
Discrete Optimization 5 (2008) 270–289
www.elsevier.com/locate/disopt

Higher-order cover cuts from zero–one knapsack constraints
augmented by two-sided bounding inequalities

Hanif D. Sheralia, Fred Gloverb,∗

a Grado Department of Industrial and Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg,
VA 24061, United States

b Leeds School of Business, University of Colorado, Boulder, CO 80309-0419, United States

Received 4 November 2005; accepted 1 February 2007
Available online 31 October 2007

Abstract

Extending our work on second-order cover cuts [F. Glover, H.D. Sherali, Second-order cover cuts, Mathematical Programming
(ISSN: 0025-5610 1436-4646) (2007), doi:10.1007/s10107-007-0098-4. (Online)], we introduce a new class of higher-order cover
cuts that are derived from the implications of a knapsack constraint in concert with supplementary two-sided inequalities that
bound the sums of sets of variables. The new cuts can be appreciably stronger than the second-order cuts, which in turn dominate the
classical knapsack cover inequalities. The process of generating these cuts makes it possible to sequentially utilize the second-order
cuts by embedding them in systems that define the inequalities from which the higher-order cover cuts are derived. We characterize
properties of these cuts, design specialized procedures to generate them, and establish associated dominance relationships. These
results are used to devise an algorithm that generates all non-dominated higher-order cover cuts, and, in particular, to formulate
and solve suitable separation problems for deriving a higher-order cut that deletes a given fractional solution to an underlying
continuous relaxation. We also discuss a lifting procedure for further tightening any generated cut, and establish its polynomial-
time operation for unit-coefficient cuts. A numerical example is presented that illustrates these procedures and the relative strength
of the generated non-redundant, non-dominated higher-order cuts, all of which turn out to be facet-defining for this example. Some
preliminary computational results are also presented to demonstrate the efficacy of these cuts in comparison with lifted minimal
cover inequalities for the underlying knapsack polytope.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: 0–1 integer programming; knapsack cover inequalities; Surrogate constraints; Separation problems; Lifting procedures

1. Introduction

The class of knapsack cover inequalities (or cover cuts) introduced in [2,17], and Wolsey [32] have enjoyed a
well-deserved reputation for being useful to improve the solution of 0–1 integer programming (IP) problems, both
in pre-processing and in tightening relaxations (see, e.g., [14,25,27,31]). In a previous paper [12], we introduced a
class of second-order cover cuts whose members strengthen the classical knapsack cover inequalities by additionally

∗ Corresponding author.
E-mail addresses: hanifs@vt.edu (H.D. Sherali), fred.glover@colorado.edu (F. Glover).

1572-5286/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.disopt.2007.02.002

http://www.elsevier.com/locate/disopt
http://dx.doi.org/http://dx.doi.org/doi:10.1007/s10107-007-0098-4
mailto:hanifs@vt.edu
mailto:fred.glover@colorado.edu
http://dx.doi.org/10.1016/j.disopt.2007.02.002

H.D. Sherali, F. Glover / Discrete Optimization 5 (2008) 270–289 271

considering an upper bound on the sum of variables. We significantly extend this work in the present paper by
proposing a more general class of higher-order cover cuts that make it possible to exploit implications of a more
extensive set of inequalities.

Our development in this paper is based on a knapsack constraint (1a) in concert with additional two-sided bounding
inequalities (1b) and (1c), defined in terms of 0–1 variables x j , j ∈ N ≡ {1, ..., n}:∑

j∈N

a j x j ≥ a0 (1a)

0 ≤ ` ≤
∑
j∈N

x j ≤ u (1b)

0 ≤ `i ≤
∑
j∈Ni

x j ≤ ui , ∀i ∈ M ≡ {1, ..., m}, (1c)

where the sets Ni , i ∈ M , constitute a partition of N . The a j -coefficients in (1a) are real numbers, possibly having
mixed signs. Consequently, our results also apply to (1a) in the form

∑
j∈N a j x j ≤ a0.

We also denote

X ≡ {x binary: (1a)–(1c) hold true} (2)

and without loss of generality, assume that

a1 ≥ a2 ≥ · · · ≥ an, ` ≥
∑
i∈M

`i , ui ≤ min{|Ni |, u}, ∀i ∈ M, u ≤
∑
i∈M

ui ,

and `i < ui if ui = |Ni |,∀i ∈ M, (3)

because otherwise, we can accordingly modify the bounds in (1b), (1c), and in the last case, if `i = ui = |Ni | for any
i ∈ M , we can fix x j = 1,∀ j ∈ Ni .

The second-order cover cuts of our previous work were based on the system consisting of (1a) and (1b),
without the inclusion of the inequalities of (1c), and without the consideration of the lower bound ` in (1b)
(although we showed how the basic cut generation process could handle such a lower bound). As in the case of
the second-order cuts, our work here is motivated by the proposals for exploiting systems of nested inequalities in
0–1 linear programming [11]. Our results are also related to the valid inequalities characterized in [20,23,28] for
generalized upper-bound constrained knapsack problems, and to the pre-processing strategies analysed and exploited
in [26,19] based on nested inequalities employed in conjunction with surrogate constraints in the context of 0–1
multidimensional knapsack problems. Our present paper demonstrates how to exploit and further tighten such nested
inequality structures in the process of deriving a stronger class of proposed valid inequalities. Other related areas of
application for such inequalities are identified in [18,30]. Furthermore, several extensions of the discussion provided in
this paper are evident for more general nested-bounding structures in lieu of the separable restrictions (1c). Hanafi and
Glover [19] and Glover and Sherali [13], for example, present some polyhedral analyses for such nested-constrained
problems, but we postpone the consideration of such more complex structures in the light of the present work for
future research.

Zeng and Richard [34] analyse a special case of X that includes (1a) along with the upper-bounding inequalities
in (1c) (i.e., having ` = 0, u ≡ |N |, and `i = 0,∀i ∈ M). For this structure, they describe a lifting mechanism for
related generalized cover inequalities using certain novel super-additive multidimensional and lower approximating
lifting functions to the underlying exact lifting function. Some numerical examples are presented to demonstrate that
the resulting lifted cover inequalities can dominate those derived for the ordinary 0–1 knapsack polytope.

The constraints in (1c) accommodate two other special noteworthy cases. One arises where ui = 1 for all i ∈ M ,
which captures the types of constraints found in multiple choice 0–1 problems that abound in practical applications.
(See [28] for a characterization of cover cuts in this case, and a polynomial-time lifting of these into facets; also,
see [23].) The second case arises where (1c) begins as a single constraint (m = 1) over a specified proper subset
N1 of N . To satisfy the condition that the sets Ni , i ∈ M , constitute a partition of N , it suffices to introduce the set
N2 = N–N1 and add the redundant inequality

∑
j∈N2

x j ≤ u2 ≡ |N2|. An interesting use of such a representation
occurs in the case where the constraint

∑
j∈N1

x j ≥ `1, defined over N1, is one derived as a second-order cover

272 H.D. Sherali, F. Glover / Discrete Optimization 5 (2008) 270–289

cut. Upon embedding it as indicated in (1c), the second-order cut can then be exploited more fully relative to other
knapsack constraints (1a) accompanied by (1b). Such an approach is especially relevant where knapsack constraints
arise from surrogate constraints designed to capture more aspects of the problem structure, as for example, by
generating weighted combinations of parent constraints by using optimal dual variables from linear programming
relaxations. Moreover, our derivations and results in the present paper can be applied to various other important special
cases such as those involving multiple choice constraints, and knapsack constraints augmented with inequalities of
the type (1b) that are derived by performing standard pre-processing or logical tests on the entire set of problem
constraints. Hence, even when the assumed structure (1) is not inherently present in some parent 0–1 programming
problem, it can be induced therefrom in order to derive implied valid inequalities of the type proposed herein.

The remainder of this paper is organized as follows. As a preliminary analysis, we begin in Section 2 by delineating
certain pre-processing routines to verify whether X = ∅ or not, and to fix certain variables at 0 or 1 values, as
possible. Thereafter, Section 3 describes a general LP-rounding-based procedure, as well as a specialized strongly
polynomial stage-wise process to generate a higher-order cover cut. Following this, Section 4 addresses the issue
of characterizing non-dominated higher-order cover inequalities, and establishes related dominance results. These
properties are used in Section 5 to enumerate all non-dominated higher-order cover inequalities, as well as to solve
related separation problems. Section 6 provides an illustrative example to elucidate the basic cut generation and
separation routine ideas, and to exhibit the potential of generating significantly tighter inequalities using the structure
X defined in Eq. (2), in comparison with non-dominated cover cuts that are implied by the knapsack polytope, or
even by the augmented knapsack polytope that leads to the second-order cover inequalities of Glover and Sherali
[12]. Section 7 then discusses a sequential lifting procedure for potentially further tightening the generated high-order
cover inequalities, and establishes that this lifting can be conducted in polynomial time for the special case of unit-
coefficient cuts. Some preliminary computational results are presented in Section 8 to demonstrate the efficacy of the
proposed cuts in comparison with lifted minimal covers for the underlying knapsack polytope, and Section 8 provides
a summary and some recommendations for future research.

