
MANAGEMENT SCIENCE
Vol. 24, No. 12, August 1978

Printed in U.SA.

GENERALIZED NETWORKS: A FUNDAMENTAL
COMPUTER-BASED PLANNING TOOL*

F. GLOVER,t J. HULTZ,J D. KLINGMAN§ AND J. STUTZ§

This paper documents the recent emergence of generalized networks as a fundamental
computer-based planning tool and demonstrates the power of the associated modeling and
solution techniques when used together to solve real-world problems.

The first sections of the paper give a non-technical account of how generalized networks
are used to model a diversity of significant practical problems. To begin, we discuss the model
structure of a generalized network (GN) and provide a brief survey of applications which
have been modeled as GN problems. Next we explain a somewhat newer modeling technique
in which generalized networks form a major, but not the only, component of the model.

The later sections give a technical exposition of the design and analysis of computer
solution techniques for large-scale GN problems. They contain a study of GN solution
strategies within the framework of specializations of the primal simplex method. We identify
an efficient solution procedure derived from an integrated system of start, pivot, and
degeneracy rules. The resulting computer code is shown, on large problems, to be at least 50
times more efficient than the LP system, APEX III.
(NETWORKS; FLOWS; PROGRAMMING COMPUTERS)

1.0 Introduction

A generalized network (GN) problem is simply a type of LP problem and can thus be solved using any
standard LP solution technique. However, none of the current LP systems is capable of fully exploiting the
structure of generalized network problems. With the recent development of GN computer codes, Bradley's
1975 prediction that GN problems "in the near future . . . could come to be regarded as a fundamental
model" [10] is coming true. Modelers have begun to devote attention to deterrnining if an LP model is a
GN problem and, more importantly, to devising formulations in which generalized networks play the role
of critical components.

There are two powerful incentives for adopting a GN formulation whenever possible. The major
advantage is the ability to solve GN problems—and by extension a variety of problems with GN
components—with a remarkable degree of efficiency. The second motivation for using GN models is that
they can be conceptualized graphically as well as algebraically. The pictorial presentation of a generalized
network is a useful device for communicating mathematical models to nonscientific users and for teaching
others how to formulate problems.

The purpose of this paper is to document the recent emergence of generalized networks as a fundamental
computer-based planning tool and to demonstrate the power of the associated modeling and solution
technologies when used in concert to solve real-world applications. The paper contains a nontechnical
account of how generalized networks are used to model a diversity of significant practical problems. Using
a graphical representation, we first define the model structure of a generalized network. Next we provide a
brief survey of applications which have been modeled as GN problems. We then explain somewhat newer
modeling techniques in which generalized networks form a major, but not the only, component of the
model. This modeling approach yields a formulation that enables one to solve the problem as a sequence of
GN problems resulting in dramatic gains in efficiency over alternative approaches. To provide an
understanding of this approach and the role of generalized networks within it, we describe a real-world
problem which has been solved by its use.

The paper also gives a technical exposition of the design and analysis of computer solution techniques for
large-scale GN problems. It contains an indepth computational study of GN solution strategies within the
framework of specializations of the primal simplex method. Here we identify an efficient solution procedure
derived from an integrated system of start, pivot, and degeneracy rules. The resulting method is shown, on
large problems, to be at least 50 times more efficient than the sophisticated state-of-the-art LP system,
APEX-Iir. In others words, the method can solve a problem every week for a year and consume the same
amount of computer time required to solve the problem only once with the LP system. The memory
requirements of the method, as well as the solution times, are sufficiently small to warrant its use as a
computer-based planning tool not only in a batch processing environment, but also in an interactive setting.

* Accepted by Michael Held; received April 14, 1977. This paper has been with the authors 4 months for
2 revisions.

^ University of Colorado.
t Analysis, Research, and Computation, Inc., Austin, Texas.
* University of Texas.

1209
Copyright © 1978, The Institute of Management Sciences

1210 F. GLOVER, J. HULTZ, D. KLINGMAN ANO J. STUtZ

2.0 Problem Definition

The generalized network problem represents a large class of LP problems. This
class includes any LP problem whose coefficient matrix, ignoring simple upper bound
constraints, contains at most two nonzero entries in each column. A large portion of
the literature on LP problems has been devoted to the speciaL cases of the GN
problem in which the nonzero elements of a column consist of a 1 and a — 1 (either
initially or by linear transformation). This condition identifies the problem as a pure
network, whose instances include shortest path, maximum flow, assignment, trans-
portation, and transshipment problems. The GN problem, by allowing other nonzero
doubletons (and singletons) in a column, is actually the broadest classification of
linear network related problems. Practical settings in which GN problems arise
include problems of resource allocation, production, distribution, scheduhng, capital
budgeting, and so on.

