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Genetic algorithms and scatter search." 
unsuspected potentials 
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We provide a tutorial survey of connections between genetic algorithms and scatter search that 
have useful implications for developing new methods for optimization problems. The links 
between these approaches are rooted in principles underlying mathematical relaxations, which 
became inherited and extended by scatter search. Hybrid methods incorporating elements of 
genetic algorithms and scatter search are beginning to be explored in the literature, and we 
demonstrate that the opportunity exists to develop more advanced procedures that make fuller 
use of scatter search strategies and their recent extensions. 
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1. Introduction 

Genetic algorithms (GAs) were initially proposed as hyper- 
plane sampling approaches rather than as optimization 
methods. Over time, however, GAs have increasingly 
come to be viewed as a means for solving optimization 
problems, and today optimization stands as a principal 
area of focus for these methods. Simultaneously, research- 
ers are coming to realize that links exist between GAs and 
other approaches for solving optimization problems. This 
dawning recognition has more than casual significance. 

The area of mathematical relaxation, customarily 
perceived to be entirely different from GAs, has significant 
overlaps with GAs that have previously gone unnoticed. 
Principles underlying heuristic methods that have 
descended from mathematical relaxation approaches 
give a foundation for creating new forms of GAs that 
hold promise for increased success in the optimization 
area. 

In this paper we will show how a class of  heuristics called 
scatter search methods, which originated as counterparts to 
approaches from mathematical relaxation, provide strat- 
egies that both reinforce and extend strategic ideas for 
improving GA methods. The compatibility of  these lines 
of development, which have appeared so different on the 
surface, underscores the value of the themes that arise 
from their roots. 

In the following sections, we trace the evolution 
of relaxation methods to disclose similarities between 
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their concepts and those of GA methods. A number of 
coincidences emerge. The scatter search approach appeared 
in the same time period that witnessed the publication of 
the early GA formulations. Some of  the notable differences 
between the two approaches at the time, occasioned largely 
by the fact that scatter search was intended for solving opti- 
mization problems while GAs sought other objectives, have 
dissolved in more recent years. As will be seen, a number of  
the key departures from the original GAs, which notably 
improved their empirical performance tbr solving optimiz- 
ation problems, were basic elements of the initial scatter 
search framework. More importantly, a few researchers in 
the GA community (and outside) have recently begun to 
propose ways to exploit further these connections and 
obtain additional advantage from them. 

In the development that follows, we begin by surveying 
fundamental ideas from mathematical relaxation that 
have intriguing correspondences with ideas that come 
alternately from genetic algorithms. Building on this, we 
show how these ideas were transported from the 'dual 
framework' of relaxation approaches to create the 'primal 
framework' of scatter search. This provided a method 
whose underlying notions contain additional similarities 
to GA ideas, as well as other elements that are not yet fully 
assimilated into GA approaches, and suggest possibilities 
for creating new hybrid methods. Finally, we discuss 
recent extensions of  these ideas that offer an opportunity 
to create still more advanced procedures based on integrat- 
ing scatter search and GA methods. 
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2. Ties to mathematical relaxation 

Three features of genetic algorithms are often observed as 
essential to their fundamental character, consisting of the 
following operations: 

1. Working with a population of elements (coded as 
vectors); 

2. Creating new elements by combining existing 
elements; 

3. Determining which new elements are retained (i.e. are 
allowed to 'survive') based on a measure of quality or 
'fitness'. 

Each of these features is also basic to the approaches that 
come from the area of mathematical relaxation. The degree 
to which these approaches share correspondences with GAs 
at deeper levels (falling short of the GA conception or 
providing possible enhancements), depends on the type 
of mathematical relaxation considered. We begin by 
examining two main types of mathematical relaxation. 
Lagrangean relaxation and surrogate constraint relaxa- 
tion, that share correspondences with GAs at different 
levels. 

2.1. Lagrangean relaxation 

Lagrangean relaxation has made a large impact on the field 
of optimization, and represents one of the key strategies for 
solving problems from this domain: see, for example, Fisher 
(1973), Greenberg (1973a), Geoffrion (1974), and the 
surveys by Fisher (1985) and Beasley (1993). 

Lagrangean relaxation was first introduced by Everett 
(1963). The basicidea is to overcome the difficulty of work- 
ing directly with a system of constraints by absorbing them 
into an objective function to be minimized. This is done in 
such a way that violating the constraints will cause the 
objective function to become larger. An attempt to solve 
the modified (presumably easier) problem with the con- 
straints removed, therefore, will tend toward the discovery 
of solutions that satisfy the constraints. Since the modified 
problem accepts solutions as feasible that do not satisfy the 
absorbed constraints, and employs an objective function 
that underestimates (can be no larger than) the value of 
the true objective function when the problems are solved 
to optimality, the modified problem is called a 'relaxa- 
tion' of the original, and in general its creation and 
solution are the subject of the area broadly known as 
mathematical relaxation. 

