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Abstract 

A novel approach to pure 0-1 integer programming problems called Resolution Search 

has been proposed by Chvatal (l997) as an alternative to implicit enumeration, with a 

demonstration that the method can yield more effective branching strategies.  We show that 

an earlier method called Dynamic Branch-and-Bound (DB&B), due to Glover and Tangedahl 

(1976), yields the same branching strategies as Resolution Search, and other strategic 

alternatives in addition.  Moreover, Dynamic B&B is not restricted to pure 0-1 problems, but 

applies to general mixed integer programs containing both general integer and continuous 

variables. 

We provide examples comparing Resolution Search to enhanced variants. We also 

show the relation of these approaches to Dynamic B&B, suggesting the value of further study 

of this neglected approach. 

 

Keywords: Branch-and-Bound; Dynamic Branch-and-Bound; Resolution Search; Mixed 

Integer Programming. 



DynamicB&B 2 18/04/01 

1.  Introduction 

A novel approach to pure 0-1 integer programming problems called Resolution Search 

(RS) has been proposed by Chvatal (l997) as an alternative to implicit enumeration, with a 

demonstration that the method can yield more effective branching strategies.  We show that 

an earlier method called Dynamic Branch-and-Bound (DB&B), proposed by Glover and 

Tangedahl (1976), yields the same branching strategies as Resolution Search, and other 

strategic alternatives in addition.  Moreover, DB&B is not restricted to pure 0-1 problems, but 

applies to general mixed integer programs containing both general integer and continuous 

variables. We provide examples comparing Resolution Search to enhanced variants. We also 

show the relation of these approaches to DB&B, suggesting the value of further study of this 

approach. 

The RS and DB&B algorithms progressively restrict the set of feasible solutions that 

offer a possibility to improve on the best known solution.  The methods can be viewed as 

generating an enumeration tree where the root corresponds to the original problem instance.  

The execution of the DB&B algorithm, in common with B&B methods generally, 

corresponds to a tree search starting from the root and exploring the descendant nodes until all 

terminal nodes are reached.  Conversely, RS explores the B&B tree starting from terminal 

nodes until the root is reached.  Nevertheless, we show how the methods can be reconciled 

within a common perspective. 

 

2. LP-Based Branch and Bound 

The mixed integer programming (MIP) problem consists of optimizing (Minimizing or 

Maximizing) a linear function subject to linear inequality and / or equality constraints, where 

some or all of the variables are required to be integral.  The MIP problem can be expressed as 

follows 

Minimize  z = cx 

Subject to Aix ≥ bi for i ∈  M = {1, 2, …, m}  

(MIP)   xj ≥ 0  for j ∈  N = {1, 2, …, n} 

   xj integer for j ∈  P = {1, 2, …, p} 

where the input data are : the dimension m corresponding to the number of constraints, the 

number n corresponding to the number of decision variables xj (with the first p integral and 
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the remainder continuous).  The matrices c(1 x n), A(m x n), b(m x 1) are assumed without 

special structure.  The general MIP problem is reduced to the mixed binary integer program 

(01-MIP) when all integer variables must equal 0 or 1, and becomes a pure integer program 

when p is equal to n.  Numerous combinatorial optimization problems can be modeled as an 

MIP problem.  Complexity results have not yet definitively identified the level of difficulty of 

these problems, but empirical findings suggest that the computational resources required to 

solve certain MIP problem instances can grow exponentially with the size of problem. 

In order to establish terminology and conventions, we briefly sketch the well known 

branch-and-bound (B&B) algorithm in the form that is often applied for solving pure integer 

and mixed-integer linear programming problems.  The branch-and-bound structure can be 

viewed as an enumeration tree where the root node corresponds to the original problem MIP.  

During the execution of a B&B algorithm, the tree grows by a branching process and shrinks 

by eliminating earlier branches that have been rendered conditionally superfluous by 

subsequent decisions. 

The process of branching from a given node, denoted the parent node, creates two or 

more child nodes.  Each of the problems at the child nodes is formed by adding constraints to 

the problem at the parent node, so that each feasible solution of the parent node problem is 

feasible for at least one of the child node problems.  A terminal node of the B&B tree 

corresponds to a subproblem that can be solved directly, or that can be eliminated by pruning 

rules based on information about the likelihood that branching from this particular node will 

not lead to a feasible solution that improves the best known feasible solution.  This 

information is generally deduced from a lower bound function on the nodes of B&B tree, 

structured so that the lower bound on a given node is no larger than the lower bound on its 

descendant. Clearly there is no need to create a subtree rooted at a terminal node.  That is, in 

order to improve the best known feasible solution there is no reason to examine descendant 

nodes of a terminal node. 

The goal of the B&B procedure is to find a terminal node of minimum cost.  The 

process, starting with the root, successively expands some non-terminal node on the frontier 

of the tree until a terminal node is identified as an optimal solution.  Expanding a node u 

means producing its children, thus identifying arcs in the tree from the node u to these 

children and generating the associated lower bounds.  A node can be expanded only if it is the 

root of the tree or if it is a child of some node previously expanded.  A frontier node is a node 
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that has been generated but not yet expanded.  In other terms, the frontier of the current B&B 

tree is the set of nodes with no successors in this tree. 

A simple way to make a branching move in B&B for solving an MIP problem is to 

partition the feasible region of node u, by creating two new nodes, associated with the two 

restrictions 

xj ≤ k  or  xj ≥ k + 1 

where k is an integer value and j is a subscript of an integer variable (1 ≤ j ≤ p).  In customary 

terminology, the tree is said to grow by creating two children at node u.  One of these 

corresponds to the subproblem obtained by adding the constraint xj ≤ k to MIP(u) and the 

other by adding xj ≥ k + 1 (called variable dichotomy branching).  The selection of the integer 

value k and the subscript j are called branching strategies.  The efficiency of B&B algorithms 

depends heavily on the branching strategy used to select the next variable to branch on and its 

value. 

