
J Syst Sci Syst Eng ISSN: 1004-3756 (Paper) 1861-9576 (Online)
DOI: 10.1007/s11518-010-5150-x CN11-2983/N

© Systems Engineering Society of China & Springer-Verlag Berlin Heidelberg 2010

CREATING BALANCED AND CONNECTED CLUSTERS TO IMPROVE
SERVICE DELIVERY ROUTES IN LOGISTICS PLANNING

Buyang CAO1 Fred GLOVER2
1Esri, Inc., 380 New York Street, CA 92373, USA

bcao@esri.com
2OptTek Systems, Inc., 2241 17th Street, Boulder, CO 80302, USA

glover@opttek.com

Abstract
A challenging problem in real world logistics applications consists in planning service territories

for customer deliveries, in contexts where customers must be clustered into groups that satisfy various
conditions such as balance and connectivity. In this paper we propose new algorithms for producing
such clusters based upon special procedures for exploiting Thiessen polygons. Our methods are able to
handle multiple criteria for balancing the clusters, such as the number of customers in each cluster, the
service revenue in each cluster, or the delivery/pickup quantity in each cluster. Computational results
demonstrate the efficacy of our new procedures, which are able to assist users to plan service personal
service territories and vehicle routes more efficiently.
Keywords: Clustering, K-means, logistics, routing, Thiessen Polygon

1. Introduction
In practical applications of routing and

distribution, a service or logistics provider
continually faces the challenge of providing the
best service to customers. Typically this
challenge is cast in the framework of
determining the most effective way to pick up
and deliver freight or services from customers to
other customers within a specified area, subject
to limitations on resources such as service
personnel and vehicles (drivers). This
optimization problem can advantageously be
modeled as a vehicle routing problem with time
windows (VRP/TW), yielding a formulation that
has been studied by many researchers. A

VRP/TW is an NP hard problem, and it has
attracted a lot of research interest. A
comprehensive survey of VRP/TW and of
various algorithms for solving this type of
problem appears in Braysy & Gendreau (2005).

Because of the complexity of a VRP/TW, it
is very difficult if not impossible to achieve a
satisfactory solution to many real world
instances of the problem within a reasonable
computational time. It is not practical to solve a
VRP/TW to optimality; especially under the
frequently encountered conditions where
response times (the time window within which
an answer is needed) is a critical concern. A
variety of different solution strategies have been

Cao and Glover: Creating Balanced and Connected Clusters to Improve Service Delivery Routes
2 J Syst Sci Syst Eng

devised in order to solve the VRP/TW more
effectively. Most of these algorithms employ a
cluster-first and route-second strategy in order
to address real application problems effectively.

Another commonly encountered challenge in
solving these problems arises from the fact that,
due to the limited availability of resources, a
service or logistics provider is generally unable
to service all customers within a service territory.
Therefore, it can become highly desirable to
divide the entire area into several subareas
according to the business practices for providing
services to these subareas. For instance, a given
subarea may be serviced on certain days of the
week or by a certain sets of drivers (vehicles).
The problem then arises: how to create these
subareas to meet the business logic.

The problem we address has the following
characteristics. For a given service territory,
there are thousands of customers, and each
customer has an associated service value
(delivery/pick up quantity, service revenue, or
service time). The service resource is limited.
Therefore, not all customers can be serviced on
a single day. We are required to develop a
decision-support system to help the user create
sub-areas within this territory so that each
sub-area can be serviced on a single day. The
following criteria must be considered while
building these sub-areas:
 Each sub-area should be as compact as

possible so that the expected service cost
and (especially) the travel time and distance
to service the sub-areas will be minimal.

 Each sub-area must be connected, which
means no customer of a sub-area can lie
within the geographic boundaries of another
sub-area. This requirement is imposed by

the business practice; in particular,
customary rules require that a person who
services a given sub-area must not service a
customer inside of another sub-area. The
creation of connected sub-areas has another
advantage. If the sub-areas have clean
boundaries, then it will be much easier for
the system user to adjust the sub-areas
created by the computer in order to meet
special business needs that had not
previously been envisioned or that are
difficult to embody within the model
framework.

 The sub-areas should be balanced. Balance
criteria can be expressed as bounds on
differences in the numbers of customers in
different sub-areas, or in the service value
of different sub-areas. These balance criteria
are motivated, for example, by the desire to
reduce fluctuations in daily service revenue
and in the requirements for personnel to
service the sub-areas.

In the following discussion we will use the
term cluster to represent a sub-area. Expressed
more generally, the problem consists in
determining how to group or cluster the
customers, which may abstractly be treated as
points within the service territory, while
honoring the rules imposed by business practice
such as restrictions on total service capacity
(total working hours combined with vehicle
capacities including weights and volumes),
balanced work load (service levels or
delivery/pickup quantities), non-overlapped
subareas, etc. A crucial goal in creating such a
clustering problem is to form well separated
point groups (clusters) such that the average
travel time or distance within each cluster is

Cao and Glover: Creating Balanced and Connected Clusters to Improve Service Delivery Routes
J Syst Sci Syst Eng 3

minimal, subject to assuring that the real total
travel time or distance to service a cluster will
be minimum as well.

Clustering problems, particularly these
having a mix of both spatial and non-spatial
attributes, can be found in variety of applications.
General clustering algorithms can be found in
various applications such as logistics industry,
imagery processing, data mining etc. For
instance, Humair & Willems (2006) proposed an
algorithm to identify clusters (or clusters of
commonality) in supply chain networks, whose
purpose is to provide more efficient structure to
solve certain optimization problems such as
optimizing safety stock levels and locations.
Barreto et al. (2007) presented clustering
methodology for solving capacitated
location-routing problems to find locations to set
up warehouses or service centers in order to
solve the resultant VRP problems more
effectively.

In the context of multi-depot vehicle routing
problems with time windows, Dondo & Cerda
(2007) proposed a cluster-based approach to
give a basis for generating tighter routes. In this
procedure, all customer locations are clustered
and the clusters in turn are assigned to vehicles.
The approach accounts for vehicle capacities,
time windows and idle time. The goal is to build
a cluster yielding a low average travel distance
for each location.

Fan (2009) models a site selection problem
as a point clustering problem (and proposes a
hybrid algorithm combining K-means clustering
and simulated annealing to solve it. In his
method, the distance measurement is based on
Euclidean distances. However, he modified this
measure to incorporate an “obstructed distance”

between two locations if their straight line link
was intersected by geographic obstacles such as
rivers, mountains, highways, etc. Fan
represented obstacles by superimposing convex
or concave polygons upon the underlying
geographic data. By this means it was
anticipated that distances between locations
would be able to take geographic features into
account more realistically.

GIS (geographic information system)
technology is often utilized in such applications
due to its ability to supply vital information such
as geographic feature data, street network
information, speed limits on street segment and
lengths of street segments, and to keep track of
restrictions such as vehicle heights, weights, and
volumes that need to be considered by
optimization procedures. For example,
Estivill-Castro & Lee (2001) combine data
mining and GIS as a means to consider
geographic obstacles such as hills or rivers. The
authors devise a clustering algorithm utilizing a
Voronoi diagram to set up a topological structure
for a given set of points as a basis for retrieving
spatial information related to various definitions
of neighbors, and report their method to be
successful for handling the presence of obstacles.
Kwon et al. (2007) proposed a Tabu Search
algorithm to solve capacitated vehicle routing
problems, using a Voronoi diagram to narrow the
search space during the solution process.
However, the results did not find that the
contribution of the Voronoi diagram to
narrowing the search space was sufficient to beat
the existing benchmark results.

Within a practical setting, Blakeley et al.
(2001) report the application of GIS and
optimization technologies in technician

Cao and Glover: Creating Balanced and Connected Clusters to Improve Service Delivery Routes
4 J Syst Sci Syst Eng

scheduling and dispatching for Schindler
Elevator Corporation. The application system
improved Schindler service routes, increased
profitability, and saved over $1million annually.
Zhang et al. (2007) use related analysis to study
the problem of creating geographic
non-overlapping clusters, where geographic
areas containing special features of interest are
defined in order to facilitate decision making;
for instance, identifying two subareas one of
which contains low-income households while
the other contains high-income households, in
order to establish different policies for these
subareas. In this case the authors develop an
algorithm utilizing a spatial distance measure
capable of considering non-spatial attributes and
geographic non-overlapping constraints
simultaneously.

Strehl & Ghosh (2002) developed an
interesting algorithm to address real-life
data-mining problem found in retail-industry
and some web applications, in which data reside
in a very high dimensional space. Their
approach introduces a similarity relationship
defined on each pair of data samples. After
similarities are computed, the problem is
transformed to one over the similarity domain
and the original high-dimensional space is no
longer needed. The goal is to cluster data
samples into k groups so that data samples for
different clusters have similar characteristics.
The authors formulated this problem as a
vertex-weighted graph partitioning problem,
where each vertex (data sample) is assigned a
weight representing its importance and each pair
of vertices is connected by an undirected edge
whose weight is determined by their similarity
measurement. The objective of this partitioning

problem is to produce a minimum weight
solution that accounts for the vertex weight
balancing constraint. The authors developed an
algorithm called OPOSSUM (Optimal
Partitioning of Space Similarities Using Metis
(Karypis & Kumar 1998)) using the Metis
approach proposed by Karypis and Kumar as the
multi-objective graph partitioning engine.