At first blush the idea underlying this relaxation 
approach seems to have little in common with the three 
features previously identified as fundamental to genetic 
algorithms. However, the mechanism in Lagrangean 
relaxation for taking the constraints into the objective 
function is to unite them, in particular by forming a non- 
negative linear combination (which multiplies each 

constraint by a non-negative weight and sums the result). 
Further, in the case where the constraints consist of linear 
inequalities, each constraint is summarized by a vector 
(identifying the coefficients of problem variables and an 
associated right hand side). Consequently, Lagrangean 
relaxation is customarily applied by seeking an appro- 
priate combination of vectors--and more precisely, a best 
combination, identified as one that makes the relaxed 
objective function value the largest at optimality. Since 
this optimal value underestimates the true optimal value, 
a best combination therefore is one that produces the 
smallest underestimation. (If the underestimation can be 
reduced to zero, which is the ideal outcome, the relaxed 
problem is said to yield a zero duality gap. More often, 
notably in combinatorial problems, the underestimation 
cannot be reduced to zero, and the relaxed problem is 
said to yield a positive duality gap.) 

No way is known for creating a best combination of 
vectors in a single step. Consequently, Lagrangean relaxa- 
tion proceeds iteratively in successive stages, changing the 
weights of the vectors in the objective function based on 
the degree to which the associated constraints are violated 
or satisfied. If the new combination of vectors proves 
worse than before, it may be discarded or combined with 
the previous one, or simply utilized as it is, as a basis for 
the next stage. The best combination overall is retained to 
become the final choice. 

Although there are apparent similarities to some of the 
basic GA notions, there are clearly significant points of 
contrast. Apart from evident differences between modes 
of combination (non-negative linear combinations versus 
genetic crossover), a major difference lies in the fact that 
the populations for Lagrangean relaxation are determined 
once and for all from the original vectors to be combined, 
and do not dynamically alter. We have also stated the 
approach in terms of generating and evaluating a single 
combination in each generation. This is obviously an 
unnecessary limitation, however. In some implemen- 
tations, strategies for re-weighting the vectors are applied 
in parallel, and the results are culled to produce a best 
generational outcome. Nevertheless, at this point, the 
correspondences appear to be mostly in the nature of an 
intellectual curiosity, and their implications are not 
entirely clear. In the next class of mathematical relaxa- 
tions, however, we will see the beginnings of more intri- 
guing forms of correspondence. 

2.2. Surrogate constraint relaxations 

Surrogate constraint relaxations were introduced as a strat- 
egy for discrete optimization problems in Glover (1965), 
sharing with Lagrangean relaxations the notion of combin- 
ing vectors by forming non-negative linear combinations. 
However, while Lagrangean relaxations have the goal of 
eliminating the constraints by absorbing them into the 
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objective function, surrogate constraint relaxations have 
the goal of generating new constraints that may stand in 
for the original constraints (hence the name 'surrogate' con- 
straints). Consequently, surrogate constraint relaxations 
undertake to create new vectors with the same form and 
function as the original vectors, and which additionally 
contain desirable features not found in members of the 
original system. 

The surrogate constraint approach also introduces 
another element that is relevant to our present concerns. 
Constraints formed by non-negative linear combinations 
of the original constraints are validly implied by the 
original constraints, but they are not the only ones that 
may be so implied. In combinatorial and non-convex 
optimization, valid constraints can also be composed by 
transformations to produce inequalities called cutting 
planes. Accordingly, valid constraints derived by such 
additional transformations likewise provide a basis for 
creating new surrogate constraints. By this aspect the surro- 
gate constraint approach acquires the ability to operate 
with a system of vectors that is dynamic and changing. (A 
surrogate constraint system formed in this way using stand- 
ard cutting planes is theoretically assured to be sufficient for 
determining optimal solutions to integer programming pro- 
blems (more precisely, for determining the convex 
hull of integer solutions: see, for example, Nemhauser and 
Wolsey, 1988).) 

The differences in perspective introduced by surrogate 
constraint relaxations, in contrast with Lagrangean relaxa- 
tions, have a number of strategic consequences. One of the 
more notable consequences is to view the creation of surro- 
gate constraints as a process for generating information. As 
expressed in Glover (1968): 'A surrogate constraint is an 
inequality .. .  designed to capture useful information that 
cannot be extracted from the parent constraints individu- 
ally, but is nevertheless a consequence of their conjunc- 
tion.' (A novel coincidence occurs in the use of the 
'parent' terminology, which also has become popular in 
the GA literature.) 

