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Abstract

This paper presents a network model with discrete requirements for a nuclear power plant.
The model determines the batch size and timing for nuclear unit refueling and how much
energy should be produced by nuclear and non-nuclear units for each time period to satisfy
forecasted demand with minimum total operating costs over the planning horizon. Efficient
modeling and solution strategies are developed which constitute a merger of operations
research and artificial intelligence. A branch-and-bound solution approach is combined with
a pattern recognition component, involving non-parametric discrimination analyses, to select
branching variables and directions. By coupling this approach with network optimization
techniques to exploit the underlying network structure of the problem, substantial improve-
ments are obtained both in solution quality and solution efficiency.

1.0. Introduction

Management science techniques have been applied to a]! aspects of nuclear
power plant operation. In the area of system scheduling and planning, operations
research techniques used include simulation (Tumage and Prince [22]), ]inear
programming (Deaton [2] and Rhodes [21]), mixed integer programming
(Kazemersky [16]), critical path method (Catalano [1]), expert systems (Nuclear
Services [20]), and decision analysis (Hamilton and Biiigham [13]).
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All of the foregoing scheduling models, except for the one by Kazemersky [16],
assume that the refueling dates are known a priori. In this paper,, we present a
model which is mathematically equivalent to Kazemersky's but which is much
easier for management to understand and which, based on preliminary empirical
testing, appears to be more tractable from a solution perspective.

Scheduling future energy production for fossil, nuclear, and hydro units and
nuclear refueling for a planning horizon of several years is a complex problem.
Generally, a utility attempts to select the schedule which minimizes the total
system present-value operating cost to reliably service its forecasted demand load.

Nuclear and fossil fuel costs are the major components of a utility system's
operating cost. Nuclear fuel is a highly processed, manufactured product which
requires substantial lead time and financial investment. Fuel normally remains
in-core (in the reactor) from two to four years, and when removed requires
additional time and financial investment to process and recover useful products.
Furthermore, the past operation of the nuclear unit influences the present energy
capability of the unit since only a portion (batch) of the fuel in a reactor is
replaced at each refueling, and a unit cannot produce energy while being refueled.
Consequently, the economic trade-offs between energy production (nuclear and
non-nuclear) and refueling decisions must be examined simultaneously. The
effects of past, present, and future operation on the cost of a fuel batch, and the
lifetime of a batch generally require a planning horizon of five to seven years.

For this application, we developed a NETFORM (i.e., a network flow related
model). This NETFORM is a network model with accompanying discrete flow
requirements to identify batch sizes and timing for nuclear refueling and to
determine how much energy should be produced by each unit (nuclear and
non-nuclear) for each time period to satisfy the forecasted demand. The objective
is to minimize the total system present-value operating costs over the planning
horizon of the model. Because the problem has a large number of discrete
requirements, it requires an effective blend of modeling and solution strategies.

Kazemersky [15] developed a mixed-integer programming model for this
problem. His model formulation requires over twenty pages to present and is
difficult to understand from a managerial perspective. Our equivalent NETFORM
can be presented in a few pages and understood easily by management. The
strategy we undertook for solving this problem constitutes a merger of operations
research and artificial intelligence, based on a procedure for learning the best way
to search the solution space. A branch-and-bound solution approach is combined
with a pattern recognition component, involving non-parametric discrimination
analyses, to select branching variables and directions. Using these methods,
together with network optimization techniques to exploit the underlying network
structure of the problem, we were able to substantially reduce solution times and
improve solution quality. Four versions of the refueling problem were solved
using data supplied by the Tennessee Valley Authority (TVA). Solution times for
the first three versions, using MPSX on an IBM 4381, were half an hour to two
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hours. By contrast, the same problems were easily solved in 1 second to 20
minutes using our NETFORM and a specialized branch-and-bound solution
approach. The fourth version, which involved 172 constraints, 126 discrete
requirements, and 462 continuous variables (arcs) was by far the most difficult.
The original mixed-integer formulation was run for seven hours on an IBM 4381,
again using MPSX, and was then taken off the machine to avoid further
computer run costs. The best (minimum cost) solution obtained had an objective
function value of $136,173,440. With a 30 minute time limit imposed on the
NETFORM procedure, a solution was obtained that was more than $10,000,000
cheaper, with an objective function value of $125,174,727. This application
demonstrates that an innovative modeling/solution method that blends ap-
propriate elements of operations research and artificial intelligent can obtain
solutions to problems that are too complex to be solved optimally (within
practical time limits) by standard approaches.