2. Pre-processing routines

We begin by first describing an efficient polynomial-time process to check if X = ∅ or not. A flow-chart for the
associated routine to accomplish this, denoted FEAS(X), is presented in Fig. 1, which returns FEAS(X) = TRUE if
X 6= ∅, and FEAS(X) = FALSE otherwise. The following notation pertains to this procedure.

q = Number of (counter for) elements selected from N , (4a)

qi = Number of (counter for) elements selected from Ni ,∀i ∈ M. (4b)

Σ = Sum of a j -coefficients for the selected indices/elements. (4c)

IN(j) = Index i ∈ M for which j ∈ Ni ,∀ j ∈ N . (4d)

Essentially, based on (3), the method initially selects the first `i indices from each set Ni having the largest a j -values. If
the total number selected is less than `, the method then continues to sequentially pick the smallest indexed unselected
element subject to the upper-bounding restrictions in (1c). If the resultant sum of the selected a j -coefficients is at least
a0, we have FEAS(X) = TRUE. Otherwise, we continue the sequential selection of admissible elements subject
to the upper-bounding restrictions in (1b) and (1c), until we either obtain the sum of selected a j -coefficients being
greater than or equal to a0, whence FEAS(X) = TRUE, or discover that (1a) is unsatisfiable subject to (1b) and (1c)
(hence, FEAS(X)= FALSE). Evidently, given the ordered lists N and Ni ,∀i ∈ M , along with pointers between them
(including IN(j), ∀ j ∈ N), this process can be implemented in O(n) steps (4d).

Next, we examine how we can augment the foregoing routine to ascertain whether we can a priori fix a variable at
0 or 1, and accordingly then, eliminate it from the problem.

Naturally, whenever we fix a variable at 0 or 1, we restructure (1a)–(1c), ensuring (3), and accordingly re-define X
in (2). The basic idea here is that for any j ∈ N ,

if FEAS(X ∩ {x : x j = 0}) = FALSE, then we can fix x j = 1 and (5a)

if FEAS(X ∩ {x : x j = 1}) = FALSE, then we can fix x j = 0. (5b)

H.D. Sherali, F. Glover / Discrete Optimization 5 (2008) 270–289 273

Fig. 1. Flow-chart for routine FEAS(X).

Fig. 2. Pre-processing routine for possibly fixing x ĵ ≡ 1, for ĵ ∈ N+.

To implement this concept more efficiently than simply running the routine FEAS(·) from scratch, define the sets

N+ = { j ∈ N : j was selected by FEAS(X) at termination}, and N− ≡ N − N+. (6)

Then, we need to check if x j can be possibly fixed at 1 only for j ∈ N+, and likewise, if x j can be possibly fixed at
0 only for j ∈ N−. Let A, B, and C be the junctures designated in Fig. 1 for the routine FEAS(X). Then Figs. 2 and
3 link into the structure of this routine for testing whether we can fix a given x ĵ ≡ 1 for ĵ ∈ N+, or a given x ĵ ≡ 0

for ĵ ∈ N−, respectively, based on the event that these routines return an indication of FALSE according to (5a) and
(5b). The logic for these routines is similar to that for FEAS(X). For example, Fig. 2 commences with the information
available at juncture A in Fig. 1, fixes x ĵ = 0 from its current value of 1, then first checks if this results in qî < `î ,

where î ≡ I N (ĵ). If so, it selects the best (smallest) admissible unselected index from Nî , and then continues the
feasibility routine from juncture B as before. The logic in Fig. 3 is similar.

274 H.D. Sherali, F. Glover / Discrete Optimization 5 (2008) 270–289

Fig. 3. Pre-processing routine for possibly fixing x ĵ ≡ 0, for ĵ ∈ N−.

3. Parametric procedure for generating higher-order cover (HOC) inequalities

In this section, we describe a parametric polynomial-time procedure for generating a valid inequality that is implied
by X and is of the following form, for any given J ⊆ N , J 6= ∅:∑

j∈J

x j ≥ p, (7)

where

p ≡ min

{∑
j∈J

x j : x ∈ X

}
. (8)

Note that (7) extends the cover inequalities for knapsack polytopes to the more general set X . In the case of
knapsack polytopes (viewed in the complemented variable space), the inequalities of the type (7) are essentially
rank-inequalities based on an underlying independence system (see [21] for a general discussion of rank-inequalities
for independence systems, and also, [3,7,22] for related discussions in the respective contexts of independent sets
in graphs, set covering polytopes, and packing designs). However, because of the presence of both lower and upper
bounds on sums of subsets of variables in (1b) and (1c), which precludes a direct characterization of feasible solutions
to X in terms of an independence system, and also, as motivated in Section 1, since (7) can be derived as further
implications of second-order cover inequalities of Glover and Sherali [12] that are generated using the pair of parent
restrictions

∑
j∈N a j x j ≥ a0 and

∑
j∈N x j ≤ u in binary variables, we shall refer to (7) as a higher-order cover

(HOC) inequality.
Notationally, given any J ⊆ N , define the following for the sake of convenience in reference:

N J ≡ N − J, Ji ≡ J ∩ Ni , ∀i ∈ M, and N Ji ≡ Ni − J = N J ∩ Ni , ∀i ∈ M. (9)

The strongly polynomial-time routine CUT(J) that we design below for deriving (7) via (8) takes J ⊆ N , J 6= ∅ as
an input, and produces p along with an optimal solution x∗ to problem (8) as an output.

As an initial step, CUT(J) solves the following problem, whose optimal value is prescribed in closed form by
Proposition 1 below.

p0 = Min

{∑
j∈J

x j : (1b) and (1c), x binary

}
. (10)

Proposition 1. Consider problem (10) and define

p̂0 =
∑
i∈M

max{0, `i − |N Ji |}, and Q =
∑
i∈M

min{|N Ji | , ui }. (11)

H.D. Sherali, F. Glover / Discrete Optimization 5 (2008) 270–289 275

Then

p0 =

{
p̂0 if p̂0 + Q ≥ `

`− Q, otherwise.
(12)

Proof. Observe that for each i ∈ M , if |N Ji | < `i , then we will necessarily need to select at least `i − |N Ji | indices
from Ji to set the corresponding x j = 1 in any feasible solution to (10). Defining p̂0 as in (11), we therefore have
that p0 ≥ p̂0. Now, for each i ∈ M , while satisfying (1c), we can set up to min {|N Ji |, ui }x j -variables equal to one
using indices j ∈ N Ji . Hence, defining Q as in (11) and noting (1b) and that min{|N Ji |, ui } = |N Ji | if |N Ji | < `i ,
if p̂0 + Q ≥ `, then p0 = p̂0. Otherwise, if p̂0 + Q < `, we will need to set ` − Q − p̂0 additional x j -variables at
one for j ∈ J , thereby establishing (12). �

Next, consider solving the following problem F(p), parameterized by p, for any value p ≥ p0. Note that, by
Proposition 1, this problem has an optimum for all p ≥ p0.

F(p) : Maximize

{∑
j∈N

a j x j : (1b) and (1c),
∑
j∈J

x j ≤ p, x binary

}
. (13)

Notationally, henceforth, we denote the optimal value of any optimization problem P by v[P]. Now, observe that the
optimal value p for defining the HOC inequality (7) as predicated by (8) is given by the smallest integer p ≥ p0 for
which v[F(p)] ≥ a0. Hence, in order to solve (8), we can begin with p = p0, and then increment p by one successively
until we get v[F(p)] ≥ a0. This is reminiscent of a classical dynamic programming trick to solve (8) by reversing the
role of the objective function and the structural knapsack constraint, and resembles Zemel’s [33] approach for lifting
knapsack cover inequalities in polynomial time (see also [4]). We show below how such a specialized scheme for
solving problem (8) can be implemented in strongly polynomial time of complexity O(n|J |). As a point of interest,
let us first show that problem (13) can alternatively be solved as a bounded-variable network flow program in an
approach of the foregoing type, and that problem (8) can also be solved by rounding up the objective value of its linear
programming (LP) relaxation, which implies that inequality (7) is a rank-one Chvatal–Gomory cut (see Nemhauser
and Wolsey [24]).

Toward this end, let X̄ denote the continuous relaxation of X , let F̄(p) denote problem (13) with the binary
restrictions on x replaced by 0 ≤ x j ≤ 1, ∀ j ∈ N , and consider the following two results.

Proposition 2. Problem F̄(p) is a bounded-variable network flow program.

Proof. Consider the transformations:

s2 =
∑
j∈N

x j − `, and zi =
∑
j∈Ni

x j − `i , ∀i ∈ M.