A generalized network, like a pure network, is best represented as a directed graph.
Under the assumed existence of a finite optimum, it is possible to transform the
coefficient matrix (by scaling or by complementing a variable relative to its upper
bound), so that if a column has two nonzero entries, at least one of these is - 1 . In
this way, a directed arc is "formed" that leads from the node associated with the - 1
to the node associated with the other nonzero entry. If both entries are —1, the arc
may be directed either way. Columns with single nonzero entries give rise to arcs
incident on only one node.

There is an important distinction between arcs in pure network problems and arcs
in GN problems. In generalized networks, each arc's multiplier is the nonzero
coefficient associated with the node at the head of the arc (i.e., the node to which the
arc is directed). In pure networks, the multipHer is always -t-1.

Consider the following GN problem:

Subject to:

1X,2

2x,2

Mimimize 1

- 1^13

-

l/2x,3 +

X,2 +

1X23

1X23

5x,3 + 3X23 +

- 1 X 2 4

l/5x..

1X24 4X32

+ 1/3X32
- 1 X 3 2

- 9 X 3 4

- 1-̂ 34

+ 3x-,A

= - 5

= 0

= 0

= 10

0 < x,2 < 3, 0 < Xi3 < 4, 0 < X23 < 6,

The network associated with this problem is shown in Figure I. As with pure network
problems, each row of the coefficient matrix is associated with a node and each
column with an arc. In other words, a node corresponds to a problem equation and an

FIGURE 1. Generalized Network.

GENERALIZED NETWORKS 1211

arc corresponds to a problem variable. The arc is directed from the node associated
with the - 1 entry toward the node associated with the other non-zero entry. Likewise,
each arc has a cost, a lower bound, and an upper bound. In Figure 1 the cost is shown
within the square and the lower bound and upper bound respectively are shown in
parentheses. The nonzero multiplier associated with each arc is shown in Figure 1
within a triangle on the arc. The constant terms (right hand sides) of the problem
equations identify supply and demand requirements attached to the corresponding
nodes. A negative constant term identifies a supply (which by convention equals the
absolute value of this term), a positive constant term identifies a demand, and a 0
constant term identifies a "conseryatiori cptidition" in which the amount of flow
entering the node must be exactly matched by the amount of flow leaving the node.

The flow passing across an arc in a generalized network problem is acted upon by
the nonzero multiplier. It indicates that the flow entering the arc is multiplied by the
value of the multiplier as the flow leaves the arc. Thus, the amount starting out on an
arc will not necessarily be the amount arriving at the opposite end. For example, if 2
units start on the arc from node 1 to node 2 in Figure 1, 4 units will arrive at node 2
since the multiplier is 2. Likewise, 10 units starting on the arc from node 2 to node 4
will result in —2 units arriving at node 4 since the multiplier in this case is - 1/5. It
should be noted that the cost, lower bound, and upper bound of each arc apply only
to the units of flow entering that arc.

Another important feature of GN problems is that total supply may not be the
same as total demand. In pure network problems, total supply always equals total
demand. However, the effect of multipliers is such that total supply and total demand
may, in fact, be entirely different. This can result in odd structural consequences, such
as absorbing and generating cycles. (See [3], [29], [30].)

3.0 Applications of Generalized Networks

Generalized networks can be used to tnodel numerous problems for which there are
no pure network equivalents. There are essentially two ways in which the multipliers
on the arcs of generahzed networks can function. They can act simply to modify the
amount of flow of a particular good or they can transform the flow from one type of
good to another. In the former case generalized networks can be used to represent
situations involving evaporation, seepage, deterioration, breeding, interest rates, sew-
age treatment, purification processes of varying efficiencies, machine efficiencies and
structural strength design. In the latter capacity, generalized networks can model
processes of manufacturing, production, conversions of fuel to energy, blending, crew
scheduling, allocating manpower to job requirements, and currency exchanges. The
following applications lend insight into the possible uses of generalized networks.

A complete water distribution system with losses has been modeled by Bhaumik [7]
as a generalized network problem. This model was primarily concerned with the
movement of water through canals to various reservoirs. However, the model also had
to consider the retention of water over several time periods. The multipliers in this
case represented the loss due to both evaporation and seepage.

Turner and Gilliam [16] have proposed a file reduction model which has the form
of a generalized transportation model (a special type of GN) with a single extra
constraint. This model was designed to facilitate the reduction of extremely large
microdata files to smaller, statistically representative files. The objective, in this case,
was to minimize the amount of information lost in the reduction process. The arcs
represented paths from the original records to the reduced records. A nonzero flow on
an arc implied that the originating record was to be represented by the terminal
record. The multipliers on the arcs were used to insure that the reduced file was truly
representative of all of the original records.

1212 F. GLOVER, J. HULTZ, D. KLINGMAN AND J. STUTZ

Kim [35] has utilized generalized networks to represent copper refining processes.
The electrolytic refining procedure, in this case, was modeled by a large d-c electrical
network. The arcs were current paths with the multipliers representing the appropriate
resistances. In this way, Kim analyzed the effect of short circuits in the refining
process.

