
Applying Tabu Search with In�uential Diversi�cation

to Multiprocessor Scheduling�

Roland H�ubscher
Department of Computer Science � Institute of Cognitive Science

University of Colorado at Boulder
Boulder� CO �������	��

Fred Glover
Graduate School of Business Administration

University of Colorado at Boulder
Boulder� CO �������	
�

Abstract

We describe a tabu search approach to the scheduling problem of minimizing the makespan

on n tasks on m equivalent processors� This problem is isomorphic to a variant of the multiple

bin packing problem� We make use of a candidate list strategy that generates only a small

subset of all possible moves� and employ a dynamic tabu list for handling tabu restrictions� We

also introduce an in�uential diversi�cation component to overcome an entrenched regionality

phenomenon that represents a �higher order� di�culty encountered by local search methods�

In�uential diversi�cation notably improves the behavior and quality of the solutions of our tabu

search procedure as the search horizon grows� Results are presented for a range of problems of

varying dimensions� and our method is also compared to an extended simulated annealing ap�

proach that previously has produced the best solutions for the isomorphic bin packing problem�

� Introduction

Minimizing the makespan on multiprocessors is hard for local optimization techniques� because

neighboring solutions di�er widely in quality� Pure simulated annealing does not seem to overcome

this problem as K�ampke �����	 and Johnson et al� �����	 report on bin
packing problems similar

to the scheduling problem� We will focus our attention on ways to escape not only deep local min

ima but also to overcome an entrenched regionality phenomenon that combinatorial optimization

problems of this type are prone to exhibit� We report computational outcomes for a variety of

problems with di�erent numbers of tasks and processors� and also address a classical �� bin����

item problem from an isomorphic Minmax bin packing formulation� demonstrating our approach

obtains solutions that signicantly improve the previous best known outcome for this problem�

The multiprocessor scheduling problem may be dened as follows� Let L � fq�� q�� � � � � qng

denote a collection of n tasks which must be assigned to m sets P�� P�� � � � � Pm� thereby creating a

�Published in Computers � Operations Research� Vol� ��� No� �� pp� ��������

�

partition of L� Each task set Pi is assigned to processor i� one of the m equivalent processors� The

goal is to nd an assignment that minimizes the makespan of the m parallel processors� that is� to

nd

min max
��i�m

X
qj�Pi

t�qj	�

where t�qj	 is the time it takes to execute task qj on any of the m equivalent processors� The value

Ti �
P

qj�Pi t�qj	 is the latest task nishing time of processor i� and the goal may be expressed as

that of distributing the tasks into P�� � � � � Pm to minimize maxi Ti�

This scheduling problem can also be viewed as assigning n items q�� � � � � qn with weight t�qi	 to

m bins with the goal of minimizing the weight of the heaviest bin� In this case� Ti can be interpreted

as the weight of bin i�

� Tabu Search

The main goal of our approach is to nd how local search methods can be extended to do well in

search spaces where certain types of solution structures tend to become locked into place� creating

a form of regional entrenchment that prevents access to solutions of superior quality� Our solution

to this problem is twofold and consists of a dynamic tabu list with a moving gap coupled with in

�uential �strategically composed	 diversication moves that are executed rarely� The fundamental

ideas and procedural considerations of tabu search have been described in a number of references

�see� e�g�� Glover and Laguna �����	� for a review of recent developments and applications	� The

following description will therefore concentrate on the features that distinguish the present ap

proach from others� in particular by characterizing the dynamics of the tabu list and the in�uential

diversication component�

We employ a simple neighborhood for dening moves �transitions between solutions	 that con

sists of exchanging two tasks between two processors� Similar types of exchange moves have been

applied to combinatorial problems in a variety of other settings� �See� for example� de Werra and