2.0. Model development

Several assumptions were made about the utility system, following the guide-
lines reported in Kazemersky [15,16]. First, the length of the time periods are
fixed to the average length of a refueling outage. Based on historical refueling
data, the length of each time period was chosen as two months. Second, we
assume that nuclear maintenance occurs during refueling, fossil maintenance
occurs on the capacity which is not producing energy, and there are no forced
outages.

A network model with discrete requirements for the energy scheduling and
refueling problem for a utility system with three nuclear units and two non-nuclear
units is shown in fig. 1. (For a review of network terminology see for example
Glover et al. [6,7], Glover and Klingman [9], Jensen and Barnes [14], and
Kennington and He]gason [18].) The node at the top of the figure, labeled R,
represents refueling. It is connected by an arc to each of a set of nodes labeled P^,
which represents nuclear unit k in time period t. These arcs have lower and
upper bounds rl and n/, shown in parentheses for the arc into node P,^, which
represent the minimum and maximum energy that can be refueled into each unit
during each time period. (The other components of the bound notation, which
represent the discrete requirements, will be discussed later.) The costs on these
arcs, re, shown in rectangles, represent the present value procurement cost of the
fuel batch, expressed as a per unit energy cost. The supply to the refueling node,
indicated by the r in the triangle pointing toward the node, is the sum of all
possible refueling activities over the planning horizon and is non-binding at
optimality.

Each nuclear unit node in the first time period, P^x, has supply a^ which
represents the initial state of the in-core fuel (energy level) at each unit. Likewise,
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Fig. 1. Refueling model.

each nuclear unit in the last time period, node P^^, has a demand b^, shown in
the triangle pointing away from the node, which represents the desired ending
state of the in-core fuel (the "equilibrium" energy level). The nuclear unit nodes
are interconnected by arcs which represent the inventory of nuclear energy from
one time period to the next. These arcs have lower bounds equal to zero and
upper bounds, denoted pu, which represent the maximum energy inventory
allowed (shown for the inventory arc from node i*2i ^̂  node ^22)- The costs on
these arcs, pc, represent the present value of the interest cost applicable to the
uranium fuel in-core, expressed as a per unit energy cost. The nuclear unit nodes
in time period / are each connected by an arc to a node labeled D^ which
represents the utility system customers who have a total energy demand of d,
during time period /. The bounds on these arcs et and eu (shown for the arc out
of node P^^) represent the minimum and maximum energy that each nuclear unit
can produce during each time period. (The other components of the bound
notation, which represent the discrete requirements, will be discussed later.) The
costs on the energy production arcs, etc, are the present value of the operating
and maintenance cost of the nuclear unit (including cost of refueling but not fuel
costs) expressed as a per unit energy cost.

The two nodes labeled S and / near the bottom of fig. 1 represent the
non-nuclear units of the utility system and energy obtained from other utilities.
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The node labeled S represents the non-nuclear energy balance of the utility
system with supply s equal to the sum of all possible non-nuclear energy
production activities over the planning horizon. The non-nuclear units node is
connected by an arc to each customer demand node. The arcs have a lower bound
of zero and an upper bound sUy the maximum amount of energy that the
non-nuclear units can produce during each time period (shown for the arc into
node £>„). The costs, sc, are a weighted combination of all the present value
non-nuclear costs expressed as a per unit energy cost. The node labeled I
represents energy interchange arrangements with other utilities. It has a supply
and arcs with bounds and costs analogous to the non-nuclear unit node. The sink
node at the bottom of fig. 1 balances total supply and total demand for the
network. The optimal solution to the model indicates energy and refueling
requirements for the nuclear and non-nuclear units in each time period and cycle
lengths (refueling dates).