Charnes and Cooper [11] have identified applications of generalized networks for
both plastic-limit analysis and warehouse funds-flow models. In plastic-limit analysis,
the network was generated by forming the equations for horizontal and veriical
equihbrium and by employing a coupling technique. The warehouse funds-flow model
was actually a multi-time period piodel. The arcs were used to represent sales,
production, and the inventory holding of both products and cash. The multipliers
were introduced to facihtate the conversions between cash and products

A cash management problem has been modeled as a generalized network by Crum
[12]. This model for a multi-national firm incorporated transfer pricing, receivables
and payables, collections, dividend payments, interest payments, royalties, and
management fees. The arcs represented possible cash flow patterns and the multipliers
represented costs, savings, liquidity changes, and exchange rates.

Other applications of generalized networks include machine loading problems [11],
[13], [43], blending problems [11], [43], the caterer problem [13], [43], and scheduling
problems dealing with production and distribution, crew scheduling, aircraft schedul-
ing, and manpower training [11], [13], [43].

4.0 Integer Generalized Networks

The uses of arc multipHers are not limited to the examples just discussed. In fact,
upon adding the requirement of discreteness, which forces the flows on particular arcs
to occur in integer quantities, the GN problem is capable of modeling an unexpected
diversity of problems [11, Chapter 17]. For example, introducing discreteness into the
GN model produces a framework for problems such as scheduling variable length
television commercials into time slots, assigning jobs to computers in computer
networks, scheduling payments on accounts where contractual agreements specify
"lump sum" payments, and designing communication networks with capacity con-
straints. While these are "direct" applications, the use of special modeling principles
enables even more complex applications to be modeled and solved as integer GN
problems. In fact, this approach makes it possible to model any 0-1 LP problem as an
integer GN problem [23], [27]. These procedures extend quite naturally to accomodate
mixed integer 0-1 LP problems where the continuous part of the problem is a
transportation, transshipment or generalized network problem itself. Reference [42]
shows how contemporary financial capital allocation problems can be modeled as
integer GN problems. Many other important real-world applications have a similar
"mixed" structure, including a variety of energy models, plant location models, and
physical distribution models. The remainder of this section briefly describes the basic
principles of this approach and discusses a practical appHcation which has profited by
its use.

Figure 2 illustrates a useful modeling devise that finds application in a variety of
settings. The costs, bounds, and multipliers are represented in the same fashion as
earlier. In addition, the asterisk on the arc from node 0 to node A indicates that its
flow must be an integer amount. Consequently, in view of the upper and lowe:r
bounds on this arc, the only acceptable flow values are exactly 0 and 1, and the
multiplier thus ensures that either 0 or 3 units of flow are transmitted to node A.
Further, the only possible way to distribute 3 units of flow into node A is to send
exactly one unit to each of the nodes 1, 2, and 3 since each of the three arcs leaving A
has an upper bound of 1. Thus, in sum, the following effect has been achieved: when

GENERALIZED NETWORKS 1213

the flow on the arc from node 0 to node A js 0, the flow on each of the three arcs out
of node A is 0; when the flow on the arc from node 0 to A is 1, the flow on each of
the three arcs out of node A is 1.

3

FIGURE 2. Generalized Network with Integer Flow Restrictions.

It should be noted that multipliers may also be attached to the arcs leaving node A,
so that their flows may be further transformed. For example, the flow on the arc from
node 0 to node A can represent an investment decision (invest if flow = 1, do not
invest if flow = 0), and the flows on the arcs out of A can represent components of the
investment (e.g., particular stocks in a portfolio, tracts of land in a real estate venture,
items of equipment in a manufacturing operation, etc.). Multipliers on the latter arcs
would then represent the number of items of each of these investment components
that are obtained by selecting the main investment. (For example, a particular
equipment investment may be composed of six machines of type 1, eight machines of
type 2, and so forth.) The combination of arc multipliers and the 0-1 integer
restriction gives rise to what is called an integer generalized network or a 0-1
generalized network. This modeling tool has a variety of important uses, as dem-
onstrated more concretely by the following real-world application.

4.1 Air Force Course Scheduling

The Air Force requires Undergraduate Flight Training (UFT) graduates to take
advanced flight training before their first operational assignment. In addition, UFT
graduates must take from one to four survival training courses. Since the men come
from different backgrounds, a different course schedule is required for each.
Furthermore, both the flight and the survival training courses are offered only at
certain times and at various locations around the country. They are subject to
enrollment limits and have prerequisites. A set of feasible course schedules must be
identified for each UFT graduate and given a "cost rating." Feasibility and cost
considerations depend on factors such as attendance requirements at Combat Crew
Training courses, various modes of transporting the students to the course locations,
the number of dead days in the pipeline, the opportunity for the UFT graduates to
take leave as desired, etc.