Node u

xj ≤ k xj ≥ k + 1

 

Figure 1 : Branching on variable dichotomy 

 

A branch is defined by three parameters (j, k, s) where j is an index of the variable 

branched on; k is the “branching value” and s indicates the sense of inequality.  First observe 

that the branching constraint xj ≤ k (or xj ≥ k), where 1 ≤ j ≤ p and k is a nonnegative integer 

value, can be expressed by 

sign(h)xj ≤ h 

where h is an integer value and sign(h) = 1 if h ≥ 0 and sign(h) = -1 if h < 0.  Moreover, since 

all the branching values k are positive, we can drop the parameter s by extending the domain 

value to the negative space.  More precisely, the branching constraint xj ≤ k will be 

parameterized by a positive integer value h (h ∈  Z+) and the branching constraint xj ≥ k will be 

parameterized by a negative integer h (h ∈  Z-).  Henceforth, a branch will be defined by a pair 

(j, k) where j is the branching variable and k is the branching value. 
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Remark 1 :  In the 0-1 case, one branch suffices to fix a variable, therefore a node can be 

represented by vector of dimension n.  In the general integer case, it is necessary to have two 

branches on the same variable to fix it except where a branch forces a variable to an upper or 

lower bound.  In this case, a node will be represented by a vector of dimension 2n.  Therefore, 

the space required to represent a node in discrete case is dn where d is the maximum domain 

size of any variable.  

At any iteration during the B&B process a node of the tree is completely defined by 

the antecedent branches that lead to it and impose constraints on variables, understanding that 

the root node represents the original problem.  Adapting notation originally introduced in 

Chvatal for solving the pure 0-1 integer program, we identify a node u as an element of (Z ∪  

{*})p where  

uj ≥ 0  ⇔ Add the branch xj ≤ uj 

uj < 0  ⇔ Add the branch xj ≥ -uj 

uj = *  ⇔ No branch on the variable xj. 

For instance, the node u = (*, 0, -1, *, 3, -9) corresponds to adding the set of 

constraints {x1 free, x2 ≤ 0, x3 ≥ 1, x4 free, x5 ≤ 3, x6 ≥ 9}.   

Let u = (u1, u2, …, up) and v = (v1, v2, …, vp) be two elements of (Z ∪  {*})p.  We call v 

an extension of u, denoted by u π v, if :  

vj ≤ uj whenever uj ≠ * for j = 1, …, p. 

Trivially, π is a partial order (Z ∪  {*})p.  

Another fundamental ingredient of B&B is a bounding procedure which computes a 

lower bound on the optimal value of the subproblem MIP(u) defined at node u.  The bound 

function can be used to guide the order of generating the nodes of the B&B tree and / or to 

determine that certain nodes are terminal.  Lower bounds are provided by relaxation or duality 

techniques.  Given a lower bound function z, a node u is a terminal node if : 1) its lower 

bound z(u) is greater than or equal to the value of a known feasible solution z*; or 2) the 

subproblem MIP(u) has been solved optimally (including the infeasibility case where MIP(u) 

is demonstrated not to have a feasible solution).  Most commercial B&B procedures use the 

LP-relaxation to compute the bound function.   
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Formally, let u and LP(u) denote the LP-relaxation of MIP(u), where all variables are 

allowed to be continuous, augmented by bounds on the integer variables and on the objective 

function value, which can be defined as follows : 

 

 

(LP(u))  

Minimize z = cx 

Subject to Aix ≥ bi  for i ∈  M; 

   xj ≥ 0   for j ∈  N; 

   cx ≤ z* 

   sign(uj)xj ≤ uj for j ∈  P and uj ≠ *; 

with 

z(u) = cx(u)  if an optimal solution x(u) of LP(u) exists; 

z(u) = +∞  if LP(u) is infeasible problem; 

z(u) = -∞   if LP(u) is unbounded problem. 

where z* = cx* is the value of the best known solution x*, also called “the incumbent 

solution”.  Given a node u, in the evaluation step of B&B algorithm we solve the LP-

relaxation LP(u) to determine an optimal solution x(u) to LP(u) and its associated objective 

value z(u). (By convention, z(u) = ∞ if LP(u) is infeasible.  If the relaxation is solved by a 

dual algorithm, then the solution process can be terminated early if the dual value reaches or 

falls below z-.) 

A B&B method can be interpreted from a graph perspective. Given an MIP to solve, 

let G denote a digraph where the set of nodes, denoted by Γ, corresponds to the set of all 

possible nodes for an MIP, there is an arc between two nodes u and v if the node u can be 

reached by adding one branch to the node u.  In a B&B procedure, a node u is partitioned into 

two distinct sets of variables u- and u+.  The set u- is contains the variables branched on from 

the root to this node, often called past variables.  The set u+ contains variables not branched 

on, called future variables.  Let δ+1(u) denotes the set of successors of the node u. Note that 

the set δ+1(u) is empty if and only if u+ is empty, and a branch move consists of transferring a 

variable from u+ to u-.  (i.e. δ+1(u) = { v : v- = u- + β; v+ = u+ - β with β ∈  u+}). Let δ+*(u) be 

the set of descendants of u, which gives Γ = δ*((*, *, …, *)).  Similarly, a node v is a 

predecessor of a node u if the node u can be obtained from node v by adding one branch.  

Accompanying this, let δ-1(u) denotes the set of predecessors of the node u and δ-*(u) denotes 

the set of ascendants of u in graph G.  Observe that a predecessor of each node u exists only if 

the set u- is not empty. (i.e. δ-1(u) = { v : v- = u- - β; v+ = u+ + β with β ∈  u-}). 
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The B&B approaches for solving an MIP consist of finding a tree with root (*, …, *) 

all of whose nodes on the frontier of this tree are terminal.  The frontier of a tree π is the set 

Fr(π) = { u ∈  π : not (δ+1(u) ⊆  π)}.  A generic B&B algorithm for solving the MIP problem 

instance is given below. 

Generic Branch-and-Bound Algorithm 

Let π = (*, …, *); 

While all nodes in Fr(π) are non-terminal do  

••••    Select a non-terminal node u from Fr(π). 

••••    Add a new branch (u, v) to the tree π with v ∈  δ+1(u) and v ∉  π. 

••••    Reduce the tree π by the rule : π := π - {v ∈  Fr(π) : v is a terminal node} 

Endwhile. 

 

We may alternately formulate a generic B&B algorithm in the following way, where 

Γ+ corresponds to the set of unvisited nodes, a subset of Γ. 

Generic Branch-and-Bound Algorithm (Alternate Representation) 

Let π = {MIP}; Γ+ = Fr(π); 

While (Γ+ ≠ ∅ ) do  

••••    Select a node u from Fr(π) ∩ Γ+. 

