
Annals of Operations Research 5(1985/6)395-411 395

INTEGRATING MODELING, ALGORITHM DESIGN, AND COMPUTA-
TIONAL IMPLEMENTATION TO SOLVE A LARGE-SCALE NON-
LINEAR MIXED INTEGER PROGRAMMING PROBLEM^

F. GLOVER

Department of Management Science, University of Colorado, Boulder, CO 80302, USA

D. KLINGMAN

David Bruton, Jr., Centennial Chain in Business Decision Support Systems,
University of Texas at Austin. Austin, TX 78712. USA

N. PHILLIPS

Department of Operations Research. University of Texas at Austin, Austin, TX 78712,

and

G.T. ROSS

Production and Distribution Planning Systems, Analysis. Research, and Computation,
Inc., Austin. TX 78767, USA

Abstract

This paper describes the formulation of a nonlinear mixed integer programming
model for a large-scale product development and distribution problem and the de-
sign and computational implementation of a special purpose algorithm to solve the
model. The results described demonstrate that integrating the art of modeling with
the sciences of solution methodology and computer implementation provides a
powerful approach for attacking difficult problems. The efforts described here were
successful because they capitalized on the wealth of existing modeling technology
and algorithm technology, the availability of efficient and reliable optimization,
matrix generation and graphics software, and the speed of large-scale computer
hardware. The model permitted the combined use of decomposition, general linear
programming and network optimization within a branch and bound algorithm to

" ^ i s research was supported in part by the Office of Naval Research Contract NOOO14-78-C-0222,
by the Center for Business Decision Analysis*, by the University of Texas at Austin, and by the
David Bruton, Jr., Centennial Chaii in Business Decision Support Systems. Reproduction in whole
or in part is permitted for any purpose of the U.S. Govemment.

*Center for Business Decision Analysis, Graduate School of Business - GSB 3.126, University
of Texas, Austin, Texas 78712, USA.

© J.C. Baltzer A.G., Scientific Publishing Company

396 F. Glover et al. Integrating modeling, algorithm design, and implementation

overcome mathematical complexity. The computer system reliably found solutions
with considerably better objective function values 30 to 50 times faster than had
been achieved using general purpose optimization software alone. Throughout
twenty months of daily use. the system was credited with providing insights and
suggesting strategies that led to very large dollar savings.

Keywords and phrases

Nonlinear programming, decomposition, branch and bound, network, transporta-
tion, mixed integer programming.

Authors* note

A confidentiality agreement between the authors and the firm facing
the problem described in the paper prohibits disclosure of the firm's
name and operational or financial information relating to this application.
We have, therefore, camoufiaged a number of details concerning the
business problem. The mathematical model, the algorithm and the key
aspects of the implementation, however, remain intact.

1. Introduction

The need to maximize expected future revenue under complex contractual
terms provided the impetus to develop a mixed integer nonlinear mathematical pro-
gramming model and to implement a customized algorithm for its solution. The con-
text which gave rise to the model is described here, although specifics of the actual
case are disguised. How the structure of the model was exploited by a branch and
bound algorithm that made combined use of the general purpose linear programming
optimizer and a general purpose network optimizer is also discussed.

The technical accomplishments reported here are several.

First, the solutions provided by the model were high quality along several
dimensions. In formal terms, they were provably 90-95% optimal. In relative terms,
they were at least 20% better than any the company had devised previously, and this
savings amounted to a very large sum of money. In functional terms, they were relied
upon by management in making operating decisions over a period of twenty months.

Second, the computational performance of the algorithm is noteworthy, given
the scale and complexity of the problem. Early attempts by the company to optimize
other formulations with general purpose algorithms had faired poorly. After eight cpu

F. Glover et ai. Integrating modeling, algorithm design, and implementation 397

hours of time on an IBM 3033 computer, IBM's general purpose mixed integer pro-
gramming system MPSX/370-MIP had found only a single feasible solution known to
be only 75% optimal. (However, as discussed further below, the superiority of this sub-
optimal solution over the best solution derived by manual efforts convinced manage-
ment of the value of an optimization model and spawned the project described here.)
In contrast, the special purpose procedure described below routinely found an in-
cumbent solution at the initial node ofthe branch and bound tree and verified 90-95%
optimal solutions in 1/2 to 1 cpu hour. Typical problems had 8500 linear constraints,
100 nonlinear constraints, 12 000 continuous variables and UO to 200 integer vari-
ables.