The information orientation has important implications 
for designing procedures to combine vectors. Information 
is context dependent, and is subject to distortion or to 
refinement, according to the treatment of considerations 
such as redundancy, logical consequences and criteria for 
evaluation. Consequently, the early surrogate constraint 
approaches incorporated the following additional elements: 

(a) Culling out and eliminating redundant vectors 
(accounting for information conditional on the solution 
stage); 

(b) Using surrogate constraints as a basis for inferring 
useful auxiliary information (such as bounds on variables 
and sums of variables); 

(c) Introducing different criteria of quality as a basis for 
generating different vector combinations; 

(d) Providing methods to produce combinations that are 
best in the probabilistic sense of mathematical expectation; 

(e) Identifying subsets of parents that exhibit particular 
characteristics, and seeking best vector combinations over 
each subset. 

These developments contain strategic notions clearly 
resembling ideas presented in the early GA literature, and 
in some cases incorporate features that were not con- 
sidered in this literature. Today most of these notions are 
thoroughly familiar to those who apply genetic algorithms 
to optimization. 

These connections offer the possibility to exploit several 
productive relationships that emerge from additional 
developments that followed. Before describing these 
developments, we take a closer look at the concept of 
mathematical relaxations, and the way in which this 
concept is woven into the fabric of mathematical duality 
theory. 

2.3. Mathematical duality 

Mathematical duality is intimately related to mathematical 
relaxation by associations that were first made apparent 
with the study of Lagrangean relaxation. In fact, Lagrang- 
ean relaxation gives rise to a duality theory that is 
equivalent to an older duality theory for mathematical 
optimization called Fenchel duality. The importance of this 
duality is illustrated by its ability to give the well known 
duality results for linear programming as a special case. 

A Lagrangean dualproblem is the same as the problem of 
finding a best Lagrangean relaxation--i.e, a best way to 
weight constraint vectors to yield the smallest underesti- 
mation of the original problem objective, when the vectors 
are combined and absorbed into the Lagrangean objective. 
This correspondence between duality and relaxation gives 
rise to the terminology that refers to the degree of under- 
estimation as a 'duality gap', as noted earlier. In this way, 
the goal of optimizing over a dual problem also clearly 
becomes relevant to optimizing over a primal (or original) 
problem. 

Surrogate constraint relaxation leads to an associated 
duality theory with additional features. A surrogate dual 
problem is the same as finding a best surrogate relaxation-- 
a best combination of the original constraints to yield a 
surrogate problem (embodying the resulting surrogate con- 
straint) whose optimum objective function value underesti- 
mates the optimum value for the original problem by the 
least amount. 

By this characterization, results for determining best 
surrogate constraints also give basic results for surrogate 
duality theory. Constructive methods underlying these 
results, as developed in Glover (1965) and recently 
extended by Fr6ville and Plateau (1993), make it possible 
to establish bounded step sizes for finding best surrogate 
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constraints that have no counterpart in Lagrangean theory, 
where precise bounds for step sizes are unknown for the 
goal of finding a best Lagrangean objective. 

The constructive surrogate constraint methods also imply 
that surrogate duals satisfy a quasi-concavity property (by 
comparison to a simpler concavity property satisfied by 
Lagrangean duals). These duality implications are set out 
in fundamental papers by Greenberg and Pierskalla (1970; 
1973), and Greenberg (1973b). Building on this work, a 
comprehensive duality theory for surrogate constraint 
relaxations is given in Glover (1975), including a treatment 
of composite dual problems that incorporate Lagrangean 
objectives. Additional fundamental contributions, with 
special consideration of searching for best multipliers, are 
provided by Karwan and Rardin (1976, 1979). 

An important aspect of surrogate duality is its ability to 
yield smaller duality gaps than Lagrangean duality--that 
is, solving the relaxed problem gives a better chance of deter- 
mining the optimum objective value for the original. Beyond 
this influence on duality gaps, however, the surrogate dual 
yields a greater chance of locating trial solutions that are 
feasible for the original problem. This primal advantage of 
surrogate constraint relaxations has recently been under- 
scored in the findings of Gavish and Pirkul (1985) and 
Fr6ville and Plateau (1992; 1993), who obtain highly effec- 
tive results applying surrogate constraint methods to special 
classes of integer programming problems. 