••••    If the node u is terminal then 

••••    Γ+ := Γ+ - δ+*(u);  

••••    Else  

••••    Add a branch to the tree π := π + (u, v); with v in δ+1(u) ∩ Γ+;  

••••    Γ+ := Γ+ + {v}; 

••••    Endif; 

••••    Reduce Γ+ and/or π by the rules 

••••    Γ+ := Γ+ - {w : δ+1(w) ⊆  Γ+}; 

••••    Γ+ := Γ+ - {v in Fr(π) : v is a terminal node} 

••••    π := π - {v in Fr(π) : v is a terminal node} 

Endwhile. 
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Remark 2 : The condition that all nodes in Fr(π) are non-terminal is equivalent to the 

disjunction (Γ+ ≠ ∅ ) or (δ+*(π) ⊇  X). 

In each iteration of a B&B algorithm, a visited node non-terminal u, situated at the 

frontier of the current B&B tree π, and an unvisited node v adjacent to u, are chosen to grow 

the current tree.  Different rules can be used to decide the order in which nodes in the Fr(π) 

are branched on.  The Depth-First rule is used to branch on the most recently generated node.  

The use of a Depth-First strategy tends to minimize the number of nodes that are maintained 

at a given time, but may explore some nodes unnecessarily.  The best-first rule is used to 

branch on a node having a smallest lower bound.  The best-first rule tends to minimize the 

total number of nodes created by B&B procedure up to a given time, but also may need to 

maintain a large set of nodes that can challenge computer memory requirements. 

Remark 3 :  A best known solution x* is maintained and updated whenever a feasible 

terminal node u is reached during the search process, and the last x* is optimal. 

Example 1 : Consider the following example with three binary variables : 

Min z = x1 + 2x2 + 3x3  s.t. x1 + 2x2 + x3 = 2 with x1, x2, x3 ∈  {0, 1}. 

The graph G induced by this problem is shown in Figure 2.  Arcs in blue constitute the 

tree explored by a classical B&B.  Terminal nodes are depicted in red, feasible nodes are 

depicted in blue, and unvisited nodes are depicted in white. 
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Figure 2 : B&B Tree 

 

Example 2 : Van der Waerden’s Theorem 

This example is a particular case of the celebrated Van der Waerden’s theorem first 

proven in 1927.  Its topological proof can be found in Furstenberg and Weiss (1971) or 

Graham et al (1990).  This theorem has a large number of applications in combinatorics and 

other fields. Van der Waerden's theorem states that for any partitioning of the set N into k 

sets, at least one of the subsets contains arbitrarily long arithmetic progressions.  In our 

numerical experiments we consider the same problem as in Chvatal (1997) defined as follows. 

For every partition of the set N = {1, 2, …, 18} into two sets A0 and A1 (i.e. N = A0 ∪  

A1 and A0 ∩ A1 = ∅ ), 

i) A0 contains an arithmetic progression with three terms or else 

ii) A1 contains an arithmetic progression with four terms. 
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Observe that a partition Ai, for i = 0,1 of N can be defined by a given a vector x in {0, 

1}18 such that xj = i if and only if j ∈  Ai.  Letting cx be an arbitrary objective function, a (0-1 

IP) formulation of the Van der Waerden's theorem is as follows: 

 

 

(0-1 IP) 

Minimize z = cx 

Subject to 

 xa + xa+d + xa+2d   ≥ 1 ∀  a, d such that a + 2d ≤ 18, 

 xa + xa+d + xa+2d + xa+3d  ≤ 3 ∀  a, d such that a + 3d ≤ 18,  

 x ∈  {0, 1}18 

Van der Waerden’s Theorem states that the optimum value of (0-1 IP) equals +∞ (i.e. 

the problem (0-1 IP) has no zero-one solution). 

B&B Execution with solver Cplex version 6.5.2 
Nodes                                         Cuts/ 

   Node  Left     Objective  IInf  Best Integer     Best Node    ItCnt  Gap 
      0     0      128.2500    18                    128.2500       20 
      1     1      124.0000    15                    126.7500       33 
      2     2      120.7500    13                    126.7500       41 
      3     3      113.3636    14                    126.7500       52 
      4     4      104.0000    11                    126.7500       64 
      5     4    infeasible                          126.7500       73 
      6     3      121.2500    15                    123.6667       93 
      7     4      112.8000    11                    123.6667      111 
      8     5    infeasible                          123.6667      123 
      9     4      102.0000     8                    123.6667      131 
     10     5    infeasible                          123.6667      137 
     11     4    infeasible                          123.6667      142 
     12     3      115.0000    15                    121.0000      156 
     13     4      112.5000    13                    121.0000      160 
     14     5      106.8182    12                    121.0000      171 
     15     6    infeasible                          121.0000      181 
     16     5    infeasible                          121.0000      187 
     17     4      116.0000     9                    119.5000      204 
     18     5      115.3333    10                    119.5000      211 
     19     6      114.5000     7                    119.5000      212 
     20     7    infeasible                          119.5000      221 
     21     6    infeasible                          119.5000      229 
     22     5      119.5000    10                    119.5000      232 
     23     6      106.0000     9                    116.0000      245 
     24     6    infeasible                          116.0000      256 
     25     5      104.5000    12                    115.3333      277 
     26     6    infeasible                          115.3333      285 
     27     5      103.5000    12                    115.3333      286 
     28     6    infeasible                          115.3333      289 
     29     5    infeasible                          115.3333      300 
     30     4      103.3333    12                    115.0000      311 
     31     5       95.5000     9                    115.0000      317 
     32     6    infeasible                          115.0000      319 
     33     5    infeasible                          115.0000      329 
     34     4      108.5000     8                    115.0000      344 
     35     5    infeasible                          115.0000      358 
     36     4    infeasible                          115.0000      372 
     37     3      111.8000    13                    113.2857      378 
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     38     4    infeasible                          113.2857      388 
     39     3    infeasible                          113.2857      404 
     40     2    infeasible                          112.0000      423 
     41     1      109.5000     9                    109.5000      431 
     42     2    infeasible                          108.0000      441 
     43     1       99.5000    11                    101.3333      452 
     44     2    infeasible                          101.3333      457 
     45     1    infeasible                          101.3333      466 
     46     0    infeasible                                        480 
No solution exists. 