Then, the constraints of problem F̄(p) can be equivalently restated as follows, where s1 is the slack in
∑

j∈J x j ≤

p:

−

∑
j∈J

x j − s1 = −p

s1 −
∑
j∈N J

x j + s2 = p − `∑
j∈Ni

x j − zi = `i , ∀i ∈ M

s1 ≥ 0, 0 ≤ s2 ≤ u − `, 0 ≤ zi ≤ ui − `i , ∀i ∈ M, 0 ≤ x j ≤ 1, ∀ j ∈ N .

This transformed constraint set now displays a (totally unimodular) bounded-variable network flow programming
structure (see Bazaraa et al. [5], for example). �

Proposition 3. The optimal value of problem (8) is given by rounding up its LP relaxation value.

276 H.D. Sherali, F. Glover / Discrete Optimization 5 (2008) 270–289

Fig. 4. Solution of problem F(p0), for the case of p0 = p̂0.

Proof. As noted above, if p is given by (8), then v[F(p)] ≥ a0 and v[F(p − 1)] < a0. By Proposition 2, therefore,
we have that v[F̄(p − 1)] < a0. This means that p ≥ min{

∑
j∈J x j : x ∈ X̄} > (p − 1), where the latter inequality

holds because otherwise, if there exists an x̂ ∈ X̄ such that
∑

j∈J x̂ j ≤ (p− 1), then x̂ would be feasible to F̄(p− 1)

with v[F̄(p − 1)] ≥ a0, a contradiction. Hence, we get dmin{
∑

j∈J x j : x ∈ X̄}e = p. �

Remark 1. Notwithstanding Proposition 3, which does have significance in practical implementations although the
complexity of this approach is in general O(n3L), where L is the number of binary bits required to store the data
(see Bazaraa et al. [5], for example), we continue to describe a specialized parametric O(n|J |) algorithm for solving
problem (8). This procedure commences by solving problem (13) for p = p0, and then utilizes an efficient scheme to
iteratively update the solution to F(p + 1) from an optimal solution to F(p), for p ≥ p0, while v[F(p)] remains less
than a0. In the light of Proposition 2, such a process could alternatively be implemented as a sensitivity analysis-based
update to the optimal solution for the network flow program F̄(p) as p is iteratively increased (see [1,11] for related
algorithmic approaches). However, the specialized routine described below accomplishes this task in a more efficient
direct manner with a lower complexity order, and is hence of interest in its own right. Nevertheless, it is worth noting
here that certain more general overlapping or multilayer nested structured-bounding constraints have been identified
by Glover [11] to be solvable as network flow programs. When the set X possesses such a more general structure,
the aforementioned sequential network flow programming approach can then be utilized for generating similar cover
inequalities. �

Accordingly, first consider the solution to problem F(p0). As an initial case, suppose that p0 = p̂0 as defined
in Proposition 1. In this case, for each i ∈ M such that |N Ji | < `i , we must pick some `i − |N Ji | indices from
Ji to set the corresponding x j = 1 in solving F(p0). Naturally, we select the smallest `i –|N Ji | indices from each
such set Ji . Since this accounts for all the permissible p̂0 indices that can be selected from J , the remaining selected
indices for setting the corresponding x j -variables to one at optimality must come from N J , including all j ∈ N Ji if
|N Ji | < `i , i ∈ M , and at least the `i smallest indices from N Ji if |N Ji | ≥ `i , i ∈ M , plus additional indices from
N J that are selected in increasing order (to maximize

∑
j∈N a j x j) while respecting the bounds in (1b) and (1c). This

process is presented in Fig. 4.
Next, consider the case where p̂0 + Q < ` in Proposition 1, so that we then have p0 = ` − Q. Note that since

we will be selecting p0 indices from J in this case, and noting that ` = p0 + Q, we must select at least Q indices

H.D. Sherali, F. Glover / Discrete Optimization 5 (2008) 270–289 277

Fig. 5. Selection of problem F(p0) for the case of p0 = `− Q.

from N J (where selecting an index means setting the corresponding variable x j = 1 at optimality in F(p)). However,
by (11), Q =

∑
i∈M min{|N Ji |, ui }. Hence, for each i ∈ M , we select the smallest min{|N Ji |, ui } indices from N Ji ,

and also, the smallest `i –|N Ji | indices from Ji for those i ∈ M for which |N Ji | < `i as above. This accounts for a
total of p̂0+Q selected indices. Since p̂0+Q < `, and p0 = `−Q, we must now select the best possible `− p̂0−Q
additional indices from J , subject to the bounds in (1b) and (1c). This process is described in the flow-chart of Fig. 5.

Having solved F(p0), if we have that v[F(p0)] ≥ a0, then p = p0 in problem (8). Otherwise, beginning with
p = p0, at any stage in the proposed sequential process, given an optimum x̂ to F(p) such that v[F(p)] < a0, we
update this solution to an optimum for F(p+ 1) as prescribed by Proposition 4 below. To present this result, consider
the following notation, where x̂ solves problem F(p) for a given p ≥ p0:

qi =
∑
j∈Ni

x̂ j , ∀i ∈ M, and q =
∑
j∈N

x̂ j =
∑
i∈M

qi . (14a)

j (max) = max{ j ∈ N J : x̂ j = 1} (14b)

j (i) =

min{ j ∈ Ji : x̂ j = 0} if
∑
k∈Ji

x̂k < ui

0, otherwise, ∀i ∈ M,

(14c)

j[i] =

max{ j ∈ N Ji : x̂ j = 1} if qi = ui
j (max) if qi < ui , and either q = u or a j (max) ≤ 0
n + 1, otherwise (where an+1 ≡ 0),∀i ∈ M,

(14d)

α(i) =

{
a j (i) − a j[i] if j (i) 6= 0
0, otherwise,∀i ∈ M

(14e)

and

i∗ = arg max{α(i) : i ∈ M}. (14f)

Proposition 4. Suppose that x̂ solves problem F(p) for some given p ≥ p0 such that v[F(p)] < a0, and consider
the definitions (14a)–(14f). Then, given that X 6= ∅, we must have α(i∗) > 0, and moreover, an optimal solution to
problem F(p + 1) is obtained by revising x̂ by setting x̂ j (i∗) = 1, and x̂ j[i∗] = 0 (if j[i∗] 6= n + 1), with an optimal
objective value v[F(p + 1)] = v[F(p)] + α(i∗).

Proof. First of all, note that the constraint
∑

j∈J x j ≤ p + 1 must be active at optimality in F(p + 1), because
otherwise, the same solution x̂ solves F(p′),∀p′ ≥ p, implying that X = ∅, a contradiction to our standing

278 H.D. Sherali, F. Glover / Discrete Optimization 5 (2008) 270–289

assumption of X 6= ∅. Furthermore, by the nature of problem F(·), an optimal solution is composed by appropriately
selecting indices in increasing order from each set Ji and N Ji , i ∈ M , for setting the corresponding variable to one.
In particular, as far as the set J is concerned in composing an optimal solution to F(p + 1), we set x̂ j = 1 for the
same indices j ∈ J as in the optimum found for F(p), plus then, set an additional variable x̂ j = 1 for some j ∈ J .
The candidate index for this additional variable from each set Ji , i ∈ M , is identified by j (i) via (14c), where no
such candidate is possible (j (i) ≡ 0) in case

∑
k∈Ji

x̂k already equals ui . Now, if we set x̂ j (i) = 1 for any particular
i ∈ M , then we might need to set some x̂r = 0 for r ∈ N J . This index r is identified by (3) as j[i]. If qi = ui , then
j[i] = max{ j ∈ N Ji : x̂ j = 1}. Otherwise, if qi < ui but q = u, then j[i] = j (max). Also, if qi < ui and q < u,
but a j (max) ≤ 0, then we set x̂ j (max) = 0; hence, again, j[i] = j (max) in this case. Else, no x̂ j -variable for j ∈ N J
needs to be switched to zero from one, whence we let j[i] ≡ n + 1, where an+1 ≡ 0. Eq. (14e) then computes the
gain in objective value by making x̂ j (i) = 1 and x̂ j[i] = 0 (if j[i] 6= n + 1), whenever j (i) 6= 0. Note that the best
gain given by α(i∗) as defined by (14f) must be positive, because otherwise, x̂ itself would solve F(p + 1), and as
argued above, this would mean that X = ∅, a contradiction. Therefore, revising x̂ by setting x̂ j (i∗) = 1 and x̂ j[i∗] = 0
(if j[i∗] 6= n + 1) yields an optimal solution to F(p + 1). �

Based on Propositions 1 and 4, we adopt the following routine, CUT(J), to determine an HOC inequality (7), given
any J ⊆ N , J 6= ∅.
Routine CUT(J), for J ⊆ N, J 6= ∅.
Initialization. Determine p0 via Eq. (2) of Proposition 1. Set p = p0 and solve F(p0) using the procedure of Fig. 4 or
Fig. 5, depending on whether p0 = p̂0 or p0 = `−Q, respectively. Let x̂ be the solution obtained with v̂ ≡ v[F(p0)].