The primal aspect of surrogate constraint methods holds 
further implications for our present development, for it led 
to the step of adapting surrogate constraint ideas to operate 
entirely on a primal setting. Procedurally, this involved a 
shift to generating combinations of vectors that represent 
solutions, in place of those that represent constraints, 
giving rise to the class of surrogate constraint heuristics 
called scatter search. This provides our next link to GA 
approaches and to the possibility of creating useful hybrid 
methods that unite these two sources. 

3. Scatter search 

Scatter search starts with a collection of solutions called 
reference points, obtained by the application of preliminary 
heuristic processes. Instead of utilizing non-negative linear 
combinations of the initial vectors to create new vectors, as 
in the approaches of Lagrangean and surrogate relaxations, 
scatter search employs more general linear combinations 
that include negative weights. 

The approach initially generates weighted centres of 
gravity which, together with subsets of original reference 
points, identify subregions as a foundation for generating 
subsequent points. The allowance for negative weights 
makes it possible to go outside the area spanned by the 
reference points, introducing an element of increased 
diversity in the new solutions that result. The vectors 

are additionally subjected to an iterative rounding 
process, to give integer values to components that are 
required to be discrete. By such a process, a selected dis- 
crete variable is rounded to an integer neighbour, followed 
by determining implied value changes for other variables, 
and then repeating. 

The purpose of modifying discrete components itera- 
tively is to accommodate interdependencies among the 
problem variables. This provides an adaptive approach to 
respond to implications of problem structure and the 
location of vectors in solution space. We later give an illus- 
tration to clarify these points. 

New vectors that result from the scatter search com- 
bination process are re-submitted to be operated on by 
heuristic solution procedures, with the goal of transform- 
ing them into solutions of still higher quality. This brings 
the approach full circle, allowing vectors generated along 
the way to be selected as new reference points, and then 
the process begins again. 

The original scatter search development in Glover (1974; 
1977) characterized this approach as 'conveniently suited to 
application with learning strategies'. Methods were pro- 
posed to support this by introducing memory into the 
search, compelling the search to cross boundaries of fea- 
sibility and local optimality, and exploiting variables that 
qualified as strongly determined and as consistent. These 
memory-based strategies, taken independently, have useful 
consequences for solving optimization problems, and have 
evolved into what today is known as tabu search (see, for 
example, the survey paper of Glover and Laguna (1993), 
and the volume of Glover et al. (1993)). We point out in 
Section 4 how these strategies can take a valuable role in 
supplementing those based on generating combinations of 
solutions. 

3.1. An illustration 

Visual intuition about the operation of scatter search, 
before applying its adaptive rounding component, can be 
gained by reference to Fig. 1 from Glover (1977). Each of 
the points numbered 1 through 16 in Fig. 1 is the central 
point of an apparent subregion of the enveloping region 
A, B, C. The points A, B and C may or may not constitute 
the original reference points. (For example, the original 
points may consist of 6, 7 and 11 or of 4, 5, 12 and 13.) 
Thus, new points may be created that are not convex 
combinations of original points, and hence that may 
contain information that is not contained in these points, 
in the sense of bits implicit in a solution representation. 
(At the same time, the original points are also instances 
of such linear contributions, and hence they are likewise 
included among the candidate outcomes.) 

The mappings that progressively round the resulting 
linear combinations, modifying fractional components 
that are required to be discrete, can introduce additional 
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Fig. 1. An illustration of scatter search 

information derived from relationships between problem 
variables, hence reflecting the influence of problem struc- 
ture. Problem structure exerts further influence by means 
of the heuristic processes that take these points as inputs 
and produce new solutions from them. We examine some 
of the implications of these characteristics, and their relation 
to developments in genetic algorithms stemming from the 
original work of Holland (1975), in the following sections. 

3.2. Relevance of embedded heuristics 

The scatter search component of subjecting each generation 
of solutions to heuristic processes, as a means to improve 
them and account for problem structure, finds its counter- 
part in the amended version of GAs called parallel genetic 
algorithms, or PGAs, by Mfihlenbein et al. (1988), and in 
the related genetic local search approach of Ulder et al. 
(1991). Although some GA researchers view these 
approaches as inappropriate to be joined to the GA frame- 
work, the iterative inclusion of heuristic processes has 
resulted in solutions dramatically superior to those gener- 
ated by the original GA proposals. Consequently, the 
current trend in most applications of GA methods to 
optimization is to make use of embedded heuristics as fully 
as possible. 

