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Abstract 
A challenging problem in real world logistics applications consists in planning service territories 

for customer deliveries, in contexts where customers must be clustered into groups that satisfy various 
conditions such as balance and connectivity. In this paper we propose new algorithms for producing 
such clusters based upon special procedures for exploiting Thiessen polygons. Our methods are able to 
handle multiple criteria for balancing the clusters, such as the number of customers in each cluster, the 
service revenue in each cluster, or the delivery/pickup quantity in each cluster. Computational results 
demonstrate the efficacy of our new procedures, which are able to assist users to plan service personal 
service territories and vehicle routes more efficiently. 
Keywords: Clustering, K-means, logistics, routing, Thiessen Polygon 
 

1. Introduction 
In practical applications of routing and 

distribution, a service or logistics provider 
continually faces the challenge of providing the 
best service to customers. Typically this 
challenge is cast in the framework of 
determining the most effective way to pick up 
and deliver freight or services from customers to 
other customers within a specified area, subject 
to limitations on resources such as service 
personnel and vehicles (drivers). This 
optimization problem can advantageously be 
modeled as a vehicle routing problem with time 
windows (VRP/TW), yielding a formulation that 
has been studied by many researchers. A 

VRP/TW is an NP hard problem, and it has 
attracted a lot of research interest. A 
comprehensive survey of VRP/TW and of 
various algorithms for solving this type of 
problem appears in Braysy & Gendreau (2005).  

Because of the complexity of a VRP/TW, it 
is very difficult if not impossible to achieve a 
satisfactory solution to many real world 
instances of the problem within a reasonable 
computational time. It is not practical to solve a 
VRP/TW to optimality; especially under the 
frequently encountered conditions where 
response times (the time window within which 
an answer is needed) is a critical concern.  A 
variety of different solution strategies have been 
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devised in order to solve the VRP/TW more 
effectively. Most of these algorithms employ a 
cluster-first and route-second strategy in order 
to address real application problems effectively.  

Another commonly encountered challenge in 
solving these problems arises from the fact that, 
due to the limited availability of resources, a 
service or logistics provider is generally unable 
to service all customers within a service territory. 
Therefore, it can become highly desirable to 
divide the entire area into several subareas 
according to the business practices for providing 
services to these subareas. For instance, a given 
subarea may be serviced on certain days of the 
week or by a certain sets of drivers (vehicles). 
The problem then arises: how to create these 
subareas to meet the business logic.  

The problem we address has the following 
characteristics. For a given service territory, 
there are thousands of customers, and each 
customer has an associated service value 
(delivery/pick up quantity, service revenue, or 
service time). The service resource is limited. 
Therefore, not all customers can be serviced on 
a single day. We are required to develop a 
decision-support system to help the user create 
sub-areas within this territory so that each 
sub-area can be serviced on a single day. The 
following criteria must be considered while 
building these sub-areas: 
 Each sub-area should be as compact as 

possible so that the expected service cost 
and (especially) the travel time and distance 
to service the sub-areas will be minimal. 

 Each sub-area must be connected, which 
means no customer of a sub-area can lie 
within the geographic boundaries of another 
sub-area. This requirement is imposed by 

the business practice; in particular, 
customary rules require that a person who 
services a given sub-area must not service a 
customer inside of another sub-area. The 
creation of connected sub-areas has another 
advantage. If the sub-areas have clean 
boundaries, then it will be much easier for 
the system user to adjust the sub-areas 
created by the computer in order to meet 
special business needs that had not 
previously been envisioned or that are 
difficult to embody within the model 
framework.  

 The sub-areas should be balanced. Balance 
criteria can be expressed as bounds on 
differences in the numbers of customers in 
different sub-areas, or in the service value 
of different sub-areas. These balance criteria 
are motivated, for example, by the desire to 
reduce fluctuations in daily service revenue 
and in the requirements for personnel to 
service the sub-areas.  

In the following discussion we will use the 
term cluster to represent a sub-area. Expressed 
more generally, the problem consists in 
determining how to group or cluster the 
customers, which may abstractly be treated as 
points within the service territory, while 
honoring the rules imposed by business practice 
such as restrictions on total service capacity 
(total working hours combined with vehicle 
capacities including weights and volumes), 
balanced work load (service levels or 
delivery/pickup quantities), non-overlapped 
subareas, etc. A crucial  goal in creating such  a 
clustering problem is to form well separated 
point groups (clusters) such that the average 
travel time or distance within each cluster is 
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minimal, subject to assuring that the real total 
travel time or distance to service a cluster will 
be minimum as well.  

Clustering problems, particularly these 
having a mix of both spatial and non-spatial 
attributes, can be found in variety of applications. 
General clustering algorithms can be found in 
various applications such as logistics industry, 
imagery processing, data mining etc. For 
instance, Humair & Willems (2006) proposed an 
algorithm to identify clusters (or clusters of 
commonality) in supply chain networks, whose 
purpose is to provide more efficient structure to 
solve certain optimization problems such as 
optimizing safety stock levels and locations. 
Barreto et al. (2007) presented clustering 
methodology for solving capacitated 
location-routing problems to find locations to set 
up warehouses or service centers in order to 
solve the resultant VRP problems more 
effectively. 

In the context of multi-depot vehicle routing 
problems with time windows, Dondo & Cerda 
(2007) proposed a cluster-based approach to 
give a basis for generating tighter routes. In this 
procedure, all customer locations are clustered 
and the clusters in turn are assigned to vehicles. 
The approach accounts for vehicle capacities, 
time windows and idle time. The goal is to build 
a cluster yielding a low average travel distance 
for each location.  

Fan (2009) models a site selection problem 
as a point clustering problem (and proposes a 
hybrid algorithm combining K-means clustering 
and simulated annealing to solve it. In his 
method, the distance measurement is based on 
Euclidean distances. However, he modified this 
measure to incorporate an “obstructed distance” 

between two locations if their straight line link 
was intersected by geographic obstacles such as 
rivers, mountains, highways, etc. Fan 
represented obstacles by superimposing convex 
or concave polygons upon the underlying 
geographic data. By this means it was 
anticipated that distances between locations 
would be able to take geographic features into 
account more realistically. 

GIS (geographic information system) 
technology is often utilized in such applications 
due to its ability to supply vital information such 
as geographic feature data, street network 
information, speed limits on street segment and 
lengths of street segments, and to keep track of 
restrictions such as vehicle heights, weights, and 
volumes that need to be considered by 
optimization procedures. For example, 
Estivill-Castro & Lee (2001) combine data 
mining and GIS as a means to consider 
geographic obstacles such as hills or rivers. The 
authors devise a clustering algorithm utilizing a 
Voronoi diagram to set up a topological structure 
for a given set of points as a basis for retrieving 
spatial information related to various definitions 
of neighbors, and report their method to be 
successful for handling the presence of obstacles. 
Kwon et al. (2007) proposed a Tabu Search 
algorithm to solve capacitated vehicle routing 
problems, using a Voronoi diagram to narrow the 
search space during the solution process. 
However, the results did not find that the 
contribution of the Voronoi diagram to 
narrowing the search space was sufficient to beat 
the existing benchmark results. 

Within a practical setting, Blakeley et al. 
(2001) report the application of GIS and 
optimization technologies in technician 
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scheduling and dispatching for Schindler 
Elevator Corporation. The application system 
improved Schindler service routes, increased 
profitability, and saved over $1million annually. 
Zhang et al. (2007) use related analysis to study 
the problem of creating geographic 
non-overlapping clusters, where geographic 
areas containing special features of interest are 
defined in order to facilitate decision making; 
for instance, identifying two subareas one of 
which contains low-income households while 
the other contains high-income households, in 
order to establish different policies for these 
subareas. In this case the authors develop an 
algorithm utilizing a spatial distance measure 
capable of considering non-spatial attributes and 
geographic non-overlapping constraints 
simultaneously.  

