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Abstract 

 This paper studies the polyhedral structure of dynamic fixed-charge problems that have 

nested relationships constraining the flow or activity variables.  Constraints of this type might 

typically arise in hierarchical or multi-period models and capacitated lot-sizing problems, but 

might also be induced among choices of key variables via an LP-based post-optimality analysis.  

We characterize several classes of valid inequalities and inductively derive convex hull 

representations in a higher dimensional space using lifting constructs based on the 

Reformulation-Linearization Technique.  Relationships with certain known classes of valid 

inequalities for single item capacitated lot-sizing problems are also identified.   

 

 

 

Keywords:  Dynamic fixed-charge problems, capacitated lot-sizing, Reformulation-linearization 

Technique, valid inequalities, convex hull. 
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Fixed-charge problems, notably including network flow and facility location fixed-charge  

problems, occupy a central place among classical mixed-integer programming models. An 

extensive literature of practical applications and of proposed solution procedures has emerged, 

attesting to the importance and challenge of this class of problems.  Applications include natural 

gas pipeline systems (Rothfarb et al., 1970), offshore platform drilling (Balas and Padberg, 

1976), bank account location (Cornuejols et al., 1977), distribution center location (Nozick and 

Turnquist, 1998a, 1998b), telecommunication network switching (Luna et al., 1987), and 

network design (Mirzain, 1985; Crainic et al., 2001).  Several other network-related applications 

are also discussed in Glover et al., 1992.  

 Solution methods for various types of fixed-charge problems have ranged across the 

spectrum of approaches spanning Lagrangian relaxation with branch-and-bound (Cruz et al., 

1998), Lagrangian relaxation with heuristics (Hochbaum and Segev, 1989), bundle-based 

relaxations (Crainic et al., 2001), branch-and-bound with Benders decomposition (Magnanti et al., 

1986), branch-and-bound with cutting planes (Cabot and Erenguc, 1984; Suhl, 1985; Padberg      

et al., 1985), tabu search (Sun et al., 1998) and iterated scaling (Glover, 1994; Kim and Pardalos, 

1999). For the setting of network problems, specialized cutting planes have also been proposed 

(Barahona, 1986; Bienstock and Günlük, 1996; Bienstock and Muratore, 1997; Stallaert, 2000). 

 In this paper, we address the issue of generating cutting planes for dynamic fixed-charge 

problems without restriction to network flow models, but where the feasible region is constrained 

by inequalities exhibiting a certain nesting property that typically arise in hierarchical or multi-

period decision process models (hence, the term dynamic).   

 Accordingly, let us consider the following mixed-integer 0-1 region, Xn, defined in terms 

of some n continuous variables x ∈ Rn along with an associated set of n binary variables y ∈ Bn, 
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where  each xj is bounded on [0, αj] if yj = 1, and is zero otherwise, and where the flow or 

activity levels x1, …, xn satisfy a nested set of generalized upper bounding (GUB) constraints as 

stated below. 

 Xn = {(x, y) ∈ n nR B+ × : 

 0 ≤ xj ≤ αj yj,  ∀ j=1, …, n (1a) 

 
1

k

j k
j

x β
=

≤∑ ,  ∀ k=2, …, n (1b) 

 y binary}, (1c) 

where we assume that αj > 0, ∀ j=1, …, n, and that 

 max {α1, α2} ≤ β2 < α1 + α2, and max {αk, βk-1} ≤ βk < αk + βk-1, ∀ k=3, …, n. (2) 

Observe that Assumption (2) simply obviates possible coefficient reductions and elimination of 

redundant constraints.  For example, if either α1 or α2 is greater than β2, then noting (1a) and that 

x1 + x2 ≤ β2 from (1b), we could reduce such an α–coefficient to β2.  Likewise, if β2 ≥ α1 + α2, 

then x1 + x2 ≤ β2 is implied by (1a), and would then be redundant.  Similarly, if either αk or βk-1 

exceeds βk, then it can be legitimately reduced to βk, and if βk ≥ αk + βk-1, then (1b) for k is 

implied by (1b) for (k-1) along with xk ≤ αk from (1a). 

 The constraints defining Xn might typically be a subset of the restrictions that model some 

dynamic fixed-charge problem that exhibits such a nested structure.  Alternatively, this nested 

inequality structure could be generated for some key subset of variables as desired via a suitable 

LP post-optimization, if it is not otherwise already explicitly present.  This could be done by 

successively maximizing the closely-related expressions on the left-hand-side of (1b) for 

k=2,…,n.  The set Xn also arises in the context of single item capacitated lot-sizing problems as 

demonstrated by Atamturk and Munoz (2003).  In this context, considering the demand dt for 
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some product over periods t=1,…,n, and letting wt denote the production or order quantity during 

period t, it denote the available inventory at the beginning of period t (or at the end of period t-1), 

and letting ct denote the production capacity during period t, we can model this multi-period 

production-inventory lot-sizing scenario as follows: 

 it + wt = it+1 + dt,   ∀ t=1,…,n 

 0 ≤ wt ≤ ct zt, ∀ t=1,…,n 

 zt∈{0,1}, ∀ t=1,…,n and in+1 ≡ 0. 

Here, whenever a production run is made during period t (i.e., wt > 0), then the binary variable zt 

necessarily takes on a value of one, and would correspondingly incur some fixed-charge cost.  

