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Abstract

The exploitation of nested inequalities and surrogate constraints as originally proposed in Glover [Glover, F., 1965. A
multiphase-dual algorithm for the zero–one integer programming problem. Operations Research 13, 879–919; Glover, F.,
1971. Flows in arborescences. Management Science 17, 568–586] has been specialized to multidimensional knapsack prob-
lems in Osorio et al. [Osorio, M.A., Glover, F., Hammer, P., 2002. Cutting and surrogate constraint analysis for improved
multidimensional knapsack solutions. Annals of Operations Research 117, 71–93]. We show how this specialized exploi-
tation can be strengthened to give better results. This outcome results by a series of observations based on surrogate con-
straint duality and properties of nested inequalities. The consequences of these observations are illustrated by numerical
examples to provide insights into uses of surrogate constraints and nested inequalities that can be useful in a variety of
problem settings.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A general integer programming (IP) problem consists of optimizing (minimizing or maximizing) a linear
function subject to linear inequality and/or equality constraints, where all of the variables are required to
be integral. An IP problem (which we assume is to be maximized) can be expressed as follows:
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ðIPÞ Maximize x0 ¼ cx

Subject to Aix 6 A0
i for i 2 M ¼ f1; 2; . . . ;mg;

0 6 xj 6 U j for j 2 N ¼ f1; 2; . . . ; ng;
xj integer for j 2 N :
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The variable x0 identifies the objective function value of a feasible solution x defined by n decision variables
xj for j 2 N. The vector c 2 Rn denotes the cost vector and the vector A0 denotes the right-hand side of m linear
constraints Aix 6 A0

i for i 2M. No special structure is assumed for the input matrices c(1 · n),
A(m · n), A0(m · 1), b(n · 1). The parameter Uj refer to an upper bound on the integer variable xj.

Problem (IP) reduces to the binary integer program (01-IP) when all integer variables must equal 0 or 1 (i.e.,
Uj = 1, for all j 2 N). The zero–one multidimensional knapsack (MDK) is also a subproblem of many general
integer programs where the components of the data matrices c, A and A0 are given non-negative integers. In
the following, without loss of generality, we consider the case of the zero–one multidimensional knapsack.
Letting e denote a vector with all components equal to 1, the zero–one multidimensional knapsack (MDK)
problem can be expressed as follows:
ðMDKÞ Maximize x0 ¼ cx ð1-aÞ
Ax 6 A0; ð1-bÞ
0 6 x 6 e; ð1-cÞ
x 2 f0; 1gn

: ð1-dÞ
The foregoing MDK formulation, where A and A0 are non-negative, can model many combinatorial opti-
mization problems, including capital budgeting, cargo loading, cutting-stock problems, and a variety of others
(see Fréville, 2004, Fréville and Hanafi, 2005). MDK also arises as a subproblem in solving many other com-
binatorial optimization problems. Complexity results have not yet definitively identified the level of difficulty
of these problems, but empirical findings suggest that the computational resources required to solve certain
MDK problem instances can grow exponentially with the size of problem.

The exploitation of nested inequalities and surrogate constraints as originally proposed in Glover (1965,
1971) has been specialized to multidimensional knapsack problems in Osorio et al. (2002). In this paper,
we show how this specialized exploitation can be strengthened to give better results. This outcome results
by a series of observations based on surrogate constraint duality and properties of nested inequalities. The
consequences of these observations are illustrated by numerical examples to provide insights into uses of sur-
rogate constraints and nested inequalities that can be useful in a variety of problem settings. Recently, Osorio
and Gómez (2004) proposed cutting analysis for MDK.
2. Mixed surrogate constraint

Bounding procedures that compute lower and upper bounds on the optimum x0 value are useful for solving
MDK. Upper bounds are provided by relaxation or duality techniques. Lower bounds are generally provided
by heuristic and/or metaheuristic procedures using restriction techniques.

Most commercial Branch-and-Bound (B&B) procedures use the LP-relaxation to compute the bound
function. Formally, the LP-relaxation of MDK, denoted by LP-MDK, where all variables are allowed to
be continuous, can be defined as follows:
LP-MDK Maximizefx0 ¼ cx : Ax 6 A0 and 0 6 x 6 eg:

Bounds derived from other relaxations can sometimes be generated more readily than those obtained from

LP relaxation, and in certain cases can be stronger than the LP bounds. In particular, Lagrangean relaxation,
surrogate relaxation and composite relaxation, are often used to obtain such upper bounds. Lagrangean strat-
egies have been shown to provide an effective tool for solving integer programming problems (see, for exam-
ple, Geoffrion, 1974; Fischer, 1981). The Lagrangean relaxation absorbs a set of constraints into the objective
function.

Surrogate constraint methods, which we focus on here, have been embedded in a variety of mathematical
programming applications over the past thirty years. The surrogate relaxation, introduced by Glover (1965),
replaces sum of the original constraints by a single new one, called a surrogate constraint (see also Glover
(1968)). A surrogate relaxation S(l) of MDK, where l 2 Rm is a vector of ‘‘mutipliers’’ satisfying l P 0, is
defined as
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SðlÞ maxfx0 ¼ cx : x 2 f0; 1gn and x 6 d0g; ð2Þ

where d = lA and d0 = lA0.