Strehl & Ghosh (2002) developed an 
interesting algorithm to address real-life 
data-mining problem found in retail-industry 
and some web applications, in which data reside 
in a very high dimensional space. Their 
approach introduces a similarity relationship 
defined on each pair of data samples. After 
similarities are computed, the problem is 
transformed to one over the similarity domain 
and the original high-dimensional space is no 
longer needed. The goal is to cluster data 
samples into k groups so that data samples for 
different clusters have similar characteristics. 
The authors formulated this problem as a 
vertex-weighted graph partitioning problem, 
where each vertex (data sample) is assigned a 
weight representing its importance and each pair 
of vertices is connected by an undirected edge 
whose weight is determined by their similarity 
measurement. The objective of this partitioning 

problem is to produce a minimum weight 
solution that accounts for the vertex weight 
balancing constraint. The authors developed an 
algorithm called OPOSSUM (Optimal 
Partitioning of Space Similarities Using Metis 
(Karypis & Kumar 1998)) using the Metis 
approach proposed by Karypis and Kumar as the 
multi-objective graph partitioning engine. 

Huff (1963) proposed an interesting model 
for retail trade area analysis that determines how 
customers within a region should be assigned to 
a given set of service centers (e.g., stores). 
Huff’s model specifies the probability of 
assigning a customer to a store as follows: 
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where:  
 Aj is a measure of attractiveness of store j 

(such as square footage) 
 Dij is the distance from i to j 
 α is an attractiveness parameter estimated 

from empirical observations 
 β is the distance decay parameter estimated 

from empirical observations 
 n is the total number of stores. 

For a store that has a larger attractiveness 
measure and lies closer to a customer, the 
preceding formulation assures that the customer 
will have a larger probability of being assigned 
to the store. However, if a store is far away from 
a customer, then the power of attracting this 
customer fades. Therefore, larger stores that are 
closer to the area where most customers are 
located will generally have a higher probability 
of getting customers.  

It is important to note, however, that none of 
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the foregoing applications includes 
consideration of designing clusters capable of 
meeting balancing criteria, as embodied in the 
need to assure balanced service levels and 
delivery/pickup quantities and non-overlapped 
clusters simultaneously. The present work 
undertakes to address these crucial concerns. 

In particular, we face the challenge of 
developing optimization algorithms capable of 
exploiting GIS technology to create balanced 
and connected clusters, where each cluster can 
be treated as a service territory. We especially 
seek to produce a flexible design that will permit 
the criteria for balancing the clusters to embrace 
a variety of options, such as those based on the 
number of customers in each cluster, the service 
revenue in each cluster, or the delivery/pickup 
quantity in each cluster.  

In sum, our methodology undertakes to 
provide the following contributions to handling 
service territory planning and design issues in 
the logistics and service industry: 

 A new framework that enables users in 
logistics and service industry to plan and 
design their service areas more efficiently 

 A capability to address issues of creating 
geographically non-overlapped and balanced 
clusters simultaneously.  

 Methodology to effectively maintain the 
connectivity of clusters during the cluster 
creation and improvement processes by 
drawing on topologic relationships derived 
from Thiessen (Voronoi) Polygons. 

 Flexibility and scope to handle multiple 
clustering objectives. 
In the following exposition, Section 2 

describes the clustering problem in more detail, 
and section 3 presents the algorithms to solve 

balanced clustering problems. Computational 
results documenting the effectiveness of our new 
procedures are presented in section 4. Finally, 
we summarize our findings and present some 
conclusions in section 5. 

2. Problem Description 

2.1 Conventions and Terminology  
We formulate our problem by reference to a 

graph G = (N, E) where N is a set of nodes that 
are to be clustered, and E is a set of edges 
joining pairs of these nodes. In our present 
routing application, the sets N and E are derived 
from Thiessen polygons. Figure 1 displays an 
illustrative set of points and Figure 2 identifies 
the Thiessen polygons based upon these points.  

 

Figure 1 Customer locations (points) 

The motivation for creating the Thiessen 
polygons is as follows. We imagine each 
polygon to be represented by a node of the graph 
G. If two polygons touch (i.e., share a common 
boundary or at least one vertex of a boundary), 
then the two nodes corresponding to these 
polygons are linked by creating an edge of the 
graph that joins them. Nodes joined by edges are 
called adjacent.  



Cao and Glover: Creating Balanced and Connected Clusters to Improve Service Delivery Routes 
6  J Syst Sci Syst Eng 

 

Figure 2 Thiessen polygons for the given point set 

The adjacency relationship is used to 
overcome some shortcomings of common 
clustering algorithms such as K-means that are 
susceptible to generating clusters that overlap, 
i.e., where some nodes of a cluster are 
completely embedded in other clusters. Zhang et 
al. (2007) listed a sufficient condition to 
guarantee non-overlapping clusters, however, 
this condition usually is not met in real world 
settings. Therefore, extra effort is needed to 
ensure the resultant clusters are connected, i.e., 
they are not overlapping. 

In our problem, each node p ∈ N contains a 
specified capacity, or weight, w(p) and the 
weight w(C) of a cluster C is defined by w(C) = 
∑(w(p): p ∈ C). We allow for the possibility that 
a node may have more than one capacity or 
weight. A collection Ω of clusters is understood 
to be complete (and feasible) if its nodes create a 
partition of the set N, i.e., the node sets of the 
clusters C ∈ Ω are pairwise disjoint and their 
union is N. 

2.2 Problem Objective 
The goal of our problem, roughly stated, is to 

create a clustering set Ω so that each cluster C ∈ 
Ω contains approximately the same number of 
nodes and each cluster has approximately the 
same weight, where |Ω| = k and k is the 

predefined number of clusters to be created. 
There are two important variations to this 

objective.  
Variation 1: According to a specified level 

of priority, create Ω in relation to a distance 
measure so that each cluster C ∈ Ω is composed 
of nodes that are closer to other nodes of the 
same cluster than they are to nodes of other 
clusters.) 

Variation 2: Create Ω in relation to a 
specified center point so that each cluster C ∈ Ω 
lies in its own region relative to this point, where 
the regions resemble slices of a pie passing 
through this center.  

The motivation underlying the Problem 
Objective and the two preceding variations is to 
produce clusters that give a foundation for 
creating routes that can be served by different 
vehicles and on different days. The second 
variation refers to routes that all start from the 
same center point. Each of the variations is 
assumed to be compatible with the initially 
stated objective and with each other. 

The following requirement also has a critical 
relevance to routing problems. 

2.3 Connectivity Requirement 
Each cluster must be connected, i.e., every 

two distinct nodes in the cluster must be joined 
by a path formed of edges in E (and their 
associated nodes in N).  

For the following we represent the node set 
N by writing N = {pi: i ∈ I} where I = {1, … , n} 
is the index set for the nodes pi in N.  

3. Solution Methodology 
K-means (MacQueen 1967) is one of the 

simplest unsupervised learning algorithms for 
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solving the point clustering problem. The 
algorithm attempts to minimize the value of a 
squared error function defined as: 

V = ΣΣ(|xi – Xk| 2+ |yi – Yk|2)  

where |xi – Xk| 2+ |yi – Yk|2 is a chosen distance 
measure between a node pi, i ∈ I, represented by 
its xi and yi coordinates and the centroid of 
cluster Ck if this node is contained in this cluster 
(Here we consider points lying on a 2-dimension 
plane, where each node’s location is presented 
by its x and y coordinates). 

The K-means algorithm consists of the 
following steps: 1) Start with K randomly 
selected points as the centroids for all clusters 
respectively; 2) Assign each node to the cluster 
whose centroid is closest to the node; 3) 
Re-compute the centroids for all clusters that 
receive new nodes; 4) Repeat steps 2) and 3) 
until no centroid will be changed. The procedure 
creates the clustering result in which the 
objective function V cannot be improved further 
by performing steps 2) and 3).  

The K-means algorithm is relatively easy to 
implement and reasonably effective for many 
types of applications. However, in its original 
form, the method is unable to handle the goals of 
creating balanced and non-overlapping clusters. 
In the following sections we propose algorithms 
that can address these issues that cannot be 
resolved by applying the K-means algorithm 
directly. 