 

3. Resolution Search 

In a customary B&B approach, when a terminal node is encountered, the backtracking 

is limited to the frontier of the current B&B tree. 

Resolution search (RS) keeps a set of terminal nodes to record information about the 

portion of the search that has been eliminated and also to store the current tree being 

considered by the procedure.  To avoid redundant search, RS retains a fixed order on 

branched variables appearing in terminal nodes stored.  A terminal node is simply a node u 

such that δ+*(u) has been eliminated from consideration.  More precisely, a terminal node u 

rules out all solutions x such that : 

x ∉  X(u) = X(u1) ∩ … ∩ X(up)   (1) 

where X(ui) = {x ∈  X : sign(uj) xj ≤ uj} if uj ≠  *, otherwise X(uj) = X, for j = 1, …, p where X 

is the set of feasible solutions of the MIP (i.e. X = {x : Ax ≥ b, x ≥ 0 and xj integer for j ∈  P}). 

Therefore, X(u) is the set of descendants of the node u which are in X (i.e. X(u) = δ*(u) ∩ X). 

The special terminal node is the root (*, …, *) of graph G.  As soon as this root 

becomes a terminal node, the process can be stopped, it follows that no solution exists for 

improving the best known solution (if one exists). 

The naïve approach that consists of accumulating all terminal nodes encountered 

during the process of search suffers from an exponential space complexity.  To keep the space 

complexity polynomial, some terminal nodes need to be removed during the search.  

Nevertheless to assure the termination of the process, ordering conditions are imposed on the 

variables to avoid cycling. 

The set of terminal nodes can be reduced by applying the following simple rules which 

extend Chvatal’s rule to more general problems beyond the 0-1 IP case: 

(a) if u and v are terminal nodes such that u is descendant of v then u is deleted; 
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(b) if u, v are terminal nodes such that u and v can be reached by a move that adds one branch 

move from a node w then the node w replaces the nodes u and v. 

In the following, we give an extension of Chvatal’s rule b) above. 

 

3.1 Resolvent Operator 

First observe that for any branching variable j associated with a given terminal node u 

(i.e. uj ≠  *), the expression (1) is logically equivalent to 

x ∈  X(u – {uj}) ⇒  x ∈  X( ju )   (2) 

where ju  is the complement of a uj defined by ju  = - uj – 1 (by convention, we set ju = uj if 

uj = *).  Clearly There are many different ways of representing a given terminal node.  This 

provides freedom in the choice of the variable appearing in the conclusion of the implication 

(2). 

Different ways may be used to derive new terminal nodes.  A simple approach consists 

of generating a new terminal node from the current set of terminal nodes already visited.  In 

Chvatal, nodes u and v are called clashing if there is exactly one node w such that u and v are 

children of w.  The node w is called the resolvent of the clashing nodes u and v.  Formally, 

nodes u and v are clashing if there is exactly one subscript j such that  

i) uj’ = vj’ for all j’ ≠ j; 

ii) uj ≠ * and vj ≠ *; 

iii) {xj : sign(uj)xj ≤ uj } ∪  {xj : sign(vj)xj ≤ vj } = Z. 

It is easy to see that the last condition iii) can be expressed as 

iii’) uj + vj + 1 = 0. 

The resolvent of clashing clauses u and v, denoted by u ∇  v = w, is defined by wj’ = uj’ 

for all j’ ≠ j; and uj = *, where uj + vj + 1 ≥ 0 and uj ≠ * ≠ vj. 
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sig
n(u j)x

j ≤
 u j

u = (w1, ..., wj-1, uj, wj+1, ..., wp) v = (w1, ..., wj-1, vj, wj+1, ..., wp)

u ∇  v = (w1, ..., wj-1, *, wj+1, ..., wp)

sign(v
j )x

j  ≤ v
j

 

Figure 3 : The clause u ∇  v is the resolvent of clashing clauses u and v 

 

In other terms, if u + β and v + β  are terminal nodes then u + v is a also valid terminal 

node. In fact, we have 

x ∉  δ(u + β) ⇔ x ∉  δ(u) ∩ δ(β) ⇔ (x ∉  δ(u) ⇒  x ∈  δ(β)) (a) 

x ∉  δ(v + β ) ⇔ x ∉  δ(v) ∩ δ( β ) ⇔ (x ∉  δ( β ) ⇒  x ∈  δ(v)) (b) 

(a) and (b) together imply 

(x ∉  δ(u) ⇒  x ∈  δ(v)) ⇔ x ∉  δ(u) ∩ δ(v) (c)  

The resolvent operator permits the generation of new terminal nodes by combining 

nodes already visited.  Since in resolution search combined nodes are situated in the same 

current tree, the node resulting by the resolvent operator also belongs to this tree.  On the 

other hand, in dynamic B&B combined nodes do not necessarily belong to the same tree, 

which makes possible to generate new terminal nodes not met in the past.  For example if u = 

(0, *, 0) and v = (*, 0, 1) then we define the resolvent of nodes u and v, as u ∇  v = (0, 0, *).  

This can not be generated by the resolvent used by Chvatal since these nodes belong to 

different trees. 

More generally, if u and v are terminal nodes, then u ∇  v = (u - v ) + (v - u ) is also a 

terminal node, where, the complement of a node u denoted u  is defined as follows : 

ju  = -uj - 1 if uj ≠ *; 

ju = uj  otherwise. 

In other terms, if w = u ∇  v then we have, 

X(wj) = X(uj) ∩ X(vj)  if  X(uj) ∩ X(vj) ≠ ∅   

X(wj) = X   otherwise. 
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Remark 4 : The resolvent operator is also used in classical B&B approaches by combining 

nodes situated in the same current tree.  In fact, in these approaches the operator is 

particularly used to reduce the space needed to represent the current B&B tree. 

