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The strategy of subdividing optimization problems into layers by splitting variables into multiple
copies has proved useful as a method for inducing exploitable structure in a variety of applications,
particularly those involving embedded pure and generalized networks. A framework is proposed
in this paper which leads to new relaxation and restriction methods for linear and integer
programming based on our extension of this strategy. This framework underscores the use of
constructions that lead to stronger relaxations and more flexible strategies than previous applica-
tions. Our results establish the equivalence of all layered Lagrangeans formed by parameterizing
the equal value requirement of copied variables for different choices of the principal layers. It is
further shown that these Lagrangeans dominate traditional Lagrangeans based on incorporating
non-principal layers into the objective function. In addition a means for exploiting the layered
Lagrangeans is provided by generating subgradients based on a simple averaging calculation.
Finally, we show how this new layering strategy can be augmented by an integrated relaxation/ re-
striction procedure, and indicate variations that can be employed to particular advantage in a
parallel processing environment. Preliminary computational results on fifteen real world zero-one
personnel assignment problems, comparing two layering approaches with five procedures pre-
viously found best for those problems, are encouraging. One of the layering strategies tested
dominated all non-layering procedures in terms of both quality and solution time.
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1. Introduction

The strategy of subdividing optimization problems into layers of constraints that
replicate the original constraints, with a different copy of some subset of the original
variables attached to each layer, has proved valuable in a variety of applications as
a means of inducing exploitable structure. First proposed as a means of creating
pure and generalized network structure for netforms [17, 18, 19,22], the layering
strategy, as elaborated in succeeding sections, is not confined in principle to this
setting, but continues to find its chief practical application in the domain of
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network-related formulations [7,16,20,31,32]. Complementing this strategy, interest
has also emerged in identifying pre-existing embedded pure and generalized network
structure or its equivalent [2, 3, 4, 5, 12, 33, 34]. Attention has also been given to
developing special methods for networks with "equal flow" side constraints [I, 6,
9,10,29,30], motivated in part by the fact that such constraints arise as a consequence
of the layering strategy. Further motivation, both for such methods and the formula-
tions to which they are applied, derives from the recognition [I, 7, 9, 17,22, 30]
that all linear and linear integer programs can be modeled as generalized networks
by compelling subsets of arcs to have equal flows. It has also been demonstrated
that zero-one integer programs are equivalent to zero-one generalized networks
without separately imposing such equal flow conditions [22]. Variations that do not
break all variables into network variables, but that maintain a small number of
non-network side variables, have also attracted interest [9,14].

A useful feature of layering strategies is precisely the fact that they may be viewed
as creating "structured layers" which are linked by exceedingly simple conditions-a
feature well noted since they were first introduced, and which has motivated our
use of the "layering strategy" term. The purposes of this paper are: (1) to provide
a general framework for representing layering strategies; (2) to establish theoretical
results concerning alternate Lagrangean solution approaches; (3) to specify new
solution approaches; and (4) to identify useful attributes of layering strategies in a
parallel processing environment. Computational results are then presented on fifteen
real world zero-one problems comparing two layering strategies and five non-

layering procedures.

2. Formulation and induced structure

Consider the original linear or integer programming problem in the following

form:
P: Minimize cx + dy

subject to Cx + Vy ~ b,

XEX,
yE Y;

where x E X and y E Y may summarize special constraints such as integer restrictions
on some of the problem variables. The variables have been partitioned into the
vectors x and y to permit the isolation of pre-existing structure in the matrix C;
e.g., C may represent the matrix for a pure or generalized network. (C and x may

have null dimension; i.e., may not exist.)
We undertake to induce structure in the rest of the problem by partitioning rows

of V exhibiting desired structure into matrices VI, V2, ..., Vk,. .., Vr which are
mutually exclusive and collectively exhaustive of the rows of V. (The "mutually
exclusive" property may be usefully subverted in certain circumstances, noted

subsequently, by supposing V already contains duplicate rows.)
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One structure of particular interest is the two-multiplier generalized network, or
GN2 structure, in which each column contains at most two nonzero elements (see,
e.g., Dantzig [8]). The more common definition of a generalized network problem
[13, 25, 30, 35] stipulates that the nonzero entry of each singleton column consists
of -1 or +1, while the nonzeros of each doubleton column consist of a -1 and an
arbitrary positive entry (or in some developments, a + 1 and an arbitrary negative
entry). The "arbitrary" element has been called the multiplier, arc multiplier, or
column multiplier. We call this more common generalized network problem the single
multiplier generalized network problem, or GN1 problem.