Third, the features of the algorithm show how optimization methodology and
available optimization software tools may be combined to overcome problem com-
plexity. Insights conceming exploitable problem structure which gave rise to the
algorithm and which made the problem tractable are discussed in detail. The key
features of the algorithm are decomposition (facilitated by replacing a large number
of constraints by a very few constraints), relaxation and restriction (obtained by re-
placing nonlinear equations by linear ones), and network optimization (permitted by
the decomposition).

The software implementation of the algorithm was carried out by Analysis,
Research and Computation, Inc. (ARC). It involved IBM's general purpose linear
programming system MPSX/370 [4], ARC's primal network optimization software
ARCNET [1], a custom branch and bound routine written in FORTRAN which
called both MPSX/370 and ARCNET as subroutines, and interface routines written
in IBM's extended control /anguage (ECL). Further details are given later in the
paper.

Computer graphics were also instrumental in the successful use ofthe model.
Two graphs, originally designed by the user as a mechanism for manually computing
a solution, were subsequently plotted from the model solution. The graphs summarized
in a comprehensive and clear fashion the results of an optimization run. These graphs
were helpful both in revealing the implications of a solution and in identifying anoma-
lies in solutions when the system was being debugged and refmed.

From a broader perspective, the success of this effort illustrates two important
points about the state-of-the-art of mathematical programming. Foremost, it gives
evidence of the value of optimization methodology in practical applications. Prior to
building the model described here, the company had formed a large task force of
various professionals (managers, engineers, lawyers, economists and system analysts)
to explore altematives and to develop recommendations for resolving the business
issues. Some of these persons spent considerable amounts of time developing specific
strategies by hand (in essence, attempting to solve the model by hand). For their time-
consuming and tedious efforts, they produced answers which were technically in-
feasibie and, without assigning a penalty for infeasibility, substantially inferior from

398 F. Glover et al. Integrating modeling, algorithm design, and implementation

a revenue perspective to the suboptimal solution produced by an early mathematical
programming model. Thus, while the initial mathematical programming model de-
veloped for this application was impractical to use from a computer run-time viewpoint,
it was very successful in demonstrating the potential of computer-based optimization.
A very conservative estimate of the benefit cost ratio for this project is 500 to 1.

In the second place, the success of the specialized algorithms demonstrates
that mathematical programmers have developed robust modeling, solutions and im-
plementation technologies. Although problems may be difficult to solve by general
purpose algorithms and software, highly specialized approaches that integrate model,
algorithm and computer implementation are viable.

2. Problem description and mathematical model

The ABC Corporation, as we shall refer to the company that faced the prob-
lem, was interested in establishing a five-year monthly operating plan for introducing
new products and determining product distribution to customers consistent with its
standing contracts, technological limitations, and governmental regulations. ABC
operated in an environment characterized by volatile selling prices and changing
govemmental regulations which forced it to exercise care in establishing and ful-
filling its obligations to customers.

The ABC Corporation had three types of customers which we will refer to
by the collective designations of customer 1, 2, and 3. Customer 3 was a 'standard'
customer group who paid the prevailing market price for ABC products. For customers
1 and 2, all of ABC's products were interchangeable, and they had negotiated long-term
contracts which assured them access to products, independent of product type, at a
price considerably below the prevailing market price of ABC's least expensive product.
More precisely, according to the contractual agreement, customer 1 was entitled to
receive a fixed total amount of product over the life of the agreement. This amount
was provided to customer 1 at a fairly stable supply rate by month. Customer 2, like-
wise, was entitled to purchase a fixed amount of product at a low price and at a
steady supply rate until a particular moment in time, called the critical date. There-
after, customer 2 purchased those product types which he was supplied during a
critical period at a higher price but below the market price. (The critical period was a
period of time immediately preceding the critical date.) Except for a provision to be
discussed, customer 2 had the right to purchase after the critical date all the remaining
supply of those product types sold to him during the critical period. ABC's production
of each product type was heavily dependent on the availability of certain depletable
inputs and thus, annual production levels of each product type normally diminished
over time.