 

3.2 The Obstacle Function and Its Extension 

At each iteration, from the current node u, the Resolution Search algorithm generates 

two nodes u+ and u- by calling an obstacle function which is applied in two phases (first 

introduced in Chvatal): a waxing phase and a waning phase.  In the waxing phase, the process 

moves from u to u+ by adding branches to the current node u, until the node u+ which is a 

descendant of u (u π u+) becomes a terminal node.  Recall that the node u is terminal if the 

feasible solution set of LP(u) is empty or MIP(u) is solved (i.e. the optimal solution of LP(u) 

is an integer solution or LP(u) is unbounded for optimality).  In the case where LP(u+) solves 

MIP(u+) and the resulting solution improves the incumbent solution, then the value of z* is 

updated.  In the waning phase, the process moves from u+ to u- by dropping branches from the 

node u+ to obtain u- (u- π u+), as long as u- is a terminal node.  Similarly, in the case where 

LP(u-) solves MIP(u-) and the solution improves the incumbent solution, then the same type 

of update occurs. 

 

u-

u+

u

Waxing Phase
Waning Phase

 
Figure 4 : An intuitive representation of obstacle(u, u+, u-) function 

 

Given a node u the function Obstacle(u, u+, u-) constructs two terminal nodes u- and u+ 

such that the node u+ is a descendant of node both nodes u and u- (u π u+ and u- π u+).  An 

implementation of this function is described below. 
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Function Obstacle(u, u+, u-) 

{ 

1. Waxing phase : Move from the node u to a descendant node u+ of u by adding branches 

until u+ becomes a terminal node. 

u+ = u; 

do{ 

Let x(u+) be an optimal solution for LP(u+); and z(u+) its associated objective value. 

Choose a subscript j* such that 

j* ∈  Argmax{min{fj, 1 - fj} : fj = xj(u+) - xj(u+)  and fj ≠ 0 for j ∈  P} 

if (j* exists)  u+
j* = -xj*(u+) ; // or xj*(u+)  

} while (z(u+) < z*) and (j* exists); 

z* = min{z(u+), z*}; 

2. Waning phase : Move from the node u+ to an ascendant node u- by dropping branches 

from the node u+ as long as the node u- is terminal. 

u- = u+; v = u+; 

do{ 

Let r(u-) be a vector of reduced costs for each of the variables LP(u-). 

Choose a subscript j* such that 

j* ∈  Argmin{rj(u-) : rj(u-) ≠ 0 and vj ≠ * for j ∈  P} 

if (j* exists){ 

u-
j* = *; vj* = *; 

if (z(u-) < z*) u-
j* = u+

j*; 

} 

} while (j* exists); 

} 

 

Remark 5 : In both phases above, the case where the LP-relaxation solves the integer problem 

at a given node has been taken in account. 

• Choice of the Branching Criterion in the obstacle function  

In the waxing phase several methods are available to choose the variable for 

branching.  A simple choice is to select the most fractional variable xg where : 

g ∈  Argmax{min{fj, 1 - fj} : for j ∈  P} 
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and where fj = xj -  xj  is the associated fractional value.  Other rules are based on the idea of 

estimating the cost of forcing the variable xj to become integer. 

In the waning phase branches are dropped (which frees some of the variables) 

according to rules based on identifying influential choices in retrospect, at the point where 

backtracking would occur (see Section 4). 

Remark 6 : The waning phase and the waxing phase can be accelerated by saving some calls 

of the Oracle function.  This can be accomplished by adding (or dropping) more than one 

branch at each iteration in the waning phase (or waxing phase). 

 

3.3 Family Updating to Assure Convergence 

Trivially, since each terminal node eliminates a portion of the search space from 

consideration, the naive approach that maintains all terminal nodes visited during the process 

of search will terminate if the search space is bounded.  However, the approach that removes 

terminal nodes during the search may not assure the convergence of the process.  Therefore, 

to assure the termination when terminal nodes are removed, Chvatal’s resolution search 

imposes a total order on the variables branched on.  More precisely, for pure 0-1 IP problems 

with n-dimensional vectors, Chvatal maintains a set of terminal nodes of at most n nodes, 

called a path-like family.  At each iteration, a new terminal node is generated so that the 

portion of the search space eliminated by this node includes the portions that were eliminated 

by the terminal nodes that are removed from the path-like family.  Consequently the size of 

the eliminated search space increases monotonically which assures the convergence of 

resolution search. 

The path-like Family of Chvatal (1997) can be easily extended to the MIP setting.  The 

members of the path-like family F are enumerated as (ui, βi) for i=1, …,|F|, where ui is a 

terminal node and βi is a branch appearing in the node ui such that 

• the branch βj appears in ui if and only if i = j, 

• if the branch jβ  the complement of βj appears in ui then i > j, 

• if a branch β appears in ui and its complement β  appears in uj then β = βi or β  = βj. 

With each path-like family F we associate the node u(F) defined as follows 
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u(F) = ∪ i=1,|F| (ui - βi + iβ ) 

At each iteration during the execution of resolution search the node u(F) corresponds 

to the current node u.  The node u(F) also corresponds to the current tree π defined as follows 

(see figure 5) : 

101

0

-k1,...,i for
F if
F if

iii

iii
i =





∈ββ+π
∈ββ+π

=π

∅=π
−

+

 

where F- = ∪ i=1,|F| (ui - βi), F0 = ∪ i=1,|F| {βi} and k = |u(F)|. 

Each terminal node of the current family F is attached to the current tree π by only one 

branch.  More precisely, terminal nodes are enumerated such that for each node ui in F we 

have ui = vi + βi with vi ⊆  πi.  
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Figure 5 : States of Resolution Search 
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At each iteration of the Resolution Search algorithm, the node u- constructed by 

Obstacle(u, u+, u-) is used to update the family F. 

Update the path-like Family (F, u-) 

{ 

repeat 

if (u- ⊄  u(F)){ 

choose a branch β in u- such that β ∉  u(F) and β  ∉  u(F); 

F = F + {u-}, u|F| = u- and β|F| = β; 

} else { 

w = u-; 

for (i = |F|, |F|-1, …, 3, 2, 1) if ( iβ  ∈  w) w = w ∇  ui; 

if (w ≠ (*, *, …, *)){ 

find the smallest k such that w is a descendant of u(Fk); 

choose a branch β appearing in w but not in u(Fk-1); 

replace uk by w and set kβ  = β; 

remove from uk+1, uk+2, …, u|F| every node that includes β; 

} 

} 

until ((*, *, …, *) in F ) or (β in u-); 

} 

 

Remark 7 : The branch β chosen not to lie in u(F) (β ∉  u(F) and β  ∉  u(F)) corresponds to 

the branch that is not covered by the family F (i.e. β ∉  F and β  ∉  F).  We say that a family of 

nodes covers those variables xj if at least one of xj and jx  belongs to at least one of the nodes 

in that family. 