Now, consider the transformation 

 xj = wn-j+1, ∀ j=1,…,n,  and  yj = zn-j+1, ∀ j=1,…,n  (3a) 

and set 

 αj = cn-j+1, ∀ j=1,…,n,  and  1
1

j

j n k
k

dβ − +
=

=∑ , ∀ j=1,…,n. (3b) 

Then, eliminating the inventory variables it, for t=1,…,n by considering the above production-

inventory balance constraints in the reverse order for t=n,…,1, produces the following equivalent 

set of constraints for the above lot-sizing polytope, where the slack in the first set of constraints 

is given by the inventory variable in-k+1, for each k=1,…,n. 

 
1

k

j k
j

x β
=

≤∑ ,  ∀ k=1,…,n (3c) 

 0 ≤ xj ≤ αj yj,  ∀ j=1,…,n (3d) 

 yj ∈{0,1},  ∀ j=1,…,n. (3e) 
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Observe that if we take α1 = β1, then (3c) – (3e) is precisely the set Xn described by (1).  We note 

here that it is also usually assumed that the initial inventory i1 at the beginning of period t=1 is 

known and, without loss of generality, taken to be zero, so that (3c) for k=n becomes 

 
1

n

j n
j

x β
=

=∑ . (3f) 

Barany et al. (1984a) have considered the uncapacitated version of (3c) – (3f) in which αj ≡ βn,   

∀ j=1,…,n, and have provided a complete convex hull description for this polytope.  Pochet 

(1988) has extended this work to derive a family of valid inequalities for the capacitated version 

(3c) – (3f), focusing mainly on the equal capacity case for which he demonstrates that a large 

subclass of these inequalities is facet-defining.  Loparic et al. (2003) have examined dynamic 

knapsack polytopes as multi-dimensional knapsack sets having an additional continuous 

variable, and have explored relationships of such sets with (relaxations of) discrete and 

continuous single item capacitated lot-sizing problems in order to derive strong valid inequalities 

for the latter problems.  Atamturk and Munoz (2003) have introduced a new class of so-called 

bottleneck cover valid inequalities for (3c) – (3e) that are shown to delete all fractional vertices 

of the corresponding continuous linear programming relaxation.  They have also studied various 

liftings and facet-inducing properties of this class of valid inequalities.  As a further extension to 

(3c) – (3e), Atamturk and Kucukyavuz (2003) have additionally imposed either constant or 

fixed-charge-based bounds on the inventory variables (slacks in (3c)), and have studied the 

polyhedral structure of the resulting set, describing various facet-defining inequalities along with 

separation routines.  We also refer the interested reader to the paper by Van Vyve and Ortega 

(2003) for related convex hull results, and to the survey by Pochet and Wolsey (1995) for a 

further discussion on the literature pertaining to lot-sizing problems. 
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 In what follows, we will characterize certain valid inequalities and higher dimensional 

convex hull representations for Xn, in order to tighten the relaxation of this underlying parent 

problem.  Some of these classes of valid inequalities are related to certain known inequalities for 

the lot-sizing polytope, while others are new, as discussed in the sequel.  We remark here that if 

the constraints (1b) have some general positive coefficients aj for each xj, j=1, …, n, in the form 

 
1

k

j j k
j

a x β
=

≤∑ , ∀ k=2, …, n, 

then we can simply scale the problem to transform it into the form of Xn by defining variables 

j j jx a x′ = , j=1, …, n.  For such a transformed or scaled region, given that (2) is satisfied, all the 

results derived herein would continue to hold true. 

 We begin in the next section by deriving a class of nested valid inequalities for Xn.  We 

provide some insights into deriving these inequalities via either an application of the 

Reformulation-Linearization Technique (RLT) of Sherali and Adams (1990, 1994), or via a 

specific related lifting process.  Following this, we show in Section 2 that for the case of n = 2, 

this produces the convex hull of X2.  However, we demonstrate that this is not the case when       

n ≥ 3, and this illustration leads to additional classes of valid inequalities for Xn in Section 3, for 

n ≥ 3.  We also discuss relationships with certain known classes of valid inequalities for the lot-

sizing polytope.  Finally, we close in Section 4 by developing an inductive scheme for 

constructing the convex hull representation for Xn in a higher dimensional space. 

 
1.  A Class of Nested Valid Inequalities 

 Let us begin by considering the case of n = 2 as addressed in Proposition 1 below.  Note 

that this case has no nested structure, and so, the corresponding valid inequality described in 

Proposition 1 is precisely the special case (S, ∅) of the (S, L) flow cover inequality defined by 
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Proposition 3 of Padberg et al. (1985) for arbitrary n.  Nonetheless, we provide a proof to 

demonstrate an insightful alternative derivation process, which will then lead to an inductive 

scheme for deriving a new prescribed class of valid inequalities in closed-form for n ≥ 3. 