Huff (1963) proposed an interesting model
for retail trade area analysis that determines how
customers within a region should be assigned to
a given set of service centers (e.g., stores).
Huff’s model specifies the probability of
assigning a customer to a store as follows:

1

j ij
ij n

j ij
j

A D
P

A D

α β

α β

−

−

=

=

∑

where:
 Aj is a measure of attractiveness of store j

(such as square footage)
 Dij is the distance from i to j
 α is an attractiveness parameter estimated

from empirical observations
 β is the distance decay parameter estimated

from empirical observations
 n is the total number of stores.

For a store that has a larger attractiveness
measure and lies closer to a customer, the
preceding formulation assures that the customer
will have a larger probability of being assigned
to the store. However, if a store is far away from
a customer, then the power of attracting this
customer fades. Therefore, larger stores that are
closer to the area where most customers are
located will generally have a higher probability
of getting customers.

It is important to note, however, that none of

Cao and Glover: Creating Balanced and Connected Clusters to Improve Service Delivery Routes
J Syst Sci Syst Eng 5

the foregoing applications includes
consideration of designing clusters capable of
meeting balancing criteria, as embodied in the
need to assure balanced service levels and
delivery/pickup quantities and non-overlapped
clusters simultaneously. The present work
undertakes to address these crucial concerns.

In particular, we face the challenge of
developing optimization algorithms capable of
exploiting GIS technology to create balanced
and connected clusters, where each cluster can
be treated as a service territory. We especially
seek to produce a flexible design that will permit
the criteria for balancing the clusters to embrace
a variety of options, such as those based on the
number of customers in each cluster, the service
revenue in each cluster, or the delivery/pickup
quantity in each cluster.

In sum, our methodology undertakes to
provide the following contributions to handling
service territory planning and design issues in
the logistics and service industry:

 A new framework that enables users in
logistics and service industry to plan and
design their service areas more efficiently

 A capability to address issues of creating
geographically non-overlapped and balanced
clusters simultaneously.

 Methodology to effectively maintain the
connectivity of clusters during the cluster
creation and improvement processes by
drawing on topologic relationships derived
from Thiessen (Voronoi) Polygons.

 Flexibility and scope to handle multiple
clustering objectives.
In the following exposition, Section 2

describes the clustering problem in more detail,
and section 3 presents the algorithms to solve

balanced clustering problems. Computational
results documenting the effectiveness of our new
procedures are presented in section 4. Finally,
we summarize our findings and present some
conclusions in section 5.

2. Problem Description

2.1 Conventions and Terminology
We formulate our problem by reference to a

graph G = (N, E) where N is a set of nodes that
are to be clustered, and E is a set of edges
joining pairs of these nodes. In our present
routing application, the sets N and E are derived
from Thiessen polygons. Figure 1 displays an
illustrative set of points and Figure 2 identifies
the Thiessen polygons based upon these points.

Figure 1 Customer locations (points)

The motivation for creating the Thiessen
polygons is as follows. We imagine each
polygon to be represented by a node of the graph
G. If two polygons touch (i.e., share a common
boundary or at least one vertex of a boundary),
then the two nodes corresponding to these
polygons are linked by creating an edge of the
graph that joins them. Nodes joined by edges are
called adjacent.

Cao and Glover: Creating Balanced and Connected Clusters to Improve Service Delivery Routes
6 J Syst Sci Syst Eng

Figure 2 Thiessen polygons for the given point set

The adjacency relationship is used to
overcome some shortcomings of common
clustering algorithms such as K-means that are
susceptible to generating clusters that overlap,
i.e., where some nodes of a cluster are
completely embedded in other clusters. Zhang et
al. (2007) listed a sufficient condition to
guarantee non-overlapping clusters, however,
this condition usually is not met in real world
settings. Therefore, extra effort is needed to
ensure the resultant clusters are connected, i.e.,
they are not overlapping.

In our problem, each node p ∈ N contains a
specified capacity, or weight, w(p) and the
weight w(C) of a cluster C is defined by w(C) =
∑(w(p): p ∈ C). We allow for the possibility that
a node may have more than one capacity or
weight. A collection Ω of clusters is understood
to be complete (and feasible) if its nodes create a
partition of the set N, i.e., the node sets of the
clusters C ∈ Ω are pairwise disjoint and their
union is N.

2.2 Problem Objective
The goal of our problem, roughly stated, is to

create a clustering set Ω so that each cluster C ∈
Ω contains approximately the same number of
nodes and each cluster has approximately the
same weight, where |Ω| = k and k is the

predefined number of clusters to be created.
There are two important variations to this

objective.
Variation 1: According to a specified level

of priority, create Ω in relation to a distance
measure so that each cluster C ∈ Ω is composed
of nodes that are closer to other nodes of the
same cluster than they are to nodes of other
clusters.)

Variation 2: Create Ω in relation to a
specified center point so that each cluster C ∈ Ω
lies in its own region relative to this point, where
the regions resemble slices of a pie passing
through this center.

The motivation underlying the Problem
Objective and the two preceding variations is to
produce clusters that give a foundation for
creating routes that can be served by different
vehicles and on different days. The second
variation refers to routes that all start from the
same center point. Each of the variations is
assumed to be compatible with the initially
stated objective and with each other.

The following requirement also has a critical
relevance to routing problems.

2.3 Connectivity Requirement
Each cluster must be connected, i.e., every

two distinct nodes in the cluster must be joined
by a path formed of edges in E (and their
associated nodes in N).

For the following we represent the node set
N by writing N = {pi: i ∈ I} where I = {1, … , n}
is the index set for the nodes pi in N.

3. Solution Methodology
K-means (MacQueen 1967) is one of the

simplest unsupervised learning algorithms for

Cao and Glover: Creating Balanced and Connected Clusters to Improve Service Delivery Routes
J Syst Sci Syst Eng 7

solving the point clustering problem. The
algorithm attempts to minimize the value of a
squared error function defined as:

V = ΣΣ(|xi – Xk| 2+ |yi – Yk|2)

where |xi – Xk| 2+ |yi – Yk|2 is a chosen distance
measure between a node pi, i ∈ I, represented by
its xi and yi coordinates and the centroid of
cluster Ck if this node is contained in this cluster
(Here we consider points lying on a 2-dimension
plane, where each node’s location is presented
by its x and y coordinates).

The K-means algorithm consists of the
following steps: 1) Start with K randomly
selected points as the centroids for all clusters
respectively; 2) Assign each node to the cluster
whose centroid is closest to the node; 3)
Re-compute the centroids for all clusters that
receive new nodes; 4) Repeat steps 2) and 3)
until no centroid will be changed. The procedure
creates the clustering result in which the
objective function V cannot be improved further
by performing steps 2) and 3).

The K-means algorithm is relatively easy to
implement and reasonably effective for many
types of applications. However, in its original
form, the method is unable to handle the goals of
creating balanced and non-overlapping clusters.
In the following sections we propose algorithms
that can address these issues that cannot be
resolved by applying the K-means algorithm
directly.

The limitations of the original K-means
algorithm are demonstrated by Hruschka &
Natter (1999), who present an interesting
comparison of performance between K-means
and a feedforward neural network in finding
market segmentation (structure). Their results

show that the outcome obtained by the neural
network is generally better than that obtained by
the original K-means approach. It should be
pointed out that this finding contradicts some
published studies claiming that neural networks
are not superior to the original K-means
approach.

In the following algorithm description
sections, we use Euclidean distance as the
distance measurement in the algorithms.
However, this is not a limitation. Our algorithms
can readily use alternative distance measures,
which may be employed to address geographic
obstacles such as rivers, bays, and mountains.
Relevant examples include:

 the distance calculation method suggested by
Fan (2009), or

 the distance computed by using GIS system
that utilizes the underlying street network.
When a distance between two locations is

computed based upon the real street network,
any geographic obstacles that may be present are
automatically taken into account while
computing the distance. The distance computed
in this manner has an important effect on the
clusters produced by the clustering algorithm
proposed in this paper. The following example
demonstrates this. Figure 3 displays the stops to
be clustered and the area where these stops are
located. As seen from the picture, a river divides
the region into two sections. Figure 4 depicts the
result obtained by utilizing Euclidean distance
and Figure 5 shows the result obtained by the
same solver based upon the real street distance.

The clusters based on Euclidean distance
create some undesirable outcomes, including
situations where clusters cross the river, and
where some stops cannot be reached at all. Such

Cao and Glover: Creating Balanced and Connected Clusters to Improve Service Delivery Routes
8 J Syst Sci Syst Eng

outcomes are to be expected because the
Euclidean distance doesn’t consider the
underlying geographic characteristics.

Figure 3 Stops to be clustered

Figure 4 Result obtained based upon Euclidean

distance

By contrast, Figure 5 demonstrates clearly
that as long as the real street distance is
employed, the proposed clustering solver is able
to consider geographic obstacles effectively. Of
course some stops are left un-clustered because
they are not reachable via streets. Hence in the
following discussion we will denote the distance
between two nodes pi and pj by d(pi, pj) without
explicitly indicating the form of the distance
measure d, understanding that real street
distances may be used in conditions where they
are appropriate.