We assume the surrogate constraint (2) does not include weighted combinations of the upper or lower
bounds on the problem variables. The surrogate dual (S), defined as follows, yields the strongest surrogate
constraint:
ðSÞ minfSðlÞ : l P 0g:
This dual in general yields stronger bounds for combinatorial optimization problems than the Lagrangian
dual. The most widely used search methods for solving a surrogate dual problem are based on the properties
of the corresponding relaxation function S(l). Greenberg and Pierskalla (1970) showed that the surrogate
function S(l) is a quasi-convex function of the multiplier l, and it is a discontinuous piecewise linear function
for the MDK problem. This property assures that any local optimum for the surrogate function is also a
global optimum.

In the following, the term simple bounding constraint refers to a constraint that imposes a lower or upper
bound on a variable (such as xj P 0 or xj 6 1). The term component constraint refers to a constraint that
receives a non-zero weight in forming a surrogate constraint. An inequality or, more generally, a system of
inequalities will be said to be strengthened (or made stronger) if the new system yields a set of feasible solutions
contained within the set of feasible solutions to the original system.

The term xo constraint (or objective function constraint) refers to a constraint of the form xo P x�o þ e, where
x�o ¼ cx� is the xo value for the best feasible solution x* currently known, and e is a chosen tolerance for
approximating the inequality xo > x�o (which may permissibly equal the greatest common divisor of the cj coef-
ficients when c is an integer vector).

The term mixed surrogate constraint refers to a surrogate constraint created by combining a given surrogate
constraint (2) (called the component surrogate constraint) with an objective function constraint. To create the
mixed surrogate constraint, we write the associated objective function constraint as a ‘‘6’’ constraint to give it
the same orientation as the surrogate constraint (2):
�cx 6 �cx� � e: ð3Þ

Consequently, by weighting (2) by a and (3) by b, the mixed surrogate constraint is
px 6 po ð4Þ

with p = ad � bc and po = ad0 � b (cx* + e).

We begin with an exceedingly straightforward observation that nevertheless has important consequences.

Observation 1. Surrogate constraints can be made stronger by excluding simple bounding constraints as
component constraints.

This observation is an immediate consequence of the fact that the bounds on the variables are directly
exploited by the methods that extract information from surrogate constraints, and hence folding such bounds
into the constraints themselves creates an unnecessary degree of relaxation. Similarly, any constraints that are
exploited in conjunction with surrogate constraints should not be included as component constraints. In the
present context, therefore, Observation 1 can be extended to exclude nested inequalities as component
constraints – except where a set of such inequalities is different from the one being exploited in connection with
the surrogate constraint in a particular instance.

Moreover, note also that the surrogate relaxation that includes bounding constraints as component
constraints is a surrogate relaxation of the one that excludes these bounding constraints. In general, suppose
we define
ðPÞ maxfx0 ¼ cx : Ax 6 A0; Bx 6 B0; x 2 Xg;
SðuÞ maxfx0 ¼ cx : uAx 6 uA0; Bx 6 B0; x 2 Xg;
SðvÞ maxfx0 ¼ cx : Ax 6 A0; vBx 6 vB0; x 2 Xg;

Sðu; vÞ maxfx0 ¼ cx : uAxþ vBx 6 uA0 þ vB0; x 2 Xg:
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Then the problems S(u), S(v) and S(u,v) are surrogate relaxations of P and S(u,v) is a surrogate relaxation of
the problems S(u) and S(v). Defining S(u*) = min{S(u) : u P 0}, S(v*) = min{S(v) : v P 0} and S = min
{S(u,v) : u,v P 0}, then we have S(u*) 6 S(u*,v) for all v P 0, S(v*) 6 S(u,v*) for all u P 0, and
max(S(u*),S(v*)) 6 S.

Illustration of Observation 1. The LP relaxation of the surrogate problem S(l) is
LP-SðlÞ maxfx0 ¼ cx : dx 6 d0 and 0 6 x 6 eg:

We order the variables in descending bang-per-buck order, i.e., in descending order of the ratios of the objec-

tive function coefficients to the surrogate constraint coefficients. Then the solution to the LP relaxation of the
surrogate problem occurs by sequentially setting the variables equal to 1, until reaching the point where the resid-
ual portion of the surrogate constraint RHS compels a fractional or 0 value to be assigned to the next variable (or
where no more variables remain). More formally, the variables are ordered according the ratio rj ¼ cj

dj P cjþ1

djþ1.
An optimal solution �x of the LP relaxation of the surrogate problem LP-S(l) is obtained explicitly by
�xj ¼ 1 for j ¼ 1; . . . ; j� � 1;

�xj� ¼
d0 �

Pj��1
k¼1 dk

dj� ; �xj ¼ 0 for j ¼ j� þ 1; . . . ; n;

where j� ¼ min j : d0 �
Xj

k¼1

dk

 !
P 0

( )
:

The resulting objective function value is xo ¼ c�x, giving an upper bound on the optimum xo value for 0–1
solutions. In addition, suppose we have a feasible solution x* to the original problem. The objective function
value, cx*, is a lower bound on the optimum xo value. This solution is of course feasible for the surrogate con-
straint (2). To create the mixed surrogate constraint which combines (2) and (3), we choose the weight for (2)
that is the same weight it receives in the LP dual solution to the surrogate relaxation (knapsack) problem S(l).
This weight is identified by pivoting on the variable in the surrogate constraint that received a fractional value in
the LP solution. (In the absence of any variables with fractional values, the pivot can be on the last variable that
receives a unit value or the first variable that receives a 0 value.) Let xj� be the variable giving the pivot element,
and thus the dual weight is rj� . This weight is the bank-for-buck ratio for xj� , and it is also the multiple of (2) that
would be subtracted from the objective function by a pivot operation to create the updated objective function.
The coefficients of the resulting updated objective function are the negative of the reduced costs. Consequently,
we weight (2) by rj� and add the result to (3) to create the mixed surrogate constraint px 6 po with
p ¼ rj�d � c and po ¼ rj�d
0 � cx�: ð40 Þ
In fact, in the preceding calculation, if the surrogate constraint (2) had been obtained by weighting the ori-
ginal problem constraints by their associated dual values in the LP relaxation of this problem, then the sur-
rogate constraint would already be a multiple of rj� times the version of the constraint depicted as (4). Then it
would not be necessary to identify the dual weight for (2) by a pivot calculation, since the weight would auto-
matically be 1 (i.e., the ‘‘dual LP form’’ of (2) would simply be added to (3) to give (4)).