The limitations of the original K-means 
algorithm are demonstrated by Hruschka & 
Natter (1999), who present an interesting 
comparison of performance between K-means 
and a feedforward neural network in finding 
market segmentation (structure). Their results 

show that the outcome obtained by the neural 
network is generally better than that obtained by 
the original K-means approach. It should be 
pointed out that this finding contradicts some 
published studies claiming that neural networks 
are not superior to the original K-means 
approach. 

In the following algorithm description 
sections, we use Euclidean distance as the 
distance measurement in the algorithms. 
However, this is not a limitation. Our algorithms 
can readily use alternative distance measures, 
which may be employed to address geographic 
obstacles such as rivers, bays, and mountains. 
Relevant examples include:  

 the distance calculation method suggested by 
Fan (2009), or 

 the distance computed by using GIS system 
that utilizes the underlying street network. 
When a distance between two locations is 

computed based upon the real street network, 
any geographic obstacles that may be present are 
automatically taken into account while 
computing the distance. The distance computed 
in this manner has an important effect on the 
clusters produced by the clustering algorithm 
proposed in this paper. The following example 
demonstrates this. Figure 3 displays the stops to 
be clustered and the area where these stops are 
located. As seen from the picture, a river divides 
the region into two sections. Figure 4 depicts the 
result obtained by utilizing Euclidean distance 
and Figure 5 shows the result obtained by the 
same solver based upon the real street distance. 

The clusters based on Euclidean distance 
create some undesirable outcomes, including 
situations where clusters cross the river, and 
where some stops cannot be reached at all. Such 
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outcomes are to be expected because the 
Euclidean distance doesn’t consider the 
underlying geographic characteristics.  

 

Figure 3 Stops to be clustered 

 
Figure 4 Result obtained based upon Euclidean 

distance 

By contrast, Figure 5 demonstrates clearly 
that as long as the real street distance is 
employed, the proposed clustering solver is able 
to consider geographic obstacles effectively. Of 
course some stops are left un-clustered because 
they are not reachable via streets. Hence in the 
following discussion we will denote the distance 
between two nodes pi and pj by d(pi, pj) without 
explicitly indicating the form of the distance 
measure d, understanding that real street 
distances may be used in conditions where they 
are appropriate. 

 

Figure 5 Result obtained based on real street 
distance 

3.1 Modified K-means Algorithm 
We first describe a preliminary version of a 

balanced and connected cluster algorithm called 
the modified K-means algorithm for creating the 
clustering set Ω. The purpose of this method is 
to build an initial Ω which is then enhanced by 
an improving procedure described in the 
subsequent sections. The modified K-means 
algorithm is designed to insure that the 
connectivity requirement will be fulfilled, which 
is not insured by the ordinary K-means 
algorithm. The modified K-means is also able to 
quickly create an initial solution for our more 
advanced procedure discussed below. 

Let pi and pj, i, j ∈ I, be two nodes that 
belong to two different clusters Cr and Cs 
respectively. If pi and pj connect by an edge (pi, 
pj) ∈ E, then pi and pj are called boundary nodes, 
and the move pi  Cs, which reassigns pi to the 
cluster Cs (dropping it from Cluster Cr) is called 
an admissible move. Note that a given boundary 
node pi of Cr may have more than one 
admissible move; that is, there may be an edge 
(pi, pq) ∈ E joining pi to a node pq that belongs 
to a cluster Ct different from Cs. Furthermore, an 
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admissible move may not be a feasible move in 
the sense of preserving connectivity. 

We consider the following two balancing 
scenarios. 

Let Navg denote the “average” number of 
nodes in a cluster, where Navg = the nearest 
integer neighbor of n/k and k is the number of 
clusters to be created. For any boundary node pi 
in a cluster Cr, define the balance value of an 
admissible move pi  Cs to be: (1) 2 if | Cr | > 
Navg and | Cs | < Navg, (2) 1 if (1) is not true but | 
Cr | > | Cs | + 1; (3) 0 if | Cr | = | Cs | + 1, and (4) 
-1 if | Cr | ≤ | Cs |.  

Define the weight W(C) of a cluster C to be 
the sum of the weights in C, and let Wavg denote 
the overall average cluster weight to be the sum 
of all weights divided by the number of clusters 
k. Then, for cluster C, we define the absolute 
value weight measure WM(C) = |W(C) – Wavg|. 
Note this value is 0 if the weight of C equals the 
“perfect” weight Wavg, and otherwise WM(C) is a 
positive value indicating how much W(C) differs 
from this perfect weight. Finally, define the 
weight value of the move pi  Cs to be WM(Cr) 
+ WM(Cs) – WM(Cr – pi) – WM(Cs + pi), where 
Cr – pi is the cluster that results from dropping pi 
from Cr and Cs + pi is the cluster that results by 
adding pi to Cs. This weight value is the 
improvement (if positive) or the deterioration (if 
negative) in achieving the target weights Wavg 
for the two clusters that are changed.   
Modified K-means algorithm outline: 
0. (Starting Method) Generate an initial 

collection Ω = {C1, …, Ck} of k clusters:  
Select k initial “seed points” by the following 
rule, where Io denotes the index set of nodes 
currently selected. 
First choose a node pi*, i* ∈ I, that lies 

closest to the centroid of the nodes in N, and 
create the initial form of the first cluster by 
setting C1 = {i*}, together with setting Io = 
{i*}.  
For h = 2 to k: 

Select a node pi*, i* ∈ I – Io whose 
minimum distance from the nodes pj, j ∈ Io 

is maximum; i.e.,  
i* = arg max (Min(d(pi, pj): j ∈ Io): i ∈ I – 
Io). 

Let Ch = {i*} and Io := Io ∪ {i*}. 
Endfor 
Denote the centroid of cluster Ch by ch, for h 
∈ K = {1, …, k}. 

1. (Assignment Step) For each node pi, i ∈ I 
assign node i to the cluster Ch* whose 
centroid ch is closest to pi; i.e., select h* = arg 
min(d(pi, ch): h ∈ K) and set Ch* := Ch* + pi. 
(If ties exist in identifying h*, select h* to be 
the tied value of h such that Ch contains the 
fewest number of nodes.)  
Identify the new centroid ch of each resulting 
cluster Ch.  
If no centroid ch changes, then stop. 
Otherwise, repeat the Assignment Step. 

2. (Improving Method) Improve the initial 
solution: 
The goal is to select an admissible move 
having a largest non-negative balance value 
and, subject to this, having a maximum 
weight value. Define a move to be improving 
if it has either (1) a positive balance value or 
(2) a non-negative balance value and a 
positive weight value. 
Make improving moves until no more remain, 
or the predefined number of iterations has 
been reached. Save the current best solution. 
Special Provision: Each time an improving 
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move is made, it must be checked for 
feasibility by a “Feasibility Checking 
Method” subsequently described. If a chosen 
move is infeasible (i.e., if it destroys the 
connectivity of a new cluster created) then a 
“Feasibility Preservation Method” is 
employed that modifies the choice of an 
admissible move. 

3. (Optional step) Generation of new solution 
space: 
Select a new set of seed points and repeat 
steps 0 to 2. 

Enhanced assignment method for step 1 of 
the modified K-means algorithm 

We now introduce an enhanced assignment 
algorithm to replace the approach of Step 1 of 
the preceding method, by incorporating a 
strategy that further diverges from the classical 
K-means method in two important ways.  

First, instead of assigning each node to the 
cluster whose centroid is closest and updating 
the centroids after all nodes have been assigned 
as the original K-means algorithm does, for each 
node we evaluate the assignments for all clusters 
and then make only the assignment with the 
highest evaluation. The new cluster thus 
produced is immediately updated before making 
any further assignments, thereby identifying a 
changed centroid for this new cluster that can 
change the evaluations previously generated.  