Figure 5 Result obtained based on real street
distance

3.1 Modified K-means Algorithm
We first describe a preliminary version of a

balanced and connected cluster algorithm called
the modified K-means algorithm for creating the
clustering set Ω. The purpose of this method is
to build an initial Ω which is then enhanced by
an improving procedure described in the
subsequent sections. The modified K-means
algorithm is designed to insure that the
connectivity requirement will be fulfilled, which
is not insured by the ordinary K-means
algorithm. The modified K-means is also able to
quickly create an initial solution for our more
advanced procedure discussed below.

Let pi and pj, i, j ∈ I, be two nodes that
belong to two different clusters Cr and Cs
respectively. If pi and pj connect by an edge (pi,
pj) ∈ E, then pi and pj are called boundary nodes,
and the move pi Cs, which reassigns pi to the
cluster Cs (dropping it from Cluster Cr) is called
an admissible move. Note that a given boundary
node pi of Cr may have more than one
admissible move; that is, there may be an edge
(pi, pq) ∈ E joining pi to a node pq that belongs
to a cluster Ct different from Cs. Furthermore, an

Cao and Glover: Creating Balanced and Connected Clusters to Improve Service Delivery Routes
J Syst Sci Syst Eng 9

admissible move may not be a feasible move in
the sense of preserving connectivity.

We consider the following two balancing
scenarios.

Let Navg denote the “average” number of
nodes in a cluster, where Navg = the nearest
integer neighbor of n/k and k is the number of
clusters to be created. For any boundary node pi
in a cluster Cr, define the balance value of an
admissible move pi Cs to be: (1) 2 if | Cr | >
Navg and | Cs | < Navg, (2) 1 if (1) is not true but |
Cr | > | Cs | + 1; (3) 0 if | Cr | = | Cs | + 1, and (4)
-1 if | Cr | ≤ | Cs |.

Define the weight W(C) of a cluster C to be
the sum of the weights in C, and let Wavg denote
the overall average cluster weight to be the sum
of all weights divided by the number of clusters
k. Then, for cluster C, we define the absolute
value weight measure WM(C) = |W(C) – Wavg|.
Note this value is 0 if the weight of C equals the
“perfect” weight Wavg, and otherwise WM(C) is a
positive value indicating how much W(C) differs
from this perfect weight. Finally, define the
weight value of the move pi Cs to be WM(Cr)
+ WM(Cs) – WM(Cr – pi) – WM(Cs + pi), where
Cr – pi is the cluster that results from dropping pi
from Cr and Cs + pi is the cluster that results by
adding pi to Cs. This weight value is the
improvement (if positive) or the deterioration (if
negative) in achieving the target weights Wavg
for the two clusters that are changed.
Modified K-means algorithm outline:
0. (Starting Method) Generate an initial

collection Ω = {C1, …, Ck} of k clusters:
Select k initial “seed points” by the following
rule, where Io denotes the index set of nodes
currently selected.
First choose a node pi*, i* ∈ I, that lies

closest to the centroid of the nodes in N, and
create the initial form of the first cluster by
setting C1 = {i*}, together with setting Io =
{i*}.
For h = 2 to k:

Select a node pi*, i* ∈ I – Io whose
minimum distance from the nodes pj, j ∈ Io

is maximum; i.e.,
i* = arg max (Min(d(pi, pj): j ∈ Io): i ∈ I –
Io).

Let Ch = {i*} and Io := Io ∪ {i*}.
Endfor
Denote the centroid of cluster Ch by ch, for h
∈ K = {1, …, k}.

1. (Assignment Step) For each node pi, i ∈ I
assign node i to the cluster Ch* whose
centroid ch is closest to pi; i.e., select h* = arg
min(d(pi, ch): h ∈ K) and set Ch* := Ch* + pi.
(If ties exist in identifying h*, select h* to be
the tied value of h such that Ch contains the
fewest number of nodes.)
Identify the new centroid ch of each resulting
cluster Ch.
If no centroid ch changes, then stop.
Otherwise, repeat the Assignment Step.

2. (Improving Method) Improve the initial
solution:
The goal is to select an admissible move
having a largest non-negative balance value
and, subject to this, having a maximum
weight value. Define a move to be improving
if it has either (1) a positive balance value or
(2) a non-negative balance value and a
positive weight value.
Make improving moves until no more remain,
or the predefined number of iterations has
been reached. Save the current best solution.
Special Provision: Each time an improving

Cao and Glover: Creating Balanced and Connected Clusters to Improve Service Delivery Routes
10 J Syst Sci Syst Eng

move is made, it must be checked for
feasibility by a “Feasibility Checking
Method” subsequently described. If a chosen
move is infeasible (i.e., if it destroys the
connectivity of a new cluster created) then a
“Feasibility Preservation Method” is
employed that modifies the choice of an
admissible move.

3. (Optional step) Generation of new solution
space:
Select a new set of seed points and repeat
steps 0 to 2.

Enhanced assignment method for step 1 of
the modified K-means algorithm

We now introduce an enhanced assignment
algorithm to replace the approach of Step 1 of
the preceding method, by incorporating a
strategy that further diverges from the classical
K-means method in two important ways.

First, instead of assigning each node to the
cluster whose centroid is closest and updating
the centroids after all nodes have been assigned
as the original K-means algorithm does, for each
node we evaluate the assignments for all clusters
and then make only the assignment with the
highest evaluation. The new cluster thus
produced is immediately updated before making
any further assignments, thereby identifying a
changed centroid for this new cluster that can
change the evaluations previously generated.

This one-at-a-time process of changing
clusters could require greater execution time, but
it allows a more responsive mechanism for
evaluating assignments. Moreover, the execution
time can be greatly reduced by accounting for
the fact new evaluations need only be carried out
in relation to the cluster that changes. We can
use an efficient update derived from keeping

track of the best cluster assignment for each
node, which will change only if the evaluation
of assigning this node to the new cluster
qualifies it as the new best, or if the previous
best cluster for the node happens to be the
cluster that has changed. By this means, each
successive step of evaluations and comparisons
can be performed very rapidly.

The second main divergence from the
classical K-means approach is to change the
evaluation rule that only accounts for the
distances from nodes to cluster centroids. We
propose to replace this evaluation by a “Min
Worst Deviation Rule,” which we describe in the
form where it is joined with the one-at-a-time
rule, as follows.

Min Worst Deviation Rule: During the
process of constructing the clusters, each cluster
is to receive a weight as close as possible to a
target weight given by Target(C) = |C|AvgWeight,
where AvgWeight = the sum of all node weights
divided by n (the number of nodes). Upon
adding a node to a given cluster C to produce a
new cluster C+, the number of elements in C+
will be given by |C+| = |C| + 1. We apply a
choice criterion that selects a node to add to C
that will make the new weight W(C+) of C+ as
close as possible to Target(C+). Upon identifying
a “best node” pi to add to each cluster Ci (i =
1, …,k) by this criterion, then we identify the
specific cluster Cq such that adding pq to Cq will
minimize the worst deviation of any present
cluster from its target weight. Cq will often be
the cluster that already has the worst deviation
from its target weight, and then we will just pick
the best possible pq to add to it.

We observe that the strategic ideas embodied
in this rule can be applied in other settings by

Cao and Glover: Creating Balanced and Connected Clusters to Improve Service Delivery Routes
J Syst Sci Syst Eng 11

changing the definition of Target(C) to reflect
the objectives of alternative contexts.

The Min Worst Deviation Rule can be
applied to Step 1 of the Modified K-means
algorithm as follows:

Once the seed points are selected, then we
choose a node p to add to a chosen cluster C at
each step based upon: first, the added node p
must be adjacent to a node that already belongs
to the cluster C. Second, pick p and C so that the
clusters are as close as possible to being
balanced by weight at each step, employing the
criterion of the Min Worst Deviation rule. This
constructive method is additionally controlled to
prevent the number of nodes in any cluster from
growing too large.

However, our proposed modifications of the
K-means algorithm are not yet sufficient to
handle our goal of creating balanced and
connected clusters. A number of subtle
considerations must be taken into account to
achieve this goal, which we address by
identifying a more comprehensive algorithm that
takes our preceding observations to a
significantly more advanced level.

3.2 Advanced Balanced and Connected
Cluster Algorithm

Our advanced Balanced and Connected
(B&C) cluster algorithm consists of a
Construction Phase and an Improvement Phase.
We begin by describing the Construction Phase
which contains ideas that are fundamental for
setting the stage for the Improvement Phase.
Basic notation and definitions

For any subgraph S of G, let N(S) and E(S)
respectively denote the node and edge sets of S.
For example, we write N(Ω) and E(Ω) to

identify the node and edge sets respectively that
belong to the set of all clusters Ω.

We specifically make use of the following
definitions.

Adjacent(p) = {q: (p, q) ∈ E}

By common terminology, we say q is
adjacent to p if q ∈ Adjacent(p), hence if p and q
are joined by an edge. (By symmetry, q ∈
Adjacent(p) evidently implies p ∈ Adjacent(q).)

Outside = N – N(Ω)

Hence Outside is the set of nodes that do not
belong to any cluster.