We note that the realism of this portion of the model can be enhanced by
adding multipliers on the arcs to represent the half-life of the uranium being used
and/or transmission line losses, thereby producing a generalized network-related
model. However, since previous models did not include these aspects, and no data
concerning them was available, we restricted our attention to a pure network-re-
lated model.

The discrete requirements of the model derive from the technology of nuclear
energy production. The bound notation [0 or (/, u)] * on the refueling arc into
and demand arc out of each nuclear unit node (shown for node P-^^ in fig. 1)
indicate that both of these arcs cannot have flow simultaneously. That is, a
nuclear unit is prohibited from refueling and producing energy during the same
time period. This type of condition is not part of the standard network frame-
work and may be handled using zero-one variables. More formally, a mixed-in-
teger programming model results by expanding the network formulation to
include constraints of the form

A: = 1,2, 3 ^ = 1,2 n

Rkt^''KA'^-^k,) A: = 1,2, 3 r = l , 2 , . . . , n

where Ef^^ denotes the decision variable corresponding to the energy produced at
nuclear unit k during time period f, R^, denotes the decision variable corre-
sponding to the energy refueled at nuclear unit k during time period r, and

n if nuclear unit k is operating during time period t
*" \o is nuclear unit k is refueling during time period t.

The X^^ variables have zero objective function coefficients since the refueling
costs are reflected in the costs ec and re.
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A typical integer programming approach to solve this problem would be to
relax the integer restriction on the X ,̂ variables. The resulting relaxation is a
linear programming (LP) problem with \6n + 4 constraints and \An variables.
This LP problem contains a large embedded network consisting of 4n + 4
constraints (nodes) and l ln variables (arcs). This embedded network structure
can be exploited using a basis partitioning LP algorithm (Glover and Klingman
[10], Kennington and Helgason [18], and Graves and McBride [12]). For example,
the simplex SON algorithm (Glover and Klingman [10]) has proven to be highly
efficient for this class of LP problems. However, LP codes are numerically less
stable than network codes and also less portable. (Generally, LP codes have a
factor of ten times more lines of code than network flow codes.) To avoid these
limitations and yet still take advantage of the embedded network structure, we
replace the integer programming constraints for the discrete requirements by the
following nonhnear conditions:

Ek,Rki = ̂  • /: = 1 .2 ,3 t = \,2,...,n

if Rk,>^ t h e n rlk,^R,^,^ru^, A: = l , 2 , 3 r = l , 2 , . . . , «

if E^, > 0 t h e n eL, ^ f^, <, eUf, k = \,2,?> t = 1,2,... n.

The relaxation employed in our solution approach is to ignore the constraints
^kt^kt ~ 0 ^"d set r/^, = 0 and el^, = 0. These nonlinear constrains have certain
advantages over the mixed-integer constraints. The nonlinear model does not
introduce any new variables to the problem. The nonlinear relaxation results in
creating smaller subproblems, which are network flow problems. However, the
nonlinear relaxation is weaker than the standard LP relaxation, the one with the
Xf^, variables, and thus our solution method requires a stronger (more intelligent)
search technique.

Whether these advantages can be translated'into practical gains depends on the
ability to develop a procedure to exploit the nonlinear constraints effectively
within the network framework. The next section describes our approach for
accomplishing this.

3.0. Solution strategy

The integration of artificial intelligence and operations research in our ap-
proach is based on the principle of using structure that is known in advance, and
discovering structure that is initially unknown, to produce a strategy capable of
handling the complex combinatorial elements of the problem. The operations
research component of our approach consists of a branch-and-bound strategy
tailored to solve network subproblems efficiently by invoking the lower bounds
rl;^i and et^, and restarting from the old optimal basis. The artificial intelhgence
component consists of a pattern recognition and learning strategy, involving
non-parametric discrimination analysis to determine good rules for choosing
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variables on which to branch. The general concept of such a strategy for solving
integer programming problems, which we refer to as target analysis, has been
described in (Glover [4]).