This one-at-a-time process of changing 
clusters could require greater execution time, but 
it allows a more responsive mechanism for 
evaluating assignments. Moreover, the execution 
time can be greatly reduced by accounting for 
the fact new evaluations need only be carried out 
in relation to the cluster that changes. We can 
use an efficient update derived from keeping 

track of the best cluster assignment for each 
node, which will change only if the evaluation 
of assigning this node to the new cluster 
qualifies it as the new best, or if the previous 
best cluster for the node happens to be the 
cluster that has changed.  By this means, each 
successive step of evaluations and comparisons 
can be performed very rapidly. 

The second main divergence from the 
classical K-means approach is to change the 
evaluation rule that only accounts for the 
distances from nodes to cluster centroids. We 
propose to replace this evaluation by a “Min 
Worst Deviation Rule,” which we describe in the 
form where it is joined with the one-at-a-time 
rule, as follows. 

Min Worst Deviation Rule: During the 
process of constructing the clusters, each cluster 
is to receive a weight as close as possible to a 
target weight given by Target(C) = |C|AvgWeight, 
where AvgWeight = the sum of all node weights 
divided by n (the number of nodes). Upon 
adding a node to a given cluster C to produce a 
new cluster C+, the number of elements in C+ 
will be given by |C+| = |C| + 1. We apply a 
choice criterion that selects a node to add to C 
that will make the new weight W(C+) of C+ as 
close as possible to Target(C+). Upon identifying 
a “best node” pi to add to each cluster Ci (i = 
1, …,k) by this criterion, then we identify the 
specific cluster Cq such that adding pq to Cq will 
minimize the worst deviation of any present 
cluster from its target weight. Cq will often be 
the cluster that already has the worst deviation 
from its target weight, and then we will just pick 
the best possible pq to add to it.  

We observe that the strategic ideas embodied 
in this rule can be applied in other settings by 
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changing the definition of Target(C) to reflect 
the objectives of alternative contexts. 

The Min Worst Deviation Rule can be 
applied to Step 1 of the Modified K-means 
algorithm as follows: 

Once the seed points are selected, then we 
choose a node p to add to a chosen cluster C at 
each step based upon: first, the added node p 
must be adjacent to a node that already belongs 
to the cluster C. Second, pick p and C so that the 
clusters are as close as possible to being 
balanced by weight at each step, employing the 
criterion of the Min Worst Deviation rule. This 
constructive method is additionally controlled to 
prevent the number of nodes in any cluster from 
growing too large.  

However, our proposed modifications of the 
K-means algorithm are not yet sufficient to 
handle our goal of creating balanced and 
connected clusters. A number of subtle 
considerations must be taken into account to 
achieve this goal, which we address by 
identifying a more comprehensive algorithm that 
takes our preceding observations to a 
significantly more advanced level.  

3.2 Advanced Balanced and Connected 
Cluster Algorithm 

Our advanced Balanced and Connected 
(B&C) cluster algorithm consists of a 
Construction Phase and an Improvement Phase. 
We begin by describing the Construction Phase 
which contains ideas that are fundamental for 
setting the stage for the Improvement Phase. 
Basic notation and definitions 

For any subgraph S of G, let N(S) and E(S) 
respectively denote the node and edge sets of S. 
For example, we write N(Ω) and E(Ω) to 

identify the node and edge sets respectively that 
belong to the set of all clusters Ω. 

We specifically make use of the following 
definitions. 

Adjacent(p) = {q: (p, q) ∈ E}  

By common terminology, we say q is 
adjacent to p if q ∈ Adjacent(p), hence if p and q 
are joined by an edge. (By symmetry, q ∈ 
Adjacent(p) evidently implies p ∈ Adjacent(q).) 

Outside = N – N(Ω)  

Hence Outside is the set of nodes that do not 
belong to any cluster. 

Together with the foregoing, we use the 
notation T(C) to refer to a selected spanning tree 
contained in cluster C, and denote the root of T 
= T(C) by r. The purpose of utilizing a spanning 
tree is to gain an efficient data structure for the 
solver implementation, effective evaluation of 
solutions’ qualities, and feasibilities. (The 
particular cluster C that r is associated with will 
always be clear from the context, so we do not 
have to write r = r(C).) In the following 
discussion, r is the node selected to be the 
centroid of cluster C in the solution procedure. 
Key Observations:  

1) The Connectivity Requirement is 
equivalent to saying that it is possible to identify 
a spanning tree T(C) associated with each cluster 
C.  

2) The tree T(C) can be oriented so that each 
node p of the tree (hence every node of C) 
except for the root r, has a unique predecessor 
which we will denote by pred(p). A trace of 
predecessors, that starts with a node p and 
iteratively sets p:= pred(p) identifies the unique 
path in the tree from the initial node p to the root. 
Each node on a predecessor path is distinct from 
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all other nodes on the path (understanding that 
the path ends with a root r, where by convention 
pred(r) = –1). 

3) When C gains a new node q during a 
constructive process, it also gains all edges 
connecting q to other nodes of C. However, T(C) 
gains exactly one of these edges, together with 
the node q. (Any of these edges can be added to 
T(C) to create a new tree, but we will choose a 
specific edge based on a rule described 
subsequently.) 

Let length(p, q) denote the distance measure 
between nodes p and q, which is assumed 
positive if p ≠ q. For a tree T = T(C), we define: 

Distance(p) = distance measure of the path 
from the root r to p; i.e., the sum of the 
quantities length(p, q) over all edges (p, q) 
∈ E that lie on the path  

By convention, Distance(p) = 0 if p is the 
root node r. In the following description we will 
refer to Distance(p) as the Distance Function. 

We point out that if the lengths of all edges 
in the graph are 1, then the Distance function 
corresponds to the Depth Function. Our 
discussion, however, will be based upon the 
Distance Function and all propositions and 
observations are applicable to the special case 
where the Depth Function is used in place of the 
Distance Function. 

It is important to keep in mind that the 
distance function Distance(p) is defined relative 
to the specific spanning tree T = T(C) associated 
with cluster C, and that different trees (or 
different roots) within the cluster would produce 
different distance functions. Moreover, since all 
the clusters C ∈ Ω are node-disjoint, there is no 
danger that the definition of Distance(p) will be 

ambiguous by referring to more than one tree 
T(C). Consequently, a single distance function 
Distance(p) can be used for all trees. Given that 
Distance(p) = 0 identifies p as a root node r, we 
employ the convention that Distance(p) = – 1 if 
p does not belong to any cluster C at the present 
state of construction.  

We make use of the distance function to 
decide which nodes and edges should be added 
to clusters during the construction phase. For 
this, we first need to identify the cluster nodes to 
which new edges (leading outside the cluster) 
can be permissibly added.  

A node p ∈ C is called extensible if there 
exists an edge (p, q) joining p to some outside 
node q (i.e., q ∈ Outside, and more particularly, 
q ∈ Outside∩Adjacent(p)).  

This terminology is motivated by the 
observation that we can select the node p and 
add the edge (p, q) to “extend” cluster C 
(causing it to contain an additional node). As 
emphasized in Key Observation (1), the fact that 
we identify the edge (p, q) is important to assure 
that the cluster is connected. As a natural 
counterpart of this terminology, a cluster C is 
called extensible if it contains at least one 
extensible node. 

We denote the set of extensible nodes in C 
by Extensible(C) and the set of extensible nodes 
in all clusters (hence all extensible nodes) 
simply by Extensible without mention of a 
particular cluster C. 

Analogous to the definition of extensible 
nodes, which belong to clusters, we also 
consider reachable nodes, which do not belong 
to any cluster (i.e., which are outside nodes) and 
which are joined by edges to extensible nodes. 
Hence, in particular, we consider the set of 



Cao and Glover: Creating Balanced and Connected Clusters to Improve Service Delivery Routes 
J Syst Sci Syst Eng  13 

nodes reachable from a given extensible node p 
by  

Reachable(p) = {q ∈ Outside: (p, q) ∈ E} 

Similarly, we define the set of nodes 
reachable from an extensible cluster C by 

Reachable(C) = {q ∈ Reachable(p): p ∈ 
Extensible(C)}. 