Hertz �����	� Skorin
Kapov �����	� and Weber and Liebling �����	�	 An initial solution is con

structed using the best
t random
order heuristic� That is� initially the tasks are shu�ed� and

are then successively assigned by selecting at each step a machine whose currently assigned tasks

consume the least total processing time�

In overview� following standard tabu search methodology� each iteration generates a set of

candidate moves from the total collection of moves in the neighborhood by a ltering process� The

goal of the ltering is to assure� subject to tradeo�s in the e�ort of generating and examining these

moves� that the candidate set contains moves with the highest evaluations� The candidate set is

further screened to retain only the candidates that qualify as admissible� that is� those candidates

that are not tabu or that fulll the aspiration criteria� A candidate is tabu if it is characterized

by a predicate on the tabu list� The tabu list re�ects the recent move history of the search and

�

implements intensication and diversication strategies �which respectively focus on reinforcing

attributes of attractive solutions and on driving the search into new regions	� The admissible

candidate with the highest evaluation is then selected� generating the associated new solution� and

the tabu restrictions and aspiration criteria are updated�

��� Move Generation

A simple average case analysis shows there are about n�m tasks assigned to each processor� which

allows �n�m	� �m��� � n��� possible exchange moves� The goal is to generate a small candidate

list of alternatives that are likely to be superior� To do this� it is necessary to dene what qualies

a candidate as being good�

We represent a move that exchanges a task qi � Pi with a task qj � Pj by the notation

�Pi� qi	 � �Pj � qj	�
� By convention� the processor that currently has the latest task nishing time

is on the left side of the � sign� as identied by processor i in our case� and the other processor�

j� satises Tj � T �� where T � �
P

qi�L t�qi	�m is the ideal last task nishing time �the target time

for each processor if an ideal solution were possible	�

We include the special case where one of the tasks is a dummy task that takes zero time units

to execute� thereby incorporating partial exchanges that simply move a task from one processor to

another� Since the dummy task is never explicitly moved� there is no loss of e�ciency� However�

this convention considerably simplies the generation and evaluation of the candidates and their

implementation�

Evaluation

The value of a move is dened to be the change of the mathematical variance of the last task

nishing time of the processors� given by

v��Pi� qi	 � �Pj � qj		 � �T � � Ti	
� � �T � � �Ti � t�pi	 � t�pj			

� �

�T � � Tj	
� � �T � � �Tj � t�pj	� t�pi			

�

Our adoption of a measure of goodness based on variance is motivated by the intensication theme

in tabu search� following the approach used in �Glover and McMillan� ����	� We seek to accentuate

the search focus on sets that are farther removed from the ideal state and reduce the discrepancy

from this state� A further way to reduce the set of candidates is to restrict moves to those exchanges

that occur only between the processor with the latest nishing time and the processors i with

Ti � T �� This constraint and the characteristics of the goodness measure allow a fast generation of

a small set of superior candidates that contains only cn�� potential moves for a small constant c�

�We use the same indices for tasks and task sets as often as possible to simplify the association between these

entities�

�

Execution

To execute this measure e�ciently� a special organization scheme is used that identies an ideal

weight for an item to be exchanged with a given item� In particular� given two sets Pi� Pj and

a task qi in Pi� we identify the ideal makespan to for a task in Pj if it is to be exchanged with

qi� This is achieved by solving �v��Pi� qi	 � �Pj � qo		��t�qo	 � �� which gives to � t�qi	 � �Tj �

Ti	��� Furthermore� v��Pi� qi	 � �Pj � qj		 � v��Pi� qi	 � �Pj � qk		 if jto� t�qj	j � jto� t�qk	j� where

qj � qk � Pj and to is the ideal weight computed as shown above� Thus� the candidate moves