Together with the foregoing, we use the
notation T(C) to refer to a selected spanning tree
contained in cluster C, and denote the root of T
= T(C) by r. The purpose of utilizing a spanning
tree is to gain an efficient data structure for the
solver implementation, effective evaluation of
solutions’ qualities, and feasibilities. (The
particular cluster C that r is associated with will
always be clear from the context, so we do not
have to write r = r(C).) In the following
discussion, r is the node selected to be the
centroid of cluster C in the solution procedure.
Key Observations:

1) The Connectivity Requirement is
equivalent to saying that it is possible to identify
a spanning tree T(C) associated with each cluster
C.

2) The tree T(C) can be oriented so that each
node p of the tree (hence every node of C)
except for the root r, has a unique predecessor
which we will denote by pred(p). A trace of
predecessors, that starts with a node p and
iteratively sets p:= pred(p) identifies the unique
path in the tree from the initial node p to the root.
Each node on a predecessor path is distinct from

Cao and Glover: Creating Balanced and Connected Clusters to Improve Service Delivery Routes
12 J Syst Sci Syst Eng

all other nodes on the path (understanding that
the path ends with a root r, where by convention
pred(r) = –1).

3) When C gains a new node q during a
constructive process, it also gains all edges
connecting q to other nodes of C. However, T(C)
gains exactly one of these edges, together with
the node q. (Any of these edges can be added to
T(C) to create a new tree, but we will choose a
specific edge based on a rule described
subsequently.)

Let length(p, q) denote the distance measure
between nodes p and q, which is assumed
positive if p ≠ q. For a tree T = T(C), we define:

Distance(p) = distance measure of the path
from the root r to p; i.e., the sum of the
quantities length(p, q) over all edges (p, q)
∈ E that lie on the path

By convention, Distance(p) = 0 if p is the
root node r. In the following description we will
refer to Distance(p) as the Distance Function.

We point out that if the lengths of all edges
in the graph are 1, then the Distance function
corresponds to the Depth Function. Our
discussion, however, will be based upon the
Distance Function and all propositions and
observations are applicable to the special case
where the Depth Function is used in place of the
Distance Function.

It is important to keep in mind that the
distance function Distance(p) is defined relative
to the specific spanning tree T = T(C) associated
with cluster C, and that different trees (or
different roots) within the cluster would produce
different distance functions. Moreover, since all
the clusters C ∈ Ω are node-disjoint, there is no
danger that the definition of Distance(p) will be

ambiguous by referring to more than one tree
T(C). Consequently, a single distance function
Distance(p) can be used for all trees. Given that
Distance(p) = 0 identifies p as a root node r, we
employ the convention that Distance(p) = – 1 if
p does not belong to any cluster C at the present
state of construction.

We make use of the distance function to
decide which nodes and edges should be added
to clusters during the construction phase. For
this, we first need to identify the cluster nodes to
which new edges (leading outside the cluster)
can be permissibly added.

A node p ∈ C is called extensible if there
exists an edge (p, q) joining p to some outside
node q (i.e., q ∈ Outside, and more particularly,
q ∈ Outside∩Adjacent(p)).

This terminology is motivated by the
observation that we can select the node p and
add the edge (p, q) to “extend” cluster C
(causing it to contain an additional node). As
emphasized in Key Observation (1), the fact that
we identify the edge (p, q) is important to assure
that the cluster is connected. As a natural
counterpart of this terminology, a cluster C is
called extensible if it contains at least one
extensible node.

We denote the set of extensible nodes in C
by Extensible(C) and the set of extensible nodes
in all clusters (hence all extensible nodes)
simply by Extensible without mention of a
particular cluster C.

Analogous to the definition of extensible
nodes, which belong to clusters, we also
consider reachable nodes, which do not belong
to any cluster (i.e., which are outside nodes) and
which are joined by edges to extensible nodes.
Hence, in particular, we consider the set of

Cao and Glover: Creating Balanced and Connected Clusters to Improve Service Delivery Routes
J Syst Sci Syst Eng 13

nodes reachable from a given extensible node p
by

Reachable(p) = {q ∈ Outside: (p, q) ∈ E}

Similarly, we define the set of nodes
reachable from an extensible cluster C by

Reachable(C) = {q ∈ Reachable(p): p ∈
Extensible(C)}.

Generating a specific tree T(C) associated
with C

By making use of the preceding definitions,
we specify the following rule for generating the
tree T(C), which will be employed at each
iteration of a constructive method.

Min Distance Linking Rule. Given the choice
of an extensible cluster C, and the choice of any
given node q ∈ Reachable(C) to create a new
cluster C+ by adding q to C, create an extension
of the tree T(C) to produce a new tree T(C+) by
adding the specific edge (p, q) ∈ E, where the
node p ∈ Extensible(C) is chosen to satisfy
Distance(q) = Min(Distance(h) + length(h, q):
for all h ∈ Extensible(C) and (h, q) ∈ E).

The significance of this rule is demonstrated
as follows.

Define a minimum path to be a path between
two nodes having the minimum sum of length(p,
q), where p and q are on the path and (p, q) ∈ E.

We say a tree T(C) has the Min Path
Property if the predecessor path from every
node p in T(C) to the root r is a minimum path in
the subgraph for cluster C. Then we can make
the following observation.
Proposition 1 Assume T(C) has the Min Path
Property, and consider any node q ∈
Reachable(C) that is added to C to produce a
new cluster C+. Then the new tree T(C+)
associated with C+ will satisfy the Min Path

Property if and only if T(C+) is generated by the
Min Distance Linking Rule.
Additional rules for generating T(C)

For each node p ∈ Extensible, we define:

BestNeighbor(p) = {q ∈ Outside |
min(length(p, r), (p, r) ∈ E and r ∈
Outside)},

i.e., the outside node closest to p. The number of
elements in BestNeighbor(p) for any p can be 1
or more.

We identify a set of “best” reachable nodes,
which consist of nodes that can be reached by
edges from extensible nodes of C.

BestReachable(C) = {q ∈ BestNeighbor(p),
for any p ∈ Extensible(C)}.

The reason for calling this a “best” set refers
to the fact that we will always select nodes from
this set as a basis for extending C to create a
new cluster.

Finally, it is convenient to identify the index
i of a cluster C = Ci (i = 1,…,k) such that p ∈ Ci
by setting Cluster(p) = i. By convention,
Cluster(p) = 0 if p does not yet belong to any of
the clusters under construction.

Best Reachable Choice Rule: Let C* denote
the cluster that is chosen to be extended. Then
choose a node q to add to the cluster C* by
requiring that q ∈ BestReachable(C*).
Associated with q, identify an edge (p, q) such
that p ∈ Extensible(C*), and complete the
process of adding q to C* by setting Distance(q)
= Depth(p) + length(p, q), Cluster(q) = Cluster(p)
and pred(q) = p, hence adding node q and edge
(p, q) to the tree T(C*) (and yielding |Ci| := |Ci| +
1 where i = Cluster(p)).

This rule is motivated by the fact that it will
cause paths starting from the centroid of a

Cao and Glover: Creating Balanced and Connected Clusters to Improve Service Delivery Routes
14 J Syst Sci Syst Eng

cluster generated due to adding new nodes to
increase by as little as possible. Based upon the
property of BestReachable, it is clear to
understand that by this process of adding a node
q that creates the shortest path from the centroid
in C, we avoid growing trees with long paths,
and favor bushy trees whose terminal nodes are
relatively close to the root. It can also be seen
that the foregoing rule also implicitly embodies
the Min Dist Linking Rule within it. Hence, as a
result of Proposition 1 we may state
Proposition 2 If the Best Reachable Choice Rule
is applied at every iteration of a constructive
method (starting from initial clusters that consist
of a single node) then every tree T(C) that is
generated will satisfy the Min Path Property.

The basis for this rule is further supported by
the following definition and observation:

We define a cluster C to be compact if every
extensible node p in C satisfies min(Distance(q))
= Distance(p) + length(p, q) for some q in
Reachable(C).
Proposition 3 All clusters will be compact at
each iteration of a constructive process if and
only if the Best Reachable Choice Rule is used.

This compactness property has the following
motivation. While the same cluster can have a
variety of different trees associated with it, if we
maintain the tree compact the cluster C itself
will tend to be as “compact” as possible.
Multiple criteria priorities considerations

To complete the Construction Phase of the
B&C method, it remains to identify the specific
cluster C* that will be chosen as a basis for
applying the Best Reachable Choice Rule
described above.

Identifying the Chosen Cluster C* by the
First Priority of Balance: Our choice of C* is

given in a natural way by the fact that our first
priority is to create clusters that are balanced by
cardinality. To exploit this objective, define

MinCardinality = Min(|C|: C is extensible)

PreferredClusters = {C is extensible: |C| =
MinCardinality}

Preferred Cluster Rule: Apply the Best
Reachable Choice Rule by selecting C* to
satisfy C* ∈ PreferredClusters.

This rule means that we will not build up the
size of a larger extensible cluster before building
up the size of a smaller one.

Identifying the Chosen Cluster C* by the
Second Priority of Weight: We seek to include
the influence of weight balance in this choice.
We assume that more than one option exists for
creating a new tree by the preceding choice rules,
so that there is latitude to choose among these
options in a way that favors producing clusters
with balanced weights.