 
Proposition 1.  For n = 2, the following is a valid inequality for X2: 

 x1 + x2 ≤ (β2-α2)y1 + (β2-α1)y2 + (α1+α2-β2). (4) 

 
Proof.  Adopting the RLT process, let us define y12 as the linearization of the product term y1y2, 

and note that 

 y12 ≥ y1 + y2 – 1 (5) 

for any binary values of y1 and y2.  Now, consider the surrogate formed by multiplying the 

constraints from (1a) and (1b) by the nonnegative factors y12 and (1-y12) as shown below, and 

summing these inequalities (where ⊕ denotes this surrogation or summing process): 

 [x1 ≤ α1y1](1-y12) ⊕ [x2 ≤ α2y2](1-y12) ⊕ [x1 + x2 ≤ β2]y12. (6) 

Upon using the fact that y1y12 = y2y12 = y12, we get 

 x1 + x2 ≤ α1y1 + α2y2 – y12 (α1 + α2 – β2). (7) 

Noting that (α1 + α2 – β2) > 0 from (2), and using – y12 ≤ – y1 – y2 + 1 from (5) within (7), we get 

(4).  This completes the proof.  □ 

 The following result inductively generates a nested class of valid inequalities of type (4) 

for n ≥ 3.  For notational convenience, we will henceforth adopt the RLT terminology whereby 

[•]L represents the linearization of [•] under the RLT substitution of a single variable for each 

specific product term.  For example, in particular, y12 ≡ [y1 y2]L.  Furthermore, let us denote  

 Jk = {1, …, k}, and let 
1

k

k

J j
j L

y y
=

⎡ ⎤
= ⎢ ⎥
⎣ ⎦
∏ . (8) 
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Observe that we have the following readily verified relationship holding true: 

 
1

( 1)
k

k

J j
j

y y k
=

≥ − −∑ ,  ∀ k=2, …, n. (9) 

 
Proposition 2.  The following class of nested inequalities are valid for Xn for each k=2, …, n: 

 0
1 1

k k
k k

j j j
j j

x yπ π
= =

≤ +∑ ∑  (10a) 

where for each k=3, …, n, we have 

 1
1( )k k

j j k k kπ π β α β−
−= − + − ,  ∀ j=1, …, k-1 (10b) 

 1( )k
k k kπ β β −= −  (10c) 

and 

 1
0 0 1( 1)( )k k

k k kkπ π β α β−
−= + − + −  (10d) 

and where for k = 2, we have 

 2 2
1 2 2 2 2 1( ), ( )π β α π β α= − = − , and 2

0 1 2 2( )π α α β= + − . (10e) 

In particular, we have the sum of the valid inequality coefficients yielding 

 0
1

k
k k
j k

j

π π β
=

+ =∑ ,  ∀ k=2, …, n. (11) 

 
Proof.  We establish this result by induction on k.  For k = 2, the inequality given by (10a, e) is 

valid from (4) of Proposition 1.  Moreover, noting (10e), we have that (11) holds true. 

 Hence, suppose that the result is true for some k-1, and consider the case for k, where 

k∈{3, …, n}.  Using (10a) for the case of k-1, and (1a) and (1b) for the case of k, consider the 

following RLT product constraint surrogate as in the proof of Proposition 1, where 
kJy  is 

defined by (8). 
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1 1

1 1
0

1 1 1

(1 ) [ ](1 ) ( )
k k k

k k k
k k

j j j J k k k J j k J
j j j

x y y x y y x yπ π α β
− −

− −

= = =

⎡ ⎤ ⎡ ⎤≤ + − ⊕ ≤ − ⊕ ≤⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
∑ ∑ ∑ . (12) 

Using the fact that , {1, ..., }
k kj J J ky y y j J k≡ ∀ ∈ ≡ , we get 

 
1 1

1 1 1 1
0 0

1 1 1
k

k k k
k k k k

j j j k k J j k k
j j j

x y y yπ α π π π α β
− −

− − − −

= = =

⎡ ⎤
≤ + + − + + −⎢ ⎥

⎣ ⎦
∑ ∑ ∑ . (13) 

By the induction hypothesis on (11), the term [•] in (13) is equal to [βk-1 + αk – βk], which is 

positive by (2).  Consequently, applying the inequality (9) in (13), we get 

 
1

1 1
0 1

1 1 1
( 1) ( )

k k k
k k

j j j k k j k k k
j j j

x y y y kπ α π β α β
−

− −
−

= = =

⎡ ⎤≤ + + − − − + −⎢ ⎥
⎣ ⎦

∑ ∑ ∑ , 

which is precisely of the form (10).  Moreover, from (10b, c, d) and the induction hypothesis on 

(11) for the case of k-1, we obtain 

 
1

1 1
0 0 1

1 1
( )

k k
k k k k
j j k k k

j j
π π π π β β β

−
− −

−
= =

⎡ ⎤
+ = + + − =⎢ ⎥

⎣ ⎦
∑ ∑ , 

or that (11) continues to hold true for the case of k.  This completes the proof.  □ 

 
Remark 1 (Derivation via a Lifting Argument): 

 The inequalities (4), in particular, and (10) in general, can also be derived via a lifting 

argument.  To illustrate, consider the inequality (4).  Note that from (1a), we have the following 

valid inequality: 

 (x1+x2) ≤ α1y1+ α2y2. (14) 

We can lift this in the dimension of the product variable y12 as follows, using a coefficient α ≥ 0 

for y12: 

 (x1+x2) ≤ α1y1+ α2y2 – αy12. (15) 



 9

From (14), we have that (15) remains valid whenever y12 = 0, i.e., y1 or y2 equals zero.  To 

maintain validity of (15) in the remaining case of y1 = y2 = 1, whenever y12 = 1, we must have 

 α ≤ α1 + α2 – max {(x1 + x2):  (x, y) ∈ X2  with  y1 = y2 = 1}. (16) 

By (1b) and (2), the maximum value in (16) is given by β2, by which we can take α = (α1 + α2 – 

β2), whereby (15) leads to the valid inequality (7).  This in turn yields the desired inequality (4) 

upon using (5) as in the proof of Proposition 1. 