Our present use of target analysis takes the following form. When the nuclear
refueling NETFORM of section 2 is solved in the relaxed nonlinear form as a
network, the solution violates the discrete requirements whenever E^,Ri^, > 0 for
some k and t. Thus, for each node (branching point) in the branch-and-bound
tree, the binary branching alternatives are R^, = 0 or £^, = 0 for all kt pairs
which are candidates for branching at the node. Let s{j) denote the kt pair
associated with the branching alternative j . (The index j receives a different
range of values for different nodes, and hence identifies both a node and a
candidate pair of branching alternatives at the node.) Select a vector Vj of
parameters and let Fiivj), /eAf = (1,...,m) denote a set of evaluation functions
created to assess the relative attractiveness of the two possibilities for the binary
branch j at a particular node. Our ultimate goal is to determine a composite
evaluation function and a threshold function value which will be used to select
branching variables and directions at each node in the branch-and-bound tree.

Because of the large number of discrete requirements in this application, and
the desire to test the target analysis approach with information easily and quickly
obtainable from the relaxed network solution, we restrict attention to the values
of the two variables Rsi^j) and E^^j-^ to make up the components of the vectors Vj.
To create evaluation functions based on these parameters, it is useful first to
consider ways of characterizing the degree to which a particular discrete require-
ment is violated by a given solution. The following measures will be 0 if the
requirement is satisfied and will be positive otherwise. Hence their magnitude
gives a measure of the degree of violation.

iV) R, Et •

(')\ R 4- F — lJ? — F I

(4)

(5)

The cases where denominators vanish in (4) and (5) are interpreted in the
natural fashion for this context; that is, the ratio a/b is interpreted as infinity if
6 = 0, allowing for the exception 0/0 = 0. (In all cases, the min is 0 whenever one
of the numerators is 0.)

It is also possible to raise selected terms to higher powers to get additional
measures. (In one variation, for example, the measure (2) itself could be squared,
instead of squaring its component terms as in (3). The measure {R^, + E^,)^ —
{R^j - E^,y, however, is equivalent to (1).) For simplicity, we elected to use only
the measures shown.
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A natural branching alternative for a branch-and-bound framework is to
choose one of i?^, and E^, to force to 0 when both are positive. It might be
supposed that the "normal" choice would be to select the smaller of these values
(or, in a broader context, the one that entails a smaller penalty calculation). The
probable validity of such a choice, however, can also depend on the relative
magnitudes of R^, and E^, and on the relationship of these magnitudes to those
associated with other candidate kt pairs.

Specifically, the evaluation functions we selected as potentially relevant for
target analysis consisted of the measures (l)-(5) themselves, together with the
ratios of (1) and (2) to the values i?^, and £^,, and the ratio of (3) to the values
R\, and El,. The ratios provide a natural means for identifying which of Rf^, and
E^, should "more likely" receive a 0 value (in inverse relation to the magnitude of
the ratio), but this indication may be misleading, and hence arises the need to
incorporate these values into a discrimination analysis model. For this purpose, to
differentiate the role of the measures (l)-(5) when not used as numerators for
ratios, we reverse the sign of the measures when R^, < E^,. We also used one
additional evaluation function consisting of {Rf^, — E^,)/(R^, + E/^,).

Note that the ratios based on dividing the measure (1) by R^, and E^, yield
i?jt, and E^, themselves, in reverse order, as evaluation functions. Also, measure
(2) may be seen equivalent to the value 2 nun{R^,, £" ,̂); hence the ratios based
on this value will be 2 and 2 nun[{Ri^,/Ei^,), {E^,/Rk,)l It is important to
differentiate these ratios according to which one results by dividing by R^, and
which one results by dividing by £^,. (Similar remarks apply to the ratios
obtained from measure (3).)