By our preceding comments, the coefficients of the mixed surrogate constraint (4) are the same as the
reduced costs in the LP solution. In accordance with the usual application of the bounded variable simplex
method, a negative reduced cost identifies a variable that must be set equal to its upper bound to identify the
LP solution. If, in contrast to the prescription of Observation 1, we had included weights for the simple
bounding inequalities, the mixed surrogate constraint (4) would have 0 coefficients for each of the variables
that appears with a negative reduced cost. Such an outcome creates a loss of useful information for bounding
the variables, and also for generating nested inequality constraints from the surrogate constraint.

To put the mixed constraint (4) into the standard non-negative coefficient format, we set yj = 1 � xj to
complement the appropriate variables. More precisely, let p�, p+ denote the associated vectors defined by
�pþj ¼ maxfpj; 0g, p�j ¼ minfpj; 0g. The mixed constraint (4) can be disaggregated as follows:
px ¼ p�xþ pþx ¼ p�ðe� yÞ þ pþx 6 po:
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We can also complement the variables even though it has a 0 coefficient, for example the variables that are
set equal to 1 in the knapsack LP solution, giving
�p�y þ pþx 6 po � p�e: ð5Þ

This complementation does not uncover additional implications at this point, but it proves relevant to other
more advanced analysis, as will subsequently be shown.

The mixed surrogate constraint (5) is the customary ‘‘variable fixing inequality’’ for zero–one problems.
The variable xj is fixed to 0 if the corresponding coefficient pþj is greater than the value po � p�e and the
variable xj is fixed to 1 if the absolute value of the coefficient p�j is greater than the value po � p�e. Evidently,
the ability to use this inequality to fix xj variables to 1 (by fixing the associated yj variables to 0) would not be
possible if the simple bounding constraints had been included as component constraints. Still more critically,
Observation 1 affects the generation of nested inequalities – both by reference to the mixed surrogate
constraint (5) and by reference to its component surrogate constraint (2). This has a bearing on our next
observation.

Example A. Consider the following surrogate relaxation of a zero–one MDK:
max 40x1 þ 49x2 þ 24x3 þ 36x4 þ 40x5 þ 30x6 þ 32x7 þ 16x8 þ 27x9 þ 9x10 ðA1Þ
5x1 þ 7x2 þ 4x3 þ 6x4 þ 8x5 þ 6x6 þ 8x7 þ 4x8 þ 9x9 þ 3x10 6 33 ðA2Þ
xj 2 f0; 1g for j ¼ 1; . . . ; 10:
The LP surrogate solution in this case is
x1 ¼ x2 ¼ x3 ¼ x4 ¼ x5 ¼ 1; x6 ¼ 1=2; x7 ¼ x8 ¼ x9 ¼ x10 ¼ 0:
The resulting objective function value is xo = 204, giving an upper bound on the optimum xo value for 0–1
solutions. In addition, suppose we have a feasible solution to the original problem given by
x1 ¼ x2 ¼ x3 ¼ x4 ¼ x5 ¼ x10 ¼ 1; all other variables 0:
The objective function value, xo = 198, is a lower bound on the optimum xo value, and the associated objec-
tive function constraint, to compel xo to be better than 198, is given by
40x1 þ 49x2 þ 24x3 þ 36x4 þ 40x5 þ 30x6 þ 32x7 þ 16x8 þ 27x9 þ 9x10 P 199: ðA3Þ

We write the foregoing inequality as a ‘‘6 constraint’’ to give it the same orientation as the surrogate con-
straint (A2).
�40x1 � 49x2 � 24x3 � 36x4 � 40x5 � 30x6 � 32x7 � 16x8 � 27x9 � 9x10 6 �199: ðA3
0 Þ
The mixed surrogate constraint combines (A2) and (A3
0
).

The weight for (A2) is identified by pivoting on the variable in the surrogate constraint that received a
fractional value in the LP solution. Thus, x6 is the variable giving the pivot element, and the dual weight is 5.
Consequently, we weight (A2) by 5 and add the result to (A3

0
) to create the mixed surrogate constraint:
�15x1 � 14x2 � 4x3 � 6x4 þ 0x5 þ 0x6 þ 8x7 þ 4x8 þ 18x9 þ 6x10 6 �34: ðA4Þ

To put (A4) into the standard non-negative coefficient format, we set yj = 1 � xj to complement the appro-

priate variables, giving
15y1 þ 14y2 þ 4y3 þ 6y4 þ 0y5 þ 0x6 þ 8x7 þ 4x8 þ 18x9 þ 6x10 6 5: ðA5Þ

We have complemented x5 even though it has a 0 coefficient because it is one of the variables set equal to 1 in
the knapsack LP solution.

Example B. Consider the example of Osorio et al. with 15 variables and 4 knapsack constraints whose data
are presented in Table 1.