As earlier, we consider a target value for the
weight of a cluster C given by Target(C) =
|C|AvgWeight, where AvgWeight is the average
of all node weights. Then we identify the
(absolute value) amount by which the current
weight W(C) of C deviates from meeting this
target:

CurrentDeviation = |W(C) – Target(C)|

Similarly, the new deviation that results from
creating a new cluster C+, is given by

NewDeviation = |W(C+) – Target(C+)|

Then the improvement in the weight balance
objective from a choice that produces a new
cluster C+ is given by the quantity

WeightImprovement = CurrentDeviation –
NewDeviation,

Cao and Glover: Creating Balanced and Connected Clusters to Improve Service Delivery Routes
J Syst Sci Syst Eng 15

where a negative value represents a deterioration.
Thus, when more than one option exists to
extend a cluster C = C* to produce a new cluster
C+ (which means either that there is more than
one choice for C* in the Preferred Cluster Rule,
or that there is more than one choice for a node
q that can be added to a given C* by the Best
Reachable Choice Rule), we select the option
that yields the largest value of
WeightImprovement.

Giving Increased Priority to the Weight
Criterion: Greater latitude for using the
WeightImprovement criterion can result by
slightly revising the definition of
BestNeighbor(p). Instead of

BestNeighbor(p) = {q ∈ Outside |
min(length(p, r), (p, r) ∈ E and r ∈
Outside)}

we may use the alternative definition

BestExtensible(C) = {q ∈ Outside | length(p,
r) < minLen + Δ, (p, r) ∈ E and r ∈
Outside)}

where minLen is the minimal edge length
among all edges (p, r), p is an extensible node
and r ∈ Outside. The quantity Δ represents a
selected nonnegative value.

More choices will exist for applying the
WeightImprovement criterion as Δ increases,
hence potentially improving the weight balance
at the risk of impairing the cardinality balance of
the solution ultimately produced. This allows the
method to be adapted to handle situations where
the cardinality balance objective does not
completely dominate the weight balance
objective.

3.3 Construction Phase Incorporating a
Shortest Path Distance Measure

We introduce ShortestDist(ri: p) to denote the
shortest path distance from the root ri of cluster
Ci to node p. As mentioned earlier, this distance
can take any form appropriate to the problem at
hand, whether a Euclidean measure or a street
network measure that accounts for geographic
obstacles.

This distance will be calculated only for
specific cluster and node pairs, so that
ShortestDist(ri:p) will be known for every node
p ∈ N(Ci). Similarly the distance ShortestDist(ri:
q) will be calculated for q ∈ Reachable(Ci),
where in the following, for convenience, we
denote this latter set by Reachable[i].

The value ShortestDist(ri:p) will be accurate
for p ∈ N(Ci), but ShortestDist(ri: q) at first will
be an “estimate” for q ∈ Reachable[i].
Subsequently, this estimate will be verified as
accurate when node q is transferred from
Reachable[i] to N(Ci).

We will also make use of a predecessor list
pred(q) and a special additional predecessor list
pred(i:q), where the latter list is a list “parallel”
to Reachable[i], so that each q ∈ Reachable[i]
identifies a second node p = pred(i:q) where p ∈
N(Ci), and (p, q) ∈ E.
Construction Phase Based on Shortest
Distance Values
0. Select an initial seed node for each Cluster Ci,

i = 1,…,k to become the root node ri of the
cluster, hence N(Ci) = ri and E(Ci) = ∅. At
the same time, create Reachable[i]=
Adjacent(ri). i = 1,…,k.

For each q ∈ Reachable[i], set
ShortestDist(ri:q) = length(ri,q) and set
pred(i:q) = ri. Finally, for each i = 1,…,k, we

Cao and Glover: Creating Balanced and Connected Clusters to Improve Service Delivery Routes
16 J Syst Sci Syst Eng

define the value MinReachableDist(i) and
identify the set BestReachable(i) based upon
the definitions given above.

1. Choose the cluster index i* to identify a
cluster Ci* from the set of PreferredClusters,
and choose the node q* so that q* ∈
BestReachable(i*). Then remove node q*
from Outside (hence removing it from
Reachable[i*] and also removing it from all
sets Reachable[i] that contain q*), and add q*
to N(Ci*). Accompanying this, set pred(q*) =
p, where p ∈ N(Ci) and (p, q) ∈ E. We
complete the updating of Reachable[i*]
according to its definition (by forming its
union with the set Reachable(q*)) in the next
step.

2. Define TrialDistance(h) = ShortestDist(ri*:q*)
+ length(q*,h), (q*,h) ∈ E.

For each h ∈ Reachable(q*): if h ∉
Reachable[i*] then update the shortest
distance value by setting ShortestDist(ri*:h) =
TrialDistance(h), setting pred(i*:h) = q* and
adding h to Reachable[i*]. But if h ∈
Reachable[i*], then update the shortest
distance value only if TrialDistance(h) <
ShortestDist(ri*:h) (and add h to
Reachable[i*]).

Taking Advantage of Ties
We note there are multiple places in the

foregoing method where ties may occur in the
choice rules, as in selecting the cluster i* and in
choosing the node q* once i* has been selected.
(In addition, there may even be ties possible in
selecting the node p* = pred(i*:q*), though we
have treated this predecessor node as unique for
simplicity.) The above discussion of weights and
targets in multiple criteria considerations gives
rules for breaking these ties to handle weight

balancing objectives. (That is, we use these rules
to choose the tied option that gives the largest
value of WeightImprovement and to incorporate
the Revised Targets in successive iterations of
the method.)
Increasing the emphasis on the distance
criterion

To handle those applications where it is
desirable to place more emphasis to the distance
criterion in creating balanced clusters, we
proceed as follows.

First, we choose among the candidates for
Ci* in the set of PreferredClusters by identifying
a node q* ∈ BestReachable(i) and defining
NextShortest(i) = Min(ShortestDist(ri:j): j ∈
BestReachable(i) – {q*}).

Then we define DifDistance(i) =
NextShortest(i) – ShortestDist(ri:q*) and pick
Ci* ∈ PreferredClusters so that DifDistance(i*) =
Max(DifDistance(i): Ci ∈ PreferredClusters).
Thus, we minimize the regret of not picking a
particular shortest distance node whose next
shortest distance exceeds the shortest distance
by the greatest amount.

To apply this type of distance criterion even
more strongly, we enlarge the set of
PreferredClusters by redefining it to be

PreferredClusters = {Ci is extensible: |Ci| ≤
MinCardinality + α}

where α is a selected nonnegative number.
Selecting α to be large allows the distance
criterion dominate the cardinality balancing
criterion entirely.

3.4 Overall Structure of the B&C Cluster

Method
The overall structure of the B&C Cluster

Method, which includes an Improvement Phase

Cao and Glover: Creating Balanced and Connected Clusters to Improve Service Delivery Routes
J Syst Sci Syst Eng 17

to augment the fundamental Construction Phase,
can now be sketched as follows. After
expressing the method in outline form, we
subsequently describe the Improvement Phase in
detail.
0. Choose initial seed nodes as roots and initial

Target(Ci) values for the clusters Ci, i =1,…,k.
Then, until a termination condition is reached,
execute the following:

1. Apply the Advanced Construction Phase.
2. Apply the Improvement Phase.
3. Until a stopping criterion is met, choose new

seed (root) nodes and/or new target values
and return to Step 1.
The Construction Phase of Step 1 and the

Improvement Phase of Step 2 can be coordinated
in a different fashion by requiring the
Improvement Phase to invariably follow the
Construction Phase. For example, the
Improvement Phase can be skipped on selected
iterations, as by executing a series of iterations
where only the Construction Phase is applied,
and then applying the Improvement Phase
starting from the best outcome produced by the
Construction Phase during these iterations.
Alternatively, a simple version of the approach
might skip the Improvement Phase entirely, or
instead perform a single execution of the
Construction Phase followed by a single
execution of the Improvement Phase, and then
stop. The stopping criterion of Step3 can be
based on customary factors such as the
predefined total computational time exceeds or
no more improved solution can be found. At an
extreme the method may terminate at the
conclusion of a single iteration.

3.4.1 Choosing New Seed Nodes
The issue of generating new seed nodes can

be handled in two main ways.
Procedure 1 When the method selects new

seed nodes at some iteration of Step 3, identify
the best set of clusters produced since the last
time that seed nodes were generated, and specify
the new seed nodes to be k nodes from N that are
(respectively) closest to each of the centers of
gravity of the k clusters.

Procedure 1 corresponds to the one used to
generate new seed nodes in the Modified
K-means Algorithm, except that the k clusters
selected are produced by a different method.

Procedure 2 Identify a best set of k clusters
as in Procedure 1. For each such cluster C,
determine the shortest paths between all pairs of
nodes in C using the distance measure that
assigns the length of each edge. Then select a
seed node r for C that minimizes the quantity

∑ (|ShortestDistance(r, p) – AvgDistance|: p
∈ N(C), p ≠ r)

where

AvgDistance = (∑(ShortestDistance(p, q): (p,
q) ∈ E(C)))/|E(C)|

Procedure 2 is clearly more elaborate than
Procedure 1, but may produce seed nodes that
ultimately result in better clusters than otherwise
obtained on subsequent iterations.