�Pi� qi	 � �Pj � qj	 can be ordered according to increasing values of jt�pi	 � �Tj � Ti	��� t�pj	j� and

we say that move �Pi� qi	 � �Pj � qj	 is a level l candidate with respect to Pi� qi� and Pj if qj is the

lth best choice in set Pj with respect to the indicated values�

Let PL � fi � Ti � T �g be the set of indices of all task sets with lower than average makespan

and let h be the index of a set with greatest makespan� that is� Th � Ti� � � i � m� The set of level

l candidates then is dened by Cl � f�Ph� qh	 � �Pj � qj	 � j � PL and �Ph� qh	 � �Pj � qj	 is a level

l candidateg� By convention� the rst set in a move description always has the longest makespan

and the second set of the move description has a below average makespan�

To generate a small number of possible candidates� we proceed as follows� First� C� is generated

and if an admissible candidate is found the generation stops� otherwise� C� is generated and so on�

Since the maximal level for generation is a xed number it may happen that no admissible candidate

is found� in this case the search for an admissible candidate stops and a �least inadmissible�

candidate is selected� which is the move� Using a balanced tree to store the items in a set� the level

� candidate can be found in log
time per task set� Finding level l candidates� l � �� requires only a

constant number of steps if the items are sorted with respect to their makespan� This ordering is

advantageous since v��Pi� qi	 � �Pj � qj		 � v��Pi� qi	 � �Pj � qk		 if jt�qo	� t�qj	j � jt�qo	� t�qk	j� A

simple average case analysis shows that n�� candidates are generated per level and that generating

l levels requires about �l� � � logn�m	n�� steps�

To determine the e�cacy of these ideas� we tested the candidate list approach against the

alternative of considering all possible moves at each iteration� running each approach for the same

number of iterations� on preliminary test problems� The outcome showed that the use of the

candidate list did not cause solution quality to deteriorate� disclosing that the indicated process

indeed generates an e�ective subset of candidates�

��� Dynamic Tabu List

A dynamic tabu list of changing size and composition is applied in our procedure to integrate

intensication and diversication strategies� The dynamic tabu list overcomes the di�culty of

getting stuck in repetitions of potentially long sequences of moves� A tabu list can be viewed as a

list of predicates� If a predicate in the tabu list applies to a candidate move� the candidate is tabu�

that is� the move cannot be chosen unless it fullls the aspiration criteria� A candidate that may

�

be chosen is called admissible and the best admissible candidate is nally executed�

Tabu Criteria

Since every candidate must be checked against the tabu criteria� the tests should not only lter out

the right candidates but should also be easy and fast to compute� Whether the candidate move

�Pi� qi	 � �Pj � qj	 is tabu depends on the sets of tasks Pi� Pj and length t�qi	� t�qj	 of the two tasks

to be exchanged� but not on their identity�

A candidate �Pi� qi	 � �Pj � qj	 is tabu if it fullls one of the following three conditions� First�

a move is automatically excluded from consideration if t�qi	 � t�qj	� Such a move is called a null

move in tabu search terminology and is forbidden by default� Second� the candidate is tabu if the

previous move involved the same two processors but with reversed roles� that is� if �Pj � q
�
j	 � �Pi� q

�
i	

was the previous move for some q�i� q
�
j � In this case� the task lengths do not matter� This criterion

is restricted to apply only if there are at least two task sets Pi with Ti � T ��

The third criterion uses the predicates in the tabu list� For each move �Pa� qa	 � �Pb� qb	

executed at time te� the predicates late�Pa� t�qa		 and early�Pb� t�qb		 are stored in slot te of the

tabu list� that is� the tabu list remembers what task length has been moved out of a set� This

information is then used to avoid moving a task with same length back into the same set too soon�

which forbids �reversing� the move �and some set of related moves	 for a chosen duration� The

current candidate move �Pi� qi	 � �Pj � qj	 fullls the third tabu criterion� if early�Pi� t�qi		 and

late�Pj � t�qj		 are on the tabu list� This is only a good idea as long as the moves made are of

high quality� If a selected move possibly is bad� then preventing its reversal by use of the tabu

restrictions can temporarily compel the search to pursue an undesirable course�

These conditions make many more candidates tabu than just the ones that would reverse an

earlier move� We do not just exclude a part of the path the search procedure has taken� but a

whole region of the search space� However� since the tabu list has a nite length and a moving gap