Step 1. If v̂ ≥ a0, proceed to Step 2. Else, set p ← p + 1 and use Proposition 4 to revise the current x̂ to an optimal
solution to problem F(p + 1), with v̂ being the updated objective function value. Repeat Step 1.
Step 2. Set x∗ = x̂ . Then x∗ solves problem (8) with the current p being the optimal objective value, and the associated
HOC inequality is given by (7). Prescribe {p and x∗} as an output to CUT(J).

Proposition 5. Routine CUT(J) is of complexity O(n|J |).

Proof. Given the ordered lists J and N J , finding p0 by Proposition 1, solving F(p0) by the procedure of Fig. 4 or 5,
and updating the solution to F(·)O(|J |) times are of respective complexity orders: O(n), O(n), and O(n|J |). �

4. Characterization of non-dominated higher-order cover inequalities

Consider a pair of HOC inequalities for some non-empty subsets J and J ′ of N :∑
j∈J

x j ≥ p (15a)

∑
j∈J ′

x j ≥ p′. (15b)

We say that (15a) dominates (15b) over the unit hypercube if either

(i) J ⊆ J ′ and p ≥ p′(with at least one relation strict), or (16a)

(ii) J = J ′ ∪ { j} for some j ∈ N − J ′andp = p′ + 1. (16b)

Note that if (15a) dominates (15b), then (15a) implies (15b) over the unit hypercube, i.e.,

min

∑
j∈J ′

x j :
∑
j∈J

x j ≥ p, 0 ≤ x j ≤ 1,∀ j ∈ N

 ≥ p′. (17)

Moreover, we say that a given HOC inequality (15a) is non-dominated if p ≥ 1 (i.e., it is non-trivial), and if there does
not exist another valid HOC inequality that dominates it (over the unit hypercube). We are interested in two related
aspects: (a) solving a separation problem using HOC inequalities, i.e., generating a non-dominated HOC inequality
that deletes some given underlying LP relaxation solution x̄ to a parent problem, and (b) prescribing the entire set of
non-dominated HOC inequalities. Our focus in this section is to provide a principal characterization of non-dominated

H.D. Sherali, F. Glover / Discrete Optimization 5 (2008) 270–289 279

inequalities, which will enable us in the following section to design a sequential algorithm for generating the set of
non-dominated HOC inequalities that automatically fathoms (skips over) several dominated members of this class of
valid inequalities. This will also prompt one approach to solve the aforementioned separation problem.

Toward this end, consider the following result.

Proposition 6. Consider any J ⊆ N, J 6= ∅ such that the routine CUT(J) produces the HOC inequality (15a),
yielding the output {p and x∗}. Then, (15a) dominates all HOC inequalities that are based on sets J ′ of the type:

J ′ = J ∪∆J, where ∆J ⊆ { j ∈ N J : x∗j = 0},∆J 6= ∅. (18)

Proof. Consider any J ′ of the type indicated by (18). By (8), we have,

p′ = min

∑
j∈J ′

x j : x ∈ X

 . (19)

But since x∗ solves for p = min{
∑

j∈J x j : x ∈ X}, we get from (18) that x∗ is feasible to problem (19) with an
objective value of p. Hence, p′ ≤ p, and since J ⊂ J ′, we get by (16a) that (15a) dominates (15b). �

Corollary 6.1. Under the condition of Proposition 6, suppose that the set { j ∈ N J : x∗j = 1} is a singleton, given
by { j∗}. Then, any possibly non-dominated HOC inequality that is based on a set J ′ of the type J ′ = J ∪ ∆J , for
∆J ⊆ N J, ∆J 6= ∅, must necessarily include the index j∗.

Proof. Follows directly from Proposition 6. �

5. Generating the set of non-dominated HOC inequalities and solving separation problems

To begin with, we first propose in Section 5.1 an algorithm for implicitly enumerating all possible sets J ⊆ N
in a suitable sequential order with the intent of identifying the set of all non-dominated HOC inequalities. Next, in
Section 5.2, we shall address the issue of generating only a particular member of this class of non-dominated HOC
inequalities in order to delete a given relaxation solution, i.e., demonstrate how to solve a suitable associated separation
problem.

5.1. Generating all non-dominated HOC inequalities

Consider a binary enumeration tree that is based on the dichotomy that any index j ∈ N either belongs to J or not.
Following the recipe prescribed by Glover [10] (see also [9]), we manage an implicit enumeration process in a depth-
first fashion on the aforementioned binary tree via a partial solution list PS. At any stage in this enumeration process,
the list PS contains a subset of indices of N , where each included index j appears as+ j or− j , indicating respectively
that j is confined to belong to J or to N J . Moreover, this index ± j is underlined (± j) if the complement branch
corresponding to the node pertaining to the subset of PS up to this underlined element has already been fathomed
(eliminated from further consideration). Following the schema of Glover [10] and Geoffrion [9], whenever we fathom
PS, we identify the right-most non-underlined element in PS (if no such element exists, we set PS = ∅ and terminate),
complement and underline it, and delete all elements to its right.

Now, at any step in this process, consider a partial solution list PS 6= ∅. Let the set J induced by PS be defined as

J = { j : + j or + j belongs to PS}. (20)

Let ĈUT(PS) denote the routine CUT(J) as applied to the set J induced by PS. Note that for any list PS, if we
identify the right-most positive element and drop all the (negative) elements appearing to the right of it to obtain a
list PS′ (where PS′ = ∅ if PS has only negative elements), then both PS and PS′ induce the same set J . To avoid
the duplication of executing ĈUT(PS) given that ĈUT(PS′) has already been previously run, we ensure that the final
element in any PS for which ĈUT(PS) is invoked is always positive (underlined or not). This also ensures that the
routine ĈUT(PS) is called with the corresponding induced set J 6= ∅.

280 H.D. Sherali, F. Glover / Discrete Optimization 5 (2008) 270–289

Fig. 6. Flow-chart for generating the set of non-dominated HOC inequalities.

Furthermore, suppose that given a list PS having an induced set J 6= ∅, we execute ĈUT(PS) and obtain the
associated HOC inequality (15a) with output {p and x∗}. Define

H(PS) = { j ∈ N J ≡ N − J : x∗j = 1and − j (or − j) 6∈ PS}. (21)

By Proposition 6, if H(PS) = ∅, then any further augmentation of PS would only produce induced sets J ′ for which
the corresponding HOC inequality (15b) would be dominated by (15a). Hence, we can fathom PS. Otherwise, we
increment PS by the operation PS← PS ∪ { j∗}, where j∗ = min{h : h ∈ H(PS)}, and where, by Corollary 6.1, we
also underline j∗ (i.e., PS← PS ∪ { j∗}) in case H(PS) ≡ { j∗} is a singleton set.

Fig. 6 presents a flow-chart for generating the set of non-dominated HOC inequalities, where each HOC inequality
is recorded as {J , p}. (Redundant inequalities that are implied by the other constraints can be detected and eliminated
via solving a linear program if necessary (see Bazaraa et al. [5], for example).) Note that at the point of generation
and subsequent incrementing of the current list PS, certain HOC inequalities are identified as being dominated
(labeled DOM) while others are labeled as “locally non-dominated,” or LND, being candidates for the final set of
non-dominated inequalities. This latter set is obtained through a sequential pairwise examination of the LND

H.D. Sherali, F. Glover / Discrete Optimization 5 (2008) 270–289 281

inequalities, which deletes any that is found to be dominated by another according to the dominance criteria (16a)
and (16b).

5.2. Solving separation problems

Suppose that we are given a fractional solution x̄ ≡ (x̄ j , j ∈ N) as (part of) an optimum to some continuous
relaxation to an underlying parent 0–1 program. We propose below two methods to possibly generate a non-dominated
HOC inequality (7) to delete x̄ . The following section illustrates these procedures on a numerical example.

5.2.1. Method 1
In this approach, we first determine an HOC inequality, which is at least LND, in order to possibly delete x̄ by

employing the procedure given in the flow-chart of Fig. 6 with the following modifications. Noting that we desire to
determine an inequality (7) that has a negative (hopefully, minimum) value of

∑
j∈J x̄ j − p, we increment the partial

solution list PS at the respective junctures denoted A, B, and C in Fig. 6 by selecting the corresponding indices to
increment PS as follows:

A : PS = J = arglexmin {x̄ j , j : j ∈ N }

B : j∗ = arglexmin {x̄h, h: h ∈ H(PS)}

C : ĵ = arglexmin {x̄ j , j : j ∈ N , and ± j (or ± j) 6∈ PS}.