3.4.2 Improvement Phase
The complete form of the Improvement

Phase is based on introducing special processes
to exploit tree structures.
Fundamental Definitions Related to
Exploiting Tree Structures

A node q is called a successor (or descendant)
of p if p can be obtained by a predecessor trace
starting from q, and q is called an immediate

Cao and Glover: Creating Balanced and Connected Clusters to Improve Service Delivery Routes
18 J Syst Sci Syst Eng

successor (or child) of p if p = pred(q).
In particular, let Child(p) = {q ∈ Adjacent(p):

pred(q) = p}. Note that since the predecessor
array pred(p) automatically identifies a node in
specific cluster p belongs to (i.e., the cluster Ci
for i = Cluster(p)), the set Child(p) also refers to
such a specific cluster. Hence automatically,
Cluster(q) = Cluster(p) for all q ∈ Child(p).

For a given cluster C:
Let T(C: p) denote the subtree of T(C) that is

rooted at a given node p; i.e., T(C: p) is the tree
consisting of p and all successors of p in T(C).

Let c denote the node that is dropped from C
by performing the move c D (i.e., transferring
node c from its current cluster to a cluster D) in
the Improvement Phase to create the new cluster
C’, where by C’ = C – c.

Associated with C’ and c, let S’(C: c) be the
subgraph of T(C) which arises by deleting all
nodes of T(C:c) from T(C) (hence also deleting
all edges of T(C) that meet these nodes).

Likewise associated with C’ and c, let V’(C:c)
be the subgraph of T(C) consisting of all
subtrees T(C:p) such that p ∈ Child(c).

We observe that S’(C:c) is itself a subtree
within T(C), and the subgraph of T(C) that
results by dropping c from T(C) (and all edges
of T(C) meeting node c). T(C) is precisely the
union of S’(C:c) and V’(C:c).

A subtree T(C: p) in V’(C: c), where p ∈
Child(c), will be called re-rootable if there exists
an edge (c1, c2) ∈ E(C) such that c1 ∈ N(T(C:p))
and c2 ∈ N(S’(C:c)).

Finally, a collection of subtrees T(C:p) in
V’(C:c) will be called a re-rootable collection if
there exists a set of edges in E(C) that join these
subtrees to create a tree that includes a
re-rootable tree.

Recall that the Connectivity Condition
stipulates that each cluster within Ω is connected,
and note that this condition is satisfied upon the
termination of the Construction Phase, and
hence at the beginning of the Improvement
Phase.

Connectivity Relationship: Assume that Ω
satisfies the Connectivity Condition. Then the
move c D that produces the two new clusters
C’ = C – c and D’ = D + c will yield a new Ω
that satisfies the Connectivity Condition if and
only if V’(C, c) contains at least one re-rootable
tree, and every subtree T(C:p) that is not
re-rootable belongs to a re-rootable collection,
where p ∈ Child(c).
Feasibility Checking and Re-Rooting

A valuable feature of the Connectivity
Relationship is that it can be checked without an
excessive amount of effort. This is based on
executing a “re-rooting procedure” for
identifying re-rootable subtrees and re-rootable
collections that will establish the indicated
connectivity.

To be precise, we identify a Re-Rooting
algorithm as follows. The re-rooting method
ensures the connections of the subtrees in the
process of applying the Connectivity
relationship. The efficiency of this method
depends on the structure of the graphs
encountered.

It is important to observe that the following
algorithm makes use of the Distance function,
whose initial values are inherited from the
Construction Method. In the following
discussion, we assume that node c is removed
from the current cluster C.
Re-Rooting Algorithm
1. For a given subtree T(C:p) (rooted at a node p

Cao and Glover: Creating Balanced and Connected Clusters to Improve Service Delivery Routes
J Syst Sci Syst Eng 19

∈ Child(c)), let c1 denote the first node found
in the subtree that links by an edge to the
subtree S’(C: c). (That is, c1 is found starting
at p and if p itself doesn’t link to S’(C:c) then
we move on successors of p to look for such
a link.)

2. Given c1, choose c2 to be the specific node in
S’(C:c) given by Distance(c2) =
Min(Distance(q): (c1, q) ∈ E and q ∈ N(S’(C:
c)); i.e., (c1, q) joins c1 to S’(C:c)).

3. If c1 differs from p, reverse the predecessor
path from p to c1 by taking each edge (q, j)
on this path such that q = pred(j) and
re-setting pred(q) = j. Finally, set pred(c1) =
c2.
Change the distance measure of any node h

on the new predecessor path, going from c1 in
reverse to p, as follows: Distance(q) =
Distance(p) + length(p, q), where p = pred(q).
Feasibility Checking consists simply of the
following operation. First we identify the
indicated node c1 on each subtree T(C: p)
(before re-linking c1 to a node c2). Then we
conclude that the move is feasible if we find a
qualifying node c1 on each of these subtrees.
Otherwise, we reject the move.
Implementation of the Improvement Phase

It may be expected that in most cases the
choice of a move c D by the Improving
Method will automatically preserve the
connectivity of C’. Hence we will not bother to
apply the Connectivity Relationship procedure
discussed above to check whether each move
being considered is feasible (as opposed to a
move that is finally chosen to be executed).
However, once a particular move c D has
been chosen for execution, then it must be
analyzed to make sure the move is feasible

before it is performed. If the move is not feasible,
then another move must be chosen instead.

3.4.3 Feasibility Preserving Method for
Re-Rooting

The Feasibility Preserving Method, can be
employed when speed of execution dominates
other concerns, and when the rejection of
possibly feasible moves is not considered to be a
great drawback. In fact, the Feasibility
Preserving approach may be able to identify a
significant number of cases where feasible
moves exist

This method shares the ability to operate
without reference to the Distance function.
Instead we make reference to an alternative
predecessor PredA(p), and additionally make
use of a function Safe(p), where Safe(p) =
TRUE if it is safe (i.e., feasible) to choose node
p as the node c in the transfer-move c D, and
Safe(p) = FALSE otherwise (i.e., if we do not
know whether the move c D is feasible, based
on the information processed by the method).
The ability to simply check whether Safe(p) =
TRUE or FALSE when considering a
transfer-move greatly accelerates the
Improvement Method.

In the following procedure, the sets Child(p)
and Adjacent(p) are treated as ordered sets (lists)
and their elements are always to be examined in
the same sequence.

Feasibility Preserving Re-Rooting Algorithm:
(Initialization) When the Improvement Method
is launched (at the conclusion of the
Construction Method) perform the following
steps.

For each i = 1,…k, execute the following
steps:

Cao and Glover: Creating Balanced and Connected Clusters to Improve Service Delivery Routes
20 J Syst Sci Syst Eng

Initialize Cluster Ci

(a) For each node p ∈ N(Ci) (hence i =
Cluster(p)), set Safe(p) = FALSE and
PredA(p) = 0.
(b) Let r = root(Ci) and for each c ∈ N(Ci)
(anticipating the potential later use of c as a
node that will take part in a move of the form
c D), carry out the following operations:

Set ScanChild = Child(c)
Set FailTest = FALSE (the following Test
Routine is assumed not to fail, unless
otherwise determined to do so)
If Child(c) is empty, set Safe(c) = TRUE,
and skip the Test Routine, to examine next
c ∈ N(Ci).
Special case: If c = r execute Special Setup
below in place of the following

Test Routine and Restore Routine.
Test Routine
(1.0) Set NextTrace = FALSE

For each p ∈ ScanChild
If PredA(p) = 0 (automatically true if Trace
= 1) then
Update PredA(p)

For each q ∈ Adjacent(p) such that
Cluster(q) = i
If q ≠ c then

Begin Trace of q:
Set j = q
(2.0) If j = r, then

set PredA(p) = q, pred(p) = q.
If FailTest = TRUE set NextTrace
= TRUE.
Remove p from ScanChild,
set FailTest = FALSE and End
Update PredA(p) (jump out of
Update PredA(p) to get next p ∈
Child(c))

Elseif j = c, then
continue with Next q (retain
PredA(p) = 0)

Else set j = pred(j) and return to (2.0)
Endif

End Trace of q
Endif
Next q ∈ Adjacent(p) (until all are
examined, unless jump out)
FailTest = TRUE (Here PredA(p) = 0).

End Update PredA(p)
Endif
Next p ∈ ScanChild (until all are examined)
If NextTrace = TRUE return to (1.0)
If FailTest = FALSE then set Safe(c) =
TRUE and End Test Routine (jump out, no
need to continue trace)

End Test Routine
Restore Routine

For each p ∈ Child(c) set pred(p) = c
End Restore Routine
Next c ∈ N(Ci)
End Initialize Cluster Ci

Now we handle the special case for c = r:
Special Setup (when c = r):

Select the first p ∈ Child(c) and denote it
by p*.

Set PredA(p*) = 0.
If |Child(c)| = 1 (i.e., Child(c) = p*) then
set Safe(c) = TRUE, and nothing

more needs to be done.
Else

Set Child(c) = Child(c) – {p*} (retaining
the order of remaining elements of
Child(c), treated as an ordered list), set
pred(r) = p* and then r = p*.
Execute Test Routine and Restore
Routine as indicated above (now c = the

Cao and Glover: Creating Balanced and Connected Clusters to Improve Service Delivery Routes
J Syst Sci Syst Eng 21

old “true” r, not the current r).
Finally, set r = c, add p* to the front of
Child(c) and set pred(p*) = r.