3.3. Combining solutions 

The manner of combining solutions in scatter search 
appears substantially different from the use of genetic 

crossover in GAs. Within the context of early GAs, 
there are solid foundations for this impression. Perhaps 
surprisingly, combinations generated by scatter search 
include as a special instance those produced by the 
original genetic crossover operation, and by many of its 
later generalizations. 

Before demonstrating this, we first observe that limited 
versions of the linear combination approach have been pro- 
posed by researchers in the late 1980s and early 1990s as 
alternatives to the original crossover ideas. As pointed 
out by Michalewicz (1993), the operation of taking non- 
negative linear combinations of two parent vectors has 
been introduced under a variety of names; e.g. guaranteed 
average crossover in Davis (1989) (for the special case 
where each parent has an equal weight of 1/2), intermediate 
crossover in B~ick et al. (1991), linear crossover in Wright 
(1990) and arithmetical crossover in Michalewicz and Jani- 
kow (1991) and Michalewicz (1992). 

Linear combinations other than those with non-negative 
weights (although still restricted to two parents) were intro- 
duced by Wright (1990), who applied the name heuristic 
crossover to combinations that extend beyond the line 
segment spanned by the parents. In this case the extension 
was made in the direction determined by the 'preferred' 
parent and the degree of the extension was randomly 
selected. 

3.4. Linear combinations with generalized adjacency 
rounding 

As previously noted, the process for combining solutions in 
scatter search incorporates two primary elements: 

(a) identifying selected subregions of points, and gener- 
ating new points by multiparent combinations relative to 
these subregions; 

(b) differentiating between discrete and continuous vector 
components, and rounding discrete components iteratively 
to account for interdependencies among variables. 

We focus here on the second of these points, examining 
the consequences of differentiating between vector com- 
ponents, and of rounding discrete components to integer 
values. To gain an understanding of the role of these 
elements, we first stress the relevance of the policy in 
scatter search of operating with vectors whose components 
are not restricted to binary values. Although binary 
representations serve as the foundation of the original 
genetic encoding and crossover notions, and are still 
considered fundamental to GA theory, they introduce 
limitations that are often unrecognized. 

To demonstrate the nature of these limitations, consider 
the goal of creating integer solutions that are combinations 
of the two solutions x = 9 and x = 26. Rounded linear 
combinations as proposed in scatter search can generate 
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every integer point from minus to plus infinity on the line 
joining x = 9 and x -- 26, hence in this case yielding every 
value x may feasibly be assigned. On the other hand, 
when these solutions are given a binary representation, 
(1 00 1 0) for x = 9, and (0 1 0 1 1) for x = 26 (encoding 
x as a bit string by the identity x = lx 1 + 2x 2 +4x3 + 
8x4 + 16x5, where x l , x2 , . . . , x5  are zero-one integer 
variables), the possible outcomes are substantially more 
limited. In particular, the only ways to create rounded 
linear combinations of the vectors (1 00 1 0) and (0 1 0 1 1) 
yield the collection of binary vectors ( , ,  0 1 , )  where the 
' ,  elements' can be 0 or 1. Hence instead of producing 
all possible integer points these combinations produce 
only the integer values of x satisfying 8 < x < 11 and 
24 < x < 27. 

3.5. Comparisons to standard crossover 

The same example shows how scatter search combinations 
relate to combinations created by various standard forms 
of genetic crossover. (We continue to consider only the 
two-parent case, to provide a basis for comparison.) The 
possible outcomes of combining the two previous vectors 
become quite restricted by applying classical genetic cross- 
over. The only vectors that can be created by the proposals 
of Holland, for example, are the four vectors (0 0 01 0), 
(01010) ,  (10011) ,  (11011) ,  corresponding to x = 8 ,  
10, 25, 27. When attention is restricted to binary vectors, 
which we have seen to be inappropriate, rounded linear 
combinations used in scatter search in fact give the same 
set of possibilities as the multipoint 'uniform' crossover 
operator proposed by Ackley (1987). (In Ackley's pro- 
posal, each bit position is assigned a probability of 0.5 for 
swapping the elements of the parents--identifying the off- 
spring as the modified parents. Later proposals, such as 
Spears and DeJong (1991), include randomized selections 
with other probabilities. The approach of making changes 
strategically instead of by recourse to randomization is 
not considered.) 

By further employing iterative rounding, where values of 
some variables may change as a result of modifying others, 
additional possibilities result, since by such a process a 
vector element with a given value in the parent vectors 
may come to receive a different value in an offspring. 