The procedure is terminated at the first instance when a violated (LND) HOC inequality is detected, if at all.
Alternatively, since the procedure of Fig. 6 prioritizes the consideration of indices to increment PS of the order of
non-increasing a j -values, which tends to focus on generating stronger HOC inequalities earlier, we could simply run
the original method of Fig. 6 until a first violated (LND) HOC inequality is detected, if at all. (In practice, an upper
bound can be imposed on the total number of LND inequalities generated in order to control the solution effort.)

In either case, having obtained an LND inequality
∑

j∈J x j ≥ p that deletes x̄ , we can further ascertain if there
exists a tighter dominating inequality as follows. Let x∗ be the optimum obtained for problem (8) corresponding to
this given HOC inequality. Following the proof of Proposition 6, for each k ∈ J such that x∗k = 0 in turn, we examine
if minimum {

∑
j∈J−{k} x j : x ∈ X} = p, and if so, then we have found another dominating valid HOC inequality∑

j∈J−{k} x j ≥ p and we repeat. Otherwise, based on Proposition 6, we next consider each k ∈ N J such that x∗k = 1
in turn, and check if min {

∑
j∈J∪{k} x j : x ∈ X} = p + 1, and if so, then again we have found another dominating

valid HOC inequality
∑

j∈J∪{k} x j ≥ p + 1 (see (16b)). Else, we output the resulting non-dominated HOC cut at
hand. If the original LND inequality is indeed non-dominated, this process will determine it to be such in polynomial
time with complexity O(n3); else, it will progressively generate tighter cuts, each with the same complexity. Section 6
illustrates both these alternative schemes for implementing Method 1.

5.2.2. Method 2
In this approach, we directly formulate a separation problem in order to generate a non-dominated violated HOC

inequality. Note that we would like to determine an index set J and a right-hand-side value p for (7) in order to
minimize

∑
j∈J x̄ j − p in an attempt to drive it negative. Toward this end, in the spirit of Crowder et al. [8], define

binary variables y j , j ∈ N , such that y j = 1 if j is selected to lie in J , and equals zero otherwise. Then, we would
like to find a J ⊆ N and an integer p ≥ 1 such that

∑
j∈J x̄ j − p is minimized, while for the selected J and p, we

have that v[F(p − 1)] ≤ a0 − 1, as defined in (13). This would then imply that the resulting HOC inequality is valid
and that p ≥ 1 is as large as possible. Hence, we consider the separation problem:

SEP : Minimize

{∑
j∈N

x̄ j y j − p: g(y, p − 1) ≤ a0 − 1, p ≥ 1, p integer, y binary

}
, (22)

where for a given binary y and integer p ≥ 1, we have

g(y, p − 1) ≡ max

{∑
j∈N

a j x j : (1b) and (1c),
∑
j∈N

x j y j ≤ p − 1, x binary

}
. (23)

282 H.D. Sherali, F. Glover / Discrete Optimization 5 (2008) 270–289

Noting Proposition 2, g(y, p − 1) can be equivalently derived via its LP relaxation as follows, where we have
designated specified dual variables against each constraint set.

g(y, p − 1) = Maximum
∑
j∈N

a j x j

subject to
∑
j∈N

x j ≤ u (λ1)

−

∑
j∈N

x j ≤ −` (λ2)∑
j∈Ni

x j ≤ ui , ∀i ∈ M (µ1i ,∀i ∈ M)

−

∑
j∈Ni

x j ≤ −`i , ∀i ∈ M (µ2i ,∀i ∈ M)∑
j∈N

x j y j ≤ p − 1 (γ)

x j ≤ 1, ∀ j ∈ N (θ j ,∀ j ∈ N)

x j ≥ 0, ∀ j ∈ N .

Writing the dual to the above program, we have,

g(y, p − 1) = Minimum

{
uλ1 − `λ2 +

∑
i∈M

uiµ1i −
∑
i∈M

`iµ2i + (p − 1)γ +
∑
j∈N

θ j

}
(24a)

subject to

λ1 − λ2 + µ1i − µ2i + γ y j + θ j ≥ a j , ∀ j ∈ Ni ,∀i ∈ M (24b)

(λ1, λ2, µ1i ,∀i ∈ M, µ2i ,∀i ∈ M, γ, θ j ,∀ j ∈ N) ≥ 0. (24c)

Now, the structural constraint in (22) holds true if and only if there exists a feasible solution to (24b) and (24c) for
which the objective value in (24a) is less than or equal to a0 − 1. This leads to the following equivalent reformulation
of problem SEP.

SEP : Minimize
∑
j∈N

x̄ j y j − p (25a)

subject to uλ1 − `λ2 +
∑
i∈M

uiµ1i −
∑
i∈M

`iµ2i + (p − 1)γ +
∑
j∈N

θ j ≤ a0 − 1 (25b)

λ1 − λ2 + µ1i − µ2i + γ y j + θ j ≥ a j , ∀ j ∈ Ni ,∀i ∈ M (25c)

(λ1, λ2, µ1i ,∀i ∈ M, µ2i ,∀i ∈ M, γ, θ j ,∀ j ∈ N) ≥ 0, p ≥ 1,

p integer, y binary. (25d)

Observe that SEP is a nonlinear 0–1 mixed-integer program (MIP) because of the terms (p−1)γ and γ y j in constraints
(25b) and (25c), respectively. Whereas this problem can be solved to global optimality using the procedure described
in Sherali and Tuncbilek [29], it possesses a special structure that we can exploit, in that for a fixed γ , it is a linear
0–1 MIP. Note that for γ = 0, since g(y, p − 1) via (24) is given by P ≡ max{

∑
j∈N a j x j : (1b) and (1c), 0 ≤ x j ≤

1,∀ j ∈ N } ≥ a0, this would yield infeasibility in (25), because (25) then essentially seeks a dual feasible solution
to the foregoing problem P having an objective value less than or equal to a0 − 1. Hence, we will have γ > 0 at
optimality in (25). Observe also that for the special case of generating a separating inequality having p = 1, (25)
can be solved as a single MIP by fixing γ at a sufficiently large value by virtue of the terms involving γ in (25b)
and (25c). In general, denoting the optimal value of SEP for a fixed γ ≥ 0 as f (γ), problem SEP essentially seeks
to solve inf{ f (γ): γ ≥ 0}. This is a univariate “line search” problem for which we can parametrically search for an
optimum γ value. However, since f is generally discontinuous in our context, and noting that it suffices to find a

H.D. Sherali, F. Glover / Discrete Optimization 5 (2008) 270–289 283

γ̄ such that f (γ̄) < 0 to obtain a cut to delete x̄ , we can approximate this search by performing a single iteration
of the quadratic-fit line search method described in Bazaraa et al. [6]. (A good trial value for γ in the light of (25c)
might be γ = max{a j : j ∈ N }.) If the resultant best γ -value found in this process yields a negative objective value
in problem SEP given by Eq. (25), we will have detected a violated HOC inequality. Moreover, to encourage the
generation of a non-dominated inequality, we can replace zero values of x̄ j in (25a) by some small tolerance ε > 0. In
any case, the resultant HOC inequality could be tightened to a non-dominated cut by invoking the procedure described
in Section 5.2.1.

As an alternative implementation, denoting f̄ (γ) as the optimal value of the continuous relaxation to (25), which
is an LP for a fixed γ , we could further conserve effort by solving (perhaps approximately as above via one or two
iterations of the quadratic-fit line search method) the problem to minimize { f̄ (γ): 0 ≤ γ ≤ γ̄ } for some sufficiently
large upper bound γ̄ . The resultant γ -value could then be used in (25) to derive the final solution. We illustrate both
these alternative approaches in the following section.

To conclude this section, it is interesting to see how SEP generalizes the separation problem solved by Crowder
et al. [8] to generate a minimal cover for deleting x̄ for the case of a knapsack inequality (1a) in the absence of (1b)
and (1c). In this case, problem SEP given by Eq. (25) reduces to (noting that p = 1 in this context):

Minimize

{∑
j∈N

x̄ j y j − 1 :
∑
j∈N

θ j ≤ a0 − 1, γ y j + θ j ≥ a j ,∀ j ∈ N , (γ, θ j ,∀ j ∈ N) ≥ 0, y binary

}
. (26)

It is easy to see that an optimal value for γ in (26) is given by γ = max{a j :∀ j ∈ N }, whence θ j ≡ a j (1−y j),∀ j ∈ N ,
at optimality, so that (26) is equivalent to solving:

Minimize

{∑
j∈N

x̄ j y j − 1 :
∑
j∈N

a j (1− y j) ≤ a0 − 1, y binary

}
, (27)

which is precisely the separation problem formulated by Crowder et al. [8] in this simple special case.