Since the magnitude of the evaluation functions gives a measure of the degree
of violation of the discrete constraints, an example rule to choose a branching
direction for branching alternative J using evaluation function / is to determine a
value bf such that the direction of branching is given by:

^Hj) ^ ^ Otherwise.

Within the branch-and-bound framework we must go beyond the choice of
branching direction, however, and choose a specific branch J as a best candidate
at a node for applying the preceding rule. In particular, a choice suggested by the
rule itself is to pick a branch q such that

where the max is over those J which are candidates for branching at the node.
To complete the foregoing specification, it is necessary to identify a specific

index /, and hence a specific evaluation function Fj(R^^j^, E^^jy), for which the
choice should be applied. Among the possibilities for doing this, it seems
appropriate to allow the chosen function to result by combining the information
from the evaluation functions for the other indexes ieM. In (Glover and McMil-
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Ian [11]), for example, such evaluators were allowed to "vote" on different
alternatives. Another possibility is to create a decision tree that organizes the
Fi{Rjy-f, ^,(;)) functions hierarchically to yield a conditional partitioning of
possibilities. In our present development, to provide a convenient framework for
the learning feature of target analysis, we elected to use discrimination analysis to
generate a function F{R^^J•^, ^sU)) which serves as a "best proxy" for the
candidate functions F^iR^^^j^ ^s{j))> yielding at the same time an associated value
6 as a best proxy for the 6, values, so that a decision rule of the foregoing type
can be applied.

3.1. DISCRIMINATION ANALYSIS FORMULATION

To understand this approach, suppose it is possible to consult an oracle that
provides knowledge of optimal values J?*(j), E*{j) for every R^^j) and f̂ ^ ĵ at
each node. With each branch j we may associate the point Aj = {F^iR^f^j^y E^f^j-,),
E.^jy, F^iR.^jy, £,( , )) , . . . , F^iR.^j^, E,^j^)) in m-space. Considering the set of all
branches at all nodes and their associated points Aj, it then becomes natural to
partition these points into two groups, with index sets RQ and EQ, based on the
^Tijp ^s*j) values; that is.

Within this setting, we seek a rule, based only on knowing the coordinates of
points AJ, for assigning each Aj to the group RQ or EQ which minimizes the
number of points incorrectly assigned.

As we will subsequently demonstrate, however, some points are more im-
portant than others to classify correctly according to their membership in KQ or
EQ. Moreover, it is also more important to assure correct classification of
"strongly assigned" points than it is to assure correct classification of a large
number of points. Motivated by these considerations, we make use of the linear
programming model for discrimination analysis developed in Glover et al. [8] and
Glover [5]. The basis of this approach is to find a hyperplane that separates the
points of RQ and EQ, as nearly as possible, where points can be differentially
penalized for lying on the wrong side of the hyperplane, and differentially
rewarded for lying on the right side, expressing these penalties as a function of
the Li norm ("absolute value" or "city block") distances from the hyperplane.

Adapted to the present context, this model may be expressed as follows. Let J
be the union of RQ and EQ; that is, / is the index set for all points Aj. We seek a
weighting vector x and a scalar 6 in order to:

Minimize Ĵ  hjaj - Y, kj^j (1)
jU jeJ



326 F. Glover et al /A network-related nuclear power model

subject to AjX - Oj •¥ ^j = b\ J'ERQ (2)

'AjX + aj-^j^b\ JEEQ (3)

Li^j- «.) + #^0 Lifij- «y) = 1 (4)

b unrestricted (5)

^.^O jtJ ' (6)

where # S denotes the cardinality of the set 5.
The aj and ^j variables respectively represent "external" and "internal"

deviations which measure how far the points Aj lie outside or inside the
half-spaces intended to contain them. (These half-spaces are AjX ^ b for j in RQ
and AjX > b for j in EQ.) The objective function coefficients hj and kj are
chosen so that hj> kj (discussed in more detail in section 3.3). Equation (4) is a
normalization constraint, whose form is important for the effectiveness of the
model (see, e.g.. Glover [5]).