The objective is to select a particular course schedule for each UFT graduate so
that the complete set of schedules selected will satisfy all class enrollment limits and
result in the smallest total cost. To solve this problem, the personnel manager in the
Training Pipeline Management Division previously assigned each graduate to a
feasible schedule by hand, trying to assure that all enrollment limits were satisfied.
Clearly, this was a difficult and time-consuming task to do by hand; further, the total
cost of training these men was probably far from optimal when the assignments were
made manually.

In search of a better approach, the Air Force developed an integer programming
formulation for this problem. However, the IP formulation turned out to be almost
totally resistant to solution. Consequently, we reformulated this integer programming
problem as a 0-1 GN problem which is shown in Figure 3.

1214 F. GLOVER, J. HULTZ, D. KLINGMAN AND J. STUTZ

The elements of this diagram may be explained as follows. The node (@ represents
the ith man and has a supply of exactly 1. Each man node is connected by arcs to its
set of man/schedule nodes. These connecting man/schedule arcs have a multipher a^
equal to the number of classes in the schedule and a cost ĉ equal to the cost of
assigning man / to his yth schedule. The asterisk again indicates that flow must be
integer-valued.

The arcs emanating from a man/schedule node in Figure 3 lead to the individual
classes making up the schedule. Each of these arcs has an upper bound of one. Thus,
if a particular schedule is "selected," then every class in the schedule is also
automatically selected. The objective is to pick a schedule for each man that will
minimize the value of the assignments on the overall program, subject to the upper
and lower attendance limits for each class, expressed as bounds on the arcs from class
nodes to the sink node of Figure 3. All arc costs, except for those attached to the
man/schedule arcs, are thus equal to 0.

The UFT problem typically involves 120 men, 200 classes, and 460 schedules,
resulting in a 0-1 LP formulation with 520 constraints and 460 0-1 variables. The 0-1
GN formulation involves the same number of 0-1 variables, and introduces an
additional 2,200 continuous variables (arcs) and 780 nodes. Viewed from an LP
problem context, this might seem to represent a fair increase in size. However, it

Man/Schedule
Nodes

Class
Nodes

FIGURE 3. UFT Formulation.

GENERALIZED NETWORKS 1215

actually represents a relatively small GN problem. This 0-1 GN problem was solved
using a specialized branch and bourid procedure with GN subproblems. The optimal
solution was often found and verified after only 30 seconds and in some cases
required a total solution time of only 10 seconds on a CDC 6600, The problem was
thus transformed frpni one that had been extremely difficult to solve as an integer
program to one that was solved easily as a integer (jN problem.

5.0 Motivations for Using GN models

The two important advantages to adopting; a GN formulation where appropriate
have been outlined. Unlike LP problems, a GN can be represented in graph form. The
ability to represent a generalized network graphically as well as algebraically facih-
tates the modehng procedure and is a useful device for communicating mathematical
problems to nonscientific users. The major incentive for using GN models is the
ability to solve these problems—and a variety of additional problems with GN
components—with a remarkable degree of efficiency.

The following sections of the paper present an abridged computational analysis of
algorithmic rules and computer implementation procedures for GN problems. The
unalwidged version [17] may be obtained by writing the authors. Computational
studies of pure network solution procedures have done niuch to advance the state-of-
the-art. Excellent testing has been performed on computer codes for transportation
problems [18], [20], [28], [36], [39], [43] and for transshipment problems [1], [4], [5],
[10], [19], [26], [33], [37], [41]. These studies have provided critical insights into the best
methods for solving such problems as well as providing benchmark data for future
solution procedures.

To date there have been no in-depth studies concerning the much broader class of
GN problems, although computer codes do exist for solving such problems. Code
development has been reported by Eisemann [14], Maurras [40], Glover, Klingman,
and Stutz [25], Bhaumik and Jensen [8], Langley [38], and Balachandran [2], among
others. Most of these papers report findings for only certain classes of GN problems
and all of them are limited in the scope of the computational analysis. Thus, an
important body of empirical research has heretofore been lacking in the network
literature.

The code NETG reported by Glover, Klingman, and Stutz [25] was selected to form
the basis for the computational testing of this study. This code is an implementation
of the extended augmented predecessor index (EAPI) procedure [18, 24], and embo-
dies many of the latest advances in solution methodology for generalized network
problems.

In any computer implementation, there are numerous steps that can be performed
in alternative ways. Experience from previous studies of pure network problems has
shown that the determination of an effective set of decision rules to handle such
alternatives can have an enormous impact on the efficiency of the implemented
solution method. Consequently, one of our primary objectives in this study was to
investigate decision rules for the GN problem and establish their relative merits. We
determined the best rules and integrated them to produce a code which has been
tested against the highly efficient linear programming system, APEX-III. This testing
indicates that the streamlined version of NETG solves large-scale GN problems 50
times faster than APEX-III.