3.6. Heeding interactions among variables 

Next we demonstrate the importance of rounding to 
account for interactions among variables by making use 
of an example from Glover (1964). Consider the simple 
integer programming problem: 

Minimize 9Xl + 4x2 + 8x3 

subject to 

9x 1 - 8x 2 - x 3 :> 7 

-6Xl + 7x2 - 2x3 > 6 

- x  1 - x 2 + 5x 3 > 9 

Xl,X2,X3 > 0 and integer 

The linear programming (LP) solution to this problem, 
which disregards the integer requirement for the variables, 
gives a solution vector x=(xl ,x2 ,x3)=(24.43,25.14,  
11.71). Successive rounding which respects interactions 
between the variables (implied by the inequality constraints 
above, and also manifested in the structure of the LP basis 
inverse), yields a solution vector x = (29,30, 14), which 
turns out to be optimal for this problem. Evidently, the 
integer values of this final vector could not be anticipated 
without accounting for the interdependencies among the 
problem variables. Additional manifestations of such phe- 
nomena can be found in more recent integer programming 
literature (see, for example, Schrijver (1986), Nemhauser 
and Wolsey (1988), Parker and Rardin (1988)). 

3.7. Randomization versus systematic generation 

The early GA approaches were predicated on the idea of 
choosing parents randomly to produce offspring, and 
further on introducing randomization to determine which 
components of the parents should be combined (by genetic 
crossover operations). This orientation continues to domi- 
nate most GA implementations. By contrast, no corre- 
sponding recourse to randomization is made in the scatter 
search approach, although nothing excludes its use as a 
bias factor (i.e. probabilistically favouring evaluation 
criteria that would otherwise be applied deterministically, 
or incorporating probabilistic objectives based on 
mathematical expectation, as in the earlier surrogate con- 
straint proposals). 

Without contradicting the importance of randomization 
in GA processes, the fact that scatter search seeks to create 
new points strategically rather than randomly can represent 
a useful feature in some settings. The points in the earlier 
illustration of Fig. 1, for example, may be generated and 
scanned in their indicated numerical order, under the 
condition where this order reflects a ranking determined 
by the objective function, or more generally by a feasible 
direction gradient. Similarly, by its organization, scatter 
search need not prespecify the number of points it will 
generate or retain, since this can be established adaptively 
by considering the quality or structure of solutions 
produced during the course of their generation. 

3.8. Emerging connections 

Explicit connections between the ideas underlying scatter 
search and those underlying GAs are beginning to be 
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examined in the work of Michalewicz (1993) and M/ihlen- 
bein (1993), and related ideas are investigated in Dorndorf 
and Pesch (1992), Battiti and Tecchi011i (1992), Moscato 
and Tinatti (1993), and Reeves (1993a, b). These explora- 
tions obtain results that motivate further examination of 
complementary features of the two procedures that have 
not yet been considered as a foundation for creating hybrid 
methods. 

The possibilities for establishing useful bridges between 
these two approaches are enhanced by more recent strat- 
egies that have evolved as extensions of the scatter search 
notions. We examine these next. 

4. Scatter search and path relinking 

The process of creating linear combinations of two parent 
vectors, as previously noted, corresponds to generating 
points on the line segment joining these parents. When, in 
addition, discrete components are rounded to integer 
values, the points no longer lie on a simple line segment 
but describe a more complex path. By extension, we may 
envision a process of linking parent solutions by other 
types of paths--paths that may not lie in Euclidean 
space, but rather lie in a neighbourhood space defined 
by heuristic processes for moving from one solution to 
another. 

The notion of tracing paths between selected solutions in 
neighbourhood space, as a means of generating other solu- 
tions worthy of consideration, was introduced as part of a 
tabu search strategy in Glover (1989), and is called path 
relinking. An appealing feature of this approach is that 
path relinking not only generalizes the types of combi- 
nations used by scatter search, but establishes deeper 
connections between solution combination strategies and 
memory exploiting strategies, as embodied in tabu search. 
The following development describes the basic elements 
of path relinking, building on the exposition of Glover 
and Laguna (1993). 

4.1. Initial steps 

We first consider the creation of paths that join two selected 
solutions x '  and x/1, restricting attention to the part of the 
path that lies 'between' the solutions, producing a solution 
sequence x l = x ( 1 ) , x ( 2 ) , . . . , x ( r ) : x " .  To reduce the 
number of options to be considered, we may create the solu- 
tion x(i + 1) from x(i ) at each step by choosing a move that 
leaves a fewest number of moves remaining to reach x/,. 
This policy, even if applied without exception, can permit 
a significant number of alternative choices for generating 
the next solution at each step. Consequently, additional 
criteria are relevant to creating the path, as we indicate 
shortly. 
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Fig. 2. Path relinking. Original path shown by heavy line; relinked 
path (one possibility) shown by dotted line 

It is possible, as in applying scatter search, that x '  and 
x/, were previously joined by a search trajectory produced 
by a heuristic method (or by a metaheuristic such as tabu 
search). In this event, the new trajectory created by path 
relinking is likely to be somewhat different than the one 
initially established, representing a 'more direct route' 
between the solutions. An illustration of this is given in 
Fig. 2. 