The optimal value of the LP-relaxation of this problem is equal to 335.62 and an optimal dual vector is
u�ðLPÞ ¼ ð335:62; 0:66; 0:52; 0:62; 2:78Þ:



Table 1
Data set of Example B

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

cj 36 83 59 71 43 67 23 52 93 25 67 89 60 47 64 A0

Aj
1 7 19 30 22 30 44 11 21 35 14 29 18 3 36 42 87

Aj
2 3 5 7 35 24 31 25 37 35 25 40 21 7 17 22 75

Aj
3 20 33 17 45 12 21 20 2 7 17 21 11 11 9 21 65

Aj
4 15 17 9 11 5 5 12 21 17 10 5 13 9 7 13 55
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An optimal solution of this LP-relaxation and an initial feasible solution, denoted by �x and x*, respectively,
are given below with their associated cost:
�x ¼ ð0; 0:72; 0:49; 0; 0; 0; 0; 0; 0:89; 0; 0:22; 1; 1; 0; 0Þ; c�x ¼ 335:62;

x� ¼ ð0; 0; 1; 0; 0; 0; 0; 0; 1; 0; 0; 1; 1; 0; 0Þ; cx� ¼ 301:
The reduced cost vector p in the LP solution, which corresponds to the coefficients of the mixed surrogate
constraint (4) is
p ¼ ð24:41; 0; 0; 20:47; 10:65; 5:11; 43:21; 40:89; 0; 35:73; 0;�23:13;�22:44; 10:62; 24:36Þ:
If we had included weights for the simple bounding inequalities as in Osorio et al., the mixed surrogate con-
straint (4) would have 0 coefficients for each of the variables that appears with a negative reduced cost (in
bold).
3. Valid inequalities

Valid inequalities are potentially useful in solving (mixed) integer programs, and are often derived from
knapsack constraints. The well-known ‘‘covering inequalities,’’ for example, which are based on simple knap-
sack constraint implications, have been used extensively in the literature. Knapsack constraints are also a key
modeling structure in constraint programming. Crowder et al. (1983) used a thorough understanding of indi-
vidual knapsacks to solve general integer programs.

In general, we may regard the knapsack problem as a special case of the MKP where m = 1. Let
N = {1, . . . ,n} and assume that the right-hand side a0 and the vectors c and a are non-negative integer. The
knapsack problem (KP) can be formulated as follows:
ðKPÞ maxfx0 ¼ cx subject to ax 6 a0 and x 2 f0; 1gng:

We call a set C a cover or a dependent set with respect to N if

P
j2Caj > a0. A cover C is minimal ifP

j2Saj 6 a0 for all subsets S � C. If we choose all elements from the cover C, it is clear that the following
knapsack cover inequality

P
j2Cxj 6 jCj � 1 is valid (Glover, 1971; Balas, 1975; Hammer et al., 1975; Wolsey,

1975).
It is easy to identify the rule to generate the upper bound on the sum of all variables, we simply sum the

coefficients of the vector a, proceeding from the smallest aj to the largest. Suppose the coefficients of the knap-
sack constraint ax 6 a0 are already ordered that way, i.e.,
a1 6 a2 6 � � � 6 an: ð6-aÞ

Let dk ¼

Pk
j¼1aj ¼ dk�1 þ ak, starting from d1 = a1. Then we keep adding coefficients until reaching a point

where dk 6 ao and dk+1 > ao. This is exactly the same rule that would be used if all coefficients were non-neg-
ative, simply by complementing the variables, and evidently implies that the upper bound on the sum of all
variables is given by
ex ¼
X
j2N

xj 6 k ¼ maxfj : dj 6 aog: ð6-bÞ
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Cover Cut Procedure: //upper bound on sum of all variables

Input: knapsack constraint ax 6 a0.
Output: cover constraint ex 6 k.
Step 1: Sort the coefficients of the knapsack constraint such that aj 6 aj+1 for j = 1 to n � 1.
Step 2: Let d0 = 0 and for j = 1 to n do dj = dj�1 + aj. Generate the cut ex 6 k.

Consequently, in our Example A, where N = {1, . . . , 10}, the value of k is 8, and hence the inequality
bounding the sum of all variables is
ex 6 8:
Another very straightforward observation is useful to illustrate connections between continuous and inte-
ger solutions that support the forgoing derivations.

Observation 2. The upper bound k on the sum of all variables is equal to the optimum value of the following
knapsack problem:
ðKPÞ maxfx0 ¼ ex subject to ax 6 a0 and x 2 f0; 1gng

and this value derives by rounding the LP solution to the continuous version of (KP).

Illustration of Observation 2. Consider the LP relaxation (LP-KP) obtained from (KP) by removing the inte-
grality constraints on the variables:
LP-KP maxfx0 ¼ ex subject to ax 6 a0 and 0 6 x 6 eg:

Assume the variables are ordered in descending order of the ratios of the objective function coefficients to

the knapsack constraint coefficients, i.e., so that
1

a1
P

1

a2
P � � �P 1

an
: ð6-cÞ
Observe that the sort (6-c) is equivalent to the sort (6-a). Hence, an optimal solution of the problem LP-KP
occurs by sequentially setting the variables equal to 1, until reaching the point where the residual portion of
the knapsack constraint RHS compels a fractional or 0 value to be assigned to the next variable (or where no
more variables remain). More formally, an optimal solution �x of the LP relaxation LP-KP is obtained explic-
itly by
�xj ¼ 1 for j ¼ 1; . . . ; j� � 1;