 Similarly, we can derive (10), in general, via such a lifting process.  This can be 

accomplished by inductively starting with the valid inequality (10a) for the case of k-1, for some 

k ≥ 3, along with (1a) for the case k, to get 

 
1

1 1
0

1 1

k k
k k

j j j k k
j j

x y yπ π α
−

− −

= =

≤ + +∑ ∑ . (17) 

Lifting this with a coefficient 
kJyα−  on the right-hand side, we can derive α as in (16) under the 

relevant condition y1 = … = yk = 1 via  

 
1

1 1
0 1

1 1
max : ( , ) with ... 1

k k
k k
j k j k k

j j
x x y X y yα π π α

−
− −

= =

⎡ ⎤≤ + + − ∈ = = =⎢ ⎥
⎣ ⎦

∑ ∑ . 

Hence, noting (1b) and (11), we can take 

 
1

1 1
0 1

1
( )

k
k k
j k k k k k

j
α π π α β β α β

−
− −

−
=

= + + − = + −∑ , (18) 

which leads to (13), and thereby to (10) for the case of k as in the proof of Proposition 2.   □ 

 
Example 1 

 To illustrate Propositions 1 and 2, consider the case of n = 3, with X3 being described as 

follows. 

 0 ≤ x1 ≤ 6y1 (19a) 
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 0 ≤ x2 ≤ 7y2 (19b) 

 0 ≤ x3 ≤ 8y3 (19c) 

 x1 + x2 ≤ 10 (19d) 

 x1 + x2 + x3 ≤ 11 (19e) 

 (y1, y2, y3) binary. (19f) 

Hence, we have α1 = 6, α2 = 7, α3 = 8, β2 = 10, and β3 = 11, with (2) holding true.  Applying 

Proposition 1 for the case of n = 2, we have that the inequality (4) is given by 

 x1 + x2 ≤ 3y1 + 4y2 + 3. (20) 

Next, inductively applying Proposition 2 for the case of k = 3, we get from (10b, c, d) using    

(βk-1 + αk – βk) = (10 + 8 – 11) = 7, and (βk – βk-1) = 11 – 10 = 1, that 3
1π  = 3 – 7 = – 4, 

 3
2π  = 4 – 7 = –3, 3

3π  = 1, and 3
0π  = 3 + (2)(7) = 17.  This leads to (10a) as given by 

 x1 + x2 + x3 ≤ –4y1 – 3y2 + y3 + 17. (21) 

We mention here that not only is (20) facet-defining for conv(X2), but also, as shown in general 

in the next section, it serves to completely describe conv(X2).  On the other hand, as we show 

later in Example 2, the inequality (21) is dominated by the facet-defining inequality x1 + x2 + x3 ≤ 

10 + y3.  Observe that as shown in Remark 1, (21) is essentially derived by lifting the facet (20) 

for conv(X2) combined with (19c) according to x1 + x2 + x3 ≤ 3y1 + 4y2 + 8y3 + 3 – 
3Jyα , where 

α = 7 in this case.  Evidently, using the projection of this onto the original variable space via the 

inequality 
3Jy  ≥ y1 + y2 + y3 – 2, which yields (21), fails to preserve the facet-inducing property 

in this inductive process.  Nonetheless, we describe later in Section 4 an inductive process for 

generating conv(Xn) in a higher dimensional representation. 
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Remark 2.  Note that in lieu of following the inductive scheme of Proposition 2 for k = 3, if we 

had directly adopted the strategy of Proposition 1 that was used for k = 2, we would have derived 

a weaker cut than (21) (this is generally true).  To illustrate, note that such a direct derivation 

would have used the RLT construct 

          (x1 ≤ α1y1)(1 – y123) ⊕ (x2 ≤ α2y2)(1 – y123) ⊕ (x3 ≤ α3y3)(1 – y123) ⊕ (x1 + x2 + x3 ≤ β3) y123   

leading to the cut 

 (x1 + x2 + x3) ≤ α1y1 + α2y2 + α3y3 – y123 (α1 + α2 + α3 – β3). 

Using – y123 ≤ – y1 – y2 – y3 + 2 from (9) for Jk = {1, 2, 3}, this yields 

(x1 + x2 + x3) ≤ – (α2 + α3 – β3)y1 – (α1 + α3 – β3)y2 – (α1 + α2 – β3)y3 + 2(α1 + α2 + α3 – β3). (22) 

 On the other hand, using (4) and (10) for the case k = 3, Proposition 2 yields the 

following valid inequality for this case: 

(x1 + x2 + x3) ≤ – (α2 + α3 – β3)y1 – (α1 + α3 – β3)y2 + (β3 – β2)y3 + (α1 + α2 + 2α3 + β2 – 2β3).(23) 

Observe that (23) implies (22) in general, because its right-hand-side is generally smaller than 

that of (22), as seen by noting that the former minus the latter is given by 

 (α1 + α2 – β2)y3 – (α1 + α2 – β2) = – (α1 + α2 – β2) (1 - y3) ≤ 0 

for any y3 ≤ 1, noting that α1 + α2 – β2 > 0 by (2).  For Example 1 above, (22) is given by 

 x1 + x2 + x3 ≤ – 4y1 – 3y2 – 2y3 + 20, (24) 

while the inequality (23) is given by (21), where the right-hand-side of (21) minus that of (24) 

equals – 3(1 – y3) ≤ 0.  □ 

 
2.  Convex Hull Characterization for n = 2 

 Let the set X2 be defined as in (1), restated explicitly below for the sake of convenience: 

 X2 = {(x1, x2, y1, y2):  0 ≤ xj ≤ αjyj  for  j=1, 2, x1 + x2 ≤ β2, (y1, y2) binary}. (25) 
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Consider the set Z2 defined as follows, by incorporating the valid inequality (4) into X2 and 

relaxing the binary restrictions. 