Endif
End Special Setup

Underlying Rationale
If the predecessor trace from q adjacent to p

reaches pred(p) (for pred(p) = c) first before
reaching the root r, then the test fails (this q does
not re-link except by passing through pred(p)),
but keep looking for nodes other than q adjacent
to p to see if any of them can trace back and
miss running into pred(p).

If the predecessor trace reaches r first, we
succeed in finding path that skirts pred(p), and
can connect node p to the path when this is
needed (if pred(p) becomes a node c that is
moved to another cluster). The stored value
PredA(p) gives node q that can become the new
predecessor of p (by setting pred(p) = PredA(p))
when the current node pred(p) is moved.

Thus the underlying rationale is to determine
whether it is possible to execute a trace that
reaches root r without going through pred(p).

Even if Safe(pred(p)) = FALSE, we must still
update because we may later remove a node q
that is a child of pred(p) having PredA(q) = 0,
and with this q removed we may be able to set
Safe(pred(p)) = TRUE.
Selecting a Move

A move c D is permitted in this method
only if Safe(c) = TRUE.
Updating the Cluster Structures for a
Selected Move c* D*

Let i* = Cluster(c*).
Together with the process of removing node

c* from cluster Ci* and adding it to cluster D*,
carry out the following updates.

Tree Structure Update for Cluster C* = Ci*
For each p ∈ Child(c*) set pred(p) =
PredA(p)

If c* = root(Ci*), then
Let p* be the first element of Child(c*)
(hence PredA(p*) = 0 and now pred(p*)
= 0). Set root(Ci*) = p*

End Tree Structure Update for Cluster C* = Ci*
Let d* denote the node of D* chosen for c*

to attach to, and let h* = Cluster(d*) (hence Ch*
= D*).
Tree Structure Update for Cluster D* = Ch*

Set pred(c*) = d*
End Tree Structure Update for Cluster D* = Ch*

The preceding changes of course imply
changes in the composition of the children of the
nodes named as predecessors.

Finally, execute the Feasibility Preserving
Re-Rooting Algorithm, but restricted to the two
clusters Ci for i = i* and i =h*. Then proceed
with a new iteration of the Improvement
Algorithm.

It is possible to identify a faster algorithm for
re-rooting the clusters Ci* and Ch*, but the
execution of the Feasibility Preserving
Re-Rooting Algorithm to achieve this re-rooting
only needs to be performed when a move is
actually selected, and does not consume
excessive time.

4. Computational Results
The B&C algorithm of Section 3.4 was

implemented using the C# programming
language, and the computational environment
for all testing experiments was a desktop with
Windows XP professional operating system,
CPU (Platinum IV) speed 3.2 GHz, and 1 GB of
RAM. ESRI’s ArcInfo product was used to

Cao and Glover: Creating Balanced and Connected Clusters to Improve Service Delivery Routes
22 J Syst Sci Syst Eng

generate the Thiessen polygons for all sets of
point data. The datasets were collected from the
real logistics applications in different countries.

In order to consider travel distance and load
balancing simultaneously, we introduce a
weighted objective function:

a1 * Dist + a2 * Dev

where Dist is the value of sum of average travel
distance of each cluster while Dev is the sum of
deviations of quantities to be balanced in each
cluster. Parameters a1 and a2 can be manually
adjusted to reflect business practice. For
example, in some cases it may be more desirable
to minimize the average travel distance while in
other cases it may be preferable to build well
balanced clusters. The ability to combine the
effects of these two factors (travel distance and
balancing quantity) facilitates the
implementation of the solver (by turning the
problem into one having a single objective) and
provides flexibility for meeting various business
needs.

Based upon the methodology of re-rooting,
involving the addition and deletion of nodes
from clusters, we implemented the following
inter-cluster improvement steps:

 Node transfer: a node is removed from its
current assigned cluster and added to another
cluster if the objective function value can be
improved (reduced)

 Node exchange: two nodes exchange their
assigned clusters as a basis for improving
the objective function
The improvement procedure first performs a

node transfer operation followed by a node
exchange operation, and the entire improvement
sequence is performed three times. The

improvement procedure always starts with the
current best solution, and the procedure
terminates if no improvement can be found. An
effort to find the best improvement at each
iteration can be very time consuming, and
consequently we adopted a threshold that
determines the degree of improvement that is
considered admissible for selecting a move; i.e.,
if the improvement in the objective function
exceeds this threshold the move will be accepted
immediately instead of looking for further
improvement. Based on preliminary experiments,
we set this threshold to be 0.01. Furthermore, in
order to better evaluate the objective function,
we normalize the values of Dist and Dev to lie in
the range [0, 1]. The datasets in the following
computational experiments are extracted from
real logistics applications.

We present the computational results to
demonstrate the following facts:

 The B&C parameters impact overall results
(balance vs. compactness)

 The B&C algorithm is able to create
balanced and connected clusters, and

 There is a significant difference between the
clusters produced by the B&C algorithm and
conventional clustering algorithms such as
the K-means method.

Dataset 1 In this dataset, there are 328 stops
with each stop having capacity ranging from 1 to
13. Figure 6 shows the locations of these stops.

The stops are not evenly distributed in the
underlying area. Figure 7 and Figure 5 show the
results for the two different parameter settings.
The outcomes shown below were created by the
algorithm without any human intervention.

Cao and Glover: Creating Balanced and Connected Clusters to Improve Service Delivery Routes
J Syst Sci Syst Eng 23

Figure 6 Stops for dataset 1

Figure 7 Result for dataset 1 where a1 = 0.8 and a2 =
0.2

Figure 8 Result for dataset 1 where a1 = 0.2 and a2 =
0.8

Table 1 summarizes the computational
results for these two parameter settings.

The table confirms that the different
parameter settings have a significant impact on
the solution results. In addition, the map display

indicates that the clusters produced by the B&C
algorithm have very clean boundaries, and do
not suffer the defect commonly encountered in
this type of setting where some stop is enclosed
spatially within a cluster other than the one to
which it is assigned (i.e., the cluster that actually
contains the stop “interpenetrates” the second
cluster). By putting a heavier weight on the
balancing factor, all clusters are well balanced.
When the focus is on minimizing expected
travel time, the algorithm delivers the desired
result while keeping each cluster well bounded.

Table 1 Results for dataset 1

Problem
type

Cluster
capacity

Average
travel

distance

Computational
Time

983 342
983 424

a1 = 0.8
and a2 =

0.2 988 176
32 sec.

985 340
984 432

a1 = 0.2
and a2 =

0.8 985 173
34 sec.

Dataset 2 in this dataset we consider a real
service territory planning problem having a large
quantity of stops to be clustered. Figure 9
depicts the stops for this dataset.

Figure 9 Stops for dataset 2

This application contains 22052 stops, each
with a capacity of 1 unit. The objective is to

Cao and Glover: Creating Balanced and Connected Clusters to Improve Service Delivery Routes
24 J Syst Sci Syst Eng

build clusters having a balanced number of stops.
Based upon the business logic, the entire
territory should be divided into five (5) service
territories so that one territory will be serviced
every weekday. Furthermore, the service center
is located in the center of the area, and the user
requires that each cluster should be structured to
access this service center.

We set 5 seed points around the service
center to induce the clusters to start from the
service center. Figure 10 shows the visual
representations of the clusters for this dataset.

Figure 10 Visual result for dataset 2

The visual display for this dataset shows that
all clusters start from the center of the
underlying territory, which satisfies the initial
business requirement. Several stops (displayed
in green) located on the north tip appear to be
separated from other stops of the same cluster.
Based upon the Thiessen polygon created for
this dataset, these stops are in fact adjacent to
other stops in the same green cluster; hence, the
results do not violate the connectivity condition
by reference to this polygon. Furthermore, since
the clusters have very clean boundaries, the user
of the system can adjust the result by moving
selected groups of stops between clusters to
make the visual appearance of the outcome more

esthetically pleasing.
As mentioned earlier, we have not found a

clustering algorithm that is able to handle the
challenge of creating balanced and connect
clusters found in the logistics industry. In order
to demonstrate the significant difference
between the proposed algorithm and a widely
used alternative clustering algorithm, we
conduct benchmark tests comparing the
outcomes of our approach with those obtained
by the K-means algorithm. All datasets are
selected from real applications, albeit
geographic locations are different. We have
restricted the form of the benchmarks to permit
the K-means algorithm to be applied. In
particular, while our algorithm is able to handle
heterogeneous stops having different capacities,
such a scenario cannot be handled by the
K-means algorithm. Therefore, to permit a
comparison we set all capacities to be 1. The
balancing goal then becomes that of balancing
the number of stops in each cluster.
Computational results are listed in the following
table, which identifies the size of a problem in
terms of the number of stops to be clustered and
the ideal number of stops in each cluster. For the
K-means and the B&C algorithm, we list the
computation times and report the minimum and
maximum number of stops for each problem to
show the degree of balance achieved.