�xj� ¼
a0 � dj��1

aj�
; �xj ¼ 0 for j ¼ j� þ 1; . . . ; n;

where j� ¼ maxfj : dj 6 aog:
The objective function value of the LP-relaxation LP-KP is a upper bound on the optimum value of the
knapsack problem, i.e., v(KP)6 e�x, where v(KP) is the optimal value of the knapsack problem (KP). Since
all the objective function coefficients are integer, the following constraint is also valid:
vðKPÞ 6 be�xc: ð6-dÞ
The optimum solution �x of the LP relaxation problem LP-KP has at most one fractional variable �xj�, so by
setting this variable to zero, we obtain a feasible solution x* of the knapsack problem (KP) such that
ex* = j* � 1. It is clear that be�xc ¼ ex� ¼ k. Thus, from (6-d) we have v(KP) = k.
4. Additional valid inequalities

We now examine considerations that are no less fundamental, but that are perhaps less immediate.
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Observation 3. Consider a system consisting of a set of problem constraints and a mixed surrogate constraint,
together with its components, augmented by a set of nested inequalities generated from the mixed surrogate
constraint. Then additional strengthening of the system can be obtained by incorporating two additional sets
of nested inequalities generated by reference to the components of the mixed surrogate constraint (i.e., where
one is derived from the component surrogate constraint and one is derived from the xo constraint).

Observation 3 results from the fact that the two additional sets of nested inequalities can create nesting
sequences that differ from each other and that also differ from the sequence produced by the mixed surrogate
constraint. Moreover, the two nested inequality sets ‘‘pull in opposite directions.’’ Thus, for example, in the
multidimensional knapsack problem the objective function constraint generates ‘‘P’’ nested inequalities while
the surrogate constraint generates ‘‘6’’ nested inequalities. The mixed surrogate constraint generates
inequalities that are implicitly a mix of the implications of the other inequalities.

Illustration of Observation 3. The relevance of Observation 3 is quickly illustrated by the fact that the surro-
gate constraint (A2) and the objective function constraint (A3), respectively, imply ex 6 6 and ex P 6, while
the mixed constraint (A4) implies 3 6 ex 6 7. Hence, the inequalities ex 6 6 and ex P 6, members of the
nested inequalities from each of the component constraints, dominate the associated inequality 3 6 ex 6 7
obtained from the system for the mixed surrogate constraint. (This is true even though our illustration uses
the stronger form of (A4) that results by applying Observation 1. If Observation 1 were not applied, (A4)
would not have implied ex P 3.)

Moreover, if we had not been fortunate enough to know a very good feasible solution to the problem
(which gives the good lower bound for xo used in this example), the mixed constraint would be still weaker,
while the surrogate constraint (A2) would be unaffected. For example, suppose the best feasible solution
known was the one that sets x1 to x5 = 1, and the remaining variables to 0. (This is the one that results by
rounding down the fractional variable in the LP solution.) Then the RHS for (A4) would be –26, and thus the
mixed surrogate constraint would only yield 2 6 ex 6 8, whereas the surrogate constraint (A2) and the
objective function constraint (A3) would respectively yield ex 6 6 and ex P 4. Given that the nested
inequalities provide a primary source of improvement for solving hard problems, these differences are
noteworthy.

Consider the two binary integer programs (BP+) and (BP�) which consist of maximizing and minimizing
respectively the sum of the variables subject to two constraints, where one is the component surrogate
constraint and one is the objective function constraint. The problems (BP+) and (BP�) are stated as follows:
ðBPþÞ maxfx0 ¼ ex : ax 6 a0; cx P c0; x 2 f0; 1gng;
ðBP�Þ minfx0 ¼ ex : ax 6 a0; cx P c0; x 2 f0; 1gng:
The mixed surrogate constraint, as previously indicated, is a surrogate constraint created by combining a
given surrogate constraint with an objective function constraint. After rewriting the objective function
constraint as a ‘‘6’’ constraint to give it the same orientation as the surrogate constraint, and after choos-
ing non-negative weights a and b for the two constraints, we obtain the following surrogate relaxation
problems:
ðSþða; bÞÞ maxfx0 ¼ ex : aax� bcx 6 aa0 � bc0; x 2 f0; 1gng;
ðS�ða; bÞÞ minfx0 ¼ ex : aax� bcx 6 aa0 � bc0; x 2 f0; 1gng:
As the surrogate functions v(S+(a,b)) and v(S�(a,b)) are homogeneous functions over R2
þ, we can restrict

the search domain over a compact set, for example, by using the norm L1, the surrogate functions to be con-
sidered are v(S+(a, (1 � a))) and v(S�(a, (1 � a))) for a 2 [0,1]. Moreover, since the surrogate function
v(S+(a,b)) is a quasi-convex function, thus for any a 2 [0,1], we have v(S+(a, (1 � a))) 6 max{v(S+(1, 0)),
v(S+(0, 1))} where
Sþð1; 0Þmaxfx0 ¼ ex : ax 6 a0; x 2 f0; 1gng and Sþð0; 1Þmaxfx0 ¼ ex : cx P c0; x 2 f0; 1gng:

The surrogate function v(S�(a,b)) is a quasi-concave function, so we have
minfvðS�ð1; 0ÞÞ; vðS�ð0; 1ÞÞg 6 vðS�ða; ð1� aÞÞÞ for any a 2 ½0; 1�:
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In summary, for a 2 [0,1], we have
minfvðS�ð1; 0ÞÞ; vðS�ð0; 1ÞÞg 6 vðS�ða; ð1� aÞÞÞ 6 vðBP�Þ 6 ex and ex 6 vðBPþÞ
6 vðSþða; ð1� aÞÞÞ 6 maxfvðSþð1; 0ÞÞ; vðSþð0; 1ÞÞg:
The above illustration shows the relevance of Observation 3. One way to improve the bounds on the sum of
the variables is to solve the corresponding duals of the above relaxations. More precisely we have
vðS�Þ 6 vðBP�Þ 6 ex 6 vðBPþÞ 6 vðSþÞ;

where
ðSþÞminfvðSþða; ð1� aÞÞÞ : a 2 ½0; 1�g and ðS�ÞminfvðS�ða; ð1� aÞÞÞ : a 2 ½0; 1�g:

To solve these dual problems we can use one of the algorithms proposed by Glover (1965), Karwan and

Rardin (1984), Fréville and Plateau (1993), and Hanafi (1993). For the multidimensional knapsack (MDK)
problem where the right-hand sides a0 and c0 and the vectors a and c are non-negative, in spite of the trivial
optimal solutions 0 and e for the surrogate problems S�(1, 0) and S+(0,1), (i.e., v(S�(1, 0)) = 0.0 = 0 and
v(S+(0,1)) = ee = n), we do not necessarily have v(BP+) equals to v(S+(1,0)).

Example C. Consider the following surrogate relaxation of a zero–one MDK:
ðBPþÞ max x1 þ x2 þ x3 þ x4 þ x5 þ x6 þ x7 þ x8 þ x9 þ x10

s:t: x1 þ 2x2 þ 3x3 þ 4x4 þ 5x5 þ 6x6 þ 7x7 þ 8x8 þ 9x9 þ 10x10 6 12;

2x1 þ 2x2 þ 2x3 þ 2x4 þ 10x5 þ 10x6 þ 10x7 þ 10x8 þ 10x9 þ 10x10 P 21;

xj 2 f0; 1g for j ¼ 1; . . . ; 10:
We have v(BP+) = 3, v(S+(1, 0)) = 4 and v(S+(0, 1)) = 10.
5. Nested valid inequalities

Valid inequalities are called Nested Cuts when two inequalities overlap in their unit coefficients only if the
non-zero coefficients of one are contained in the other. More precisely, let Nk, k = 1, . . . ,K, denote a collection
of distinct non-empty subsets of N, the subsets Nk are called nested sets if they satisfy the property
For all k; k0 2 f1; . . . ;Kg; ðk 6¼ k0 and Nk \ N k0 6¼ ;Þ ) ðNk � N k0 or Nk0 � NkÞ:

Let N be the index set of variables in the constraint ax 6 a0. As noted, the cover cut procedure generates the

valid inequality
P

j2N xj 6 maxfj :
P

j2N aj 6 aog. For each subset N 0 of N, we consider the constraint a 0x 6 a0

where the component a0j ¼ aj, if j in N 0 and 0 otherwise. By using this constraint we can generate new valid
inequalities corresponding to upper bounds on sums of variables in N 0. The valid inequalities on partial sums
of variables in Nk are called nested inequalities if the subsets Nk are nested subsets.

Let X k ¼ ðX k
l ;X

k
2; . . . ;X k

nÞ denote a zero–one characteristic vector associated with the subset Nk, which is
defined by X k

j ¼ 1 if j is in Nk, 0 otherwise. The nested property is equivalent to specifying that variables
Xk satisfy
For all p; q in N ; ðp 6¼ qÞ and X pX q P 1 ) ðX p P X q or X q P X pÞ:
5.1. Contiguous inequalities

The simple types of nested inequalities where each is strictly ‘‘contained in’’ the next member of the pro-
gression, are called contiguous cuts. Specifically, the contiguous cuts with associated subsets Nk,
k = 1, . . . ,K, satisfy the property N1 � N2 � � � �Nk.

Observation 4. It is possible to take account of dominance considerations by a simple check applied to
consecutive contiguous cuts to reduce the collection of nested cuts generated.
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Illustration of Observation 4. Let N be the index set of variables in the source constraint ax 6 a0. Two sets N

and N 0 are called adjacent sets if they differ only by a single element, i.e., N 0 = N + {j0}. Define the vector a 0 so
that a0j ¼ aj for j 5 j0 and a0j0 ¼ 0, and consider the corresponding constraint a 0x 6 a0. Note that this latter
constraint is a relaxation of the source constraint and the non-negativity constraint. According to Observation
2 if the coefficients are already ordered so that a1 6 a2 6 � � � 6 an, we have
X
j2N

xj 6 k ¼ max j : dj ¼
Xj

i¼1

ai 6 ao

( )
; ð7-aÞ

X
j2N 0

xj 6 k0 ¼ max j : d0j ¼
Xj

i¼1

a0i 6 ao

( )
: ð7-bÞ
It is easy to show that if k < j0 then d0j ¼ dj for j 6 k, then the constraint (7-a) dominates the constraint (7-b).
Otherwise (i.e., j0 6 k), if the condition (dkþ1 � aj0 6 a0) is satisfied then we have d0kþ1 6 ao and d0kþ2 > ao so the
constraint (7-a) again dominates the constraint (7-b). In the case ðdkþ1 � aj0 > a0Þ we have d0k 6 ao and
d0kþ1 > ao which imply that

P
j2N 0xj 6 k � 1. This latter constraint (7-b) combined with the upper bound on

xj0 imply the constraint (7-a). This proves that only one of two adjacent nested cuts need be kept.

Osorio et al. (2002) propose an algorithm as a special case of an approach of Glover (1971) for generating
contiguous cuts Nk = {k,k + 1, . . . ,n} for a 0–1 inequality ax P a0. It is assumed, that the coefficients are
already ordered so that a1 P a2 P � � �P an.