 Z2 = {(x1, x2, y1, y2):  0 ≤ xj ≤ αjyj  for  j=1, 2, (26a) 

  x1 + x2 ≤ (β2 – α2)y1 + (β2 – α1)y2 + (α1 + α2 – β2) (26b) 

  0 ≤ y1 ≤ 1,  0 ≤ y2 ≤ 1}. (26c) 

Observe that we have dropped x1 + x2 ≤ β2 in Z2 since this is implied by (26b), because noting 

(2), we have that the right-hand-side in (26b) for any 0 ≤ yj ≤ 1, ∀ j, satisfies (β2 – α2)y1 +        

(β2 – α1)y2 + (α1 + α2 – β2) ≤ (β2 – α2) + (β2 – α1) + (α1 + α2 – β2) = β2.  Indeed, as established 

by the next result, Z2 characterizes conv(X2), where conv(•) denotes the convex hull operation.  

(The convex hull of the uncapacitated version of Xn under (3f) and with αj = βn, ∀ j=1,…,n, is 

described in Barany et al. (1984).  To our knowledge, the following result is new.) 

 
Proposition 3.  conv(X2) = Z2. 

 
Proof.  Since (26b) is valid for X2 by Proposition 1, we have that conv(X2) ⊆ Z2.  Hence, it is 

sufficient to show that all vertices of Z2 (denoted vert(Z2)) are feasible to X2.  In particular, noting 

that (26b, c) implies x1 + x2 ≤ β2 in (25), it is sufficient to show that y is binary valued at all 

points in vert(Z2).  Observe that for any vertex of Z2 at which (26b) is inactive, by the separable 

structure of (26a) and (26c) over the (x1, y1) and (x2, y2) spaces, we see that this claim is true.  

Hence, let us establish that y is binary at any vertex of Z2 on the hyperplane (26b).  That is, in 

addition to the active constraint (26b), let us explore three additional active constraints from the 

remaining inequalities that would yield a unique feasible solution. 

 
Case (i):  x1 = 0 is active (the case of x2 = 0 being active is symmetric). 
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 Hence, from (26b) being assumed active, we have 

 x2 = (β2 – α2)y1 + (β2 – α1)y2 + (α1 + α2 – β2). (27) 

• If in addition, x2 = 0 is active, then noting from (2) that the right-hand side in (27) must 

be positive, we have a contradiction. 

• On the other hand, if x2 = α2y2 is active, then we must have from (27) that  

 (β2 – α2)y1 + (α1 + α2 – β2) (1 – y2) = 0. (28) 

 The additional linearly independent hyperplane must come from (26c), implying that y1 

or y2 is binary, and the other y-variable is determined by (28).  Noting from (2) that        

(β2 – α2) ≥ 0 and (α1 + α2 – β2) > 0, if y2 = 0 then (28) leads to a contradiction, and if       

y2 = 1, then (28) implies that y1 = 0.  Likewise, if y1 = 0, then (28) implies that y2 = 1, and 

if y1 = 1, then (28) yields 

 y2 = α1 / (α1 + α2 – β2). (29) 

 However, note that β2 ≥ α2, whereby if β2 = α2, then we have y2 = 1, but if β2 > α2, then 

y2 > 1 (noting α1 + α2 > β2), yielding infeasibility. 

• Else, if neither x2 = 0 nor x2 = α2y2 is active, then x2 is given by (27) while y is 

determined solely by (26c) and is therefore binary valued. 

 
Case (ii):  x1 = α1y1 is active (the case of x2 = α2y2 being active is symmetric). 

 Hence, from (26b) being assumed active, we have, 

 x2 = (α1 + α2 – β2) (1 – y1) + (β2 – α1)y2. (30) 

• If either x1 or x2 is zero, then the proof follows from Case (i). 

• If x2 = α2y2 is also active, then (30) yields (noting α1 + α2 > β2 by (2)) that y1 + y2 = 1, 

and then in concert with active constraints from (26c), we get binary values of y. 
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• Finally, if no other constraint from (26a) is active, then x1 = α1y1, x2 is given by (30), and 

y is determined solely from (26c), and is therefore binary valued.  This completes the 

proof.   □ 

The question that arises is whether for any n ≥ 3 as well, if we were to incorporate the class of 

inequalities (10) for each k = 2, …, n within Xn, we would derive conv(Xn).  The answer is 

negative, even for n = 3 as the following example illustrates. 