The table confirms that the K-means
algorithm is very fast, as expected. However, it
lacks the capacity to create well balanced
clusters and consequently performs poorly
relative to this criterion, severely restricting its
value for applications in the logistics industry.
The B&C algorithm takes longer to achieve its
results but produces clusters that are appreciably

Cao and Glover: Creating Balanced and Connected Clusters to Improve Service Delivery Routes
J Syst Sci Syst Eng 25

superior in terms of the balance criterion. It is
interesting to note that as the number of clusters
increases, the computation time usually
decreases for a given dataset. This reflects the
fact that when the number of clusters increases,
the B&C algorithm requires fewer steps to
improve the overall solutions (clusters). The
computation time also depends on the
geographic characteristics of the area where the
stops are located, and on how the stops are

distributed in the area.
A Real World Application

Our B&C algorithm has been used in a real
world application for a delivery service
company as a system to plan daily delivery
territories. The results dramatically confirmed
the effectiveness of the algorithm, which made it
possible to reduce the number of vehicles
employed while increasing the number of
customers served per vehicle. In addition, a

Table 2 Computational comparisons

K-means Algorithm Our algorithm Problem
Size

(number
of stops)

Num.
clusters
(Avg. #
stops)

Min. stops
in a

cluster

Max.
stops in a

cluster

CPU
time

Min. stops
in a

cluster

Max.
stops in a

cluster
CPU time

1063 3 (354) 61 770 1 sec. 354 355 19 min. 23 sec.
1063 9 (118) 41 348 2 sec. 118 118 7 min. 2 sec.
1063 15 (71) 26 255 2 sec. 70 71 6 min.
1884 5 (377) 10 878 2 sec. 293 411 3 min. 2 sec.
1884 10 (188) 10 564 2 sec. 177 189 2 min. 50 sec.
1884 17 (111) 13 329 2 sec. 101 120 1 min. 23 sec.
3058 10 (306) 173 808 6 sec. 300 320 4 min. 20 sec.
3058 15 (204) 105 698 12 sec. 200 208 3 min. 52 sec.
3058 20 (153) 79 426 7 sec. 145 168 4 min.
5247 10 (528) 273 1226 18 sec. 510 545 25 min. 45 sec.
5247 20 (262) 135 848 10 sec. 253 270 10 min. 50 sec.
5247 30 (175) 51 676 10 sec. 143 192 6 min. 50 sec.

Table 3 Benefits of algorithm

Number of Vehicles Employed
Before System Deployed After System Deployed
40 20
Number of Customers Serviced per Vehicle
Before System Deployed After System Deployed
60 93
Number of Products Delivered per Vehicle
Before System Deployed After System Deployed
45 75
Average Vehicle Loading Rate
Before System Deployed After System Deployed
51% 81%
Time Spent on Planning Territories
Before System Deployed After System Deployed
days < 30 minutes

Cao and Glover: Creating Balanced and Connected Clusters to Improve Service Delivery Routes
26 J Syst Sci Syst Eng

substantial increase resulted in the number of
products delivered per vehicle, accompanied by
a significant improvement in the average vehicle
loading rates. Finally, the amount of time spent
on planning the territories was reduced from
days to less than half an hour.

Table 3 displays the results before and after
the system was deployed.

In summary, the algorithm succeeded in
identifying a collection of territories that made it
possible for the vehicle routing system to create
efficient delivery routes that achieved significant
economic outcomes.

5. Conclusions
Our B&C algorithm for creating balanced

and connected clusters provides an effective
means for exploiting Thiessen polygons, as
demonstrated by computational tests on datasets
drawn from real world applications. The
re-rooting component and utilization of
spanning-tree data structure of our algorithm
succeeds in retaining connectivity in an efficient
manner throughout the solution improvement
steps. The computational outcomes further
disclose the algorithm’s robustness, which
enables a user to apply the algorithm without
extensive tuning and without having to change
parameter values to solve problems whose
objectives belong to a common class. These
features afford significant advantages in
reducing the planning time and increasing the
quality of outcomes obtained in designing
service territories.

Future research will focus on enhancements
to handle additional problem considerations and
to introduce additional algorithmic features,
including (1) a capability to handle conditions

where particular service persons or vehicles
cannot service particular stops in a territory (2)
the introduction of adaptive memory
metaheuristics (principally tabu search) to guide
the current local search process to yield better
solutions; (3) the utilization of multi-core CPU
to speed up the algorithm; and (4) the creation of
corresponding advanced data structures to
maintain algorithmic efficiency.

Acknowledgements
We would like to express our gratitude to

two anonymous referees for their very useful
suggestions to improve our manuscript.

References
[1] Barreto, S., Ferreira, C., Paixao, J. & Santos,

B.S. (2007). Using clustering analysis in a
capacitated location-routing problem.
European Journal of Operational Research,
179: 968-977

[2] Blakeley, F., Bozkaya, B., Cao, B. & Hall,
W. (2003). Optimizing periodic maintenance
operations for Schindler Elevator
Corporation. Interfaces, 33: 67-79

[3] Braysy, O. & Gendreau, M. (2005). Vehicle
routing problems with time windows, part I:
route construction and local search
algorithms. Transportation Science, 39:
104-118

[4] Braysy, O. & Gendreau, M. (2005). Vehicle
routing problems with time windows, part II:
metaheuristics. Transportation Science, 39:
119-139

[5] Dondo, R. & Cerda, J. (2007). A
cluster-based optimization approach for the
multi-depot heterogeneous fleet vehicle
routing problem with time windows.

Cao and Glover: Creating Balanced and Connected Clusters to Improve Service Delivery Routes
J Syst Sci Syst Eng 27

European Journal of Operational Research,
176: 1478-1507

[6] Estivill-Castro, V. & Lee, I. (2001). Fast
spatial clustering with different metrics and
in the presence of obstacles. In: GIS’01,
142-147, November 9-10, 2001

[7] Fan, B. (2009). A hybrid spatial data
clustering method for site selection: The data
driven approach of GIS mining. Experts
Systems with Applications, 36: 3923-3936

[8] Hruschka, H. & Natter, M. (1999).
Comparing performance of feedforward
neural nets and K-means for cluster-based
market segmentation. European Journal of
Operational Research, 114: 346-355

[9] Huff, D.L. (1963). A probabilistic analysis of
shopping center trade areas. Land Economics,
39: 81-90

[10] Humair, S. & Willems, S.P. (2006).
Optimizing strategic safety stock placement
in supply chains with clusters of
commonality. Operations Research, 54:
725-742

[11] Karypis, G. & Kumar, V. (1998). A fast
and high quality multilevel scheme for
partitioning irregular graphs. SIAM Journal
of Scientific Computing, 20: 359-392

[12] Kwon, Y.J, Kim, J.G., Seo, J., Lee, D.H. &
Kim, D.S. (2007). A Tabu search algorithm
using Voronoi diagram for the capacitated
vehicle routing problem. In: Proceeding of
5th International Conference on
Computational Science and Applications,
IEEE Computer Society, 480-485

[13] MacQueen, J.B. (1967). Some methods for
classification and analysis of multivariate
observations. In: Proceedings of 5-th
Berkeley Symposium on Mathematical

Statistics and Probability, 1: 281-297,
Berkeley, University of California Press

[14] Strehl, A. & Ghosh, J. (2002).
Relationship-based clustering and
visualization for high-dimensional data
mining. INFORMS Journal on Computing,
1-23

[15] Zhang, B., Yin, W.J., Xie, M. & Dong, J.
(2007). Geo-spatial clustering with
non-spatial attributes and geographic
non-overlapping constraint: a penalized
spatial distance measure. In: Proceeding of
PAKKD’07, 1072-1079, Springer-Verlag
Berlin Heidelberg

Buyang Cao has earned his B.S. and M.S.
degrees in Operations Research at University of
Shanghai for Science and Technology, and his
Ph.D. in Operations Research at University of
Federal Armed Forces Hamburg, Germany. He
is working as an Operations Research team
leader at Esri, Inc., California, USA. Currently
he is also a guest professor at School of
Software Engineering at Tongji University,
Shanghai, China. He has been involved and led
various projects related to solving logistics
problems including Sears vehicle routing
problems, Schindler Elevator periodic routing
problems, a major Southern California Energy
technician routing and scheduling problems, taxi
dispatching problems for a luxury taxi company
in Boston, etc. He published papers in various
international journals on logistics solutions, and
he also reviewed scholar papers for several
international journals. His main interest is to
apply GIS and optimization technologies to
solve complicated decision problems from real
world.

Cao and Glover: Creating Balanced and Connected Clusters to Improve Service Delivery Routes
28 J Syst Sci Syst Eng

Fred Glover holds the title of Distinguished
Professor at the University of Colorado and is
Chief Technology Officer for OptTek Systems,
Inc. He has authored or co-authored more than
400 published articles and eight books in the
fields of mathematical optimization, computer
science and artificial intelligence. He is the
recipient of the distinguished von Neumann

Theory Prize, an elected member of the National
Academy of Engineering, and has received
honorary awards and fellowships from the
American Association for the Advancement of
Science (AAAS), the NATO Division of
Scientific Affairs, the Miller Institute of Basic
Research in Science and numerous other
organizations.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