Contiguous nested cuts procedure

Let d0 = 0 and for j = 1 to n do dj = dj�1 + aj;
Let k = 1; k_last = 0;
For j = 1 to n do
if (dn � a0 < dj � dk�1){
while (dn � a0 < dj � dk) k++;
if (k > k_last) { P
generate the cut j
i¼1xi P k

k_last = k;
}

}

Using the dominance between two consecutive contiguous cuts, we propose the following procedure. In this
procedure we introduce a new variable called j_last to generate only the non-dominate cuts.

Improved contiguous nested cuts procedure

Let d0 = 0 and for j = 1 to n do dj = dj�1 + aj;
Let k = 1; k_last = 0; j_last = �1;
For j = 1 to n do
if (dn � a0 < dj � dk�1){
while (dn � a0 < dj � dk) k++;
if (k > k_last) { P
if (j_last + 1 < j) generate the cut j
i¼1xi P k;

k_last = k; j_last = j;
}

}

Example D. Consider the following knapsack constraint:
95x1 þ 92x2 þ 87x3 þ 80x4 þ 78x5 þ 72x6 þ 61x7 þ 54x8 þ 52x9 þ 30x10 6 467:
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Fig. 1. Comparison of the two procedures for generating nested cuts.
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The contiguous nested cuts procedure generates the following six cuts:
x1þ x2þ x3 6 1;

x1þ x2þ x3þ x4 6 2;

x1þ x2þ x3þ x4þ x5 6 3;

x1þ x2þ x3þ x4þ x5þ x6þ x7 6 4;

x1þ x2þ x3þ x4þ x5þ x6þ x7þ x8 6 5;

x1þ x2þ x3þ x4þ x5þ x6þ x7þ x8þ x9 6 6:
Our improved contiguous nested cuts procedure generates only two non-dominated cuts:
x1þ x2þ x3 6 1;

x1þ x2þ x3þ x4þ x5þ x6þ x7 6 4:
Fig. 1 shows the progression of the number of nested cuts generated by the two procedures as a function of
the number of variables. The coefficients of the source constraint are generated randomly by taking a0 = aae

with a close to 0.5.
5.2. Mixed nested inequalities

Observation 5. Different nested inequalities are produced by using different forms of the mixed surrogate
constraint, where different sets of coefficients are selected to be negative. Moreover, the nested inequalities
generated directly from the form of the mixed surrogate that does not complement the problem variables
includes all of those generated in the Osorio et al. paper, plus additional nested inequalities, thus producing a
system that dominates the system previously obtained. Finally, this expanded system can be generated with the
same computer code used to generate the previous smaller system.

Observation 5 is important for the harder problems where the nested inequalities are the major contribution
to improving the solution process.

Illustration of Observation 5. We show that the nested sum inequalities obtained from the mixed surrogate
constraint in the form that has both negative and positive coefficients include all of those generated in Osorio
et al., and also include others.

Write the mixed surrogate constraint that includes the negative coefficients in the form
X
ðpjxj : jeN �Þ þ

X
ðpjxj : jeN � N �Þ 6 po;
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where N* is the index set for the negative coefficients. The previous approach replaced the coefficients pj:jeN*

with 0’s to generate nested inequalities from the source inequality
X
ð0xj : jeN �Þ þ

X
ðpjxj : jeN � N �Þ 6 p�o; ð8-aÞ
where p�o ¼ po �
P
ðpj : jeN �Þ.

The first nested inequality from this 6 source inequality is an ‘‘overall inequality’’
X
ðxj : jeNÞ 6 RHSðNÞ:
The new nested inequalities that are omitted in Osorio et al. (2002) are those that involve partial sums over
jeN* of the following form:
X

ðxj : jeN �ð1ÞÞP RHSð1ÞX
ðxj : jeN �ð2ÞÞP RHSð2ÞX
ðxj : jeN �ð3ÞÞP RHSð3ÞX
ðxj : jeN �ð4ÞÞP RHSð4Þ; etc:
Here, N*(1) = N*, and in turn N*(2) removes the index for the smallest absolute value coefficient associated
with N*(1), then N*(3) removes the index for the smallest absolute value coefficient associated with N*(2),
and so on.

It is easy to identify the rule to generate these nested inequalities directly, but they can also be generated
using the rule already applied to generate nested inequalities from the 6 source inequality, simply by comple-
menting the variables. The first step begins with the source:
X

ðpjxj : jeNÞ 6 po;
which is implied by the original mixed surrogate constraint. Then we complement the variables (yj = 1 � xj)
for jeN* to obtain the modified source
X

ðp�j yj : jeN �Þ þ
X
ðpjxj : jeN � N �Þ 6 p�o; ð8-bÞ
where p�j ¼ �pj > 0 and, as before, p�o ¼ po �
P
ðpj : jeN �Þ.

This inequality can also be obtained from the source inequality (8-a) used in Osorio et al. that drops the
negative coefficients. Recall that this inequality is
X

ð0xj : jeN �Þ þ
X
ðpjxj : jeN � N �Þ 6 p��o : ð8-cÞ
Hence, in Example A, where p�o ¼ po �
P
ðpj : jeN �Þ: ¼ �5� ð�11Þ ¼ 6, the inequality (8-a) is given by
0x1 þ 0x2 þ 0x3 þ 0x4 þ 0x5 þ 0x6 þ 2x7 þ 2x8 þ 3x9 þ 4x10 6 6: ð8-dÞ

It is easy to see that the upper bound on the sum of all variables is exactly the same as given above. In that the
present case this inequality dominates all other nested inequalities from the source (8-a) used in Osorio et al.
until reaching the subsets of variables whose coefficients are positive – i.e., in (8-d) it dominates all nested
inequalities until reaching those whose index sets are {8,9,10}, {9,10} and {10}. (It dominates the inequality
over the indexes {7,8,9,10} because this has the same right-hand side k as the bound on all the variables.) It is
naturally important to include this inequality on the sum of all variables among the nested inequalities,
although it is not in general true that the inequality will dominate a string of successive inequalities as in
the present example.