 
Example 2 

 Consider X3 as given by (19) in Example 1, and suppose that we construct Z3 by 

incorporating the inequalities (10) for k = 2 and k = 3 as given respectively by (20) and (21): 

Z3 = {(x, y):  0 ≤ x1 ≤ 6y1, 0 ≤ x2 ≤ 7y2, 0 ≤ x3 ≤ 8y3, x1 + x2 + x3 ≤ 11, x1 + x2 ≤ 3y1 + 4y2 + 3, 

 x1 + x2 + x3 ≤ – 4y1 – 3y2 + y3 + 17, and 0 ≤ yj ≤ 1, ∀ j = 1, 2, 3}. (31) 

Note that while (19d) is implied by (20) and yj ≤ 1, ∀ j, (19e) is not necessarily implied and is 

explicitly incorporated within (31).  Now, consider the vertex of (31) formed by the intersection 

of the following six linearly independent hyperplanes (note that Z3 ⊆ R6): 

 y1 = 0, x1 = 0, y2 = 1, x2 = 7y2, x3 = 8y3, and x1 + x2 + x3 = 11. (32) 

The system (32) yields the unique solution 

 x1 = 0, x2 = 7, x3 = 4, y1 = 0, y2 = 1, y3 = ½, (33) 

which is feasible to the remaining constraints in Z3, and is hence a (fractional) vertex of Z3.  

Therefore, Z3 ≠ conv(X3).  In fact, the following valid inequality for X3 deletes this fractional 

vertex: 

 x1 + x2 + x3 ≤ 10 + y3. (34) 

Note that when y3 = 1, this is precisely (19e), while when y3 = 0, (19c) implies that we must have 

x3 = 0, whence (34) asserts that x1 + x2 ≤ 10, which is valid by (19d).  Moreover, (34) deletes the 
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solution (33) and dominates (21) because (10 + y3) ≤ – 4y1 – 3y2 + y3 + 17, i.e., 4y1 + 3y2 ≤ 7.  

Indeed, incorporating (34) within Z3 (and deleting the constraint x1 + x2 + x3 ≤ 11, which is now 

implied), we obtain a set 3Z ′ , say, where we can demonstrate that 3Z ′  = conv(X3).  But more 

importantly, this example has revealed another class of valid inequalities that we expose in the 

following section. 

 
3.  Other Classes of Valid Inequalities 

 The following result presents a class of valid inequalities that is prompted by Example 2.  

This particular class of inequalities is equivalent to the special case of the ( , )SA  inequality from 

Barany et al. (1984a, b) where {1,..., 1}S = −A .  We provide a simple independent proof for this 

result, and then discuss several other such classes of valid inequalities that can be derived 

following this same philosophy. 

 
Proposition 4.  The following are valid inequalities for Xn: 

 1 1
1

( )
k

j k k k k
j

x yβ β β− −
=

≤ − +∑ ,  ∀ k = 3, …, n. (35) 

 
Proof.  Consider any k ∈ {3, …, n}.  Note that if yk = 0, then xk = 0 by (1a), whence (35) reduces 

to (1b) for the case of k – 1.  On the other hand, if yk = 1, then (35) is precisely (1b) for the case 

of k.  This completes the proof.   □ 

 The inequality (35) can be conceived as a “depth-one” cut that examines a right-hand-

side value predicated on the case of yk being zero or one for the case of k.  In a similar vein, we 

can derive a variety of cuts by designing a right-hand-side of (35) based on multiple binary 

variables.  For example, the following result derives a “depth-two” cut for k ≥ 4 based on 

exploring binary values of yk and yk-1.  This cut is a special case of the bottleneck cover 
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inequality of Atamturk and Munoz (2003) and of the submodular inequality of Wolsey (1989), 

and bears some relationship to other classes of capacitated inequalities of Pochet (1988) and the 

dynamic knapsack induced inequalities for capacitated lot-sizing by Marchand (1998). 

 
Proposition 5.  The following are valid inequalities for Xn: 

 1 1 1
1

( ) ( ) ( )
k

j k k k k k k k k k
j

x y yβ β β β β β β− − −
=

′ ′≤ + − + − + −∑ ,  for  k = 4, …, n, (36) 

where, 

 2min{ , }k k k kβ β β α−′ = + . (37) 

Moreover, (36) uniformly dominates (35) for k ≥ 4. 

 
Proof.  Consider the following inequality, where kβ ′  is given by (37): 

 1 1 1 1 2 1
1

[ (1 ) (1 ) (1 )(1 )]
k

j k k k k k k k k k k k k L
j

x y y y y y y y yβ β β β− − − − − −
=

′≤ + − + − + − −∑ . (38) 

Observe that for binary values of (yk-1, yk), exactly one binary product term on the right-hand-side 

of (38) is one, with the corresponding coefficient yielding a valid bound on 
1

k

j
j

x
=
∑ .  By (1a, b), 

this bound is clearly given by βk when (yk-1, yk) = (1, 1), by βk-1 when (yk-1, yk) = (1, 0), and by  

βk-2 when (yk-1, yk) = (0, 0).  Finally, when (yk-1, yk) = (0, 1), we have xk-1 = 0 by (1a), and then, 

2

2
1

min{ , }
k

j k k k k k
j

x x β β α β
−

−
=

′+ ≤ + =∑ , as defined in (37), by virtue of (1a, b). This establishes 

the validity of (38). 

 Now, (38) is of the form 

 2 1 2 1 2 1, 1 2
1

( ) ( ) ( )
k

j k k k k k k k k k k k k k
j

x y y yβ β β β β β β β β− − − − − − − −
=

′ ′≤ + − + − − + − −∑ . (39) 
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Note that 1 2 1 2( ) ( ) 0k k k k k kβ β β β β β− − − −′+ − − = − ≥  when k kβ β′ = , and also, when 

2k k kβ β α−′ = + , we get 1 2 1( ) ( ) 0k k k k k k kβ β β β β α β− − −′+ − − = + − >  by (2).  Hence, using            

– yk-1,k ≤ – yk-1 – yk + 1 in (39), as given by (9), we get the valid inequality (36). 