6. Illustrative example

Consider the following constraints of type (1a)–(1c) in binary variables x j , j = 1, . . . , 10:

13x1 + 12x2 + 9x3 + 7x4 + 5x5 + 4x6 + 3x7 + 2x8 + 2x9 + 2x10 ≥ 25 (28a)

1 ≤
10∑
j=1

x j ≤ 3, 0 ≤
5∑

j=1

x j ≤ 3, 1 ≤
10∑
j=6

x j ≤ 3. (28b)

It is readily verified that the corresponding set X 6= ∅, (3) holds true, and no variable can be fixed at 1. Moreover,
the routine of Fig. 3 fixes x4 = x5 = 0. For example, consider x4. If x4 = 1, then even with the best consequent
choices of x1 = x6 = 1 subject to (28b), we get the sum on the left-hand side of (28a) to be 24 < 25. Hence, x4 = 0.
Similarly, x5 = 0. Eliminating x4 and x5 from (28a) and (28b) and running the algorithm of Fig. 6, we generate the
following non-dominated cuts based on the corresponding then-current lists PS as identified below. Note that (29e)
reproduces the second-last inequality in (28b), while (29b) asserts that the second inequality in (28b) should hold as
an equality, in addition to having x4 = x5 = 0. Also, observe that while (29b) is non-dominated, it is implied by
(29a) and (29e), as seen by summing these inequalities. In particular, the set of non-redundant, non-dominated HOC
inequalities are given by (29a), (29c) and (29d) for this example.

PS = {1, 2, 3} : x1 + x2 + x3 ≥ 2 (29a)

PS = {1, 2, 3, 6, 7, 8, 9, 10} : x1 + x2 + x3 + x6 + x7 + x8 + x9 + x10 ≥ 3 (29b)

PS = {1, 2,−3, 6, 7} : x1 + x2 + x6 + x7 ≥ 2 (29c)

PS = {1,−2,−3, 6} : x1 + x6 ≥ 1 (29d)

PS = {−1,−2,−3, 6, 7, 8, 9, 10} : x6 + x7 + x8 + x9 + x10 ≥ 1. (29e)

It is interesting to compare these inequalities with the ordinary non-dominated knapsack inequalities obtained from
(28a) itself, as well as with the second-order cover cuts of Glover and Sherali [12] that are based on (28a) and

284 H.D. Sherali, F. Glover / Discrete Optimization 5 (2008) 270–289

(a) Case of y binary-restricted. (b) Case of y relaxed to be continuous.

Fig. 7. Parametric plots of the objective value of problem SEP versus γ .∑10
j=1 x j ≤ 3 from (28b). For example, a non-dominated knapsack cover inequality is given by x1 + x2 + x3 + x4 +

x5 + x6 ≥ 2. This is strictly dominated by the non-dominated second-order cover inequalities x1 + x2 + x3 + x5 ≥ 2
and x1 + x2 + x3 + x4 ≥ 2, which are generated using the procedure developed in Glover and Sherali [12]. Observe
that the HOC cut (29a), which is given by x1 + x2 + x3 ≥ 2, and is based on considering the additional information
in (28b), strictly dominates all these inequalities.

Finally, we illustrate the separation routines discussed in Section 5.2 to delete a given solution x̄ to some continuous
relaxation, where we take x̄ for this example to be given by

x̄1 = 1, x̄2 = 2/3, x̄6 = 1, and x̄ j = 0 otherwise.

Implementing Method 1 of Section 5.2.1 with the original procedure of Fig. 6, the first LND cut generated is
x1 + x2 + x3 ≥ 2, which happens to be the non-dominated HOC inequality (29a). On the other hand, using the
modified flow-chart procedure described in Section 5.2.1, we obtained x2 + x3 + x8 ≥ 1 as the first violated LND
cut, with a corresponding optimal solution to (8) given by x∗ having x∗1 = x∗2 = x∗6 = 1, and x∗j = 0, otherwise.
Checking its non-dominance, we find that min {x2 + x3: x ∈ X} = 1, which leads to the dominating HOC inequality
x2 + x3 ≥ 1. Continuing with the latter as discussed in Section 5.2.1 (and with the same solution x∗), we find that
with k = 1 ∈ N J, min{x1 + x2 + x3: x ∈ X} = 2, which produces the same non-dominated HOC cut as above, given
by x1 + x2 + x3 ≥ 2.

To illustrate Method 2 in Section 5.2.2 based on the parametric separation problem SEP given by (25), starting
with γ = max{a j : j ∈ N } = 13 as recommended, we obtained an optimal solution having p = 1, y2 = y3 = 1, and
y j = 0 otherwise, with an objective value of –1/3. A parametric plot for the underlying function f (γ) is depicted
in Fig. 7(a). This solution yields the cut x2 + x3 ≥ 1, which can be tightened to the non-dominated HOC inequality
x1 + x2 + x3 ≥ 2 as shown above, following the procedure of Section 5.2.1. Actually, it turns out that for γ = 5,
we obtain an alternative optimal solution having p = 2, y1 = y2 = y3 = 1, and y j = 0 otherwise, thereby directly
yielding the non-dominated inequality x1 + x2 + x3 ≥ 2.

Finally, consider the case where problem SEP is solved with the y-variables relaxed to be continuous. A plot
of the corresponding objective function value f̄ (γ), γ ≥ 0, as defined in Section 5.2.2 is displayed in Fig. 7(b).
Here, the objective value turns negative beyond γ = 4 (where for γ = 4, the optimal solution obtained is given by
p = 2, y1 = y2 = 1, y3 = y6 = 0.25, and y j = 0 otherwise). In particular, commencing with γ = max{a j : j ∈
N } = 13 as recommended and solving this relaxation of problem SEP, we would obtain a negative objective value, so

H.D. Sherali, F. Glover / Discrete Optimization 5 (2008) 270–289 285

that continuing to then solve this problem with the y-variables restricted to be binary-valued would ultimately yield
the cut x1 + x2 + x3 ≥ 2 as above.

7. Lifting HOC inequalities

In this section, we briefly address the issue of (sequentially) lifting a non-dominated HOC inequality, typically one
that has been generated to delete some continuous relaxation solution x̄ , in order to further tighten this cut. At any
stage in this process, beginning with an HOC inequality

∑
j∈J

x j ≥ p, where p = min

{∑
j∈J

x j : x ∈ X

}
, solved by x∗ ∈ X, (30)

suppose that we have a current valid inequality∑
j∈J∪L

π j x j ≥ π0, (31)

where L ⊂ N J ≡ N − J . Following Gu et al. [15,16], for example, we now consider two cases of down- and
up-lifting, respectively.

Case (i): Down-lifting based on k ∈ N J − L such that x∗k = 1.

Consider the following augmentation of (31):∑
j∈J∪L

π j x j − πk(1− xk) ≥ π0. (32)

Clearly, given the validity of (31) for X , the inequality (32) is valid when xk = 1. In order to make it also valid
when xk = 0 while rendering the resulting cut as tight as possible, we derive

πk = min

{ ∑
j∈J∪L

π j x j : x ∈ X, xk = 0

}
− π0. (33)

Case (ii): Up-lifting based on k ∈ N J − L such that x∗k = 0.

Following a parallel argument to Case (i), we consider the following augmentation to (31):∑
j∈J∪L

π j x j − πk xk ≥ π0, (34)

which is clearly valid when xk = 0, and is validated when xk = 1 by selecting

πk = min

{ ∑
j∈J∪L

π j x j : x ∈ X, xk = 1

}
− π0. (35)

Hence, revising (31) according to (32) or (34) as the case might be, and replacing L ← L ∪ {k}, we repeat this
process until L = N J and then terminate with the resulting lifted inequality. The following result establishes that
π j ≥ 0,∀ j ∈ N , for the foregoing standard procedure, and that, in particular, the same solution x∗ given by (30)
continues to minimize the left-hand side of (31) over x ∈ X with objective value π0 at each stage, so that the choice of
whether to down-lift or up-lift coefficients based on this minimizing solution remains invariant through this process.
A proof is included for the sake of completeness in providing this additional latter insight.

Proposition 7. Inductively, at each step of the foregoing lifting process, we have

π0 = min

{ ∑
j∈J∪L

π j x j : x ∈ X

}
, which is solved by x∗, (36)

and that π j is a nonnegative integer, ∀ j ∈ N.

286 H.D. Sherali, F. Glover / Discrete Optimization 5 (2008) 270–289

Proof. By induction, given that this is true to begin with for the case L = ∅ by (30), assume that (36) is true for (31)
and consider the subsequent step of applying Case (i) (the argument for applying Case (ii) is similar). Examine the
problem

min

{ ∑
j∈J∪L

π j x j + πk xk : x ∈ X

}
. (37)

When we fix xk = 1 in (37), then by (36) and the induction hypothesis, an optimal solution is given by x∗ and
yields an objective value of π0 + πk . But also, when we fix xk = 0 in (37), then by (33), the optimal objective value
in (37) is given by π0 + πk . Hence, the optimal objective value in (37) is given by π0 + πk , which is the revised
right-hand-side value in (32), and noting that x∗k = 1, this optimal value is achieved for x∗ ∈ X . This establishes (36)
for the next step. Moreover, by the induction hypothesis (36), we have that πk ≥ 0 in (33). �

The next result identifies a special case, namely, the class of unit-coefficient lifted HOC cuts, for which the
foregoing lifting process can be conducted in polynomial time.