Generating a specific tree T(C) associated 
with C 

By making use of the preceding definitions, 
we specify the following rule for generating the 
tree T(C), which will be employed at each 
iteration of a constructive method. 

Min Distance Linking Rule. Given the choice 
of an extensible cluster C, and the choice of any 
given node q ∈ Reachable(C) to create a new 
cluster C+ by adding q to C, create an extension 
of the tree T(C) to produce a new tree T(C+) by 
adding the specific edge (p, q) ∈ E, where the 
node p ∈ Extensible(C) is chosen to satisfy 
Distance(q) = Min(Distance(h) + length(h, q): 
for all h ∈ Extensible(C) and (h, q) ∈ E).  

The significance of this rule is demonstrated 
as follows. 

Define a minimum path to be a path between 
two nodes having the minimum sum of length(p, 
q), where p and q are on the path and (p, q) ∈ E. 

We say a tree T(C) has the Min Path 
Property if the predecessor path from every 
node p in T(C) to the root r is a minimum path in 
the subgraph for cluster C. Then we can make 
the following observation. 
Proposition 1 Assume T(C) has the Min Path 
Property, and consider any node q ∈ 
Reachable(C) that is added to C to produce a 
new cluster C+. Then the new tree T(C+) 
associated with C+ will satisfy the Min Path 

Property if and only if T(C+) is generated by the 
Min Distance Linking Rule. 
Additional rules for generating T(C) 

For each node p ∈ Extensible, we define: 

BestNeighbor(p) = {q ∈ Outside | 
min(length(p, r), (p, r) ∈ E and r ∈ 
Outside)},  

i.e., the outside node closest to p. The number of 
elements in BestNeighbor(p) for any p can be 1 
or more. 

We identify a set of “best” reachable nodes, 
which consist of nodes that can be reached by 
edges from extensible nodes of C. 

BestReachable(C) = {q ∈ BestNeighbor(p), 
for any p ∈ Extensible(C)}. 

The reason for calling this a “best” set refers 
to the fact that we will always select nodes from 
this set as a basis for extending C to create a 
new cluster. 

Finally, it is convenient to identify the index 
i of a cluster C = Ci (i = 1,…,k) such that p ∈ Ci 
by setting Cluster(p) = i. By convention, 
Cluster(p) = 0 if p does not yet belong to any of 
the clusters under construction. 

Best Reachable Choice Rule: Let C* denote 
the cluster that is chosen to be extended. Then 
choose a node q to add to the cluster C* by 
requiring that q ∈ BestReachable(C*). 
Associated with q, identify an edge (p, q) such 
that p ∈ Extensible(C*), and complete the 
process of adding q to C* by setting Distance(q) 
= Depth(p) + length(p, q), Cluster(q) = Cluster(p) 
and pred(q) = p, hence adding node q and edge 
(p, q) to the tree T(C*) (and yielding |Ci| := |Ci| + 
1 where i = Cluster(p)). 

This rule is motivated by the fact that it will 
cause paths starting from the centroid of a 
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cluster generated due to adding new nodes to 
increase by as little as possible. Based upon the 
property of BestReachable, it is clear to 
understand that by this process of adding a node 
q that creates the shortest path from the centroid 
in C, we avoid growing trees with long paths, 
and favor bushy trees whose terminal nodes are 
relatively close to the root. It can also be seen 
that the foregoing rule also implicitly embodies 
the Min Dist Linking Rule within it. Hence, as a 
result of Proposition 1 we may state 
Proposition 2 If the Best Reachable Choice Rule 
is applied at every iteration of a constructive 
method (starting from initial clusters that consist 
of a single node) then every tree T(C) that is 
generated will satisfy the Min Path Property. 

The basis for this rule is further supported by 
the following definition and observation: 

We define a cluster C to be compact if every 
extensible node p in C satisfies min(Distance(q)) 
= Distance(p) + length(p, q) for some q in 
Reachable(C).  
Proposition 3 All clusters will be compact at 
each iteration of a constructive process if and 
only if the Best Reachable Choice Rule is used. 

This compactness property has the following 
motivation. While the same cluster can have a 
variety of different trees associated with it, if we 
maintain the tree compact the cluster C itself 
will tend to be as “compact” as possible.  
Multiple criteria priorities considerations 

To complete the Construction Phase of the 
B&C method, it remains to identify the specific 
cluster C* that will be chosen as a basis for 
applying the Best Reachable Choice Rule 
described above.  

Identifying the Chosen Cluster C* by the 
First Priority of Balance: Our choice of C* is 

given in a natural way by the fact that our first 
priority is to create clusters that are balanced by 
cardinality. To exploit this objective, define 

MinCardinality = Min(|C|: C is extensible) 

PreferredClusters = {C is extensible: |C| = 
MinCardinality} 

Preferred Cluster Rule: Apply the Best 
Reachable Choice Rule by selecting C* to 
satisfy C* ∈ PreferredClusters.  

This rule means that we will not build up the 
size of a larger extensible cluster before building 
up the size of a smaller one. 

Identifying the Chosen Cluster C* by the 
Second Priority of Weight: We seek to include 
the influence of weight balance in this choice. 
We assume that more than one option exists for 
creating a new tree by the preceding choice rules, 
so that there is latitude to choose among these 
options in a way that favors producing clusters 
with balanced weights.  

As earlier, we consider a target value for the 
weight of a cluster C given by Target(C) = 
|C|AvgWeight, where AvgWeight is the average 
of all node weights. Then we identify the 
(absolute value) amount by which the current 
weight W(C) of C deviates from meeting this 
target: 

CurrentDeviation = |W(C) – Target(C)| 

Similarly, the new deviation that results from 
creating a new cluster C+, is given by 

NewDeviation = |W(C+) – Target(C+)| 

Then the improvement in the weight balance 
objective from a choice that produces a new 
cluster C+ is given by the quantity 

WeightImprovement = CurrentDeviation – 
NewDeviation,  
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where a negative value represents a deterioration. 
Thus, when more than one option exists to 
extend a cluster C = C* to produce a new cluster 
C+ (which means either that there is more than 
one choice for C* in the Preferred Cluster Rule, 
or that there is more than one choice for a node 
q that can be added to a given C* by the Best 
Reachable Choice Rule), we select the option 
that yields the largest value of 
WeightImprovement. 

Giving Increased Priority to the Weight 
Criterion: Greater latitude for using the 
WeightImprovement criterion can result by 
slightly revising the definition of 
BestNeighbor(p). Instead of  

BestNeighbor(p) = {q ∈ Outside | 
min(length(p, r), (p, r) ∈ E and r ∈ 
Outside)} 

we may use the alternative definition 

BestExtensible(C) = {q ∈ Outside | length(p, 
r) < minLen + Δ, (p, r) ∈ E and r ∈ 
Outside)} 

where minLen is the minimal edge length 
among all edges (p, r), p is an extensible node 
and r ∈ Outside. The quantity Δ represents a 
selected nonnegative value.  

More choices will exist for applying the 
WeightImprovement criterion as Δ increases, 
hence potentially improving the weight balance 
at the risk of impairing the cardinality balance of 
the solution ultimately produced. This allows the 
method to be adapted to handle situations where 
the cardinality balance objective does not 
completely dominate the weight balance 
objective. 

3.3 Construction Phase Incorporating a 
Shortest Path Distance Measure 

We introduce ShortestDist(ri: p) to denote the 
shortest path distance from the root ri of cluster 
Ci to node p. As mentioned earlier, this distance 
can take any form appropriate to the problem at 
hand, whether a Euclidean measure or a street 
network measure that accounts for geographic 
obstacles. 

This distance will be calculated only for 
specific cluster and node pairs, so that 
ShortestDist(ri:p) will be known for every node 
p ∈ N(Ci). Similarly the distance ShortestDist(ri: 
q) will be calculated for q ∈ Reachable(Ci), 
where in the following, for convenience, we 
denote this latter set by Reachable[i]. 