Remark 8 : The condition u- ⊆  u(F) means that the node u(F) is a descendant of the node u- by 

permuting the branches in u(F).  In executing this permutation some terminal nodes can be 

removed from F if they become “irrelevant” in the sense that their antecedents no longer 

match the node u(F).  

 

3.4 Resolution Search Algorithm 
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The resolution search method can be viewed as a crossing of the search tree with the 

root u = (*, *, …, *) which corresponds to the original MIP problem, as follows.  The 

procedure maintains a family F of terminal nodes.  For each node u in F, every feasible 

solution of the original MIP which is a descendant of u cannot strictly improve the current 

incumbent x*.  Initially, we start from a given node u in the B&B tree corresponding to the 

current node, with an empty F and an arbitrary incumbent solution x*.  If such a solution is 

not yet known, take any clause for x*, for example x* = u is valid. 

At each iteration, from the current node u, the algorithm generates two terminal nodes 

u+ and u- by calling the obstacle function.  The terminal node u+ becomes the new incumbent 

solution x* if u+ is an improving feasible solution and the terminal node u- is added to F.  

Then, the algorithm generates a new node that is a descendant of no terminal node in F.  This 

node becomes the new current node and the process is repeated until the whole initial tree has 

been fathomed (which corresponds to adding the node (*, *, …, *) to F), at which point the 

vector x* can be returned as a solution of the search problem. 

Resolution Search Method(x*, u in S) 

{ 

z* = cx*; 

F = ∅ ; 

While ((*, *, ...., *) ∉  F)){ 

try = Obstacle(u, u+, u-); 

if (u+ ∈  X) and (try < z*) { x* = u+; z* = try;} 

Update the path-like Family (F, u-); 

u = u(F); 

} 

} 

Remark 9 : The updating process of resolution search does not take account of the notion of 

influence, and also does not exploit information derived by finding a new best solution.  Each 

iteration of resolution search, in the form proposed by Chvatal, tries to go deeply to fix as 

many variables as possible.  If a new best solution is found, then for each node u in F, we can 

move from u to u- by dropping branches from the node u as long as u- is a terminal node and 

replace u by u- in F.  In other words, it is more interesting to obtain terminal nodes close to 

the root.  Once a new best solution is found, it is possible to apply a waxing phase from each 

terminal node in F to obtain a new ascendant terminal node, which replaces it. 
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Example 2 : (continued) 

To prove Van der Waerden’s theorem for the 18-point example, the choices of 

branching proposed in Chvatal’s resolution search need 29 calls of the obstacle function and 

199 calls of the oracle function (see Table 1 below given by Chvatal and generated also by 

our implementation). 

Iteration u to be extended u- Resulting family F 
1 (*,*,*,*,*,*,*,*,*,…) x1x2x3 {x1x2x3} 
2 (0,0,1,*,*,*,*,*,*,…) x1x4x5 {x1x2x3, x1x4x5} 
3 (0,0,1,0,1,*,*,*,*,…) x1x2x4 5x  {x1x2x3, x1x2x4} 
4 (0,0,1,1,*,*,*,*,*,…) x1x5x6 {x1x2x3, x1x2x4, x1x5x6} 
5 (0,0,1,1,0,1,*,*,*,…) x1x2 4x 6x  {x1x2x3, x1x2x4, x1x2x5, x1x2 4x 6x } 
6 (0,0,1,1,1,0,*,*,*,…) x1x2 5x x7 {x1x2x3, x1x2x4, x1x2x5, x1x2 4x 6x , x1x2 5x x7} 
7 (0,0,1,1,1,0,1,*,*,…) x1 4x 5x 7x  {x1x2, x1 4x 5x 7x } 
8 (0,1,*,1,1,*,0,*,*,…) x1 2x 5x x7 {x1x2, x1 4x 5x } 
9 (0,1,*,1,0,*,*,*,*,…) x1x3x5 {x1x2, x1 4x 5x , x1x3x5} 
10 (0,1,1,1,0,*,*,*,*,…) 2x 3x 4x x6 {x1x2, x1 4x 5x , x1x3x5, 2x 3x 4x x6} 
11 (0,1,1,1,0,1,*,*,*,…) 2x 3x 4x 6x  {x1x2, x1 4x , x1x3x5} 
12 (0,1,1,0,0,*,*,*,*,…) x1x4x5 {x1x2, x1 4x , x1x5} 
13 (0,1,*,0,1,*,*,*,*,…) x1x4x6 {x1x2, x1 4x , x1x5, x1x4x6} 
14 (0,1,*,0,1,1,*,*,*,…) x1x4 5x 6x  {x1} 
15 (1,*,*,*,*,*,*,*,*,…) x2x3x4 {x1, x2x3x4} 
16 (1,0,0,1,*,*,*,*,*,…) x2x3x5 {x1, x2x3x4, x2x3x5} 
17 (1,0,0,1,1,*,*,*,*,…) 1x x2x6 {x1, x2x3x4, x2x3x5, 1x x2x6} 
18 (1,0,0,1,1,1,*,*,*,…) x2x3 5x 6x  {x1, x2x3, 1x x2x6} 
19 (1,0,1,*,*,*,*,*,*,…) x2 3x 6x x7 {x1, x2x3, 1x x2x6, x2 3x 6x x7} 
20 (1,0,1,*,*,*,*,*,*,…) 1x x2 3x 6x x7 {x1, x2} 
21 (1,1,*,*,*,*,*,*,*,…) 2x x3x5 {x1, x2, 2x x3x5} 
22 (1,1,0,*,1,*,*,*,*,…) 1x 2x x3 5x x6 {x1, x2, 2x x3x5, 1x 2x x3 5x x6} 
23 (1,1,0,*,1,1,*,*,*,…) 2x x3x7 {x1, x2, 2x x3x5, 1x 2x x3 5x x6, 2x x3x7} 
24 (1,1,0,*,1,1,1,*,*,…) 1x 5x 6x 7x  {x1, x2, x3, 1x 5x 6x 7x } 
25 (1,1,1,*,1,1,0,*,*,…) 1x 2x 3x 5x 6x  {x1, x2, x3, 5x 6x } 
26 (1,1,1,*,1,0,*,*,*,…) 1x 2x 3x x6 {x1, x2, x3, 5x , 1x 2x 3x x6} 
27 (1,1,1,*,0,1,*,*,*,…) 1x x5x7 {x1, x2, x3, 5x , 1x 2x 3x x6, 1x x5x7} 
28 (1,1,1,*,0,1,1,*,*,…) 1x 2x 3x x8 {x1, x2, x3, 5x , 1x 2x 3x x6, 1x x5x7, 1x 2x 3x x8} 
29 (1,1,1,*,0,1,1,1,*,…) 1x 2x 3x 7x 8x  {∅ } 