5.2.1. Inequalities missing from the earlier implementation

To generate the P inequalities that are missing from the Osorio et al. implementation, we start from the
source inequality (8-d), and consider only the negative coefficients. Thus, (8-d) and (1-c) or (1-d) imply the
following constraint:
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p�ðe� xÞP p�e� po: ð8-eÞ

Clearly, this inequality is implied by (8-e), and it is the ‘‘missing part’’ of the Osorio et al. development.

The new inequalities that are also missing from the Osorio et al. implementation, can be obtained directly
from the source inequality (8-d), where we consider negative and positive coefficients. Recall that both
inequalities (8-c) and (8-e) are derived from (8-d), and that (8-d) is stronger than (8-c) or (8-e).

5.2.2. General nested cuts

Assume that the vectors p� and p+ can be decomposed as follows: p� ¼ p�1 þ p�2 and pþ ¼ pþ1 þ pþ2 . Then
the source inequality (4) can be rewritten as
p�1 xþ p�2 xþ pþ1 xþ pþ2 x 6 po:
This latter constraint can in turn be rewritten as
�p�1 ðe� xÞ þ p�2 xþ pþ1 xþ pþ2 x 6 po � p�1 e: ð8-fÞ

From the inequality (8-f) we can derive different new relaxations of this constraint combined with the original
constraint such as (1-c) or (1-d). This combination can provide the following source constraints:
p�2 xþ pþx 6 po � p�1 e; ð8-gÞ
p�2 xþ pþ1 x 6 po � p�1 e; ð8-hÞ
p�xþ pþ1 x 6 po: ð8-iÞ
Remarks

(1) In the constraints (8-g:i) we can interchange p�1 with p�2 and/or pþ1 with pþ2 .
(2) Osario et al. considered only the case (8-g) with p�2 ¼ 0.

Example B. To give a numerical example, we start with the mixed inequality, in the form of (4):
�4x1 � 3x2 � 2x3 � 2x4 þ 0x5 þ 0x6 þ 2x7 þ 2x8 þ 3x9 þ 4x10 6 �5: ðB1Þ

The inequality (8-c), which drops the negative coefficients, is given by
0x1 þ 0x2 þ 0x3 þ 0x4 þ 0x5 þ 0x6 þ 2x7 þ 2x8 þ 3x9 þ 4x10 6 6: ðB2Þ

It is easy to see that the 6 nested inequalities that have already been generated from the source (B2) in the

Osorio et al. implementation, are
x9 þ x10 6 1; ðB3aÞ
x7 þ x8 þ x9 þ x10 6 2: ðB3bÞ
The ‘‘missing part’’ of the Osorio et al. development are the P nested inequalities derived from (8-d), which
corresponds to the following inequality:
4x1 þ 3x2 þ 2x3 þ 2x4 þ 0x5 þ 0x6 þ 0x7 þ 0x8 þ 0x9 þ 0x10 P 5: ðB4Þ
Using the preceding procedure with the source constraint (B4) gives rise to the inequalities
x1 þ x2 P 1; ðB5aÞ
x1 þ x2 þ x3 þ x4 P 2: ðB5bÞ
The new 6 and P nested inequalities are derived directly from the source (B1) by complementing the
variables with negative coefficients, to give
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x1 P x10; ðB6aÞ
x1 P x9 þ x10; ðB6bÞ
x1 þ x2 þ x4 P 1þ x9 þ x10; ðB6cÞ
x1 þ x2 þ x3 þ x4 P 2þ x9 þ x10; ðB6dÞ
x1 þ x2 þ x3 þ x4 P 1þ x7 þ x8 þ x9 þ x10: ðB6eÞ
Note that the inequalities (B3a) and (B5b) are implied by the inequalities (B6b) and (B6d), respectively. We
also observe that the nested inequalities (B6) can dominate both of the nested constraints (B3) and (B5) if all
the coefficients of the source constraint (4) are different, since, after complementation, several variables in the
transformed source constraint have the same coefficient. To illustrate, in order to use the procedure directly,
we transform the source constraint (B1

0
) into a P constraint with only positive coefficients as follows:
4x1 þ 3x2 þ 2x3 þ 2x4 þ 0x5 þ 0x6 þ 2ð1� x7Þ þ 2ð1� x8Þ þ 3ð1� x9Þ þ 4ð1� x10ÞP 16: ðB1
0 Þ
Considering all the orderings of the variables having the same coefficients, we can also generate the new
nested constraints:
x1 þ x2 P 1þ x10; ðB6fÞ
x1 þ x2 þ x3 P 1þ x9 þ x10; ðB6gÞ
x1 þ x2 þ x3 þ ð1� x7ÞP 1þ x9 þ x10; ðB6hÞ
x1 þ x2 þ x3 þ ð1��x8ÞP 1þ x9 þ x10; ðB6iÞ
x1 þ x2 þ x3 þ ð1� x7ÞP 1þ x7 þ x8 þ x9 þ x10; ðB6jÞ
x1 þ x2 þ x3 þ ð1� x8ÞP 1þ x7 þ x8 þ x9 þ x10: ðB6kÞ
The collection of the nested constraints (B6) dominates the nested constraints (B3) and (B5).
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