To choose among the different paths that may be possible 
in going from x ' to x ", let c(x) denote an objective function 
which is to be minimized (by choosing x over some feasible 
region). Selecting unattractive moves relative to c(x), from 
the moves that are candidates to generate the path at each 
step, will tend to produce a final series of strongly improv- 
ing moves to complete the path. Correspondingly, selecting 
attractive moves at each step will tend to produce lower 
quality moves at the end. (The last move, however, will 
be improving, or leave c(x) unchanged, if x "  is selected to 
be a local optimum.) Thus, choosing best, worst or average 
moves, provides options that produce contrasting effects in 
generating the indicated sequence. An aspiration criterion 
may be used as in tabu search to override choices in the 
last two cases if a sufficiently attractive solution is avail- 
able. (In general, it appears reasonable to select best moves 
at each step, and then reinitiate the process in the opposite 
direction by interchanging x / and x/1.) 

The choice of one or more solutions x(i) to become 
reference points for launching a new search phase prefer- 
ably should depend not only on c(x(i)) but also on the 
values c(x) of those solutions x that can be reached by a 
move from x(i). We suggest that the process be addition- 
ally varied to allow solutions to be evaluated other than 
those that yield x(i § 1) closer to x".  Aspiration criteria 
again may be used to decide whether such solutions qualify 
as candidates for selection. 

To elaborate the process, let x* (i) denote a neighbour of 
x(i) that yields a minimum c(x) value during an evaluation 
step, excluding x*(i) = x(i + 1). If the choice rules do not 
automatically eliminate the possibility x*(i)= x(h) for 
h < i, then a simple tabu restriction can be used to do 
this (e.g. as in Glover and Laguna (1993)). Then the method 
selects a solution x*(i) that yields a minimum value for 
c(x*(i)) as a new point to launch the search. If  only a 
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limited set of  neighbours of  x(i) are examined to identify 
x*(i), then a superior least cost solution x(i), excluding 
x ~ and x" ,  may be selected instead. Early termination 
becomes possible upon encountering an x*(i) that yields 
e(x*(i)) <min(c(x'),c(x"),c(x(p)), where x(p) is the 
minimum cost x(h) for all h _< i. It should be noted that 
the procedure will continue without stopping if x(i), in con- 
trast to x*(i), yields a smaller c(x) value than x '  and x", 
since x(i) effectively adopts the role of  x ~. 

4.2. Variation and tunnelling 

A variant of  the path relinking approach starts with both 
endpoints x '  and x "  simultaneously producing two 
sequences x '  = x ' ( 1 ) , . . . ,  x ' ( r)  and x" = x " ( 1 ) , . . . ,  x"(s). 
The choices in this case are designed to yield x'(r)= 
x"(s), for final values of  r and s. To progress toward this 
outcome when x ' ( r )r  x"(s), either x'(r) is selected to 
create x1(r+ 1), as by the criterion of minimizing the 
number of moves remaining to reach x"(s), or x'(s) is 
chosen to create x "(s + 1), as by the criterion of minimiz- 
ing the number of moves remaining to reach x ~(r). From 
these options, the move is selected that produces the 
smallest c(x) value, thus also determining which of  r or s 
is incremented on the next step. 

The path relinking approach benefits by a tunnelling strat- 
egy that allows a different neighbourhood structure to be 
used than in the standard search phase. For  example, moves 
for path relinking may be periodically allowed that normally 
would be excluded due to creating infeasibility. Such a prac- 
tice is protected against the possibility of becoming 'lost' in 
an infeasible region, since feasibility evidently must be recov- 
ered by the time x "  is reached. The tunnelling effect therefore 
offers a chance to reach solutions that might otherwise be 
bypassed. In the variant that starts from both x '  and x" ,  
at least one of x '(r) and x "(s) may be kept feasible. 

As in tabu search strategies for achieving intensification 
! 

and diversification, it is appropriate to select the points x 
and x "  by reference to clusters of  solutions that are created 

/ 
according to criteria of similarity or affinity. Choosing x 
and x "  from the same cluster then stimulates intensifi- 
cation, while choosing them from two 'widely separated' 
clusters stimulates diversification. 