The value ShortestDist(ri:p) will be accurate 
for p ∈ N(Ci), but ShortestDist(ri: q) at first will 
be an “estimate” for  q ∈ Reachable[i]. 
Subsequently, this estimate will be verified as 
accurate when node q is transferred from 
Reachable[i] to N(Ci).  

We will also make use of a predecessor list 
pred(q) and a special additional predecessor list 
pred(i:q), where the latter list is a list “parallel” 
to Reachable[i], so that each q ∈ Reachable[i] 
identifies a second node p = pred(i:q) where p ∈ 
N(Ci), and (p, q) ∈ E.   
Construction Phase Based on Shortest 
Distance Values  
0. Select an initial seed node for each Cluster Ci, 

i = 1,…,k to become the root node ri of the 
cluster, hence N(Ci) = ri and E(Ci) = ∅. At 
the same time, create Reachable[i]= 
Adjacent(ri). i = 1,…,k. 

For each q ∈ Reachable[i], set 
ShortestDist(ri:q) = length(ri,q) and set 
pred(i:q) = ri. Finally, for each i = 1,…,k, we 
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define the value MinReachableDist(i) and 
identify the set BestReachable(i) based upon 
the definitions given above. 

1. Choose the cluster index i* to identify a 
cluster Ci* from the set of PreferredClusters, 
and choose the node q* so that q* ∈ 
BestReachable(i*). Then remove node q* 
from Outside (hence removing it from 
Reachable[i*] and also removing it from all 
sets Reachable[i] that contain q*), and add q* 
to N(Ci*). Accompanying this, set pred(q*) = 
p, where p ∈ N(Ci) and (p, q) ∈ E. We 
complete the updating of Reachable[i*] 
according to its definition (by forming its 
union with the set Reachable(q*)) in the next 
step.  

2. Define TrialDistance(h) = ShortestDist(ri*:q*) 
+ length(q*,h), (q*,h) ∈ E. 

For each h ∈ Reachable(q*): if h ∉ 
Reachable[i*] then update the shortest 
distance value by setting ShortestDist(ri*:h) = 
TrialDistance(h), setting pred(i*:h) = q* and 
adding h to Reachable[i*]. But if h ∈ 
Reachable[i*], then update the shortest 
distance value only if TrialDistance(h) < 
ShortestDist(ri*:h) (and add h to 
Reachable[i*]). 

Taking Advantage of Ties 
We note there are multiple places in the 

foregoing method where ties may occur in the 
choice rules, as in selecting the cluster i* and in 
choosing the node q* once i* has been selected. 
(In addition, there may even be ties possible in 
selecting the node p* = pred(i*:q*), though we 
have treated this predecessor node as unique for 
simplicity.) The above discussion of weights and 
targets in multiple criteria considerations gives 
rules for breaking these ties to handle weight 

balancing objectives. (That is, we use these rules 
to choose the tied option that gives the largest 
value of WeightImprovement and to incorporate 
the Revised Targets in successive iterations of 
the method.)  
Increasing the emphasis on the distance 
criterion 

To handle those applications where it is 
desirable to place more emphasis to the distance 
criterion in creating balanced clusters, we 
proceed as follows.  

First, we choose among the candidates for 
Ci* in the set of PreferredClusters by identifying 
a node q* ∈ BestReachable(i) and defining 
NextShortest(i) = Min(ShortestDist(ri:j): j ∈ 
BestReachable(i) – {q*}).  

Then we define DifDistance(i) = 
NextShortest(i) – ShortestDist(ri:q*) and pick 
Ci* ∈ PreferredClusters so that DifDistance(i*) = 
Max(DifDistance(i): Ci ∈ PreferredClusters). 
Thus, we minimize the regret of not picking a 
particular shortest distance node whose next 
shortest distance exceeds the shortest distance 
by the greatest amount. 

To apply this type of distance criterion even 
more strongly, we enlarge the set of 
PreferredClusters by redefining it to be  

PreferredClusters = {Ci is extensible: |Ci| ≤ 
MinCardinality + α}  

where α is a selected nonnegative number. 
Selecting α to be large allows the distance 
criterion dominate the cardinality balancing 
criterion entirely. 
 
3.4 Overall Structure of the B&C Cluster 

Method 
The overall structure of the B&C Cluster 

Method, which includes an Improvement Phase 
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to augment the fundamental Construction Phase, 
can now be sketched as follows. After 
expressing the method in outline form, we 
subsequently describe the Improvement Phase in 
detail. 
0. Choose initial seed nodes as roots and initial 

Target(Ci) values for the clusters Ci, i =1,…,k. 
Then, until a termination condition is reached, 
execute the following: 

1. Apply the Advanced Construction Phase.  
2. Apply the Improvement Phase. 
3. Until a stopping criterion is met, choose new 

seed (root) nodes and/or new target values 
and return to Step 1. 
The Construction Phase of Step 1 and the 

Improvement Phase of Step 2 can be coordinated 
in a different fashion by requiring the 
Improvement Phase to invariably follow the 
Construction Phase. For example, the 
Improvement Phase can be skipped on selected 
iterations, as by executing a series of iterations 
where only the Construction Phase is applied, 
and then applying the Improvement Phase 
starting from the best outcome produced by the 
Construction Phase during these iterations. 
Alternatively, a simple version of the approach 
might skip the Improvement Phase entirely, or 
instead perform a single execution of the 
Construction Phase followed by a single 
execution of the Improvement Phase, and then 
stop. The stopping criterion of Step3 can be 
based on customary factors such as the 
predefined total computational time exceeds or 
no more improved solution can be found. At an 
extreme the method may terminate at the 
conclusion of a single iteration. 

3.4.1 Choosing New Seed Nodes 
The issue of generating new seed nodes can 

be handled in two main ways. 
Procedure 1 When the method selects new 

seed nodes at some iteration of Step 3, identify 
the best set of clusters produced since the last 
time that seed nodes were generated, and specify 
the new seed nodes to be k nodes from N that are 
(respectively) closest to each of the centers of 
gravity of the k clusters.  

Procedure 1 corresponds to the one used to 
generate new seed nodes in the Modified 
K-means Algorithm, except that the k clusters 
selected are produced by a different method.  

Procedure 2 Identify a best set of k clusters 
as in Procedure 1. For each such cluster C, 
determine the shortest paths between all pairs of 
nodes in C using the distance measure that 
assigns the length of each edge. Then select a 
seed node r for C that minimizes the quantity 

∑ (|ShortestDistance(r, p) – AvgDistance|: p 
∈ N(C), p ≠ r)  

where  

AvgDistance = (∑(ShortestDistance(p, q): (p, 
q) ∈ E(C)))/|E(C)| 

Procedure 2 is clearly more elaborate than 
Procedure 1, but may produce seed nodes that 
ultimately result in better clusters than otherwise 
obtained on subsequent iterations.  

3.4.2 Improvement Phase 
The complete form of the Improvement 

Phase is based on introducing special processes 
to exploit tree structures. 
Fundamental Definitions Related to 
Exploiting Tree Structures 

A node q is called a successor (or descendant) 
of p if p can be obtained by a predecessor trace 
starting from q, and q is called an immediate 
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successor (or child) of p if p = pred(q). 
In particular, let Child(p) = {q ∈ Adjacent(p): 

pred(q) = p}. Note that since the predecessor 
array pred(p) automatically identifies a node in 
specific cluster p belongs to (i.e., the cluster Ci 
for i = Cluster(p)), the set Child(p) also refers to 
such a specific cluster. Hence automatically, 
Cluster(q) = Cluster(p) for all q ∈ Child(p).  

For a given cluster C: 
Let T(C: p) denote the subtree of T(C) that is 

rooted at a given node p; i.e., T(C: p) is the tree 
consisting of p and all successors of p in T(C).  

Let c denote the node that is dropped from C 
by performing the move c  D (i.e., transferring 
node c from its current cluster to a cluster D) in 
the Improvement Phase to create the new cluster 
C’, where by C’ = C – c.  