 Moreover, observe that when k kβ β′ = , then (36) is precisely of the form (35).  Otherwise, 

if k kβ β′ < , then (36) implies (35), because then, the right-hand-side of (35) minus that of (36) is 

given by 1( )(1 ) 0k k kyβ β −′− − ≥ .  This completes the proof.   □ 

 Likewise, for k ≥ 5, we can derive depth-three cuts, and so on.  Actually, as discussed in 

the next section, we can use an inductive process to generate entire convex hull representations 

for Xn, n ≥ 2, in a higher-dimensional space. 

 
4.  Inductive Process for Generating the Convex Hull Representation for Xn 

 As a preliminary, consider the following general result that lays the groundwork for 

inductively constructing conv(Xn) for n ≥ 2 in a higher dimensional space. 

 
Proposition 6.  Consider a mixed-integer set X defined in variables (x, y) ∈ Rn × Bm (i.e., n 

continuous variables x and m binary variables y), and suppose that for some suitably defined set 

S ⊆ Rn × Bm and for its complement S  with respect to Rn × Bm, we have that  

 Z0 = conv(X ∩ S) = {(x, y):  Ax + Dy ≤ b} (40a) 

and 

 Z1 = conv ( )X S∩  = {(x, y):  Gx + Hy ≤ g} (40b) 

where (40a) and (40b) define bounded sets.  Then, 

 conv(X) = Z ≡ {(x, y):  for some w ∈ Rn, v ∈ Rm, and 0 ≤ Y ≤ 1, we have 

  A(x – w) + D(y – v) ≤ b(1 – Y) 
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  Gw + Hv ≤ gY}. (41) 

 
Proof.  First, let us establish that 

 conv(X) = conv 0 1( )Z Z∪ . (42) 

This follows readily by noting that 0 1X Z Z⊆ ∪ , and so, 0 1conv( ) conv( )X Z Z⊆ ∪ .  Conversely, 

since X S X⊆∩ , we have 0 conv( ) conv( )Z X S X= ⊆∩ , and similarly, 1 conv( )Z X⊆ , and so, 

0 1 conv( )Z Z X⊆∪ , i.e., 0 1conv( ) conv( )Z Z X⊆∪ .  Hence, (42) holds true. 

 By the disjunctive convex hull generation process of Balas (1998), (see also Balas (1979) 

and Sherali and Shetty (1980)), or the RLT process of Sherali and Adams (1990, 1994), we can 

construct conv(X) via (42) by multiplying (40a) by (1 – Y) and (40b) by Y, where 0 ≤ Y ≤ 1, and 

then using the substitutions w = [x Y]L, v = [y Y]L.  This yields (41), and the proof is complete.   □ 

 An important specialization of Proposition 6 is given by the following result. 

 
Corollary 1.  In Proposition 6, suppose that 

 S = {(x, y) ∈ Rn × Bm:  at least one yi = 0 for i = 1,…,m}, and (43a) 

 S  = {(x, y) ∈ Rn × Bm:  yi = 1,  ∀ i = 1,…,m}. (43b) 

Accordingly, let Z0 and Z1 defined in (40a, b) be given by 

 Z0 = {(x, y):  Ax + Dy ≤ b}, and Z1 = {(x, y):  Gx ≤ g, yi = 1, ∀ i = 1,…,m}, (44) 

where each of these sets is bounded.  Then, 

 conv(X) = {(x, y):  for some w ∈ Rn, 0 ≤ Y ≤ 1, we have 

  A(x – w) + D(y – eY) ≤ b(1 – Y) 

  Gw ≤ gY}, (45) 

where e = (1,…,1)T ∈ Rm. 
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Proof.  Adopting (42), and multiplying the constraints defining Z0 and Z1 in (44) by (1 – Y) and Y 

respectively, we get upon substituting w = [x Y]L and v = [y Y]L that  

 conv(X) = {(x, y):  A(x – w) + D(y – v) ≤ b(1 – Y) 

  Gw ≤ gY, vi = Y,  ∀ i = 1,…,m}. (46) 

Eliminating v from (46) by substituting v = (e)Y, we get (45).  This completes the proof.   □ 

 
Remark 3.  Notice in (45) of Corollary 1 that when Y = 1, by the boundedness assumption of Z0 

(that would preclude recession directions, i.e., nonzero solutions to the corresponding 

homogeneous system), we have, x = w and y = (e)Y, and so, (x, y) ∈ Z1.  Likewise, when Y = 0, 

we get by the boundedness of Z1 that w = 0, and (x, y) ∈ Z0.  As such, the variable Y is playing 

the role of 
1

n

i
i L

y
=

⎡ ⎤
⎢ ⎥
⎣ ⎦
∏ .   □ 

 To illustrate the application of Proposition 6 and Corollary 1, let us first consider the case 

n = 2, and then inductively demonstrate how one could handle the case of n = 3.  Further 

generalizations or extensions would then be evident. 