The GN2 structure, for which specialized labeling methods were first proposed
in [21], can be transformed into a GN1 structure by scaling columns and by
complementing certain variables relative to their upper bounds (replacing Xj by
xj= ~-Xj). However, such devices have apparent computational shortcomings.
When dealing with integer conditions, for example, scaling has the drawback that
each scaled variable must take on its own set of values. In the case where tight
upper bounds are not known, complementing variables relative to "large" upper
bounds may introduce numerical difficulties and algorithmic inefficiency. Moreover,
both of these types of disadvantages are compounded in the context of layering
strategies, where each layer requires its own scaling and complementing operations.

Our motive in emphasizing the GN2 structure is threefold: (i) it provides greater
practical flexibility than pure and single multiplier generalized networks for identify-
ing sets of rows to compose the submatrices D1, D2, ..., etc.; (ii) a highly efficient
computer code for GN2 problems has existed for a number of years and has proved
of value in a variety of applications, including those involving embedded network
structures of varying levels of generality [11, 16, 20]; (iii) the current widespread
focus on identifying pure network and single multiplier generalized network model
structures in linear and integer programs may advantageously be expanded, in our
opinion, to include GN2 model structure. A useful step in this latter direction has
recently been undertaken in [5].

A simple manifestation of the GN2 framework arises by letting D1 consist of any
two rows of D, letting D2 consist of any two remaining rows, and so on. Even
simpler is to let each Dk consist of a distinct row of D. We later discuss the generation
of surrogate constraints which can be incorporated into such Dk components.

Taking advantage of partitioning

The partitioning of D induces a corresponding partition C and b, and thus P
may be written in the form

P*; Minimize cx+dy

subject to ckx+Dky~bk, k=l,...,r,
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In order to exploit the special structure of Dk in each of the preceding r layers of
constraints, r different copies yl, yl,.. ., yr of the vector yare created. Let one

of them, yh, represent the "original" copy, and create the enlarged equivalent

representation:

CX+dyhPh Minimize

subject to Ckx+Dkyk ~ bk, k = , r,

XEX,

ykEY; 

k=l, ,r,

allk~h.

The constraints Ckx + Dkyk .;;; bk not only individually but collectively exhibit the
desired exploitable structure, since each Dk is associated with a different set of
variables. We call Ph the layered representation of P.

Some of the columns of a particular Dk may correspond to the zero vector. Clearly
these columns and the associated variables may be discarded from the associated
layer. We therefore suppose in practice that the system is represented by removing
unnecessary variables and disregarding irrelevant components of the constraint

k YhY = .

3. 

Exploiting the layered representation by relaxation

By associating Lagrangian multiplier vectors, Uk, with yk = yh in Ph, the following

Lagrangean problem is created:

Ph(U) Minimize CX+dyh+ L Uk(yk_yh)
k,.h

C k V k k",;: bk k -x+ Y ~, -1,...,r,subject to

xeXo,

ykEYO, k= 1, , r,

where Xo and Yo are supersets of X and Y (obtained, for example, by discarding
integer restrictions), and u = (u1, u2,..., ur). It might at first be suspected that Ph(U)
can be strengthened by incorporating additional equalities into its objective function,
as motivated by the observation that we know not only yk = yh for k ~ h, but also
yp = yq for all p and q, and the bulk of these latter equalities are missing from the
objective of Ph(U). Reflection shows, however, that including the larger set of
equalities does not strengthen Ph (u), since equivalent systems of linear simultaneous
equations have the same set of linear combinations.
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For comparative purposes, we also create a Lagrangean from the precursor p*
of Ph, i.e., the representation specified before the y vector was split into multiple
copies. Since the Lagrangean multiplier vectors Uk apply only to k ~ h in Ph(u),
the comparative Lagrangean takes only the inequalities Ckx + Dky.;;; bk for k ~ h
into the objective function. This Lagrangian is expressed as follows:

Qh(V): Minimize cx+dy+ L Vk(Ckx+Dky-bk)
k..h

chx + Dhy ~ bh,subject to

xeXo,

ye Yo,
h - ( I 2 ' ) ~ 0w ere v- V,V,...,V ~ .
We call the constraint layer associated with the special index h the principal layer

in Ph(U) and Qh(V). While it is clear the Ph is the same problem for all h (i.e., the
choice of a principal layer is irrelevant to this problem), it is evident that this is not
the case for Qh(V), and the relationship between different instances of Ph(U) as h
varies is not obvious. Our first result shows that the choice of the principal layer in
defining Ph (u) in fact makes no difference, by establishing a useful additional
equivalence. For this we define the problem:

cx + I Wkyk
k=l

Minimize

subject to Ckx+Dkyk~bk, k=l,...,r,

XEXO,

ykE Yo, k=l,

where

,
w = (WI, W2, ..., w') with L Wk = d.

k=I

Theorem 1. Ph(U) is equivalent to R(w) for all h.

Proof. We first show Ph(U) is equivalent to the problem Rh(z): Minimize cx+ dyh +
Lk zkyk subject to the constraints of Ph(U) wherez= (Zl, Z2,..., z') satisfiesLk Zk =0.
For this define Zk = uk for k ~ h, and Zh = -Lk..h Zk. Then Lk Uk(yk -yh) = Lk zkyk.

Starting from Lk Zk = 0 and arguing backward establishes the reverse direction and
hence the equivalence of Rh(z) and Ph(U). Finally, defining Wk = d + Zk (and

Zk = Wk -d) and Wk = Zk for k ~ h establishes similarly the equivalence of Rh(z)

and R(w).
Since in general the standard Lagrangeans Qh (v) are different for each h, and do

not involve splitting the variables into copies, it is natural to ask whether at least
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one of them may provide a stronger relaxation than R( w). The answer to this

question follows:

Theorem 2. Qh(V) is never stronger than R(w) for any h.

Proof. We show that Qh(V) cannot be stronger than Ph(U) by choosing Uk = -vkDk.

Then the objective for Ph(U) becomes

Minimize cx + dyh + L (Vk Dkyh -Vk Dkyk).
k.,h

From Ckx+Dkyk ~ bk with Vk;;;. 0 we obtain vkDkyk ~ vkbk -VkCkX and hence the

optimized value of the preceding objective is at least as large as that of the objective

Minimize cx + dyh + L vk( Ckx + Dkyh -bk).
ko'h

Since we may readily denote yh by y in Ph(U), the stated conclusion holds.
The fundamental observation of the preceding theorem is independently estab-

lished by M. Guignard-Spielberg in [23a] (see also [23b]) for the case where C is
null and r = 2. The theorem motivates the creation of strong composite surro-

gate/ Lagrangean relaxations by the following device. Suppose we incorporate among

the inequalities for generating a surrogate constraint the inequality

cx+dy~e

where e is a scalar selected to bound the objective function (or generated by a
branch and bound procedure). Further suppose x E X implies x;;. 0, and we also
allow upper bounds on components of x to be incorporated among the inequalities
for generating a surrogate constraint. Then by the "constrained" surrogate constraint
ideas of [15], it may be possible to generate strong surrogate constraints of the form

CoX + doY ~ eo where co~ O.