Associated with C’ and c, let S’(C: c) be the 
subgraph of T(C) which arises by deleting all 
nodes of T(C:c) from T(C) (hence also deleting 
all edges of T(C) that meet these nodes). 

Likewise associated with C’ and c, let V’(C:c) 
be the subgraph of T(C) consisting of all 
subtrees T(C:p) such that p ∈ Child(c). 

We observe that S’(C:c) is itself a subtree 
within T(C), and the subgraph of T(C) that 
results by dropping c from T(C) (and all edges 
of T(C) meeting node c). T(C) is precisely the 
union of S’(C:c) and V’(C:c).  

A subtree T(C: p) in V’(C: c), where p ∈ 
Child(c), will be called re-rootable if there exists 
an edge (c1, c2) ∈ E(C) such that c1 ∈ N(T(C:p)) 
and c2 ∈ N(S’(C:c)). 

Finally, a collection of subtrees T(C:p) in 
V’(C:c) will be called a re-rootable collection if 
there exists a set of edges in E(C) that join these 
subtrees to create a tree that includes a 
re-rootable tree.  

Recall that the Connectivity Condition 
stipulates that each cluster within Ω is connected, 
and note that this condition is satisfied upon the 
termination of the Construction Phase, and 
hence at the beginning of the Improvement 
Phase. 

Connectivity Relationship: Assume that Ω 
satisfies the Connectivity Condition. Then the 
move c  D that produces the two new clusters 
C’ = C – c and D’ = D + c will yield a new Ω 
that satisfies the Connectivity Condition if and 
only if V’(C, c) contains at least one re-rootable 
tree, and every subtree T(C:p) that is not 
re-rootable belongs to a re-rootable collection, 
where p ∈ Child(c). 
Feasibility Checking and Re-Rooting 

A valuable feature of the Connectivity 
Relationship is that it can be checked without an 
excessive amount of effort. This is based on 
executing a “re-rooting procedure” for 
identifying re-rootable subtrees and re-rootable 
collections that will establish the indicated 
connectivity. 

To be precise, we identify a Re-Rooting 
algorithm as follows. The re-rooting method 
ensures the connections of the subtrees in the 
process of applying the Connectivity 
relationship. The efficiency of this method 
depends on the structure of the graphs 
encountered.  

It is important to observe that the following 
algorithm makes use of the Distance function, 
whose initial values are inherited from the 
Construction Method. In the following 
discussion, we assume that node c is removed 
from the current cluster C.  
Re-Rooting Algorithm 
1. For a given subtree T(C:p) (rooted at a node p 
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∈ Child(c)), let c1 denote the first node found 
in the subtree that links by an edge to the 
subtree S’(C: c). (That is, c1 is found starting 
at p and if p itself doesn’t link to S’(C:c) then 
we move on successors of p to look for such 
a link.)  

2. Given c1, choose c2 to be the specific node in 
S’(C:c) given by Distance(c2) = 
Min(Distance(q): (c1, q) ∈ E and q ∈ N(S’(C: 
c)); i.e., (c1, q) joins c1 to S’(C:c)). 

3. If c1 differs from p, reverse the predecessor 
path from p to c1 by taking each edge (q, j) 
on this path such that q = pred(j) and 
re-setting pred(q) = j. Finally, set pred(c1) = 
c2. 
Change the distance measure of any node h 

on the new predecessor path, going from c1 in 
reverse to p, as follows: Distance(q) = 
Distance(p) + length(p, q), where p = pred(q). 
Feasibility Checking consists simply of the 
following operation. First we identify the 
indicated node c1 on each subtree T(C: p) 
(before re-linking c1 to a node c2). Then we 
conclude that the move is feasible if we find a 
qualifying node c1 on each of these subtrees. 
Otherwise, we reject the move. 
Implementation of the Improvement Phase 

It may be expected that in most cases the 
choice of a move c  D by the Improving 
Method will automatically preserve the 
connectivity of C’. Hence we will not bother to 
apply the Connectivity Relationship procedure 
discussed above to check whether each move 
being considered is feasible (as opposed to a 
move that is finally chosen to be executed). 
However, once a particular move c  D has 
been chosen for execution, then it must be 
analyzed to make sure the move is feasible 

before it is performed. If the move is not feasible, 
then another move must be chosen instead.  

3.4.3 Feasibility Preserving Method for 
Re-Rooting 

The Feasibility Preserving Method, can be 
employed when speed of execution dominates 
other concerns, and when the rejection of 
possibly feasible moves is not considered to be a 
great drawback. In fact, the Feasibility 
Preserving approach may be able to identify a 
significant number of cases where feasible 
moves exist  

This method shares the ability to operate 
without reference to the Distance function. 
Instead we make reference to an alternative 
predecessor PredA(p), and additionally make 
use of a function Safe(p), where Safe(p) = 
TRUE if it is safe (i.e., feasible) to choose node 
p as the node c in the transfer-move c  D, and 
Safe(p) = FALSE otherwise (i.e., if we do not 
know whether the move c  D is feasible, based 
on the information processed by the method). 
The ability to simply check whether Safe(p) = 
TRUE or FALSE when considering a 
transfer-move greatly accelerates the 
Improvement Method. 

In the following procedure, the sets Child(p) 
and Adjacent(p) are treated as ordered sets (lists) 
and their elements are always to be examined in 
the same sequence. 

Feasibility Preserving Re-Rooting Algorithm: 
(Initialization) When the Improvement Method 
is launched (at the conclusion of the 
Construction Method) perform the following 
steps.  

For each i = 1,…k, execute the following 
steps: 
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Initialize Cluster Ci 

(a) For each node p ∈ N(Ci) (hence i = 
Cluster(p)), set Safe(p) = FALSE and 
PredA(p) = 0.  
(b) Let r = root(Ci) and for each c ∈ N(Ci) 
(anticipating the potential later use of c as a 
node that will take part in a move of the form 
c  D), carry out the following operations:  

Set ScanChild = Child(c) 
Set FailTest = FALSE (the following Test 
Routine is assumed not to fail, unless 
otherwise determined to do so) 
If Child(c) is empty, set Safe(c) = TRUE, 
and skip the Test Routine, to examine next 
c ∈ N(Ci). 
Special case: If c = r execute Special Setup 
below in place of the following  

Test Routine and Restore Routine. 
Test Routine 
(1.0) Set NextTrace = FALSE 

For each p ∈ ScanChild 
If PredA(p) = 0 (automatically true if Trace 
= 1) then 
Update PredA(p)  

For each q ∈ Adjacent(p) such that 
Cluster(q) = i 
If q ≠ c then 

Begin Trace of q:  
Set j = q 
(2.0) If j = r, then  

set PredA(p) = q, pred(p) = q. 
If FailTest = TRUE set NextTrace 
= TRUE. 
Remove p from ScanChild,  
set FailTest = FALSE and End 
Update PredA(p) (jump out of 
Update PredA(p) to get next p ∈ 
Child(c)) 

Elseif j = c, then 
continue with Next q (retain 
PredA(p) = 0) 

Else set j = pred(j) and return to (2.0) 
Endif 

End Trace of q 
Endif 
Next q ∈ Adjacent(p) (until all are 
examined, unless jump out) 
FailTest = TRUE (Here PredA(p) = 0). 

End Update PredA(p) 
Endif 
Next p ∈ ScanChild (until all are examined) 
If NextTrace = TRUE return to (1.0) 
If FailTest = FALSE then set Safe(c) = 
TRUE and End Test Routine (jump out, no 
need to continue trace) 

End Test Routine 
Restore Routine 

For each p ∈ Child(c) set pred(p) = c 
End Restore Routine 
Next c ∈ N(Ci) 
End Initialize Cluster Ci 

Now we handle the special case for c = r: 
Special Setup (when c = r): 

Select the first p ∈ Child(c) and denote it 
by p*. 