The solution to the linear problem (1) — (6) yields a vector x and scalar b that
provides the desired "weighted average" function F(R^^j^, Ej(j^) = AjX, and
scalar b, for target analysis. The issue of choosing a branching variable and a
direction of branching is resolved by finding the point Aj that falls most deeply
in one of the two half-spaces defined by the LP solution, and then branching in
the direction R^^j) = 0 if the half-space is associated with RQ and in the direction
^ (̂y) = 0 if the half-space is associated with EQ. Thus, in particular, we choose a
branching alternative q such that

I A^x - b\= max | AjX — b \

where the max is over all j that are candidates for branching at a particular node.
We then choose R^^^^ = 0 or E^^^^ = 0 according to whether A^x ^ 6 or A^x > b.

3.2. EMBEDDING THE DISCRIMINATION MODEL IN TARGET ANALYSIS

The strategy of target analysis replaces the oracle for determining the optimal
Rsij) and E^^jy values in this approach by a series of learning trials. Each of these
trials selects a problem whose structure is representative of the class under
consideration, and solves this problem to optimality. (Since the problems of
interest here are quite large, we selected smaller problems for the learning trials,
so that the solution effort was not overwhelming.) Once an optimal solution is
known, the approach then goes back and re-solves the problem, this time
selecting an optimal branching direction at each node. There is, of course, more
than one way to carry out this process, depending on which variable is selected as
the brandling variable at each step.

Because the sequence of branches chosen in the "re-solution" phase is compat-
ible with an optimal solution, the R*^J^ and E*(^j^ values are known at each node,
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and we can identify the sets RQ and EQ. Upon generating the points Aj from the
information directly available at each node, we may therefore create and solve the
linear program (l)-(6) for discrimination analysis, as previously described. The
resulting half-spaces are then used to select branching variables and directions in
the application of the branch-and-bound solution approach to the larger problem.

It should be observed that data from different nodes can yield different points
AJ associated with the same variable of a given problem. This poses no difficulty,
since every branching alternative encountered in the learning trials is given a
different index y, regardless of whether the same variable is associated with
different branches.

3.3. CHOOSING OBJECTIVE FUNCTION COEFFICIENTS FOR THE DISCRIMINATION
MODEL

The final element required to implement the target analysis procedure is to
choose values for the coefficients hj and kj of the LP discrimination model. Note
that a branch-and-bound procedure can find its way directly to an optimal
solution, under appropriate conditions, without classifying all the Aj points
correctly according to their membership in RQOT E^. In particular, since only one
branch will be chosen at any node, it is necessary only to make sure that ihe point
for this chosen branch is correctly classified. Which branch should this be?

The answer we give is based on the supposition that it is important to select an
influential branch (see, e.g.. Glover [3]). Loosely speaking, we conceive a branch q
to be influential if the alternatives R^^^^ = 0 and E^^^^ = 0 (or the preferred
member of these alternatives) will cause the evaluators Fi{R^^Jy, E^f^j^) to be
appreciably different at the descendants of the current node than they are at the
node itself. Thus, a branch is influential if it has the power to change the
information available for analysis after making a branch step.

This notation is based on the assumption that a change in information content
signals a useful increase in this content-an assumption that is generally true upon
executing a branching step in a branch-and-bound method. Thus, more precisely,
the notion of an influential branch is linked to the expectation of an increase in
exploitable knowledge.

The intuitive basis for this characterization is the following empirical observa-
tion. When an integer programming problem is solved by branch and bound, one
common approach is to use the simplex method to solve the LP relaxation of the
integer problem at each node. A branching option in this approach (not often
used) is to choose a variable that is nonbasic and branch in its zero direction.
This is evidently the "preferred" direction since the variable receives a zero value
in the LP solution.