�as identied below	� it does not prevent the search from traversing the previously excluded region

again� this time coming from a di�erent part of the search space� This allows the search procedure

to view a region from di�erent angles� giving it the chance to discover the more promising paths

for uncovering good solutions�

Moving Gap

The tabu list consists of a static part and a dynamic part� The conguration of the dynamic part

is changed so that an intensication phase is followed by a diversication phase and vice versa�

This is done by moving a gap in the tabu list back and forth depending on the requirements of the

current situation� This provides an ability to escape from very long repetitions of move sequences�

�We give here a slightly simpli	ed version of this criterion�

�

�

� �� � �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��

��
�
��
�
��
�
��
�
��
�

��
��

��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��

��
�

��
�
��
��

��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��

��
�
��
�

��
�

��
�

��
�
��
��

��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��

��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��

��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�

��
�

��
�

��
�
��
��

static part �ls	

time

dynamic part �ld	

sd�d�d�d�

Split Gap �G�	

Middle Gap �G�	

Right Gap �G�	

Left Gap �G�	

Full Gap �G�	

No Gap �G�	

Figure �� The six congurations of the moving gap tabu list� The hatched parts are tabu�

which often pose a threat to local search methods� However� it does not always get the search to

break free of entrenched regionality phenomena�

When a move is executed at time te� slot te is updated with instantiations of some of the early

and late predicates� The tabu list in our approach consists of a static part s and a dynamic part d

as shown in Figure �� Let tc be the current time� The static part of the list has ls slots and stores

the predicates Pts� tc � ls � ts � tc� The dynamic part of the list is of length ld and is partitioned

into four equal sublists di� � � i � �� containing the predicates Ptdi
� tc � ls � bidi��c � tdi �

tc � ls � b�i� �	di��c� A conguration Gi of the tabu list is a combination of the static part and

some sublists of the dynamic part�

The conguration is changed after a certain number of moves in a manner that alternates even

numbered congurations with odd numbered congurations� because the odd numbered congu

rations G�� G�� G� tend to diversify the search whereas G�� G�� G� tend to intensify the search�

Generally� the longer the initial part that is tabu �the right most hatched part in Figure �	 the

more the search diversies� Let l be the total number of tabu slots of the current conguration�

ls � l � ls � ld� A conguration is changed to its successor with respect to the given sequence when

�l moves have elapsed since the last improvement of the best solution found so far� If the search

discovers an improved solution it sticks to the same conguration for at least �l moves after the

improvement� this is especially useful if the search is intensifying� �Otherwise� the conguration is

maintained for �l moves after its initiation�	

�

Aspiration Criteria

The tabu criteria� if applied unconditionally� sometimes reject worthwhile candidates� To avoid this

situation� the aspiration criteria are designed to overrule tabu status and make a tabu candidate

�Pi� qi	 � �Pj � qj	 admissible� We use both a global and a local aspiration criterion� The global

condition is fullled if the execution of the candidate would result in a new best solution� The local

criterion is fullled if one of the two involved processors� say i� would get closer to the ideal latest

task nishing time than it has at had at any earlier point during the search� without leading to a

bad task set for the other processor j�

��� In�uential Diversi�cation

The tabu list gives our search procedure a big advantage over memoryfree approaches� because it

prots from what it has learned �and stored in the tabu list	 about neighborhoods encountered

during the memory span of the tabu list�which in this case constitutes a form of short term

memory� Although the dynamic tabu list and the associated tabu criteria proved to be successful

in dealing with repetitions of long move sequences� we found they were sometimes insu�cient to

guide the search to improve the best solution found� �The approach succeeded in discovering new

local optima� but only those from a set dominated by the previous best�	 This occurred upon

encountering a form of regional �entrenchment� �or imprisonment	 which often manifested itself

in schedules that had extremely uneven distributions of short and long tasks� Certain processors

had many small tasks assigned� and other processors were assigned many big tasks� The simple