One further proviso of the agreement complicated ABC's arrangement with
customers 1 and 2. After the critical date, ABC could, at its option, deliver to customer

F. Glover et al. Integrating modeling, algorithm design, and implementation 399

1 a portion of the supply of products to which customer 2 is entitled. The stipulation
was that customer 1 could be sold no greater percentage of the remaining supply of
a product type than the share he had received of the total amount of that product
provided to customers 1 and 2 during the critical period. For example, suppose 105
units of a certain type were available during the critical period, 90 of which were sold
to customer 3, 10 to customer 2, and 5 to customer 1. Then after the critical period,
customer 1 could receive up to 1/3 of the product type available (1/3 = 5/(5 + 10)),
customer 2 would receive at least 2/3 (10/(5 + 10)) of the product type available, and
customer 3 would receive none. Further, no matter how small the amount of a particu-
lar type of product was used to supply customer 2 during the critical period, his
rights to all ofthe remaining supply were assured.

Additional complications arose out of governmental regulations. In essence,
ABC's products may be conceived as coming in two major classes. Orange and White.
Government policy dictated that during any calendar year, not more than one-half
of the commodity delivered to customer 1 could be white.

The mathematical formulation that expresses the foregoing conditions follows.
A detailed explanation of the problem notation follows the mathematical statement.

Maximize Z Y. Y. c x - Z e.y. (1)c x Z e.y.
rer le/ /e/

subject to X X = d for /•= 1,2, /G T (2)

for ,e/^, rer^ (3)

T. x.^^ < 0.5 Z < îj for A: such that T^ in T (5)

a.^z. for iG/, teT^ (6)

= q. for I G / (7)
(x + X

400 F. Glover ct al. Integrating modeling, algorithm design, and implementation

X x . (,= rfj^ for r e T^ (8)

I x =a,, for /G/̂ . tST^ (9)
y e /

y X.. = a,y. for /G /^, rG T. (10)
^-- lit It •'^I N ' A *• '

yey

x.^^< a.^O-q.) for / G/. r G T^ (11)

ez^ < q. < z. for l e i (13)

2. <;; . for /G/j, (14)

0 < z. < 1 and integer for /G / (15)

0 < V, ^ 1 and integer for * G / „ (16)

x..^ > 0 for / G / , / G 7 , f G r , (17)

where

/ denotes the set of all product types,

I^ denotes the set of new types of product,

/p denotes the set of existing types of product,

/ ^ denotes the set of product types belonging to the white class,

/ denotes the set of customer classes,

T denotes the set of months in the time horizon,

T denotes the set of months in the critical period in T,

T^ denotes the set of months in the ^th calendar year in T,

Tg denotes the set of months before the critical date (includes 7],),

Tj^ denotes the set of months j/rer the critical date,

X.. = units of the product type / sold to customer/ in month t.

F. Glover et al, Integrating modeling, algorithm design, and implementation 401

z. =

1 if type i is used to supply customer 2 during the critical period

0 otherwise

€ —

= portion of the amount delivered of type / to customer 2 of the total
delivered to customers 1 and 2 during the critical period,

1 if new type / product is acquired

0 otherwise

= forecasted supply of type / in month t.

= expected demand of customer / in month r,

= discounted net present value of gross margin (selling price-delivered
cost) per unit of product of type / sold to customer / in month t,

= investment cost required to acquire product of type i,

very small positive value to assure that q^ is positive if z. is one.

The foregoing mathematical representation is admittedly somewhat complex.
However, a brief descriptive breakdown of its components will help to clarify the
model structure and make its features more understandable. The following remarks
should be interpreted relative to the verbal description of the problem that preceded
the formulation.

The objective function (1) measures the total discounted net present value of
future revenues associated with sales to all customers, less any cost associated with the
acquisition of new types of products. The first few constraints are chiefly 'techno-
logical' constraints affecting the critical period. Constraints (2) ensure that customers
1 and 2 will receive their appropriate known amounts during the time periods preced-
ing the critical date. Constraints (3) and (4) ensure that a product of a given type
delivered to customers equals the amount available in each time period before the
critical date. Constraints (4) also reflect the impact of deciding not to acquire a new
product type.

The next several constraints have to do with regulatory and contractual con-
siderations. Constraints (5) ensure meeting the governmental regulation limiting
delivery of white product to customer 1 during any calendar year ofthe model horizon.
Constraints (6) and (7) are best understood when considered in conjunction with
constraints (11) and (12). Constraints (11) reflect that the maximum share of the
supply of a product type that can be sold to customer 1 is one minus the share that
must go to customer 2. Constraints (12) preclude any sales to customer 3 after the
critical date of those types used to supply customer 2 during the critical period.

Constraints (8), (9) and (10) perform the same role in the model for time
periods after the critical date as constraints (2), (3) and (4) do for periods before

402 F. Glover et al., In tegrating modeling, algorithm design, and implementation

the critical date. Note, however, that there is fixed demand only for customer 1,
which will be important in the decomposition decsribed below. Constraints (13)
through (17) express basic relationships needed for logical consistency.

The constraints that pose the greatest mathematical complexity are those
of (7), each of which is nonlinear and has a point of discontinuity. These constraints,
the large problem size, and the presence of integer variables, combine to make the
problem exceedingly difficult to solve by any standard measure. In fact, the size of
the problem itself is formidable. Depending upon the particular scenario manage-
ment needed to analyze, a typical model comprised 40 time periods, 70-130 types
of existing products, and 5 to 10 types of new products. This resulted in models
with 7000 to 8500 constraints (not counting simple upper bounds on variables) and
12 000 continuous variables. The number of discrete z,. variables (and associated q^
variables) varied between 60 and 200 depending upon the scenario, with 100 to 130
being typical. This meant that there were normally 100 to 130 constraints of the form
(7) in the model.

3. Solving the model

When we were confronted with this problem, there was no existing algorithm
that could reasonably be expected to solve the model as specified. Most nonlinear
programming algorithms require that nonlinear functions be differentiable and the
combination of n on-differentiability and integer variables puts the problem beyond
the scope of those algorithms [3,5,6]. Other formulations had been considered by
ABC, including variants which allowed q,- to take on discrete values (e.g. 0.05, 0.10,
0.15), but they increased the number of constraints and the number of integer vari-
ables. Attempts were made by ABC to solve one such model, but it proved exceedingly
difficult to optimize. IBM's system for mixed integer linear programming MPSX/370-
MIP required eight cpu hours on an IBM 3033 computer to find a single integer solu-
tion, and this could only be proven to be within 25% of optimality. Next, ABC tried
Beale's separable programming approach, without success [2].

In the context of a branch and bound method for handling the discrete vari-
ables, the structure of the model and the terms of the contract itself suggested that a
decomposition approach be used to obtain tractable subproblems to solve at each step.
The natural idea is to segregate the problem into two major components, creating one
model for decisions up through the critical period and a second model for time periods
following the critical date. The naturalness of this approach was reinforced by the fact
that the number of periods before (19 periods) and after (21 periods) the critical date
were close to the same.

However, an additional more powerful strategy was required to make this
type of decomposition effective. Assume for the moment that no constraint of (5)
includes variables from both r € T^ and r G T . (This assumption is incorrect but

F. Glover et al.. Integrating modeling, algorithm design, and implementation 403

can be overcome, as will be shown.) Then it follows that the model decomposes into
one covering TQ and one covering 7* .̂ The TQ model includes constraints (2)-(7) and
(13)-(17). The r ^ model includes constraints (8)-(12) and (17). Constraints (17)
appear in both models, as do the relevant portions of the objective function. Dis-
regarding the fact that the TQ model is a difficult nonlinear mixed integer problem,
solving it would yield values for z,- and q^ to use in the T^ model. However, solutions
to the TQ model might provide terribly bad values for z,- and q^ because they do not
appear in the TQ objective, and they are the single most important factors affecting
feasibility and the objective function value of T^.

In the following, we describe the special observations and techniques we de-
veloped to overcome the limitations noted above and transform the indicated decom-
position approach into a highly successful solution strategy.

PROPOSITION A

Given values for Zf, qi and y^, the 7^ model can be formulated as a set of
disjoint (one per calendar year) capacitated trans-shipment problems.

The justification of this proposition requires some mathematical manipulation.
Before providing a technical exposition, we simply illustrate the form of the resulting
capacitated trans-shipment problem and comment on its features. Figure 1 provides
such an illustration for a simplified problem in which T^ consists of two time periods,
both time periods are in calendar year T^, and there is exactly one type of orange
product and one type of white product. Constraints (8)-(12) are handled in this
diagram as follows. The nodes labeled 5,- ^ denote product type / in period t and those
labeled C^f denote customer 1 in period /. The node 07-. represents orange product
sold to customer 2 or 3 during calendar year T^. Each S node has three arcs directed
from it representing flows to customers 1, 2 and 3, respectively. The lower and upper
bounds on the arcs (denoted by the quantities in parentheses) reflect the impact of
the Zj and q^ variables from the TQ model. The upper bound on the arc from 07-. to
Wj-̂ restricts the flow of orange product to customers 2 and 3, thereby forcing at
least half of customer I's demand to be satisfied by orange product and ensuring no
more than half of the demand would be satisfied by white product.

Proof

Clearly, for given values of z,-, q^, and 7,, the 7^ model separates by calendar
year. Constraint (5) couples together period constraints within a calendar year. For a
given calendar year 7̂ ^ in T^, constraints (5) can be rewritten, however, as follows:

^ ^ (^-2, ^ ^,-3r) < 2 ^ , r^ . -0-5 I d^,- (5.1)

404 F. Glover et al, Integrating modeling, algorithm design, and implementation

Fig. 1. A network flow representation of a 7]^ model.

Constraint (5.1) may be replaced by constraints (5.2) and (5.3).

(5.2)

Z a^^z^ - 0 . 5
(" e /-/w re T.

(5.3)

From constraints (8), (9) and (10), form the redundant constraint:

fET,
(18)

F. Glover et al., Integrating modeling, algorithm design, and implementation 405

Subtracting (5.2) from (18) yields the redundant constraint:

Replacing constraint (5) with constraints (5.2) and (5.3) and augmenting each caJendar
year submodel of the 7^ model with constraint (19) results in a T^ model composed
of a set of disjoint capacitated trans-shipment problems for given values of ẑ , q^., and

yf
The major effect of proposition A was to permit the 7^ model to be decom-

posed into a set of six network flow models (one for each calendar year spanning the
61 periods of T^), each capable of being solved very quickly by the general purpose
network flow code ARCNET. The typical size of each network was 650 nodes and
1900 arcs. The optimization time per network never exceeds one second. ECL made it
easy to pass variable values from MPSX to ARCNET, and the general purpose features
of ARCNET made it easy to edit the network problem ftles given these values.

The reformulation of the T^ model to a set of network models and subsequent
analysis of the special structure of these networks lead to two additional important
insights which are characterized in proposition B and C below.

PROPOSITION B

A set of simple constraints can be generated whose feasible solutions are
necessary and sufficient to provide values for q^ that are feasible to the network flow
representation of the T^ model.

Proof

Consideration of the network flow problem illustrated in fig. 1 discloses that
q-j must satisfy the following conditions for there to be any feasible solution to the T^
mode!:

I a.^q. < I fl., + I a.^y. -d^^ for each tST^. (20)

Were constraints (20) not satisfied, there would be insufficient supply available to
meet customer l's demand in each period.

The network formulation also implies that the q^ must satisfy the following
constraints for there to be any feasible solution to the 7]^ model:

406 F. Glover et al. Integrating modeling, algorithm design, and implementation

- I] 0.5 djj (21)

for all it such that T. in T. .

Here, /Q denotes the set of product types belonging to the orange class. These con-
straints ensure that the restrictions goveming the percentage of orange product which
must go to customer 1 on a calendar year basis are met. They are based upon the
conservation of fiow through node Or^ in the network diagram. That is, since customer
1 can receive no more than one half of his demand in white product, he must receive
at least half of it in orange. This, in tum, bounds the amount of orange product that
can go to customers 2 and 3. The sufficiency of these constraints to provide feasible
network solutions follows from the fact that there is only one specified demand per
time period in the 7"̂ model. Constraint (20) ensures that there is sufficient product
to meet this demand and constraint (21) ensures that the orange product percentage
can be accommodated while meeting the requirement that total demand equal total
supply.

Constraints (20) and (21), which numbered about 24 in the actual problem,
were added to model T^ to ensure feasibility for approximately 4000 constraints in
model 7 \ .

It was assumed earlier that no constraint (5) included variables from both
r E Tg and f E 7'^ (or in other words, that TQ ended at the end of a calendar year
and 7'̂ began at the start of the subsequent calendar year). In fact, this was not the
case. For exactly one k, T^ partitioned into two subsets T^ C\ T^ and T^C\Tf^. To
effect the decomposition, it was necessary, for that k only, to change constraints (S)
in model rr, to:

= 0-5

where Uĵ is an unrestricted variable, and for this k to change constraint (21) to

The variable u,^ measures the extent to which the restriction that no more than one-
half of the demand during a calendar year be met with orange product is satisfied by
flows in TQ SO that flows in T^ must compensate to ensure the constraint is met.

F. Glover et al. Integrating modeling, algorithm design, and implementation 407

PROPOSITION C _

Penalty coefficients for the q^ variables to incorporate into the T^ objective
can be deduced from the network flow model.

This proposition can be demonstrated straightforwardly as follows. Since
customer 3 pays more for product than customer 2, the solution to the network form
of the 7 \ model with all z,- = (7,- = 0 represents an upper bound C on the revenues
that could be obtained from sales during T^. Moreover, as g,- increases from 0, the
effect on the solution of the 7^ model is that flow on the arc corresponding to sales
to customer 3 will move to the arc corresponding to sales to customer 2. The impact
on the model 7^ objective is a change of at least Sf e Tfi^^tti^nt ~ ^nt^^i- Hence
Sfe T/^^it(^izt~^i2t^^^ a legitimate penalty to attach to ,̂- in the T^ model objective.
Coupling the use of this penalty with adding the constant C to the T^ model objective
produces an optimistic estimator of the sum of the T^ and Tg objectives.

Propositions A, B and C, in combination, make the decomposition approach
a viable solution strategy. Its effectiveness derives from the following principal reasons:

(a) Model 7 \ is very easy to solve.
(b) The solution of a suitable linear relaxation of T^ by itself yields a strong

bound in a branch and bound scheme.
(c) The segregation of the 7 \ and TQ components provides a strong problem

representation because feasibility to the constraints of model 7 \ are incorporated in
constraints (20) and (21) and made part of model TQ.

To provide a complete solution algorithm based on this decomposition, it was critical
that some means be found to solve a linear relaxation of model TQ effectively. The
chief requirement is an effective mechanism for handling the nonHnear constraints of

(7).
The last major key to the success of the decomposition is the following:

NONLINEAR CONSTRAINT STRATEGY

Constraints (7) are replaced alternately by linear constraints which under-
estimate and overestimate the true value of each q^.

An underestimating value for each q^ is easy to achieve. For the purpose of
computing such an estimate, the constraints of (7) may clearly be replaced by

^^^— = q,. (7u)

I a.

408 F. Glover et al; Integrating modeling, algorithm design, and implementation

For the purpose of finding feasible solutions to Tg, two possibilities exist:

(a) Constraint (7) could be replaced by (7u) and the LP relaxation of model
Tg solved. The taie value of each f?,- could be computed using the underestimating
solution, using the values of the Xi2t found using (7u) in the expression for £?,- in (7).
If these values are feasible to constraints (20) and (21) and if the >-,• and z,- are integer
(or rounded), then a candidate incumbent solution can be determined for the problem
as a whole by re-solving model T^ with q, fixed at the true values, 2,- and /,- fixed,
and solving model 7"̂ with the same values of q^, z,- and y^.

(b) The LP relaxation of model T^ can be solved with constraint (7) replaced

by

(7o)

which clearly overestimates the tme value of (7,-. If the LP relaxation of model T^ is
feasible, then the true q^ corresponding to the overestimate of q^ are feasible to model
7 \ because constraints (20) and (21) are satisfied by the unnecessarily large values of
the qi- Further, all of the z, and >*,• can be rounded to yield a feasible solution to
model T^. Thus, a candidate incumbent solution can be generated as described above.

4. Computational implementation of the decomposition algorithm

Implementation of the algorithm was a challenging task because of the variety
of optimization problems that might be solved at any node of the branch and bound
tree and the attendant 'housekeeping' that was required. For example, to obtain the
constant C, the network flow model T^ had to be solved with all z, = q-^ = 0. When
any incumbent was to be generated, the network flow model had to be edited to
reflect the appropriate values of z^ and (/,- in the lower and upper bounds associated
with an arc. Further, several LP relaxations of model T^ might need to be solved at
a node. These included forms with penalty coefficients on the q^ and either the under-
or overestimating constraints (7o) or(7u) active, and others with 0 coefficients on the
q^ variables and each q^ assigned a fixed value in constraints (7).

Thus, there needed to be routines to perform such edits on the LP matrix as
fixing variable bounds, activating or deactivating rows and changing objective function
coefficients 'on the fly' during the branch and bound. To expedite the solution
process, optimal bases needed to be saved and restored for the overestimating, under-
estimating or incumbent defining forms of the problem. Finally, to permit restart
capability in case of a system crash during an extended run, it was desirable for the

F. Glover et al. Integrating modeling, algorithm design, and implementation 409

program to perform periodic array dumps. This same capability enabled users to
solve a problem in several computer runs, to review the progress made in the latest
run, or to change parameters (such as the increasing optimality tolerance) between
runs.

PL/1

DRIVER

FORTRAN

CUSTOM BRANCH

AND BOUND

ROUTINE AND

RUN MANAGEMENT

ROUTINES

ARCNET MP5X/370

Fig. 2. Principal software components and interrelationships.

The major components of the system and their interrelationships are repre-
sented in fig. 2. This design exploits the capability of PL/1 to interface simultaneously
with FORTRAN and with MPSX (by the way of the extended control language feature
of MPSX). First, a PL/1 main program was written for the sole purpose of initiating
the FORTRAN branch and bound routine that was the heart of the system. The
FORTRAN program was responsible for the usual branch and bound tasks of main-
taining the candidate list, selecting separation variables, and maintaining a list of

410 F. Glover et al. Integrating modeling, algorithm design, and implementation

incumbents. Further, it ascertained from the model solution and the stage of the
algorithm what problem edits were necessary. Second, the retrieval of solutions and
the edits to problems were carried out via special purpose routines written in P L / 1 -
ECL. Optimal solutions could be passed from MPSX arrays to the FORTRAN program
and lists of parameters, variables or structural components and how they should be
changed could be passed via arrays to MPSX. In all, some sixteen P/Ll routines were
used. Third, similar routines were written in FORTRAN to enable the network flow
problems to be edited and to pass solution information back to the branch and bound
routine. Lastly, two optimizers, IBM's general linear programming system MPSX/370
and ARC'S primal simplex network optimizer ARCNET, provided the solution power
on which the decomposition rested.

Initial implementation required three calendar months. Refinements, mostly
to the branching strategy, continued on a part-time basis over three additional months.
The branching strategy that worked best gave priority to those q^ for which the
difference between the underestimate and the actual value q^ was greatest. The degree
of error weighted by the penalty coefficient (defined by proposition C) was the
deciding factor, so that a q^ with large error and large penalty would lead to a separa-
tion based upon setting q^ = 0. Through input parameters, the branch and bound
routine couJd be directed to select candidate problems in LIFO order or based upon
the value of each candidate's upper bound. The LIFO strategy reliably outperformed
the alternative.

By all measures, the decomposition algorithm performed extremely well. The
overestimating constraints (7o) were instrumental in identifying an incumbent at the
initial node of the branch and bound tree that was invariably within 12%-17% of
the upper bound on the optimum objective function value determined at that stage
of the solution. In longer runs (usually of 1000 nodes or less), the gap between the
best incumbent and the optimum upper bound was usually reduced to 7% and often
to 5% or less. A 95% optimality level (i.e. a gap of 5%) was used as a termination
criterion. Several unique scenarios were solved to within 1% or 2% of optimality and
required very few nodes. Run times varied from as short as a few cpu minutes to as
long as fourteen cpu hours on an IBM 3033.The time to solve the initial linear program
was typically around six cpu minutes and reoptimization after a branch took around
forty cpu seconds. ARCNET required consistently 3 - 4 cpu seconds in total to solve
all of the networks that comprised model T^. Large numbers of incumbents were
generated in every run, and a list of the five best incumbents encountered was main-
tained by the branch and bound routine. This experience documents that the com-
bination of off-the-shelf optimizers, sophisticated interfaces like ECL and customized
algorithms can be very effective and very powerful.

Computer graphics played an important role in reporting solutions and sum-
marizing input data. As mentioned earlier, the persons responsible for formulating
strategies by hand for fulfilling contract terms had been using two graphs to develop
their plans. When the first solution based on a mathematical model was plotted in the

F. Glover et al. Integrating modeling, algorithm design, and implementation 411

same format, it was immediately apparent that the model had found a markedly better
solution. This contributed greatly to the credibility of a modeling approach because
the users could literally see the improvements. The graphical representation was
extremely powerful for validating solutions and for comparing solutions to different
scenarios. Once, early in the project, an error in a right-hand side coefficient led the
model to generate a solution that violated contract terms and this was readily apparent
on one of the graphs. That a solution to a 12 000 variable 8 000 row mathematical
programming problem can be so well communicated by two graphs speaks highly for
the power and importance of graphics in presenting complex results in a friendly
comprehensible fashion.

5. Summary

This paper documents the power that mathematical programming based
systems offer management in developing good solutions to difficult, substantive
problems. The stakes in this application justified the effort to build a special purpose
algorithm and software system for solving the problem. Clearly, building blocks exist
which can be used readily to develop valuable decision analytical systems.

References

[1] ARCNET User's Manual (Analysis, Research and Computation, Inc., Austin, Texas, 1981).
[2] E.M.L. Be:2\Q, Mathematical Programming in Practice {?\imd.n, 1968).
[31 D.M. H\n\Tnt\h\3\i, Applied Nonlinear Programming (UcGiZ'M-HWX, New York, 1972).
[4] IBM Mathematical Programming System Extended/370 {MPSX/370} Program Reference

Manual, 3rd Edition (International Business Machines Corporation Technical Publications
Department, White Plains, NY. 1978).

[5] L. Lasdon and A. Waren, Survey of nonlinear programming applications, Oper. Res. 28
(1980)1029.

[6] F. Palacios-Gomez, L. Lasdon and M. Engquist, Nonlinear optimization by successive linear
programming. Management Science 28(October, 1982).

