 
z* = 1.20. 

Finally, we observe that resource constraints of a much 
more general form can be introduced into the maximum 
biodiversity model. Specifically, if cki represents the 
amount of resource k E M = {l, 2, . . . . m) required to 
ensure the preservation of species i and 6, represents the 
total amount of resource k available (such as available 
land area of a particular type of habitat, available quantity 
of a particular type of food supply, or available budget for 
obtaining additional necessary forms of sanctuary or food, 
etc.), then we may incorporate the following constraints in 
the model: 

C[cLix,: iEN] <b,, kEM 

Constraints of this form make it possible to model a wide 
variety of considerations in a straightforward way when 
examining the maximum biodiversity problem and other 
related issues. 

7. An alternative measurement of biological diversity 

In contrast to the framework proposed in the present study, 
Weitzman’ considers the measurement of ecological diver- 
sity from a different perspective and suggests an alterna- 
tive approach which is based on the concept of dynamic 
programming. 34 As before, let N = {l, 2, . . . . n) be an 
index set and let S = (s,: i EN} be a set of OTUs. Let 
I c N be the index set for Q c S. According to Weitzman,” 
the distance between any element si E S and Q is defined 
as the distance between s, and its nearest neighbor in Q; 
namely, 

Table 5. Optimal solutions based on two models. 

Table 4. Genetic distances among hominoid 
species. 

1 2 3 4 5 6 
1 0 159 250 349 495 513 
2 159 0 234 328 448 448 
3 250 234 0 357 532 498 
4 349 328 357 0 477 488 
5 495 448 532 477 0 126 

6 513 448 498 488 126 0 

Furthermore, the formula for computing the diversity over 
the elements in Q, D(Q), is as follows: 

o(Q) = yzy{‘(Si, Q\{si>) +o(Q\{siI)) 

Now, let f(Q, y) be the maximum diversity over the 
elements in Q subject to the total resource availability of 
y. A dynamic programming formulation for the constrained 
maximum biodiversity problem is presented below: 

(~6) 

Recursive function: 

+f(Q\{Si}, Y-Ci}> OlYl Cci 
icr 

(3) 

Boundary conditions: 

f({ .si) , y) = 0 for all y 2 0, i E N (4) 

Objective function: f( S, b) (5) 

The dynamic program (M6) consisting of equations (31, 
(4), and (5) can be solved through the recursive fixing 
process.34 

In what follows, we will compare the integer program- 
ming-based model (Ml) with the dynamic programming- 
based model (M6) by considering a real example in which 
the objective is to maximize the genetic variety. Pertinent 
information on six major species of hi 

!? 
her primates has 

been shown in Table 3 and Table 4.5s ’ The goal is to 
determine the subset of species with the largest genetic 
variability with respect to DNA divergence. 

Given the fictitious cost of $240,000 for preserving any 
of the six hominoid species, we have obtained the optimal 
solutions to both (Ml) and (M6) under different budgetary 
constraints. These have been displayed in Table 5. 

It is seen that while the optimal solutions to both 
models are the same when b = $500,000 and b = 

b 

$500,000 
$750,000 

$1 ,ooo,ooo 
$1,250,000 

(Ml) (~6) 

Optimal solution Maximum diversity Optimal solution Maximum diversity 

(O,O, l,O, 1.0) 532 (O,O, l,O, 1,O) 532 
(0.0, 1, 1, 1.0) 1,366 (O,O, 1, 1, 1,O) 889 
(O,O, 1, 1, 1, 1) 2,478 (I, 0, 1, 1, 1,O) 1,139 
(I, 0, 1, 1, 1, I) 4,085 (1, 1, 1, 1, 1,O) 1,298 
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$750,000, they differ in the cases of b = $l,OOO,OOO and 
b = $1,250,000. Moreover, given the same optimal solu- 
tions, the maximum total diversities resulting from both 
models differ. 

8. Conclusion 

We have proposed a new framework for measuring and 
computing biological diversity of a habitat. Our maximum 
biodiversity model is based on introducing and exploiting 
measures of genetic distinctiveness for selecting the opti- 
mal subset of OTUs to conserve when resource limitations 
prevent the preservation of all the species. An application 
of the model in a rudimentary form is illustrated for the 
preservation of endangered crane species with the maxi- 
mum genetic diversity. We also demonstrate the various 
ways to expand the model to handle additional relevant 
concerns. Furthermore, the results from a comparative 
study demonstrate how different approaches to the mea- 
surement of biodiversity may lead to different conservation 
policies. 

We note that there are many ecological systems in 
which the extinction of some species may threaten the 
survival of others. In such cases, the interspecies interac- 
tion can be accounted for by incorporating the joint proba- 
bility distribution into the maximum biodiversity mode1.5S’2 
Throughout this paper, we have focused exclusively on the 
biological diversity among species. It should be pointed 
out, however, that maximum diversity alone can be highly 
misleading as a yardstick in making conservation deci- 
sions. Economic values accruing from individual species’ 
or the value of saving species’ should also be explored. 

The development of what May” has called the calculus 
of biological diversity is still very much in its infancy. The 
methodology suggested here represents only one approach 
to this calculus. It is hoped that the present work will 
stimulate further interest in the measurement and computa- 
tion issues of this important research area. 
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