Table 1 : Twenty-nine calls of obstacle function in Chvatal’s resolution search 
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4. Dynamic Branch-and-Bound 

In the customary B&B approach branching decisions are generally based on very 

limited information about the likelihood that a particular branch will lead to an optimal 

solution.  This information is especially pronounced at early stages of the branch and bound 

tree.  Moreover, even 'reasonable' choices can be extremely poor if they are not sufficiently 

influential to reduce the alternatives for other variables.  Unless a current branch has the 

power to inhibit the range of remaining alternatives, the branch and bound process can 

degenerate into the disastrous approximation to total enumeration sometimes observed.  So, it 

seems worthwhile to consider a branching technique that has the ability to rid itself of certain 

types of uninfluential branches on the basis of more reliable information available at later 

stages. A chief component of this technique is to shrink the branch and bound tree by 

eliminating earlier branches that have been rendered conditionally superfluous by subsequent 

decisions. 

The theme of Dynamic B&B (Glover and Tangedahl, 1976) introduces a strategy that 

modifies the sequence of decisions in B&B by: 

(1) Discarding certain earlier branches as the process continues, thereby shrinking the 

B&B tree. 

(2) Allowing for branches to be reversed based on the solution state created by the other 

currently imposed branches. 

(3) Resequencing certain branches, according to rules based on identifying "influential 

choices" in retrospect, at the point where backtracking would occur (since the 

influence of branches can be identified more clearly when they are accompanied by 

other branch choices - as generally occurs at backtracking points - than when they may 

first be selected as branches). The goal is to maintain the most influential branches 

earlier in the tree by moving less influential branches to the end. 

Component (3) is the one that includes the basic idea of Chvatal's Resolution Search, 

although introduced in a proposal that appears somewhat earlier.  The notion of an influential 

branch, identified in retrospect, is critical. It is a conditional concept, that depends on other 

branches currently imposed, and embodies the idea of limiting the possibilities that exist for 

remaining choices. (It is related to the idea of a "strong cut", for example.) 
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Remark 10 :  Solving an MIP by this design consists of finding a tree with root (*, …, *) in 

its associated graph G such that all the nodes in the frontier of this tree are terminal nodes.  

Dynamic Branch-and-Bound and resolution search take advantage of the search space being a 

graph rather than a tree, in contrast to the approach of classical B&B. 

 

Generic Dynamic Branch-and-Bound Algorithm 

Let the current tree π = (*, …, *); 

While all node in Fr(π) are not terminal do  

••••    Select an unvisited terminal node u from Γ. 

••••    If the node u is a descendant of π, add branches to π such that u will be in Fr(π). 

••••    Else change the tree π into a new tree one covering the node u. 

Endwhile. 

We may express the algorithm in greater detail as follows, where Γ- corresponds to the 

set of visited nodes, a subset of Γ. 

Generic Dynamic Branch-and-Bound Algorithm (Detailed Form) 

• π = Any tree, Γ- = Interior(π); Γ+ = Γ - Γ-; 

• let Γ- = ∅ , Γ+ = Γ; 

• while (Γ- ≠ Γ) and (Γ+ ≠ ∅ ) and (x ∉  X*) do  

••••    Select a node u from Fr(π) ∩ Γ+. 

••••    If u is not terminal then 

••••    Add a branch to the tree π:= π + (u, v); with v in δ+1(u) ∩ Γ+;  

••••    Γ+ := Γ+ + {v};  

••••    Reduce Γ+ and/or π by the rules 

••••    Γ+ := Γ+ - {w}   if δ+1(w) ⊆  Γ+; 

••••    Γ+ := Γ+ - {v ∈  Fr(π) : v is a terminal node} 

••••    π := π - {v ∈  Fr(π) : v is a terminal node} 

••••    Else  

••••    Γ- := Γ- + δ+*(u);  

••••    Update Γ- and/or Tree by the rules 

••••    Γ- := Γ- - δ+1(w) + {w}  if δ+1(w) ⊆  Γ-; 
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••••    Change a new tree from the current state such that Γ- increases or Γ+ decreases. 

••••    Reduce Γ+ and/or π by the rules 

••••    Drop a branch of the tree π := π - (u, v); with v in δ-1(u) ∩ Γ+;  

••••    π:= π - {v ∈  Fr(π) : v is a terminal node} 

Endwhile. 

Influence can be measured also in terms of the effect on the objective function, as by 

the values of updated objective function coefficients for slack variables associated with 

branches. 

i) currently uninfluential :  The branching constraint xj ≤ vj (or xj ≥ vj), where j ∈  P and 

vj is an integer value, will be called currently uninfluential if the constraint does not 

affect the optimality of the current LP solution.  For example, if xj receives the value 

vj in the current LP solution, then clearly the branching constraint does not affect LP 

optimality. 

ii) highly influential :  A branch qualifies as be highly influential when it creates an 

immediate infeasibility or a bound violation when it is reversed.  (By keeping a 

constraint that compels the objective function to improve at each step, the 

infeasibility criterion includes the bound violation criterion.) 

iii) more (or less) influential :  The branch xj ≥ vj is more (or less) influential than the 

branch xk ≥ vk if upon introducing their branching slacks sj = xj - vj ≥ 0 and sk = xk - 

vk ≥ 0 (using substitution to replace xj by sj + vj and to replace xk by sk + vk), and 

optimizing the LP problem, the objective function coefficient of sj in the optimal LP 

tableau is larger (smaller) than the one of sk. 

iv) A branch whose alternative has been eliminated by fathoming or by examination  

(i.e. by a tree search that exhausts all relevant solution possibilities on the branch) 

will be called a compulsory branch.  (Note : a highly influential branch is a special 

case of a compulsory branch.) 