 For the case of n = 2, applying the special case of Corollary 1 with S and S  given by 

(43), we get from (40) and (44) that 

 Z0 = {(x, y):  0 ≤ x1 ≤ α1y1, 0 ≤ x2 ≤ α2y2, y1 + y2 ≤ 1, y ≥ 0} (47a) 

and 

 Z1 = {(x, y):  0 ≤ x1 ≤ α1, 0 ≤ x2 ≤ α2, x1 + x2 ≤ β2, y1 = y2 = 1}. (47b) 

Observe that 0 2conv( )Z X S= ∩  since x1 + x2 ≤ β2 is redundant under the condition {y1 = 0 or   

y2 = 0}, because β2 ≥ max {α1, α2} by (2), and moreover, y is readily verified to be binary valued 
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at all vertices of Z0.  Hence, noting that Y ≡ y12 as in Remark 3, we can write the system (45) as 

follows: 

 conv(X2) = Z ≡ {(x, y):  for some w1, w2, and 0 ≤ y12 ≤ 1, we have, 

  0 ≤ (xj – wj) ≤ αj(yj – y12) for j =1, 2 (48a) 

  y12 ≤ yj for j = 1, 2, and y12 ≥ y1 + y2 – 1  (48b) 

  0 ≤ wj ≤ αjy12 for j = 1, 2 (48c) 

  w1 + w2 ≤ β2 y12}. (48d) 

Moreover, as shown below, the set Z, which is the projection of the higher dimensional set (48) 

onto the original (x, y) variable space, indeed yields the set Z2 given by (26), thereby verifying 

Proposition 3. 

 
Proposition 7.  Z = Z2, where Z and Z2 are given by (48) and (26), respectively. 

 
Proof.  First, let us verify that Z ⊆ Z2, by demonstrating that the constraints of Z2 are implied by 

Z.  Observe that (48a) and (48c) yield (26a).  Also, (48b) along with 0 ≤ y12 ≤ 1 yield (26c).  

Finally, the constraint (26b) results from (48) by surrogating (48a) for j = 1, 2, and using (48d) to 

get 

 (x1 + x2) ≤ (w1 + w2) + α1(y1 – y12) + α2(y2 – y12) ≤ α1y1 + α2y2 – y12(α1 + α2 – β2). 

Now, using – y12 ≤ – y1 – y2 + 1 from (48b), and that α1 + α2 > β2 by (2), we get (26b). 

 Conversely, to verify that Z2 ⊆ Z, it is sufficient to show that every vertex of Z2 has a 

completion w1, w2, and y12 that is feasible to (48).  But by Proposition 3, we know that the 

vertices of Z2 have binary values of y.  Hence, given (x, y) ∈ vert(Z2), by taking y12 ≡ y1y2,         

w1 ≡ x1y1, and w2 ≡ x2y2, we readily verify that this yields a feasible solution to Z.  This 

completes the proof.   □ 



 21

 To apply the tool of Proposition 6 inductively, consider X3.  We can write  

 3 0 1conv( ) conv( )X Z Z= ∪  (49) 

where, 

 0 3conv[ {( , )Z X x y= ∩ :  at least one yi = 0 for i = 1, 2, 3}] (50a) 

and 

 1 3conv[ {( , )Z X x y= ∩ :  yi = 1,  ∀ i = 1, 2, 3}] 

 
1

( , ) : 0 for 1, 2,3, for 2,3, 1 for 1, 2,3
k

j j j k i
j

x y x j x k y iα β
=

⎧ ⎫
≡ ≤ ≤ = ≤ = = =⎨ ⎬
⎩ ⎭

∑ . (50b) 

For describing Z0, so that we could then apply Proposition 6, we use this Proposition 6 in a 

nested form itself by writing 

 0 00 01conv( )Z Z Z= ∪  (51) 

where, 

 00 3 3conv[ {( , ) : 0}]Z X x y y= =∩  (52a) 

and 

 01 3 3conv[ {( , ) : 1Z X x y y= =∩  and at least one of y1 and y2 is zero}]. (52b) 

Observe that Z00 is given by Z2 of (26) for the case of n = 2, while 

 Z01 = conv[(x, y):  0 ≤ xj ≤ αjyj for j = 1, 2, 0 ≤ x3 ≤ α3, x1 + x2 + x3 ≤ β3,  

 y1 + y2 ≤ 1, y3 = 1, y binary]. (53) 

This set Z01 can now be constructed by applying the special GUB structured RLT process 

described in Sherali et al. (1998), and then working backwards, we can derive conv(X3) by this 

process. 

 While this mechanism is generalizable for any n in theory, in practice, it can be applied to 

relaxations of the type X2 and X3, say, in order to generate tighter higher dimensional 
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reformulations whose projections could potentially capture several classes of valid inequalities.  

In addition, such constructs can be augmented by valid inequalities as prescribed by Propositions 

1, 2, 4, and 5, as well as others that are described in the literature for the single item capacitated 

lot-sizing problem as in Pochet (1988), Marchand (1998), Wolsey (1989), Loparic et al. (2003), 

and Atamturk and Munoz (2003).   In particular, while Propositions 1, 4, and 5 recover certain 

special cases of flow cover, ( , )SA , submodular, and bottleneck cover inequalities using RLT-

based lifting arguments, it is of interest to explore if this viewpoint might offer a unifying 

framework for generating the aforementioned classes of inequalities in general.  As another topic 

of future research, it is worthwhile to study if the higher dimensional convex hull representations 

afforded by RLT might reveal new classes of valid inequalities in the original variable space 

based on characterizing specific extreme directions of the dual projection cone (see Sherali et al. 

(1995) for an illustration of this approach in the context of the Boolean quadric polytope).  

Finally, we propose for future research to conduct a computational study of applying such cuts to 

practical problems that have an embedded nested fixed-charge structure as described by Xn in 

(1). 
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