4.3. Extrapolated relinking 

The path relinking approach goes beyond consideration of  
points 'between' x '  and x "  in the same way that linear 
combinations extend beyond points that are expressed as 
convex combinations of  two endpoints. In seeking a path 
that continues beyond x "  (starting from the point x ' )  we 
invoke a tabu search concept, referring to sets of attributes 
associated with the solutions generated, as a basis for 
choosing a move that 'approximately' leaves the fewest 
moves remaining to reach x ". Let A(x) denote the set of 

solution attributes associated with ('contained in') x, and 
let A_drop denote the set of  solution attributes that are 
dropped by moves performed to reach the current solution 
x'(i), starting from x ' .  (Such attributes may be com- 
ponents of  the x vectors themselves, or may be related to 
these components by appropriately defined mappings.) 

Define a to-attribute of a move to be an attribute of  the 
solution produced by the move, but not an attribute of 
the solution that initiates the move. Similarly, define a 
from-attribute to be an attribute of the initiating solution 
but not of the new solution produced. Then we seem a 
move at each step to maximize the number of  to-attributes 
that belong to A(x ") - A(x(i)), and subject to this to mini- 
mize the number that belong to A_drop-A(x"). Such a 
rule generally can be implemented very efficiently by appro- 
priate data structures. 

Once x(r)= x" is reached, the process continues by 
modifying the choice rule as follows. The criterion now 
selects a move to maximize the number of  its to-attributes 
not in A_drop minus the number of its to-attributes that 
are in A_drop, and subject to this to minimize the number 
of its from-attributes that belong to A(x"). The combi- 
nation of these criteria establishes an effect analogous to 
that achieved by the standard algebraic formula for extend- 
ing a l ine segment beyond an endpoint. (The secondary 
minimization criterion is probably less important in 
this determination.) The path then stops whenever no 
choice remains that permits the maximization criterion to 
be positive. 

For  neighbourhoods that allow relatively unrestricted 
choices of  moves, this approach yields an extension 
beyond x "  that introduces new attributes, without rein- 
corporating any old attributes, until no move remains 
that satisfies this condition. The ability to go beyond the 
limiting points x ' and x "  creates a form of diversification 
analogous to that provided by the original scatter search 
approach. At the same time the exterior points are influ- 
enced by the trajectory that links x I and x ". 

4.4. Multiple parents 

New points can be generated from multiple parents as 
follows. Instead of  moving from a point x ~ to (or 
through) a second point x" ,  we replace x "  by a collection 
of solutions X ". Upon generating a point x(i), the options 
for determining a next point x(i + 1) are given by the union 
of the solutions in X ", or more precisely, by the union A" of  
the attribute sets A(x), for x E X". A" takes the role of 
A (x " )  in the attribute-based approach previously 
described, with the added stipulation that each attribute is 
counted (weighted) in accordance with the number of 
times it appears in elements A(x) of  the collection. Still 
more generally, we may assign a weight to A(x), which 
thus translates into a Sum of  weights over A" applicable 
to each attribute, creating an effect analogous to that of  
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creating a weighted linear combination in Euclidean space. 
Parallel processing can be applied to operate on an entire 
collection of points x '  E X '  relative to a second collection 

'1 X I !  x C by this approach. Further considerations that 
build on these ideas, and that go beyond the scope of our 
present development, are detailed in Glover (1991). 

This multiparent path relinking approach generates new 
elements by a process that emulates the strategies of the 
original scatter search approach at a higher level of generali- 
zation. The reference to neighbourhood spaces makes it 
possible to preserve desirable solution properties (such as 
complex feasibility conditions in scheduling and routing), 
without requiring artificial mechanisms to recover these 
properties in situations where they may otherwise become 
lost. By expanding the concept of solution combinations, 
and providing new strategies for generating these combi- 
nations, path relinking gives a further basis for integrating 
ideas of genetic algorithms and scatter search. 

5. Conclusion 

Ideas originating in mathematical relaxations have evolved 
to become incorporated in the notions that underly scatter 
search, giving an approach to optimization that is highly 
compatible with the approach of  genetic algorithms. The 
potential to exploit connections between scatter search 
and GAs is just beginning to be explored, and oppor- 
tunities to create hybrid methods are abundant. Recent 
extensions of  scatter search based on path relinking, and 
the associated use memory exploiting strategies based on 
tabu search, offer particular promise as a foundation for 
creating such hybrids, opening the door to classes of 
procedures that have features complementary to those 
normally studied in the GA domain. Determining the 
relative merits of different options, and identifying appli- 
cations where these options are most effective, provide 
inviting avenues for future research. 
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