exchange move used as an underpinning for our approach is not powerful enough to modify the

general form of such a structure �although it can produce many di�erent solutions exhibiting this

form	 because typically all moves that relocate long tasks produce extremely unfavorable changes

in the evaluation criteria�

Therefore� when the search gives evidence that regional entrenchment may be in operation� by

failing to improve the current best solution for a long period� task sets that contain a relatively large

or relatively small number of long tasks are redistributed by an in�uential diversi�cation move� We

call the diversication �in�uential� because it seeks to modify the solution structure in a specic

in�uential �nonrandom	 way� �The concept of move in�uence is discussed more fully in �Glover

and Laguna� ����	�	 The seemingly obvious alternative� which selects two subsets of two tasks

each and exchanges them� is much too costly� because there are about ��n�mm��� possible moves��

Furthermore� our experience suggests that� in appropriate circumstances� a selective approach that

focuses on fewer alternatives can result in a behavior that is at least as good as one that exhausts

a combinatorially more extensive set of possibilities��

�There are about m��� pairs of processors and each Pi contains about n�m tasks� that is� �n�m subsets�
�The candidate move generation provides an interesting example for this seemingly contradictory proposition�

Using the best exchange move from all available alternatives resulted in inferior solutions compared to choosing the

best move from a small but strategically screened candidate set as described earlier�

�

To implement our approach� we rst identify the two task sets that have the shortest and the

longest tasks� Let f�i	 denote the task distribution factor for processor i� which constitutes a

normalized sum of the squared task lengths� that is�

f�i	 �

P
qj�Pi t

��qj	�P
qj�Pi t�qj	

�� �
X
qj�Pi

t��qj	�T
�
i�

The greater the value of f�i	� the greater the number of long tasks Pi contains �approximately

speaking	� Let i be such that f�i	 � f�k	� � � k � m� and let j be such that f�j	 � f�k	�

� � k � m� that is� processor i has a deciency and processor j has an excess of long tasks

assigned� We only have to take Pi and Pj into consideration to nd a redistribution that has a

signicant in�uence on the current solution� creating an altered solution by strategically reallocating

their elements�

We now describe a simple but successful strategy for accomplishing this� Let P �
i � P

�
j be two

empty task sets that will be lled as follows� First� take Pj �with an excess of long tasks	 and

successively assign its tasks� in order of decreasing task length on a best t basis� to P �
i and P �

j �

Then assign elements of Pi in the same way to P �
i and P �

j � Finally replace Pi by P �
i and Pj by P �

j �

respectively� This procedure forces the longer tasks of Pj into di�erent task sets� Elements of Pi

and Pj are distributed between P �
i and P �

j one after the other� because this results in assigning P �
i

and P �
j about half of the tasks from Pi and the other half from Pj � This is especially useful if the

number of processors m is small�

When is such an in�uential diversication step executed� Experiments have shown that exe

cuting such a step after ����� ����� � � � non
improving moves is all that is needed� Shorter intervals

sometimes do not allow the search procedure adequate time to home in on a better �local	 mini

mum� especially considering that an in�uential diversication step results in a signicantly altered

state for continuing the search�

Of course� more elaborate types of reallocations can be designed to achieve the form of diver

sication sought� However� the straightforward approach we have indicated� when compared with

other strategies� has demonstrated itself to be highly useful� We complete the analysis of this sec

tion by giving some reasons why a more advanced method for reallocating tasks on the two selected

machines was not able to improve upon our simple approach� �We did not examine reallocations

involving larger numbers of machines� given the e�ectiveness of the approached applied to the two

machines singled out�	

One of the more advanced reallocations we tested sought to minimize
������

�
�Tj �

X
qk�s�Ti�

t �qk	

�
A �

�
�Ti �

X
qk�s�Tj�

t �qk	

�
A
������

where s�Tk	 is a subsequence of the tasks qk � Pk sorted with respect to t�qk	� Additionally� we

require s�Ti	 and s�Tj	 to be greater than �� because otherwise the move would induce little change�

�

number of average number �T

processors tasks of iterations average minimum maximum

� �� ������ ���� ���	 ���� ����
 ���� ���	

� ��� ������ ���� ����
 ���� ����� ���� ����

� ��� ������ ���� ���� ���� ���� ���� ���	

� ��� ������ ���� ����
 ���� ����� ���� ����

� ��� ������ ���� ���	 ���� ���� ���� ����

� ��� ������ ���� ���	 ���� ���� ���� ���	

�� ��� ������� ���� ���	 ���� ���	 ���� ���	

�� ��� ������ ���� ���	 ���� ���� ���� ���	

�� ��� ������� ���� ���	 ���� ���	 ���� ���	

�� ���� ������� ���� ���	 ���� ���� ���� ���	

�� ���� ������� ���� ���	 ���� ���	 ���� ����

Table �� The results of the rst series of test runs� The same tabu list length was used for all
problems �ls � ��� ld � �	� The search stopped after ������ non
improving moves�

�The denition of s�Tk	 allows a relatively fast execution of the move� because it requires only one

traversal of each of the two sets Pi and Pj �	 However� this approach did not do as well as the

one described rst� Although seemingly more rened� the strategy does not force long tasks to be

su�ciently redistributed� which is an essential aspect of making the outcome qualify as in�uential�

Increasing the frequency of executing these rened moves also did not prove advantageous� perhaps

because they induce inadequate perturbations� whereas a major earthquake �of the right character	

is needed to free the search procedure from a regional entrenchment� Similar limitations were

observed with other �more advanced� strategies�

Our ndings suggest that starting with a nely tuned short term memory component of tabu

search� and coupling it with a properly designed in�uential diversication component �that may be

quite simple	 can produce very e�ective results�as we now show�

� Computational Tests and Discussion

To test the e�cacy of our approach� we rst generated scheduling problems with uniformly dis

tributed task lengths� The relative di�erence �T between the makespan T of the schedule and the

ideal schedule length is dened by �T � �T � T �	�T ��

First� we tested our search procedure without the in�uential diversication component on ran

domly generated multiprocessor scheduling problems from � to �� processors and �� to ���� tasks

subject to the constraint n � ��m� The same tabu list size has been used in all cases� The task

lengths of the randomly generated problems were uniformly distributed in the range ���!� Our

method was run once on each of the ��� problems and for ��" of the problems found solutions

with �T � ���	� All remaining solutions except two gave �T � ����� and two worst solutions

gave a �T of slightly over ����� The outcomes are summarized in Table ��

�

number of in�uential relative di�erence �T
processors tasks diversi�cation average std� deviation

� ��� no ���� ���� ���� ����

� ��� yes ���� ����
 ���� ����

� �� no ���� ���� ���� ����

� �� yes ���� ���� ���� ����

�� ��� no ���� ���� ���� ����

�� ��� yes ���� ���� ���� ����

�� ��� no ���� ���� ���� ����

�� ��� yes ���� ���� ���� ����

Table �� The results of the test runs� The same parameters were used for all runs� The search
stopped after ������ non
improving moves�

The second test runs were to show the e�ect of the in�uential diversication component� Each

problem was solved twice� once without and once with the in�uential diversication component�

For each problem size� the results are averaged over ten di�erent problems �of the same size	� The

outcomes are summarized in Table �� The in�uential diversication indeed improves the quality of

the solutions �yielding better outcomes for about ��" of the problems	� Even more interesting� it

produces a much smaller standard deviation in all cases except for the �
processor case� This makes

it possible to predict the quality of a solution more accurately� Improvements were less pronounced

for problems with a small number m of processors�

For an additional test� we ran our procedure on a �� bin���� item Minmax bin packing prob

lem� originally given by Graham �����	� This problem has an ideal weight of ��� ���� ���� ��� for

minimizing the maximum weight received by any bin �though no one knows whether this weight is