Proposition 8. Consider the class of HOC inequalities for which the process of sequential lifting produces valid
inequalities of the type

∑
j∈N π j x j ≥ π0, where 0 ≤ π j ≤ 1,∀ j ∈ N. Then the corresponding lifting process can be

accomplished in polynomial time with complexity O(n3).

Proof. At any stage in the lifting process, the bottleneck effort is in solving problems (33) and (35). Consider problem
(33) (the case of problem (35) is similar). In the spirit of Zemel [33], this problem can be solved by examining the
parametric problem:

Maximize

{∑
j∈N

a j x j :
∑

j∈J∪L

π j x j ≤ q, (1b) and (1c), xk = 0, x binary

}
, (38)

where we seek the smallest value of q (say, q∗) for which the optimal objective function value in (38) is at least a0.
Noting by Proposition 2 that problem (38) is a network flow program, and following the scheme used to solve the
similar problem (13) in Section 3, we can compute q∗ in polynomial time of order O(n2), whence, πk = q∗ − π0 in
(33). Hence, the overall lifting process can be conducted in O(n3) time. �

When the lifting coefficients take on more general (integral) values, whereas we can polynomially bound the
cut coefficients as in Zemel [33], because of the additional constraints (1b) and (1c) in (38), an efficient dynamic
programming algorithm for parametrically finding q∗ as in Proposition 8 becomes elusive. In this case, we would
need to contend with solving (33) and (35) as 0–1 programs, although as implemented in [8], we could perform a
weaker lifting process by solving the LP relaxation to each of these problems and rounding up the resulting objective
value (setting this to zero by Proposition 7 in case the value obtained is negative) in order to determine the cut
coefficients.

For the example of Section 6, it turns out that no further tightening of any of the non-redundant, non-dominated
HOC inequalities (29a), (29c) and (29d) is possible by using the foregoing sequential lifting process. However, for the
sake of illustration, consider the valid HOC inequality x1 + x6 + x7 ≥ 1, which is actually dominated by (29d). The
problem to minimize {x1 + x6 + x7: x ∈ X} is solved by x∗ having x∗2 = x∗3 = x∗6 = 1, and x∗j = 0 otherwise, with a
unit-objective value. Selecting the index k = 2 for down-lifting, for example, we compute using (33) that

π2 = min{x1 + x6 + x7: x ∈ X, x2 = 0} − 1 = 1,

as attained by the solution x1 = x3 = x6 = 1, and x j = 0 otherwise. This yields the lifted inequality (32) given by
x1+ x2+ x6+ x7 ≥ 2, which is (29c). As mentioned above, any further lifting attempt produces zero cut coefficients.

An interesting question to raise at this point is whether the non-redundant, non-dominated HOC inequalities (29a),
(29c) and (29d) that we were unable to lift above happen to be facet-defining for Xc ≡ conv [X], the convex hull of X .
This is indeed the case, as demonstrated below. First of all, note that by virtue of (29b) and that we must necessarily
have x4 = x5 = 0, we get that

∑10
j=1 x j = 3 must hold true for any x ∈ X . Furthermore, this together with (29a) and

(29e) implies that both the latter inequalities must hold as equalities for any x ∈ X . Hence, in effect, the set X is given

H.D. Sherali, F. Glover / Discrete Optimization 5 (2008) 270–289 287

by

13x1 + 12x2 + 9x3 + 7x4 + 5x5 + 4x6 + 3x7 + 2x8 + 2x9 + 2x10 ≥ 25 (39a)

x1 + x2 + x3 = 2, x4 = x5 = 0, x6 + · · · + x10 = 1, x binary. (39b)

Because of the linearly independent equalities in (39b), we have that the dimension of Xc (denoted dim(Xc))
satisfies dim(Xc) ≤ 6. Indeed, in this case, we have dim(Xc) = 6, as evidenced by the following seven points x i

∈ X ,
i = 1, . . . , 7, which are readily verified to be affinely independent:

x i
1 = x i

2 = 1, x i
6+(i−1) = 1, with x i

j = 0 otherwise, for i = 1, . . . , 5

x6
1 = x6

3 = x6
6 = 1, with x6

j = 0, otherwise, and x7
2 = x7

3 = x7
6 = 1, with x7

j = 0, otherwise.

Now, let us examine the HOC inequalities (29a), (29c) and (29d), and demonstrate in each case that the inequality is
facet-defining for Xc by identifying six affinely independent points x i

∈ X, i = 1, . . . , 6, for which this cut is active.
Note that by virtue of (39b), the inequality (29a) defines an improper facet of Xc. Next, consider (29c). The required
set of six points, which are readily verified to be affinely independent, are given by

x i
1 = x i

2 = x i
8+(i−1) = 1, x i

j = 0, otherwise, for i = 1, 2, 3

x i
1 = x i

3 = x i
6+(i−4) = 1, x i

j = 0, otherwise, for i = 4, 5, and

x6
2 = x6

3 = x6
6 = 1, x6

j = 0, otherwise.

Finally, for the HOC inequality (29d), the required set of six affinely independent points can be verified to be given by

x i
1 = x i

2 = x i
7+(i−1) = 1, with x i

j = 0, otherwise, for i = 1, . . . , 4

x5
2 = x5

3 = x5
6 = 1, x5

j = 0, otherwise, and

x6
1 = x6

3 = x6
7 = 1, with x6

j = 0, otherwise.

We mention here in closing that, in general, Johnson and Padberg [20], Nemhauser and Vance [23], Sherali and Lee
[28], and Glover and Sherali [12] have characterized and identified particular classes of facet-defining inequalities for
certain special cases of X . We recommend exploring additional cases of this type in the present more general context
for future research.

8. Some preliminary computational results

To provide some computational evidence for the proposed class of HOC cuts and the related cut strengthening
and lifting procedures, we performed the following experiment. We randomly generated 15 test instances of different
sizes as indicated in Table 1 of the type: Minimize {cT x : x ∈ X} where X is defined by (1). The c j -and the a j -
coefficients were generated uniformly on the interval [2, 15] for Instances 1–10, and on [2, 33] for Instances 11–15,
and we let `i ∈ {0, 1} and ui = 3, ∀i ∈ M , ` = 1, u = d1.5me, and a0 = b0.2a0 min + 0.8a0 maxc, where a0 min ≡

min{
∑n

j=1 a j x j : (1b) and (1c), x binary} and a0 max ≡ max{
∑n

j=1 a j x j : (1b) and (1c), x binary}. In the results
reported in Table 1, GAP I refers to the usual LP-IP percentage gap for the generated test instances; GAP II refers to
the final LP-IP percentage gap after generating up to 5 non-dominated inequalities using Method 1 of Section 5.2.1 that
were subsequently lifted as discussed in Section 7; GAP III refers to the final LP-IP percentage gap after generating up
to 5 non-dominated cuts using Method 2 as described in Section 5.2.2, which involves invoking the separation routine
(25) with γ ≡ max j∈N {a j }, tightening the resulting cut to ensure that it is non-dominated as in Section 5.2.1, and
then lifting it as possible as discussed in Section 7, and finally, for comparison purposes, GAP IV refers to the final
LP-IP percentage gap after sequentially generating up to 5 minimal cover inequalities for the underlying knapsack
polytope using the separation problem (27), which were subsequently lifted (exactly) in each case into facets for this
polytope (see Balas and Zemel [4] and Crowder et al. [8]). The results indicate that both the proposed Methods 1 and
2 generated strong cuts that helped close the LP-IP gap in most instances (more so for Method 1) in contrast with
using lifted minimal cover facet-inducing inequalities of the knapsack polytope that ignore the additional structure
defined by (1b) and (1c). We recommend further tests using more general IP instances for future research.