6.0 NETG Data Structures

Since a generalized network problem is simply a type of LP problem, it can be
solved using any standard LP solution technique. Improvements in inversion and

1216 F. GLOVER, J. HULTZ, D. KLINGMAN AND J. STUTZ

reinversion processes, data compactification, and pivot selection strategies have pro-
vided dramatic increases in the efficiency of primal simplex computer codes in recent
years. The structure of a generalized network problem could be detected by a primal
simplex LP code; this information could then be used to reduce storage requirements
and to simplify operations. Further, the inherent generalized upper bounding (GUB)
constraints in GN problems could be exploited by those XP codes which have a GUB
feature. However, none of the current LP systems is capable of fully exploiting the
structure of generalized network problems.

One of the conspicuously exploitable features of generalized network problems is
the sparsity of the coefficient matrix (at most two non-zero entries per column), and
current LP codes are of course designed to take advantage of sparsity to store data
economically. When the problem is transformed to graph form, storage may be
reduced even further. By the use of simple ordered lists to capture the graph structure,
NETG is designed to store only the head node identifier, the cost coefficient, the
nonzero multiplier, and the upper bound for each column of the coefficient matrix. In
this way, problem data can often be resident in "fast access" memory for extremely
large problems.

Bases for generahzed network problems have a special structure. With possible
reordering of the rows and columns, the basis matrix forms a block diagonal matrix.
Each of the blocks is either triangular or near-triangular and can be represented as a
quasi-tree (a tree with an additional arc). Johnson [31], [32] originally proposed a
linked list procedure for storing simple trees and suggested its use for the more
complex quasi-trees. The EAPI method developed by Glover, Klingman, and Stutz
[24] provides effective labeling procedures for restructuring (updating) quasi-trees by
reference to such hsts, and is used extensively in the updating routines of NETG.

7.0 Computational Evaluation of Solution Strategies

The computer code NETG is coded entirely in standard FORTRAN IV. We
avoided the use of machine dependent operations in ordet to ease the transistion to
various computers. The program was initially coded, debugged, and tested, using the
RUN compiler on a CDC 6600 computer with a maxitnum main memory allocation
of 130,000 words. The complete capacitated algorithm occupied 8A'' -f 4^ -I- 8500
words of central memory, where A'̂ is the number, of nodes and A is the number of
arcs in the specific problem being solved.

Since most of the testing performed would be of a comparative nature, it was
desirable to obtain a set of problems that met certain specifications and that could be
made available on a repeated basis. For this reason, a generahzed network problem
generator (NETGENG) was developed. This code was a logical extension of the
NETG EN [37] problem generator for pure network problems. All parameters in
NETGEN were retained with the added feature that the user can specify a range of
values from which the arc multipher values are chosen. The problems were specifically
chosen so that the effects of problem structure on solution time could be noted. The
problems varied in size from 200 nodes and 1500 arcs up to 1000 nodes and 7000 arcs.
Complete problem specifications and test results can be found in [17].

Earlier research with pure network problems [19], [20], [33] has established that
certain factors play a critical role in determining solution speed. These are: start
procedures, pivot selection techniques, degeneracy, tolerance levels, Big-M value, and
pivot tie-breaking rules. The computational testing for GN problems involved varying
these factors within NETG, solving generated test problems, and comparing solution
times and pivots performed.

The testing was performed on a CDC 6600 computer located at the University of
Texas at Austin. In each of the comparative tests, an attempt was made to execute the

GENERALIZED NETWORKS 1217

codes involved during comparable time periods. The codes were timed by a clock
routine supplied by CDC, which is generally accurate to two decimal places.

7.1 Start Procedures

The first phase of testing involved a comparison of three different start procedures.
All of the starts tested were based on techniques that have proved effective for pure
network problems. The first of these was the artificial start procedure. This procedure
attached an artificial arc to every node in the problem. The artificial arcs were then
assigned extremely large (Big-M) cost coefficients.

The second method tested was the sequential source minimum (SSM) procedure.
This method made a specified number of passes, each time sequentially examining
every node in the problem. If the node had an associated supply, flow was assigned to
the least cost arc leading from this node to a node with positive demand (or to a node
with zero demand if no positive demand node existed). The flow was set equal to the
minimum of the supply, the upper bound on the arc, or the demand (if nonzero). If
the flow on an arc was set equal to the supply or the demand, the associated node was
eliminated from further consideration. If the process was terminated before supply
and demand were exhausted, then artificial arcs were appended. For the purposes of
testing, the number of passes was set to 1, 2, 3, 5, and exhaustive.

The exhaustive node supply procedure was the last start method tested. This
method was similar to the sequential source minimum in the way it assigned flow to
arcs. However, the procedure continued to assign flow out of a particular node until
the supply at that node was exhausted or until no further arcs existed. At thait point,
the next node with supply was considered. Upon completion, remaining supply and
demand were met by appending artificial arcs.