If such a surrogate constraint does not exist, the original problem has an unbounded

optimum. Otherwise, the foregoing inequality implies

doY ~ eo

and this latter surrogate constraint can be added to the system Cx + Dy ~ b without
modifying the structure of C, since the added rows of C are all O. (If x E X does
not imply x ~ 0, we may incorporate any implied lower bounds on components of
x into the original inequalities and require Co = 0.) In case C and X are null, either
by necessity or choice, then of course the requirement Co ~ 0 is trivially met. Our
emphasis on creating layers with GN2 structure permits the incorporation of a pair
of surrogate constraints into a single layer, if desired, thus producing a particularly

strong composite relaxation.
We next seek a convenient and intuitively appealing means to generate sub-

gradients for R(w) to be used in a sub gradient search process [24]. In particular,
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given a vector w which defines a current relaxation R( W), we seek a subgradient
vector g to obtain an improved vector w by reference to the equation

w = w+sg

where s is a nonnegative scalar representing the step size for the sub gradient search.
(Here w is partitioned as (wI, W2, ..., w') and g = (gI, g2, ..., g') is partitioned

similarly.)

Theorem 3. Let X, yk, k = 1, ..., r, be an optimal solution to R( w), and let a denote
the average of the yk vectors:

a=(ktlyk)/ r.

Then the vectorg is a subgradientforR(w) atw, when

gk=2(yk-a), k=I,2,...,r.

Proof. First we note that each problem Ph(U) gives rise to a different subgradient
f(h), by settingf(h)k=yk-yh for k~h. For R(w),f(h) translates into the sub-
gradient g(h) given by g(h)k=yk_yh for k~h and

(h)h- ~ ( -k -h)-;. ( -k -h )g --L. Y -Y --L. Y -Y .
k",h k=l

Although valid, the preceding subgradient g(h) is "lopsided" relative to h. Every
convex combination of such subgradients also qualifies as a subgradient, and we
choose an equal weighting to yield

gk=! [ I g(h)k ] =! [ I (yk_yh)- I (yh_yk)
]r h=l r h=l k=l

= 2(yk -a) for each k.

The subgradient g identified in Theorem 3 assures Lk wk = d as required, upon
determining w from w = w + sg, given L k Wk = o.

4. Incorporating problem restriction

To compensate for the absence of the equations yk = yh in the relaxation R( w),

we propose augmenting R(w) to include simple parameterized bounds on the
components of each yk, thereby obtaining the problem

R(w, L, U):
Minimize cx+I wkyk

k

., r,subject to CkX+ Dkyk ~ bk, k = 1,.

L~yk~U, k=l,...,r,

XEXo,

ykEYo, k=l,...,r,
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where Lk Wk = d. In this combined relaxation/restriction of P, the goal on the
restriction side is to gradually modify components of Land U to bring these vectors
closer together. We suggest a heuristic approach for doing this, with the aim of
generating good candidate solutions for P (as where, for example, we seek an
advanced start for linear programming or an improved incumbent for integer

programming).

Relaxation/Restriction method
O. Begin with w = 0 and choose I and 0 so that the inequalities I ~ yk ~ 0 are

redundant. Also assign large values to two scalars Lo and Uo.

1. Solve R( w, I, 0).
2. Employ the subgradient of Theorem 3 within a standard subgradient optimiz-

ation procedure to determine a new w.
3. Redefine Ij:= aj -Lo and ~:= aj + Uo for all components aj of a as given in

Theorem 3.
4. Gradually reduce Lo and Uo to 0 over successive iterations, and repeat Steps

1-3 alternately or in combination until either alllji~ -ail reach an acceptably small

tolerance or R( w, I, 0) has no feasible solution.

The foregoing procedure is stated without a high degree of specificity in its
component steps to provide a general format that allows latitude for alternative
implementations. Reasonable variants, for example, could include a non-terminating
recovery from a problem with no feasible solution and a more general formula in

Step 3 such as

4:= tLj+(l- t)aj-Lo,

~:= t~+(l-t)aj+ UO,

~
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S. Preliminary computational analysis

In this section, we provide a preliminary comparison of two layering relaxation
strategies with five other relaxation strategies on the class of multi-criteria personnel
planning problems called the extended goal programming (EGP) manpower plan-
ning model in [18b]. To state the EGP model and to understand the strategies tested,
it is convenient to begin with a statement of the following quasi-assignment model.