288 H.D. Sherali, F. Glover / Discrete Optimization 5 (2008) 270–289

Table 1
Optimality gap comparison

Problem Size (n, m) LP-IP gap (%)
GAP I (Initial gap) GAP II (Method 1) GAP III (Method 2) GAP IV (Lifted minimal covers)

1 (10, 2) 30.00 0 0 7.27
2 20.83 0 0 13.63
3 29.62 0 0 19.04
4 (15, 3) 7.14 0 0 3.80
5 8.97 0 0 5.12
6 17.50 1.39 0 12.50
7 (20, 4) 7.14 3.57 0 3.57
8 8.69 6.52 6.52 6.52
9 3.70 0 0 0

10 (25, 5) 9.09 4.45 6.81 9.09
11 14.51 3.13 3.13 13.11
12 5.41 0 0 1.67
13 (30, 5) 6.12 0 0 5.18
14 11.08 0 0 7.89
15 9.37 6.25 0 1.70

9. Conclusions

We have presented in this paper a new class of higher-order cover (HOC) inequalities for 0–1 programs that are
implied by a knapsack constraint in concert with lower- and upper-bounding restrictions on the sum of all variables
appearing in this constraint, as well as on partitioned subsets of these variables. We have shown how we can perform
pre-processing to check feasibility, possibly fix variables at 0 or 1 values, and to generate members of this class of
HOC inequalities, all in (strongly) polynomial time. An algorithm was also proposed based on certain established
dominance results to generate the entire class of non-dominated HOC inequalities. Procedures for solving underlying
separation problems and for sequentially lifting generated HOC inequalities to possibly further tighten them, along
with polynomial-time implementations for certain special cases, were also developed. The ability to derive stronger
valid inequalities than those obtained via non-dominated knapsack cover or second-order cover inequalities was
demonstrated using an illustrative example. For this particular numerical example, all the generated non-redundant,
non-dominated HOC inequalities were shown to be facet-defining. Some preliminary computational results were also
presented to exhibit the efficacy of exploiting the augmented knapsack structure in generating lifted HOC inequalities.

The focus of the present paper has been to introduce the class of higher-order cover cuts and to establish some
fundamental results and procedures pertaining to the generation of non-dominated inequalities from this class. There
are several theoretical and practical research issues that arise based on this work, which we propose to explore in
follow-on studies. Among these are an investigation of conditions under which HOC inequalities would be facet-
defining for conv (X), the extension of the analysis of this paper to consider more general nested-bounding constraints
as in [11,19,13], and the computational implementation and testing of using lifted, non-dominated HOC cuts in the
solution of 0–1 programs.

Acknowledgements

This research has been supported in part by the National Science Foundation under Grant Number DMI-0552676.
The authors also thank the guest editor, Professor Egon Balas, and three anonymous referees for their constructive
comments and suggestions that have significantly improved the contents of this paper. This paper is dedicated to the
memory of George B. Dantzig.

References

[1] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows: Theory, Algorithms, and Applications, Prentice-Hall, Upper Saddle River, NJ, 1993.
[2] E. Balas, Facets of the knapsack polytope, Mathematical Programming 8 (1975) 146–164.
[3] E. Balas, E. Zemel, Critical cutsets of graphs and canonical facets of set-packing polytopes, Mathematics of Operations Research 2 (1977)

15–19.

H.D. Sherali, F. Glover / Discrete Optimization 5 (2008) 270–289 289

[4] E. Balas, E. Zemel, Facets of the knapsack polytope from minimal covers, SIAM Journal on Applied Mathematics 34 (1978) 119–148.
[5] M.S. Bazaraa, J.J. Jarvis, H.D. Sherali, Linear Programming and Network Flows, third ed., John Wiley & Sons, Inc., New York, NY, 2005.
[6] M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming: Theory and Algorithms, third ed., John Wiley & Sons, Inc., New York,

NY, 2006.
[7] G. Cornuéjols, A. Sassano, On the 0–1 facets of the set covering polytope, Mathematical Programming 43 (1989) 45–55.
[8] H.P. Crowder, E.L. Johnson, M.W. Padberg, Solving large-scale zero–one linear programming problems, Operations Research 31 (1983)

803–834.
[9] A.M. Geoffrion, An improved implicit enumeration approach for integer programming, Operations Research 17 (1969) 437–454.

[10] F. Glover, A multiphase-dual algorithm for the zero–one integer programming problem, Operations Research 13 (1965) 879–919.
[11] F. Glover, Flows in arborescences, Management Science 17 (9) (1971) 568–586.
[12] F. Glover, H.D. Sherali, Second order cover cuts, Mathematical Programming (ISSN: 0025-5610 1436-4646) (2007), doi:10.1007/s10107-

007-0098-4. (Online).
[13] F. Glover, H.D. Sherali, Some classes of valid inequalities and convex hull characterizations for dynamic fixed-charge problems under nested

constraints, Annals of Operations Research, State-of-the-Art in Integer Programming 140 (1) (2005) 215–234. M. Guignard-Spielberg, K.
Spielberg (Eds.).

[14] F. Glover, H.D. Sherali, Y. Lee, Generating cuts from surrogate constraint analysis for zero–one and multiple choice programming,
Computational Optimization and Applications 8 (2) (1997) 152–172.

[15] Z. Gu, G.L. Nemhauser, M.W.P. Savelsbergh, Cover inequalities for 0–1 linear programs: Computation, INFORMS Journal on Computing 10
(1998) 427–437.

[16] Z. Gu, G.L. Nemhauser, M.W.P. Savelsbergh, Sequence independent lifting in mixed integer programming, Journal of Combinatorial
Optimization 4 (2000) 109–129.

[17] P.L. Hammer, E.L. Johnson, U.N. Peled, Facets of regular 0–1 polytopes, Mathematical Programming 8 (1975) 179–206.
[18] S. Hanafi, Contribution à la résolution de problèmes duaux de grande taille en optimisation combinatoire, Ph.D. Thesis, University of

Valenciennes, France, 1993.
[19] S. Hanafi, F. Glover, Exploiting nested inequalities and surrogate constraints, Research Report, University of Valenciennes, France, and

University of Colorado, Boulder, CO, 2005.
[20] E.L. Johnson, M.W. Padberg, A note on the knapsack problem with special ordered sets, Operations Research Letters 1 (1981) 18–22.
[21] M. Laurent, A generalization of antiwebs to independence systems and their canonical facets, Mathematical Programming 45 (1989) 97–108.
[22] L. Moura, Rank inequalities and separation algorithms for packing designs and sparse triple systems, Theoretical Computer Science 297 (1–3)

(2003) 367–384.
[23] G.L. Nemhauser, P. Vance, Lifted cover facets of the 0–1 knapsack polytope with GUB constraints, Operations Research Letters 16 (1994)

255–263.
[24] G.L. Nemhauser, L.A. Wolsey, Integer and Combinatorial Optimization, John Wiley & Sons, Inc., New York, NY, 1999.
[25] G.L. Nemhauser, M.W.P. Savelsbergh, G.S. Sigismondi, MINTO, a mixed INTeger optimizer, Operations Research Letters 15 (1994) 47–58.
[26] M.A. Osorio, F. Glover, P. Hammer, Cutting and surrogate constraint analysis for improved multidimensional knapsack solutions, Annals of

Operations Research 117 (2002) 71–93.
[27] M.W.P. Savelsbergh, Preprocessing and probing for mixed integer programming problems, ORSA Journal on Computing 6 (1994) 445–454.
[28] H.D. Sherali, Y. Lee, Sequential and simultaneous liftings of minimal cover inequalities for generalized upper bound constrained knapsack

polytopes, SIAM Journal on Discrete Mathematics 8 (1) (1995) 133–153.
[29] H.D. Sherali, C.H. Tuncbilek, A global optimization algorithm for polynomial programming problems using a reformulation–linearization

technique, Journal of Global Optimization 2 (1992) 101–112.
[30] K. Spielberg, M. Guignard, A sequential (quasi) hot start method for BB (0, 1) mixed integer programming, in: Mathematical Programming

Symposium, Atlanta, GA, 2000.
[31] M. Vasquez, Y. Vimont, Improved results on the 0–1 multidimensional knapsack problem, European Journal of Operational Research 165

(2005) 70–81.
[32] L.A. Wolsey, Faces for a linear inequality in 0-1 variables, Mathematical Programming 8 (1975) 165–178.
[33] E. Zemel, Easily computable facets of the knapsack polytope, Mathematics of Operations Research 14 (1989) 760–764.
[34] B. Zeng, J.-P.P. Richard, Sequence independent lifting for 0–1 knapsack problems with disjoint cardinality constraints, School of Industrial

Engineering, Purdue University, West Lafayette, IN, 2006, Manuscript.

http://dx.doi.org/http://dx.doi.org/doi:10.1007/s10107-007-0098-4
http://dx.doi.org/http://dx.doi.org/doi:10.1007/s10107-007-0098-4
http://dx.doi.org/http://dx.doi.org/doi:10.1007/s10107-007-0098-4

	Higher-order cover cuts from zero--one knapsack constraints augmented by two-sided bounding inequalities
	Introduction
	Pre-processing routines
	Parametric procedure for generating higher-order cover (HOC) inequalities
	Characterization of non-dominated higher-order cover inequalities
	Generating the set of non-dominated HOC inequalities and solving separation problems
	Generating all non-dominated HOC inequalities
	Solving separation problems
	Method 1
	Method 2

	Illustrative example
	Lifting HOC inequalities
	Some preliminary computational results
	Conclusions
	Acknowledgements
	References