Each of the start methods described above was tested using two distinct pivot
selection criteria. These were the node first negative and the node most negative
criteria. Both methods were based on examining the nonbasic arcs leading out of a
given node. The node first negative method selected the first encountered pivot
eligible arc for the basis exchange. The node most negative method, on the other
hand, selected the best pivot eligible arc (in terms of the magnitude of the updated
cost coefficient) from the arcs out of the node. All other code parameters were held
constant in all of the start procedure tests. Regardless of pivot criteria, the exhaustive
pass SSM procedure proved to be the best start method in terms of resulting total
solution time. It provided a reasonable trade-off betwee;n the time spent selecting an
initial basis and the time recovered from using a reduced number of pivots. In some
cases the exhaustive pass SSM method reduced total pivots by as much as 61% and
total solution time by as much as 55% over the artificial start procedure.

7.2 Pivot Selection Criteria

It was noted during start procedure testing that the node most negative pivot
strategy strictly dominated the node first negative strategy. Selecting the "best" arc
out of a single node reduced total solution time by as much as 48%. For this reason
we conducted additional testing to try to find the best pivot selection criteria.

Past experience has shown that pivot selection methods involving a candidate list
can greatly decrease solution time. An S-R candidate hst procedure employs an array
of length R. The list contains the pointers to pivot ehgible arcs selected by using the
node most negative procedure R successive times. After each pivot, the best arc that is
still pivot eligible in the list is selected to enter the basis. If there are no eligible arcs
on the hst or if the list has been used S times, the list is refilled by calling the node
most negative procedure R more times. A number of variations of this method were
tested. Each involved differing initial values of S and R or differing methods for
dynamically adjusting these values.

1218 E. GLOVER, J. HULTZ, D. KLINGMAN AND J. STUTZ

Testing showed that pivot selection involving a candidate list was far superior. An
initial list size of approximately 5-10 was the best. In addition, if the candidate list
could not be totally filled (i.e., k candidates were foiand, where k < R) then setting
R = k and S = ^k proved to be the most effective dynamic reduction method.

7.3 Other Procedures Tested

The initial version of NETG had no check routines for identifying a degenerate
pivot during the calculation of a basis representation. Consequently, in the presence
of a degenerate pivot, the method computed unnecessary representation components
and modified flows on the basis exchange cycle by a zero amount. NETG was then
modified to exploit degenerate pivots, skipping the flow update procedures whenever
possible. This modification reduced the total solution time by up to 25%.

Tolerance levels define ranges within which values are assumed to be zero. In order
to examine the effect of tolerance values, values of 0.000001, 0.01, 0.5, and 1.0 were
tested. Varying the tolerance levels effects pivot eligible arcs and this had extreinely
interesting effects upon solution times. The best strategy was to select a moderate
tolerance value of 0.01. <

The final parameter value tested was the Big-M value. (NETG did not employ a
Phase I-Phase II procedure.) Testing indicated the Big-M should be set as small as
possible while still insuring feasibility; e.g., in one case, the total solution time was
reduced by over 42% simply by changing the Big-M value from 10000 to 150.

The last decision rule tested was one for resolving ties in the test for a minimum
ratio. NETG normally selects the first encountered minimum ratio. An alternative
rule for breaking pivot ties was tested that selected a minimum ratio with the largest
denominator. In the majority of cases, this rule reduced the total number of pivots but
not solution time.

8.0 Code Comparisons

In order to assess the efficiency of the solution procedure we compared NETG, enhanced with the newly
determined decision rules, with the linear programming computer code APEX-III.

APEX-III is maintained by CDC and is operational on all CDC 6600 series and CYBER-70 series
computers. The purpose of this test was to determine the advantages that specialized procedures have over
standard LP approaches.

TABLE I

NETG vs. APEX-III

PROBLEM

1
2
3
4
5
6
7

NUMBER
OF NODES

100
100
100
250
250
500

1000

NUMBER
OF ARCS

1000
1000
1000
4000
4000
5000
6000:

NETG

SBU's^

7.51
7.29
9.70

16.65
14.74
22.55 ,
50.22

Cost"

$1.35
$1.31
$1.75
$3.00
$2.65
$4.06
$9.04

APEX-III

SBU's

62.65
80.93
94.72

453.02
742.61

1044.34
1633.64

Cost

$ 11.28
$ 14.57
$ 17.05
$ 81.54
$133.67
$187.98'=
$294.06"^

^ CYBER-74 System Billing Unit.
'' Computer at $0.18 per SBU.
" Stopped after 10,000 iterations.

Objective Function Value = 25,337,282.
Optimal Objective Function Value = 3,354,927.

* Stopped after 10,000 iterations.
Objective Function Value = 1,340,958,349.
Optimal Objective Function Value = 3,964,490.