Such a branching option may be expected to be poor, because taking the
preferred branch direction yields no new information at the next node; that is,
the same LP solution remains optimal. The advantage of obtaining progressively
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more limiting information at deeper levels of the branch-and-bound tree, there-
fore, is sacrificed. Experience confirms expectation, disclosing that such a choice
rule can sometimes require effort approximating that of total enumeration.

A better choice evidently is to branch on a variable whose value is not at, or
extremely close to, an integer value in the LP solution. A quick and dirty rule for
zero-one variables found reasonably good in Klingman et al. [19] is to branch on
a variable whose value is closest to 0.3 or 0.7, choosing the alternative that moves
to the nearest integer. Values closer to 0.5, while potentially associated with more
influential branches, are less effective (in the absence of further information), due
to the increased risk that branching to the nearest integer is an improper choice.
This choice rule is appropriate for problems that are quite large or, in general,
where branching information is expensive to generate.

The issue in the present context, therefore, is to choose values for hj and kj
that reflect the relative influence of branch J. It is reasonable in most applica-
tions to suppose that one or more of the evaluation function values can be used to
compose an influence measure, thereby yielding hj and kj values "automatically."
This turned out to be the case for the nuclear refueling problem, as we show in
the following.

Twelve evaluation functions were developed earlier for each k and t. Although
we apply such functions only to those k and / that involve a violated discrete
condition, this still yields too many evaluation functions to incorporate conveni-
ently into target analysis for problems of the size of this application. We therefore
conducted preliminary experiments with these evaluation functions on three small
prototype problems to identify a good subset of these functions to use on larger
problems. For these preliminary experiments, we chose the coefficients hj and A:
for the discrimination analysis model by setting kj = xmn{R•l^J^, E^^j^^) and set-
ting hj=^Mkj, where M is \ -^ msix{kj)/min{kj) times the larger of the two
ratios #RQ/#EQ and #£"o/#i?o- (By a theorem of Glover [5] this assures
bounded optimality for the discrimination model.) Note the value for kj is
essentially that of measure (3) (divided by 2). The reason for this choice is the
desire to have hj and kj reflect the influence of their associated branch, which by
the previous discussion of influence is likely to be greater as the smaller of R^^j-^
and £"j(̂ j increases (assuming the preferred branch is to drive the smaller value to
0). The use of the squared terms accentuates the relative degree of influence.
Choosing hj = Mkj attaches a penalty to incorrect classifications that is greater
than the reward attached to correct classifications (where penalties and rewards
affect the depth at which points lie outside or inside their associated half-spaces).

The result of the preliminary trials showed that the measures (1) and (5), the
two ratios based on (3), and the function {R^,- Ei^j)/(Rf^, + E^,) were signifi-
cantly the most heavily weighted evaluation functions for discrimination analysis.
Thus, the original twelve evaluation functions were reduced to five for the
purpose of conducting target analysis on more moderate-sized problems.

As we undertook to apply target analysis for generating the vector x and scalar
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6, we still, however, selected problems smaller than those we ultimately intended
to solve, in order to keep calculations manageable. In this stage we again
examined three test problems. We changed the values of the hj and kj coeffi-
cients slightly from our preliminary tests, however, by multiplying the original /c
values hy the factor 1 - min[ \{R,,j^/(R,^j^ + E.^j^)) -Q3\, \{E,^j,/(R,^j, + E,,j^))

j j j j , j , j ^

— 0.3[], and then determining the hj values in relation to the kj values as
previously indicated. The effect of this multiplication is to give greater emphasis
to those influential branches such that E^^j^ and R^^j^ are not equal, with a bias
toward those where the indicated ratio is closer to 0.3 (in contrast to 0.5 when
R^fj^ = E^(j^). The reason for this is the greater uncertainty about a proper
branching direction as R^fjj and E^fj^ become more nearly equal-something to be
avoided by an intelligent branching rule. (Thus the rationale accords with the rule
described earlier for branching on values close to 0.3 or 0.7 in zero-one problems.)