Remark 11 :  Emulating strategies applied in tabu search (Glover and Laguna, 1997), it can 

be judicious to keep historical records of influence and evaluations of branching alternatives 

to supplement the decision process. 

When the concept of influence is applied in retrospect as a basis for resequencing the 

choices, as in (3), with the goal of maintaining the most influential branches earlier in the tree, 
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then the most extreme case is where one of the current branches will violate feasibility if it is 

moved to the end of the sequence and reversed.  That means that the collection of preceding 

branches is so influential that the branch moved to the end cannot be changed - hence, by the 

rules of B&B, such a branch at the end of the tree can be dropped.  Also, more generally, this 

retrospective analysis gives strategies for moving branches to the end even when the extreme 

case just described does not occur.  That is, even if infeasibility will not occur by a reversal, it 

is still possible to identify which branches will come closest to violating feasibility when 

moved to the end, and therefore one of these will indeed be the one chosen for this relocation. 

The shrinking operation in a sense is a special case of the resequencing - if the 

operation is postponed until a backtracking step occurs - but it can be done more efficiently 

because it isn't necessary to reverse the branch to discover that it can be dropped by an 

additional backtrack step. 

Example 3 :  These observations are clarified by the following example (Glover and 

Tangedahl, 1976).  Shrinking occurs in this example when branches become "redundant" as a 

result of later branches which are independent of them in the tree. 

Minimize z = 8x1 + 8x2 - 4x3 

3x1  - 2x3 ≥ 2 

2x1 – 2x2 ≥ 1 

-8x1 + 20x2  ≥ -1 

x1, x2, x3 ≥ 0 and integer. 

The illustrated sequence of steps is: 

Step 1: Initial LP solution: x = (0.75, 0.25, 0.13) 

Branch: x1 ≥ 1. 

Step 2: LP reoptimization: x = (1, 0.35, 0.50) 

Branch: x3 ≥ 1. 

Step 3: LP reoptimization: x = (1.33, 0.48, 1) 

Shrink: Drop x1 ≥ 1  Branch: x1 ≥ 2. 

Step 4: LP reoptimization: x = (2, 0.75, 2) 

Shrink: Drop x3 ≥ 1  Branch x2 ≥ 1. 

Step 5: LP reoptimization: x = (2, 1, 2) 

Feasible integer solution: z = 16 

Resequence: current branch sequence x1 ≥ 2, x2 ≥ 1 
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new branch sequence  x2 ≥ 1, x1 ≥ 2 

Backtrack: impose x1 ≤ 1. 

Step 6: LP reoptimization: no feasible solution 

Backtrack: impose x2 ≤ 0. 

Step 7: LP reoptimization: no feasible solution 

Problem solution complete (no branches left). 

 

(*, *, 1)

(2, 1, *)(2, *, 1)(1, *, 1)

(*, *, *)

(*, 0, *)(*, 1, *)(2, *, *)(1, *, *)

(2, 1, *)
Clashing Nodes

Resolvant

 

Figure 6 : An example of Dynamic B&B 

 

In the preceding steps, the opportunity to shrink the tree occurred twice, the 

opportunity to resequence at backtracking occurred once, and these operations were 

implemented in each case.  Using the same branching rules, the solution of the foregoing 

problem requires eleven steps (LP reoptimizations) if either the option to shrink or the option 

to resequence is bypassed, and requires fifteen steps if both options are bypassed.  The 

resequencing step of this example uses exactly the special (extreme) case criterion that is the 

basis of Chvatal's approach.  That is, by moving x1 ≥ 2 to the end of the sequence, the 

opposite branch xl ≤ 1 becomes infeasible (violating the bound).  Thus the backtrack 

continues farther.  The result of continuing farther frees the variable branched on.  However, 

in the example there is now no remaining choice to move something to the end, so the method 

simply reverses the single remaining branch and the method terminates. 

Resolution search observes that the last branch that caused a bound to be violated may 

possibly be more important than other decisions, and therefore this last branch is never given 
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a lower priority than other branches.  That is, the approach incorporates a partial 

approximation of the idea of influence (without using that term). 

In the numerical example the backtracking occurs not because an objective function 

bound was violated by the last branch, but rather because the last branch led to a new best 

solution (with z = 16).  When the objective function constraint associated with this solution is 

imposed (z ≤ 15), the current LP becomes infeasible, and hence backtracking results, but there 

is no reason to assume the last branch is the one that is most important.  For example, in the 

illustration given, the choice sequence that led to this solution could easily have been x2 ≥ 1 

followed by x1 ≥ 2.  Then, if the last branch was maintained as "primary", Chvatal's rule 

would free the x2 branch and then impose x1 ≤ 1.  But this choice would be inferior to the one 

identified in the example.  That is, the branch x2 ≥ 1 is decidedly more influential than the 

branch x1 ≥ 2, keeping in mind that we will be dropping one of the branches and reversing the 

other.  (The example does not identify the source of information that discloses which branch 

is more influential, but this knowledge, however obtained, is the reason for the resequencing 

step that moves the less influential branch x1 ≥ 2 to the end of the sequence.  In other words, 

according to Chvatal’s terminology, an "Oracle" is used to identify when the property is 

present.) 

The preceding illustration shows that the concept of influence can be more effective 

for resequencing branches than the approach used in Resolution Search, for two reasons: 

(1) Resolution Search gives no rule for the case when backtracking may occur as a 

result of finding a new best solution (where potential impact on the decision 

process can be significant). 

(2) Resolution Search can also miss opportunities to make advantageous decisions in 

other cases, as demonstrated by the example just given where the bound z ≤ 15 

might have been pre-established.  Then the sequence x2 ≥ l, x1 ≥ 2 could have been 

the one that was discovered to violate this bound.  

In short, the resequencing mechanism of Dynamic B&B gives the options proposed in 

Resolution Search, and also gives additional strategic possibilities.  These observations 

motivate a more thorough examination of the practical potential of the Dynamic B&B 

approach, which has remained largely unexplored to date. 
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Remark 12 :  To prove Van der Waerden’s theorem, the extension of resolution search that 

results by using influential information, as in Dynamic B&B, needs only 2 calls of the 

obstacle function and 11 calls of the oracle function. 
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