Minimize L cijxij
(i,j)eA'

(1)

.L x,=l.ul<i.j)eA1 II , IE M,

L Xm+l. = njeN' ,} ,

(2)subject to

(3)

L x..=l.{il<i.j)eA'}!/ ' J E N,

L x.ieM' ..n+l

(4)

(5)=m,

Xij nonnegative and integer (i,j)EA', (6)

where M={I,2,..., m} is the set of personnel, N={I,2,..., n} is the set of jobs,
A is the set of admissible assignments (arcs), xii equals one (zero) if person i is (is
not) assigned to job j, and cij is the cost of assigning person i to job j. Also,
M'= Mu{m+I}, N'= Nu{n+I} (where m+I represents a dummy repository of
personnel and n+I represents a dummy repository of jobs), and A'=Au
{(m + I,j) Ij EN} u {(i, n + 1) liE M} u {m + 1, n + I} (which allows dummy person-
nel to fill any job and dummy jobs to be filled by any person). The Cij, (i,j) E A' -A
can be defined to reflect the cost of an unassigned person or unfilled job or to
provide for the maximum assignment of personnel to jobs.

The EGP model is an extension of (1)-(6) which accommodates multiple objec-
tives. Suppose there are three objectives Ck, k = 1, 2, 3 and let Ck be the optimum
objective function values obtained where (1)-(6) is solved using c = Ck. (Note that

Ck exists since (2)-(6) is always feasible.) The EGP model is then stated as follows:

Minimize ~ c!.x.. (1')"" !J!J
{i,j)eA'

subject to constraints (2)-(6)

and
('" k --k )/ -k ..:: ('" 1 --1 )/ -1 k - 2 3 (7),-,CijXij C C~qk,-,CijXij C C, -"

where the summations are over (i, j) in A' and the qk are weights defining the relative
importance of the objectives. (The origin and nature of the EGP model is more
fully described in [18a].) The EGP model is an instance of the class of integer

programming problems with a large embedded network structure.
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The computational testing reported in this paper was performed on the set of
fifteen EGP problems reported in [18a, 18b]. These problems range in size from 20
constraints and 54 variables to 135 constraints and 2683 variables. Table 1 provides

problem specifications.
The test problems represent actual Navy personnel rotation assignment decisions

[18a] having three objectives: c, the dollar cost of making an assignment; d, the
desirability to the person of an assignment; and u, the utility of the Navy of an
assignment. Table 1 gives the optimal values of these objectives considered indepen-
dently (i.e., cl = c, c2 = d, and C3 = u). In the present study, as in the earlier studies,

the dollar cost objective c is considered to be the primary one appearing in the
objective function (1') and in the right-hand side of the two extra non-network
constraints (7). To facilitate comparisons of different strategies, we present in Table
2 the best known feasible integer solution for these problems. For each problem
the values of the objectives ex, dx and ux are given. Subsequent tables give the
same information about integer solutions obtained from the various strategies to be
described, solution times in seconds on a Dual CYBER 170/750 and, for the feasible
integer solutions, the percent deviation from the best solution in Table 2 in terms
of the primary objective ex.

In [18a], twelve different strategies for obtaining high quality feasible solutions
were examined and compared. The methods tested were: vertex ranking, linear
search, restricted basis entry, solution testing of quasi-assignment extreme points,
surface optimization, generalized Lagrangean relaxation using optimal dual weights,
generalized Lagrangean relaxation using a priori intuitive weights, generalized
Lagrangean relaxation using weights from subgradient search, surrogate relaxation
using optimal dual weights, surrogate relaxation using interval weights, surrogate-
Lagrangean relaxation using simple partitioning and interval weights, and surrogate-

d

2711
771

3014
2028
4329
3584
4499

14387
6893
8555
1556

14767
21997

7254
958

5342
7312
908

1254
8390
3246
457

23009
13298
19622
3275

14904
28704
8619
1357
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Table 2