attainable	� The best previously known result for this problem was obtained by an extended sim

ulated annealing approach �K�ampke� ����	� where each random move is followed by a smoothing

step� resulting in a weight of ��� ���� ���� ���� �This solution was found on only one trial from a

large number of solution attempts applying di�erent random generating seeds�	�

Because the scheduling problem described in this paper is isomorphic to the Minmax bin packing

problem� our approach was directly applicable� The latest task nishing time Ti of a processor i is

simply interpreted as the weight of bin i� Applying the tabu search approach without the in�uential

diversication component we improved the best previous result by three additional digits� obtaining

a weight of ��� ���� ����� ���� We ran the procedure using the randomized best
t heuristic to

slightly modify the initial starting position� On more than ��" of these runs� the solutions were in

�Interestingly� K
ampke found that neither standard simulated annealing nor his improved extension could solve a

small but �hard� two bin problem involving seven items of weight and 	ve items of weight �� No matter how long

the simulated annealing approaches were run� an optimal solution could not be found� except by a rare lucky choice

of a random number seed� By contrast� both versions of our tabu search approach always found an optimal solution

within at most iterations after reaching the 	rst local optimum�

��

the range between ��� ���� ���� ��� and ��� ���� ���� ��� �signicantly better than the previous best

found by K�ampke	� The inclusion of in�uential diversication improved our results still further�

The best solution was improved to ��� ���� ���� ��� and most solutions �� ��"	 fell in the range

between ��� ���� ���� ��� and ��� ���� ���� ���� We note that the in�uential diversication step

allowed the procedure to search longer� not faster� Without this component the search procedure

can be stopped after ��� ��� moves fail to improve the current best solution� because it is unlikely

after this point that a better solution will be found� This does not apply to the version with

in�uential diversication where often an improvement can be observed after executing more than

��� ��� moves that do not improve the current best� �For this problem� it takes about � second to

make ���� moves on a MIPS computer�	

In summary� the short term memory component of the tabu search procedure makes it possible

to reach good solutions quickly and the in�uential diversication strategy provides an opportunity

for continued improvement over a signicantly extended horizon�

Acknowledgment

We are indebted to Manuel Laguna for comments that have improved the quality of this paper�

This research was supported in part under the Air Force O�ce of Scientic Research and O�ce

of Naval Research Contract F�����
��
C
���� at the University of Colorado�

References

�de Werra and Hertz� ����	 D� de Werra and A� Hertz� Tabu search techniques� A tutorial and an

application to neural networks� OR Spectrum� pages ���#���� �����

�Glover and Laguna� ����	 Fred Glover and Manuel Laguna� Tabu search� To appear in Colin

Reeves� editor� Modern Heuristic Techniques for Combinatorial Problems� Blackwell Publishing�

�����

�Glover and McMillan� ����	 Fred Glover and Claude McMillan� The general employee scheduling

problem� An intergration of MS and AI� Comput� � Ops� Res�� ����	����#���� �����

�Graham� ����	 R� L� Graham� Combinatorial scheduling theory� In L� A� Steen� editor� Mathe�

matics Today� Springer� New York� ����� �rd printing�

�Johnson et al�� ����	 David S� Johnson� Cecilia R� Aragon� Lyle A� McGeoch� and Catherine

Schevon� Optimization by simulated annealing� An experimental evaluation� part II �graph

coloring and number partitioning	� Operations Research� �����

�K�ampke� ����	 Thomas K�ampke� Simulated annealing� Use of a new tool in bin packing� Annals

of Operations Research� ������#���� �����

��

�Skorin
Kapov� ����	 Jadranka Skorin
Kapov� Tabu search applied to the quadratic assignment

problem� ORSA Journal on Computing� ���	���#��� �����

�Weber and Liebling� ����	 M� Weber and Th� M� Liebling� Euclidean matching problems and the

metropolis algorithm� ZOR Ser� A ��� pages ��#���� �����

��

