
INTERFACES Copyright © 1979. The Institute of Management Sciences
Vol. 9, No.'4. August 1979 OO92-21O2/79/O9O4/OO12$O1.25

IMPROVED COMPUTER-BASED
PLANNING TECHNIQUES. PART i r t

Fred Glover

Professor of Management Science, College of Business.
University of Colorado, Boulder, Colorado 80302

John Huttz

Senior Systems Analyst, Analysis, Research, and Computation, Inc.
Box 4067, AtJStin, Texas 78765

Darwin Kl ing man

Professor of Operations Research and Computer Sciences,
Center for Cybernetic Studies,

The University of Texas at Austin, BEB 608, Austin, Texas 78712

ABSTRACT, This is Part II of a two-part series. Pan I showed how pure
and generalized network models, and advances in methods of solving them.
have resulted in dramatic cost savings for OR/MS practitioners. This paper
focuses on network related formulation (NETFORM) models, which en-
compass an even wider variety of applications. We show how NETFORM
has enabled the efficient solution of problems in scheduling, production,
distribution, and other areas Ihal were too large or difficult to be handled by
previously applied techniques, including mixed integer programming.

Introduction
All too frequently Management Science practitioners discover that their major

problems do not fit into straightforward linear programming frameworks, but instead
involve nonlinearities expressed through discrete (integer programming) relation-
ships. When this occurs, the inappropriateness of LP models typically causes a good
deal of consternation. The history of discrete optimization abounds with situations
where problems that would have been easy to solve as linear programs turned into
computational monstrosities with the addition of discrete conditions.

•Panl appe-Mcd \nlnierfaces. Vol. 8, No, 4. pp. 16—25. This two-pan paper is a condensed version
of an original paper delivered at the SHARE XLVIII Conference in Houston. March 6-11. 1977. The full
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Recently, it has been discovered that a wide variety of discrete optimization
problems have major network or network-related components. This invites the use of
network models and solution techniques to replace the unsatisfactory approaches
previously used. Moreover, advances in network-related formulation (or NET-
FORM) models have provided the ability to capture a still larger range of problems
by means of representations that have an inherent network structure, making network
solution technology applicable to these problems as well. The major purpose of this
paper (Part II) is to present real-world applications that demonstrate the practical
value of NETFORM models and the cost savings that result from their use.

This new NETFORM modeling technology, as noted in Part I of this paper, has
several attractive features which lead to: (1) improved communication between prac-
titioners and modelers because ofthe pictorial aspect ofthe models, (2) improved
insight into the problem, making it possible to "see" where critical relationships lie
and to interpret solutions obtained, and (3) an ability to solve many discrete optimiza-
tion problems far more efficiently than in the past, including problems once believed
to be too large or too complex to be solved within reasonable time limits.

The capacity of NETFORM models to render complex problems more solvable
derives in large part from the significant advances in pure and generalized network
solution methods, particularly in their efficient computer implementation. Part I of
this paper discussed fundamental model concepts that led to real-world applications
ofthe NETFORM modeling technique, and reported computational comparisons of
network computer codes with a state-of-the-art commercial LP code.

Some NETFORM building blocks

The uses of arc multipliers described in Part I represent just a part of their full
range of application. Introducing the requirement that flows on particular arcs must
occur in integer (whole number) amounts makes it possible to model a much larger
variety of applications, including problems such as assigning personnel to jobs where
staffing requirements vary by time period, scheduling production on machines and
assembly lines, scheduling payments on accounts subject to discrete payment levels,
and determining optimal sizing and placement of electrical power stations.

The power of NETFORM techniques, based upon the imposition of integer
requirements in generalized networks, is illustrated by the fact that they enable the
modeler to represent any 0-J LP problem as an integer generalized network (GN)
problem [3], [4]. Other NETFORM model components include arcs with "all-or-
none" flows and side constraints. We will illustrate both the integer GN and the
"all-or-none" model techniques in this paper. These techniques can also accommo-
date mixed integer 0-1 LP problems where the continuous part of the problem is a
transportation, transshipment, or generalized network problem itself. An illustration
in [7] shows how contemporary financial capital allocation problems can be modeled
as integer GN problems. Other important real-world applications with this type of
"mixed" structure include a variety of plant location models, energy models, physi-
cal distribution models, and dynamic production/distribution scheduling models.

The NETFORM representation is able to express rigorously all of the elements
of these problems in a pictorial form. Consequently, it effectively replaces the
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obscure and unilluminating algebraic representation by an equivalent, but much
easier to understand, pictorial representation. But the advantages ofthe NETFORM
approach do not end here. We have found that its underlying network-related struc-
tures can also be exploited by special solution methods that are substantially more
efficient than the methods previously developed for the algebraic representations.

Figure 1 illustrates a useful modeling device commonly employed in the NET-
FORM approach. The relevant arc data are depicted by the same conventions
employed in Part I. In particular, lower and upper bounds on the flow across an arc
appear in parentheses, costs appear in squares, and multipliers appear in half ellipses.
(Occasionally, we omit one or another of these notational components of an arc when
it is not important to the discussion.) In addition, we introduce the convention that an
asterisk above an arc indicates that its flow must be integer valued.

FIGURE 1. Ship Scheduling.

Ship Node Ship/Schedule Nodes Port Nodet

Supply = 1

(select 1
schedule)

The setting for the example of Figure 1 is a ship scheduling problem. In general,
such a problem would involve many ships, a variety of schedules for each, and
numerous ports (each represented in several different time periods). Here we show
the part of the model that applies to a single ship with exactly two schedules, A and
B. Schedule A requires the ship to carry 10 tons of ore. which is distributed among
the ports by dropping 3 tons at Port 1. 5 tons at Port 2, and 2 tons at Port 4. Schedule
B requires the ship to carry 8 tons of ore. dropping 4 tons each at Ports 3 and 4. The
diagram of Figure 1 provides a convenient way to visualize the specifications. It also
provides a completely rigorous formulation of the problem — as rigorous as any
algebraic formulation involving variables and constraints.

Specifically, tbe supply of 1 at the Ship Node indicates that the ship can select
precisely one of its available schedules. (The upper bounds of 1 on the arcs leading to
the Ship Schedule Nodes are, strictly speaking, superfluous, since neither of these
two arcs can carry more than a unit flow due to the limited supply.) The asterisks.
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which compel integer flows, rule out the possibility of sending a fractional flow
value on either arc (i.e., selecting "part" of the associated schedule). The multip-
liers of 10 and 8 convert the arc flows into the number of tons required in schedules A
and B, respectively. For example, if the flow on the arc to Ship Schedule Node A is
0. then 0 •10 = 0, and therefore no flow gets transmitted to Node A for distribution to
the ports (by means of this schedule). But if the flow on this arc is one, then the
multiplier assures that 10 units of flow (tons of ore) are transmitted to A. Further,
because the upper bounds on the arcs from A to the Port Nodes exactly sum to 10,
each of these arcs must carry a flow equal to its upper bound, thereby assuring that
the desired amounts are delivered to each ofthe ports. Arcs can be added emanating
from the port nodes with lower and upper bounds limiting the total amount of ore
received at each port during the time period from these and other ship schedules.

The same model structure can apply to many other situations, such as selecting
among altemative schedules (or plans) for equipment purchase, real estate acquisi-
tion, portfolio investment, and so forth. A recent application of this type of model,
which schedules Air Force pilots to advanced flight training courses [3], illustrates
the power of specialized methods for such classes of NETFORM's. The standard
mathematical programming formulation of this problem is a 0-1 integer programming
(IP) problem with 460 0-1 variables and 520 constraints. An attempt by the Air Force
to solve the problem with an IP solution routine was abandoned due to the prohibitive
amount of computer time consumed in the solution effort. By contrast, a branch-
and-bound approach specialized for the NETFORM structure (solving GN subprob-
lems) normally obtains and verifies optimal solutions within 30 seconds on a CDC
6600.

The 0-1 integer flow restriction of the preceding example is just a speciai case of
an "all-or-none" flow restriction — in which a flow is required to equal the upper or
lower bound on an arc, but cannot take any value in between. All-or-none flows, like
0-1 flows, are highly susceptible to treatment by specialized branch-and-bound
methods that solve continuous network and GN subproblems. The all-or-none flow
conditions constitute a highly significant modeling device, even without relying on
the use of arc muhipliers. For instance, the ship scheduling problem could be alterna-
tively modeled by replacing the arc from node 0 to node A by an all-or-none arc
having a lower bound of 0 and an upper bound of 10. Likewise, the arc from node 0
to node B would be replaced by an all-or-none arc with a lower bound of 0 and an
upper bound of 8. The supply of node 0 would then be specified as bounded between
8 and 10. The following application provides another example of this technique.

Refueling nuclear reactors. The problem of determining the minimum cost refueling
schedule for nuclear reactors is of considerable importance in the energy field. This
problem was initially modeled by Kazmersky [5] as a mixed integer programming
problem with no apparent connection lo networks. However, after working closely
with Dr. Kazmersky, we discovered a way to express the problem by a NETFORM
representation that was not only equivalent to the original formulation, but also
succeeded in reducing the size of each subproblem solved in the branch-and-bound
procedure. The full transformation of the original problem to a NETFORM will not
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be shown because the mathematics is somewhat intricate and the original formulation
by itself consumes more than 20 pages of [5]. However, the key portion of the
model, with alternative energy sources and additional network linkages omitted, is
shown in Figure 2. In this diagram, a nuclear reactor in a given time period is
depicted as a node with:

(1) an arc making available any unused uranium from the preceding period,
(2) an arc supplying new uranium as a result of refueling,
(3) an arc carrying unused uranium into the following period, and
(4) an arc carrying electrical power to the systems that require it in the current

period.

FIGURE 2. One-Period Reactor Model.

Relueling
Arc

Uranium Irom Rcoctor
in Previous Period

Uranium lo Reoclor
in Subsequent Period

Allernalive Users

(*}"Either-Or" Condition: Either the flow on the Refueling Arc is
0 and the How on (he Eteclrical Power Use Arc is at least Lg,
or the flow on the Electrical Power Use Arc is 0 and the flow
on the Refueling Arc is at least LA-

This essential model component, repeated for each reactor and time period, is
subject to the nonlinear (discrete) side condition that the reactor cannot be simultane-
ously refueled and used to provide electricity, i.e., the flow on either the Refueling
Arc or on the Electrical Power Use Arc must be 0. Further, when the reactor is
refueling, the flow on the Refueling Are must be between a specified lower
bound L^ and a specified upper bound U^. Similarly, when the reactor is provid-
ing electricity to users, the flow on the Electrical Power Use Arc must be between a
lower bound L^ and an upper bound Ug.
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This NETFORM was used for solving the problem with the discrete "either-or"
flow condition maintained external to the network. It was possible to do substantially
better with this NETFORM than with the original mixed IP approach. A branch-
and-bound procedure was developed, using the continuous relaxation of the NET-
FORM to generate network subproblems, and was applied to four versions of the
nuclear refueling problem with data supplied by the TVA. The first three versions,
while requiring half an hour to two hours to solve on an IBM 370/168 using MPSX.
were easily solved in 5 to 20 minutes using the new code. The fourth version was by
far the most difficult, involving 173 constraints, 126 0-1 variables, and 511 continu-
ous variables. The original mixed integer formulation was run for seven hours on an
IBM 370/168 using MPSX and then taken off the machine to avoid further computer
run costs. At the end of this time, the best (minimum cost) solution obtained had an
objective function value of $136,173,440. With a time limit of 30 minutes imposed
on the solution effort, using the NETFORM, a solution was obtained that had an
objective function value of $125,174,727, which constitutes more than a
$10,000,000 improvement* Consequently, this application shows that the use ofthe
NETFORM approach can provide improved solutions for problems too complex to be
solved optimally by standard approaches within practical time limits.

Optimal lot sizing and machine loading for multiple products. The model to be
described next is currently being used by a major manufacturing firm for large-scale
task allocation. The problem objective is to minimize the combined costs of produc-
tion and inventory holding by determining optimal product lot sizing and optimal
assignment of production to machines.

The principal characteristics of the problem are:
1. The planning horizon is a single period, t weeks in length.
2. The products are designed to meet different needs and cannot be substituted

for one another. Production of each product is a single-stage process.
3. Lot sizes are selected from a predetermined finite set of/ possible lot sizes.
4. All lots of any single product niu.st be produced on the same machine.
5. The machines work in parallel. They are similar in function, but they may

differ in their rate and cost of operation. Some machines may be capable of produc-
ing several (or all) of the products while others may be more specialized.

6. The production capacities of all machines over the planning horizon are
known constants. Each machine can produce only one product at a time.

7. Etemand for each product is assumed to occur continuously at a known
constant rate.

These characteristics give rise to the mathematical model shown in the Appen-
dix.

The model is designed only to load the machines; it does not .schedule the work
on each machine. Rather, the main function of the model is to provide a capacity
planning tool, allowing managers to retain the prerogative of determining the precise
sequence and timing for implementing the candidate assignment over the horizon, in
accordance with the objectives of this application. This provides flexibility to make

•Ed. Noie; The reader is cautioned that the dollar values presented here arc objective function values and
nol verified savings in accordance with Interfaces editorial policy.
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adjustments to special conditions and changed demands, while simultaneously aiding
planning functions (such as evaluating tbe possible use of overtime shifts in periods
when the candidate assignments tax weekly production capacities). For this type of
flexibility and responsiveness to the needs of management, and to further support the
analyses based on altemative assumptions of demands and capacities, it is especially
important to be able to solve the model quickly for different {or recently updated) sets
of data. Thus, the success ofthe application depends in large measure on the ability
to solve the problem efficiently.

The firm in which this application arose initially tried to solve the problem using
the O-I code (RIP30-C) developed by Geoffrion. This proved to be unsuccessful for
two reasons: (1) the large array requirements of RIP30-C made it impossible to
accommodate large problems, and (2) the method required excessive computation
times even to solve problems with no more than 50 variables.

Consequently, it was apparent that an alternative solution approach was needed.
The first step of our effort to identify such an approach was to characterize the
network-related structure of the problem, which in this case tums out to be an
instance ofthe 0-1 generalized network structure.

It was determined this problem can be represented graphically in the usual
fashion by letting a node represent each equation and an arc each variable. Figure 3

FIGURE 3. Netfonn Representation.

Product
Nodes
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illustrates the resulting graph. Two sets of nodes are created for this problem: a set of
origin nodes, associated with products, and a set of destination nodes associated with
machines. Since each product is to be scheduled on exactly one machine (and in
exactly one lot size), the product nodes are each given a supply of 1. Consequently,
an arc leading from a product to a machine will transmit a flow of I (the available
supply) if the product at its tail node is to be produced on the machine at its head node
in the lot size specified by the multiplier (in the triangle). Such a unit flow, therefore,
transmits the lot size (via the multiplier) to the machine on which it is to be proces-
sed. If the flow is not equal to 1, it must be 0 as implied by tbe asterisk which limits
flows to integer values. (Thus, an arc leading to machine i from product^' for theAth
possible lot size corresponds to tbe variable ^tjk defined in the Appendix.) The
cost and multiplierofeach of these arcs correspond to the cost and resource consump-
tion ofthe associated variable. The upper limit on the demand at eacb machine node
handles the restriction on the aggregate production capacity ofthe machine.

This graphical representation identifies the problem as a member of the class of
problems known as generalized assignment problems. (If all tbe multipliers were 1,
the problem would correspond to tbe classical network assignment problem.) This
identification in tum leads to the selection of an appropriate solution method. In
particular, extremely effective techniques for solving such problems have been de-
veloped by Ross and Soland [6] and imbedded in a computer code called BIG-A.

A comparison ofthe BIG-A code with the RIP30-C code for tbis problem shows
that the BIG-A code is from 300 to 1000 times faster. In addition, the BIG-A code
readily handles problems of up to 4000 variables witbin available computer memory.
Thus, the firm now uses tbe graphical formulation coupled with the BIG-A code to
solve the problem. Tbis approacb has made it possible to solve problems witb 106
machines, 182 products, 4 lot-size options per machine/product combination, and
3772 0-1 variables, in .64 seconds on a CDC 6600 and 10 seconds on an IBM
370/145.

Conclusion
The preceding applications present a sampling of the kinds of modeling and

solution capabilities that are emerging through the use of NETFORM techniques.
Integer and mixed integer programming problems that have natural network compo-
nents are prime candidates for the use of these powerful new tools. However, many
otber problems can also be tackled using tbese tools. It is wortbwhile to note tbat the
original formulations of the preceding applications bore no immediately apparent
relationsbip to network problems. Nevertheless, the development of a NETFORM
resulted in improved representational clarity and dramatically improved ability to
solve the problems efficiently. On both of these grounds, the advances in NETFORM
model techniques promise to usher in a new era of solution capability for integer and
nonlinear problems that arise in practical settings.
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Appendix. Mathematical model for the lot sizing and machine loading problem
A binary valued decision variable x,. .̂ is introduced which is defined to be 1 if

product /• is produced on machine i in the fcth possible lot size and 0 otherwise. The
combined set-up, production, and holding cost (per unit time) incurred when product
/ is produced on machine / in the kxh possible lot size is denoted by c,- ,̂. Similarly,
r^jf^ denotes the capacity required on machine / to produce product / in the kXh pos-
sible lot size. Finally, bj denotes the aggregate production capacity of machine i over
the f-week planning horizon.

The problem is to determine values for the variables that

m n I
minimize: Z E T, <^iikXi}k

i i j \ ir=\
m I

subject to; ^ J^ x--^ = 1 for / = I, . . . , n . (1)

II I

E Z < ft/ for ( - I, . . . , m, (2)
/=i k=i

Xijk = 0 o r 1 f o r / = 1 , . . .

/ = 1, . . . , m; fc = 1, . . . , /.

Constraints (1) and (3) together insure that one and only one machine and lot size
combination is selected for each product. Constraint (2) insures that each machine is
assigned production tasks commensurate with its capacity.
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