GENERALIZED NETWORKS 1219

The two codes were tested on seven problems generated by NETGENG. These problems ranged in size
from a 50 origin by 50 destination generalized transpoi'tation problem to a 1000 node generalized
transshipment problem.

The comparison between NETG and APEX-III was performed on a CDC CYBER-74 computer,
compiling NETG with the CDC FTN compiler. The results are documented in Table I. The basis of
comparison for these tests was a quantity called a System Billing Unit (SBU). Each procedure incurs SBU's
based on the amount of CPU second used, I/O operations performed, and central memory used. In this
way, SBU's may be used to compute the total cost for a job. Cost figures have been included, based on the
lowest CDC price per SBU, $0.18.

The results were quite remarkable, especially when the dollar charges were compared. NETG was in
some cases more than 50 times more efficient than APEX-III, In fact, problems 6 and 7 had to be
prematurely terminated on APEX-III after 10,000 iterations due to the exorbitant processing costs
involved. Yet NETG solved both, of these problems in fewer SBU's than APEX-III required to solve the
smallest of the problems tested.'

' The research was partly supported by ONR Contract N00014-76-C-0383 with Decision Analysis and
Research. Institute and by Project NR047-021, ONR Contracts N00014-75-C-0616 and N00014-75-C-0569
with the Center for Cybernetic Studies, The University of Texas.

We are especially grateful to Michael Held, the Associate Editor, and the referees for their many helpful
and informative suggestions for improving the clarity and readability of this paper.

References
1. AASHTIANI, H . AND MAGNANTI, T., "Implementing Primal-Dual Network Flow Algorithms," Working

Paper OR 055-76, Massachusetts Institute of Technology, 1976.
2. BALACHANDRAN, V., "An Integer Generalized Transportation Model for Optimal Job Assignment in

Computer Networks," Operations Res., Vol. 24, No. 4 (1976), pp. 742-759.
3. BALAS, E. AND IVANESCU (HAMMER), P., "On the Generalized Transportation Problem," Management

Sci. Vol. 1 (1964), pp. 188-202.
4. BARR, R., GLOVER, F . AND KLINGMAN, D., "An Improved Version of the Out-of-Kilter Method and a

Comparative Study of Computer Codes," Math. Programming, Vol. 7 No. 1 (1974), pp. 60-87.
5. , — AND , "Enhancements of Spanning Tree Labeling Procedures for Network

Optimization," Research Report CCS 262, Center for Cybernetic Studies, University of Texas at
• Austin, 1976.

6- > — AND , "The Alternating Basis Algorithm for Assignment Problems," Math.
Programming, Vol. 13 (1977), pp. 1-13.

7. BHAUMIK, G., Optimum Operating Policies of a Water Distribution System with Losses, Unpublished
Dissertation, University of Texas at Austin, August, 1973.

8. ^ M̂D JENSEN, P., "A Computationally Efficient Algorithm for the Network with Gains
Problem," Working Paper, Department of Mechanical Engineering, University of Texas at Austin,
1974.

9. BRADLEY, G . "Survey of Deterministic Networks," AIIE Transactions, Vol. 7, No. 3 (1975) pp
222-234.

10. , BROWN, G . AND GRAVES, G., "Design and Implementation of Large Scale Primal Transship-
ment Algorithms," iV/a«agemen(Sc/. Vol. 24 (1977), pp. 1-35.

11. CHARNES, A. AND COOPER, W., Management Models and Industrial Applications of Linear Programming,
Vols. I and II, Wiley, New York, 1961.

12. CRUM, R., "Cash Management in the Multinational Firm: A Constrained Generalized Network
Approach," Working Paper, University of Florida, Gainesville, Florida, 1976.

13. DANTZIG, G., Linear Programming and Extensions, Princeton Univ. Press, Princeton, N.J,, 1963.
14. EISEMANN, D., "The Generalized Stepping Stone Method for the Machine Loading Model," A/a«a?e-

ment Sci., Vol. 11, No. 1 (1964), pp. 154-177.
15. ELAM, J., GLOVER, F . AND KLINGMAN, D., "A Strongly Convergent Primal Algorithm for Generalized

Networks," Research Report CCS 288, Center for Cybernetic Studies, University of Texas at Austin
1977.

16. GlLUAM, G. AND TURNER, J., "A Profile Analysis Network Model to Reduce the Size of Microdata
Files," Working Paper, Office of Tax Analysis, Office of the Secretary of the Treasury, Washington
D.C., 1974.

17. GLOVER, F. , HULTZ, J., KLINGMAN, D . AND STUTZ, J., "A New Computer-Based Planning Tool,"
Research Report CCS 289, Center for Cybernetic Studies, University of Texas at Austin, 1977.

1220 F. GLOVER, J. HULTZ, D. KLINGMAN AND J. STUTZ

18. GLOVER, F., KARNEY, D ; AND KLINGMAN, D!, "The Augmented Predecessor Index Method for
Locating Stepping Stone Paths and Assigning Dual Prices in Distribution Prohlems," Transportation
Sd. Vol. 6, No. 2 (1972), pp. 171-179.