3.4. COMPUTATIONAL RESULTS

Based on solving each of the three test problems to optimality, and then
"re-solving" as previously indicated (selecting an optimal branch at each step),
we produced the points Aj for discrimination analysis. During the re-solution
phase we selected those optimal branches with the ]argest kj values, breaking ties
arbitrarily. The discrimination LP model then produced the half-spaces for
differentiating membership in the groups RQ and EQ. These learning and dis-
crimination phases were exploited by using the resulting half-spaces to select
branching variables and branching directions, in the application of branch-and-
bound to the larger practical problems not previously examined. Finally, the
algorithm employed network optimization techniques to exploit the underlying
network structure of the problem.

Outcomes were extremely promising. Table 1 presents solution statistics for
four versions of a test problem developed by the TVA. The sample utility system
consists of five units: three 1000 MWe nuclear units, one 1000 MWe unit
representing the non-nuclear balance of the system, and one 200 MWe unit

Table 1
Solution statistics on an IBM 4381

Number
of time
periods

10
20
30
42

Number
of
nodes

44
84

124
172

Number
of
arcs

110
220
330
462

Number of
discrete
requirements

30
60
90

126

Solution
time

1 sec.
7 min.

20 min.
30 min.

Number
of sub-
problems

20
6056
8164
9129

Best sol.
at sub-

5
2743
2852
257

Remaining
levels
problem No

0
0
6
7 •

• Solution value after 30 minutes was $125,174,727; Solution value of MPSX after 7 hours was
$136,173,440.



330 F. Glover et al. / A network-related nuclear power model

representing interchange arrangements with other utilities. The planning horizon
is partitioned into two-month-long time periods. The four versions of the problem
correspond to four different planning horizons, having 10, 20, 30, and 42 time
periods. In addition to the problem size and solution time, table 1 lists the
number of subproblems solved in the branch-and-bound solution approach and.
the subproblem at which the best solution was found. It also lists the number of
levels remaining unexplored in the branch-and-bound tree when the solution
procedure stopped prior to verifying optimaiity due to imposed time limits. It is
very encouraging that while the network relaxation is weaker than the standard
LP relaxation (using the X ,̂ variables), the target analysis search procedure was
able to find good solutions very early.

Solution times for the first three versions using Kazemersky*s [17] mixed-in-
teger programming model and MPSX on an 4381 were half an hour to two hours.
The fourth version was run for seven hours using MPSX without reaching
optimality. The best solution obtained had an objective function value of
$136,173,440. With a 30-minute time limit imposed on our discrete network
solution procedure, a solution was obtained that was more than $10,000,000
cheaper, with an objective function value of $125,174,727.

5.0. Conclusions and directions for future research

The results of our study show that the use of a NETFORM model for the
nuclear refueling problem, solved by means of a branch-and-bound procedure
employing target analysis, was highly successful by comparison to previous
efforts to solve this problem. While these results suggest the merit of our
approach, it is appropriate to point out possible areas for refinement.

The structure of the overall procedure appears subject to improvement in
several ways: 1) by including penalty calculations as parameters; 2) by identifying
circumstances under which different, additional, hyperplanes should be generated
(for example, generating different hyperplanes at different depths of the branch-
and-bound tree or for different special subsets of variables); 3) by using sequen-
tially generated hyperplanes in a conditional manner (for example, choosing one
of the sets RQ or EQ at each step and generating a half-space that contains all
points of this set that are not yet correctly classified, noting that all points in the
opposite half-space will thus be classified correctly); 4) by a more thorough
analysis of which branches should be selected in the "re-solution" phase of target
analyses; 5) by developing more refined rules for creating the hj and kj
coefficients; and 6) by developing rules, as in Glover [3], allowing earlier branches
to be re-adjudicated at later states of a branch-and-bound tree, and then deleted
or reversed.

The ability of our approach to produce highly favorable outcomes lends
encouraging support to this type of framework for blending the operations
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research and artificial intelligence perspectives, and motivates additional research
into the exploration of potential refinements.
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