Best feasible integer solutions

dx

5342
8259
1368
1254
9365
3246
457

23009
13338
22985
3363

15106
28704
8726
2044

Problem cx ux

2870
256

1923
175
138

3085
1100

12255
7024
313

1658
14918
23410
5607
380

2984
863

3139
2098
4890
3763
5544

15414
6919

10125
1730

15228
22253
7419
1251

8
9

10
11
12
13
14
15

Lagrangean relaxation using strong surrogates and interval weights.
Tables 3-7 presents the computational results on the generalized Lagrangean

relaxation using optimal dual weights, generalized Lagrangean relaxation using
weights from subgradient search, surrogate relaxation using optimal weights, surro-
gate relaxation using interval weights, and surrogate-Lagrangean relaxation using

6241*
9157
908

1254
9365
3246
457

23547
13448*
22985
3363

15106
28704
8726
2223*

inf
7.81
inf
0
0
inf
9.91
0.65
inf
0
2.17
0
0.37
0.55
inf

33

4

20
14
15
14

11
40

51
53

3

2

17

7
21

300

2074
276

1081
175
138

2896
1209

12339
7002
313

1694
14918
23496
5638
2846

3354
787

3466*
2253
4890
3763*
6090

14664
6917

10125
1600

15228
22083

7419
958

1
2
3
4
5
6
7

11
12

Total

inf: No feasible integer solution was found.
*Extra constraint corresponding to this objective was violated.
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38
6

26
19
18
19
16
44
57

3096
787

3537
2253
4890
3763*
6090

14664
6917

10125
1600

15228
22083

7419
1251

2.68
1.81
0.51
0
0

inf
9.91
0.65
inf
0
2.11
0
0.31
0.55

1031.63

2947
276

1934
175
138

2896
1209

12339
7002
313

1694
14918
23496
5638
4323

5342
9157
908

1254
9365
3246
457

23547
13448*
22985
3363

15106
28704
8726
2223

1
2
3
4

10
11
12
13
14
15

Total

6
24
11
26

360
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Table 6

Surrogate relaxation using interval weights

Problem dx % From
best

Time
(sec)

uxcx

3688
863

3139
2253
4890
3763
6231

14485
6919

10125
1730

15228
22083

7419
958

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Total

2870
256

1925
175
138

3085
1100

12281
7024
313

1658
14918
23496
5607
2846

5342
8259
1368
1254
9365
3246
457

23997
13338
22985
3363

15106
28704
8726
2223*

0
0
0.10
0
0
0
0
0.18
0
0
0
0
0.37
0
inf

10
23
27
24
18
14
36
31
38
51
14
13
22

9
21

351

inf: No feasible integer solution was found.
* Extra constraint corresponding to this objective was violated.

Table 7

Surrogate-Lagrange an using simple partitioning

Time
(sec)

dx % From
best

Problem cx ux

2870
256

1925
175
138

3085
1100

12259
7024
320

1658
14918
23496
5623
380

5342
8259
1368
1254
9365
3246
457

23009
13338
22492
3363

15106
28704
8726
2044

3539
863

3139
2253
4890
3763
6231

15414
6945

10203
1730

15228
22083
7419
1251

0
0
0.10
0
0
0
0
0
0
2.24
0
0
0.37
0.29
0

11
23
27
22
19
18
32
28
39
4

18
17
24
14
18

370

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Total
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Time

(sec)

2947
276

1925
175
138

2896
1100

12339
7797

313
1694

14918
23496

5638
2846

5342
9157
1368
1254
9365
2246
457

23547
13411
22985
3363

15106
28704
8726
2223*

3096

787

3139

2253

4890

3763*

6231

14664

6945

10125

1600

15228

22083

7419

958

2.68
7.81
0.10
0
0

inf
0
0.65

11.1
0
2.17
0
0.37
0.55

inf

1
2

22

16
14

11

15
29

37
42

4

11

15
8

17

233
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simple partitioning, respectively. These five methods were found to be superior to
the other seven methods tested in [18a, 18b].