19. , AND , "Implementation and Computational Study on Start Procedures and
Basis Change Criteria for a Primal Network Code," Networks, Vol. 4, No. 3 (1974), pp. 191-212.

20. , , AND NAPIER, A., "A Computational Study on Start Procedures, Basis Change
Criteria, and Solution Algorithms for Transportation Problems," Management Sci. Vol. 20, No. 5
(1974), pp. 793-819.

21. AND KLINGMAN, D., "On the Equivalence of Some Generalized Network Problems to Pure
Network Problems," Math./)TOgrammi/jg, Vol. 4, No. 3 (1973), pp. 351-361.

22. AND ———, "A Note on Computational, Simplifications in Solving Generalized Transporta-
tion Problems," Transportation Sci., Vol. 7, No. 4 (1973), pp. 351-361.

23. -——, — - — AND MCMILLAN, C , "The NETFORM Concept," Proceedings of ACM'77, Seattle,
October 1977.

24. , AND STUTZ, J., "Extensions of the Augmented Predecessor Index Method to Genera-
lized Network Problems," Transportation Sci., Vol. 7, No. 4 (1973), pp. 377-384.

25. - — — , AND , "Implementation and Computational Study of a Generalized Network
Code," Presented at the 44th National ORSA Conference, San Diego, California, 1973.

26. , AND , "The Augmented Threaded Index Method for Network Optimization,"
INFOR, Vol. 12, No. 3 (1974), pp. 293-298.

27. AND MuLVEY, J., "Equivalence of the 0-1 Integer Programming Problem to Discrete Genera-
lized and Pure Networks," MSRS 75-19, University of Colorado, Boulder, Colorado, 1975.

28. HARRIS, G., "A Code for the Transportation Problem of Linear Programming," J. Assoc. Comput.
Mach. Vol. 23, No. 1 (1976), pp. 155-157.

29. HULTZ, J., Algorithms and Applications for Generalized Networks, Unpublished Dissertation, University
of Texas at Austin, 1976.

30. JEWELL, W., "Optimal Flow Through Networks with Gains," Operations Res. Vol. 10, No. 4 (1962), pp.
476-499.

31. JOHNSON, E., "Programming in Networks and Graphs," ORC Report 65-1, University of California at
Berkeley, 1965.

32. , "Networks and Basic Solutions," Operations Res., Vol. 14, No. 4 (1966), pp. 619-623.
33. KARNEY, D . AND KLINGMAN, D., "Implementation and Computational Study on an In-Core Out-of-

Core Primal Network Code," Operations Res. Vol. 24 (1976).
34. KAZEMERSKY, P., A Computer Code for Refueling and Energy Scheduling Containing an Evaluator of

Nuclear Decisions for Operation, Unpublished Dissertation, Ohio State University, 1974.
35. KIM, Y., "An Optimal Coniputational Approach to the Analysis of a Generalized Network of Copper

Refining Process," Presented at the Joint ORSA/TIMS/AIIE Conference, Atlantic City, New
Jersey, 1972.

36. KLINGMAN, D., NAPIER, A., AND ROSS, G., "A Computational Study of the Effects of Problem
Dimensions on Solution Times for Transportation Problems," J. Assoc. Comput. Mach., Vol. 22, No.
3 (1975), pp. 413^24.

37. —, —r-,=— AND STUTZ, J., "NETGEN—A Program for Generating Large Scale (Un) Capacitated
Assignment, Transportation, and Minimum Cost Flow Network Problems," Management Sci. Vol.
20, No. 5(1974), pp. 814-821.

38. LANGLEY, R., Continuous and Integer Generalized Flow Problems, Unpublished Dissertation, Georgia
Institute of Technology, 1973.

39. , KENNINGTON, J. AND SHETTY, C , "Computational Devices for the Capacitated Transportation
Problem," Naval Res. Logist. Quart., Vol. 21, No. 4 (1974), pp. 637-647.

40. MAURRAS, J., "Optimization of the Flow Through Networks with Gains," Math. Programming, Vol. 3
(1972), pp. 135-144.

41. SRINIVASAN, V. AND THOMPSON, G., "Accelerated Algorithms for Labeling and Relabeling of Trees
with Applications for Distribution Problems," J. Assoc. Comput. Mach., Vol. 19, No. 4 (1972), pp.
712-726.

42. TAVIS, L., CRUM, R. AND KLINGMAN, D., "Implementation of Large-Scale Financial Planning Models:
Solution Efficient Transforinatipns," Research Report CCS 267, Center for Cybernetic Studies,
University of Texas at Austin, 1976.

43. WAGNER, H., Principles of Operations Research, Prentice-Hall, Englewood Cliffs, N.J., 1969.