To compare the layering approach on the EGP model, we tested two different
strategies. In the first strategy, we created two layers, one consisting of the embedded
quasi-assignment problem and the other, the two constraints of (7). The quasi-
assignment problem was solved with the same network optimizer for all strategies
tested and the other layering problem, which is a two node GN2 problem, was
solved using a specially designed code for two node GN2 problems. In our testing
we used a very simple instance of the relaxation/ restriction method where i = 0,
[j = 1, Lo = Uo= infinity, i and [j were never modified, and steps 1-3 were perfor-
med a maximum of twenty times. After each iteration of 1-3, the solution was
examined for integer feasibility and the best recorded. The results tabulated in Table
8 show that feasible solutions were obtained for 13 of the problems. In terms of
both quality and solution times, these solutions are generally much better than those
obtained by the generalized Lagrangean relaxation with optimal dual weights and
the surrogate relaxation with optimal dual weights. (See Tables 3 and 5.) The solution
quality is similar to the generalized Lagrangean where candidate solutions were
generated for each set of weights produced during subgradient search (Table 4),
but much better in terms of total solution time. The solution quality is somewhat
worse than the surrogate relaxation using interval weights (Table 6) and surrogate-
Lagrangean relaxation using simple partitioning (Table 7), but the total solution
times are much better.

The second layering strategy tested used the dual variables associated with an
optimal solution to the two node GN2 problem on a particular iteration to form a
surrogate constraint of the constraints in (7). The surrogate constraint was added
to the quasi-assignment problem before solving it on the current iteration. (Again
the same software was used to solve this network with one side constraint as employed
by the procedures tested in [18a, 18b].) After each iteration of steps 1-3, we
transformed a noninteger solution into an integer solution (for the quasi-assignment
problem with a surrogate constraint) by executing a single pivot to bring the slack
variable for the surrogate constraint into the basis. This solution was examined for
feasibility, keeping track of the best integer feasible solution obtained at any iteration.
As shown in Table 9 this approach was remarkably robust. For all fifteen problems
this approach dominated all non-layering methods in terms of both solution time
and solution quality.

6. Conclusions and implications

Our development of the layering framework, the results for exploiting it, and the
preliminary computational results, show that layering strategies have a number of
appealing attributes. Our orientation strongly motivates a shift in the current
dominant focus on pure and single multiplier generalized network structures to a
broader focus that encompasses the GN2 structure. The issue of identifying "good



180 F. Glover, D. Klingman / Layering strategies

layers," i.e., Dk submatrices with large numbers of rows and small numbers of
nonzero columns (to effectively reduce the number of components of the yk vectors),
poses intriguing questions for future investigation.

We suggest the possibility, however, that it may prove worthwhile to employ
layering strategies that do not at once seek to generate Dk submatrices with numerous
rows but rather initially generate "thin" layers and choose C and x null. By such
an approach the problems R(w) and R(w, L, U) completely decompose into small
disjoint problems for each layer, inviting the use of parallel processing to solve the
problems associated with all layers simultaneously.

In the extreme where each layer consists of just two or three rows of the original
problem, a GN2 procedure can be tailored ~:as was done in our computational
testing) to solve the resulting subproblems with greatly increased efficiency. Still
more broadly, a GN2 problem with a single side constraint (e.g., a surrogate constraint
from other layers) can similarly be treated with a highly tailored approach. Very
fast initial progress may therefore be sought by reference to such an extreme layering,
followed by recourse to alternative layerings when progress slows. In general, we
find attractive the notion of employing a strategy that integrates the solution of
different layerings. When C and x are null, such a strategy corresponds simply to
allowing constraints to be duplicated, thus permitting the layers to be composed in
different fashions. In a parallel processing environment, one subset of layers can
be solved while the solution of another subset is being transferred to subgradient
optimization, where the latter may optionally incorporate attenuated subgradients
from solutions to previous subsets.
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