Set PredA(p*) = 0.  
If |Child(c)| = 1 (i.e., Child(c) = p*) then 
set Safe(c) = TRUE, and nothing  

more needs to be done. 
Else 

Set Child(c) = Child(c) – {p*} (retaining 
the order of remaining elements of 
Child(c), treated as an ordered list), set 
pred(r) = p* and then r = p*.  
Execute Test Routine and Restore 
Routine as indicated above (now c = the 
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old “true” r, not the current r). 
Finally, set r = c, add p* to the front of 
Child(c) and set pred(p*) = r. 

Endif 
End Special Setup 

Underlying Rationale  
If the predecessor trace from q adjacent to p 

reaches pred(p) (for pred(p) = c) first before 
reaching the root r, then the test fails (this q does 
not re-link except by passing through pred(p)), 
but keep looking for nodes other than q adjacent 
to p to see if any of them can trace back and 
miss running into pred(p).  

If the predecessor trace reaches r first, we 
succeed in finding path that skirts pred(p), and 
can connect node p to the path when this is 
needed (if pred(p) becomes a node c that is 
moved to another cluster). The stored value 
PredA(p) gives node q that can become the new 
predecessor of p (by setting pred(p) = PredA(p)) 
when the current node pred(p) is moved.  

Thus the underlying rationale is to determine 
whether it is possible to execute a trace that 
reaches root r without going through pred(p). 

Even if Safe(pred(p)) = FALSE, we must still 
update because we may later remove a node q 
that is a child of pred(p) having PredA(q) = 0, 
and with this q removed we may be able to set 
Safe(pred(p)) = TRUE. 
Selecting a Move 

A move c  D is permitted in this method 
only if Safe(c) = TRUE. 
Updating the Cluster Structures for a 
Selected Move c*  D* 

Let i* = Cluster(c*). 
Together with the process of removing node 

c* from cluster Ci* and adding it to cluster D*, 
carry out the following updates.  

Tree Structure Update for Cluster C* = Ci*  
For each p ∈ Child(c*) set pred(p) = 
PredA(p) 

If c* = root(Ci*), then  
Let p* be the first element of Child(c*) 
(hence PredA(p*) = 0 and now pred(p*) 
= 0). Set root(Ci*) = p* 

End Tree Structure Update for Cluster C* = Ci*  
Let d* denote the node of D* chosen for c* 

to attach to, and let h* = Cluster(d*) (hence Ch* 
= D*).  
Tree Structure Update for Cluster D* = Ch*  

Set pred(c*) = d* 
End Tree Structure Update for Cluster D* = Ch*  

The preceding changes of course imply 
changes in the composition of the children of the 
nodes named as predecessors. 

Finally, execute the Feasibility Preserving 
Re-Rooting Algorithm, but restricted to the two 
clusters Ci for i = i* and i =h*. Then proceed 
with a new iteration of the Improvement 
Algorithm. 

It is possible to identify a faster algorithm for 
re-rooting the clusters Ci* and Ch*, but the 
execution of the Feasibility Preserving 
Re-Rooting Algorithm to achieve this re-rooting 
only needs to be performed when a move is 
actually selected, and does not consume 
excessive time. 

4. Computational Results 
The B&C algorithm of Section 3.4 was 

implemented using the C# programming 
language, and the computational environment 
for all testing experiments was a desktop with 
Windows XP professional operating system, 
CPU (Platinum IV) speed 3.2 GHz, and 1 GB of 
RAM. ESRI’s ArcInfo product was used to 
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generate the Thiessen polygons for all sets of 
point data. The datasets were collected from the 
real logistics applications in different countries.  

In order to consider travel distance and load 
balancing simultaneously, we introduce a 
weighted objective function: 

a1 * Dist + a2 * Dev 

where Dist is the value of sum of average travel 
distance of each cluster while Dev is the sum of 
deviations of quantities to be balanced in each 
cluster. Parameters a1 and a2 can be manually 
adjusted to reflect business practice. For 
example, in some cases it may be more desirable 
to minimize the average travel distance while in 
other cases it may be preferable to build well 
balanced clusters. The ability to combine the 
effects of these two factors (travel distance and 
balancing quantity) facilitates the 
implementation of the solver (by turning the 
problem into one having a single objective) and 
provides flexibility for meeting various business 
needs. 

Based upon the methodology of re-rooting, 
involving the addition and deletion of nodes 
from clusters, we implemented the following 
inter-cluster improvement steps: 

 Node transfer: a node is removed from its 
current assigned cluster and added to another 
cluster if the objective function value can be 
improved (reduced) 

 Node exchange: two nodes exchange their 
assigned clusters  as a basis for improving 
the objective function 
The improvement procedure first performs a 

node transfer operation followed by a node 
exchange operation, and the entire improvement 
sequence is performed three times. The 

improvement procedure always starts with the 
current best solution, and the procedure 
terminates if no improvement can be found. An 
effort to find the best improvement at each 
iteration can be very time consuming, and 
consequently we adopted a threshold that 
determines the degree of improvement that is 
considered admissible for selecting a move; i.e., 
if the improvement in the objective function 
exceeds this threshold the move will be accepted 
immediately instead of looking for further 
improvement. Based on preliminary experiments, 
we set this threshold to be 0.01. Furthermore, in 
order to better evaluate the objective function, 
we normalize the values of Dist and Dev to lie in 
the range [0, 1]. The datasets in the following 
computational experiments are extracted from 
real logistics applications. 

We present the computational results to 
demonstrate the following facts: 

 The B&C parameters impact overall results 
(balance vs. compactness) 

 The B&C algorithm is able to create 
balanced and connected clusters, and 

 There is a significant difference between the 
clusters produced by the B&C algorithm and 
conventional clustering algorithms such as 
the K-means method. 

Dataset 1 In this dataset, there are 328 stops 
with each stop having capacity ranging from 1 to 
13. Figure 6 shows the locations of these stops. 

The stops are not evenly distributed in the 
underlying area. Figure 7 and Figure 5 show the 
results for the two different parameter settings. 
The outcomes shown below were created by the 
algorithm without any human intervention. 
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Figure 6 Stops for dataset 1 

 

Figure 7 Result for dataset 1 where a1 = 0.8 and a2 = 
0.2 

 

Figure 8 Result for dataset 1 where a1 = 0.2 and a2 = 
0.8 

Table 1 summarizes the computational 
results for these two parameter settings. 

The table confirms that the different 
parameter settings have a significant impact on 
the solution results. In addition, the map display 

indicates that the clusters produced by the B&C 
algorithm have very clean boundaries, and do 
not suffer the defect commonly encountered in 
this type of setting where some stop is enclosed 
spatially within a cluster other than the one to 
which it is assigned (i.e., the cluster that actually 
contains the stop “interpenetrates” the second 
cluster). By putting a heavier weight on the 
balancing factor, all clusters are well balanced. 
When the focus is on minimizing expected 
travel time, the algorithm delivers the desired 
result while keeping each cluster well bounded. 

Table 1 Results for dataset 1 

Problem 
type 

Cluster 
capacity

Average 
travel 

distance 

Computational 
Time 

983 342 
983 424 

a1 = 0.8 
and a2 = 

0.2 988 176 
32 sec. 

985 340 
984 432 

a1 = 0.2 
and a2 = 

0.8 985 173 
34 sec. 

Dataset 2 in this dataset we consider a real 
service territory planning problem having a large 
quantity of stops to be clustered. Figure 9 
depicts the stops for this dataset. 

 

Figure 9 Stops for dataset 2 

This application contains 22052 stops, each 
with a capacity of 1 unit. The objective is to 
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build clusters having a balanced number of stops. 
Based upon the business logic, the entire 
territory should be divided into five (5) service 
territories so that one territory will be serviced 
every weekday. Furthermore, the service center 
is located in the center of the area, and the user 
requires that each cluster should be structured to 
access this service center.  

We set 5 seed points around the service 
center to induce the clusters to start from the 
service center. Figure 10 shows the visual 
representations of the clusters for this dataset. 

 

Figure 10 Visual result for dataset 2 

The visual display for this dataset shows that 
all clusters start from the center of the 
underlying territory, which satisfies the initial 
business requirement. Several stops (displayed 
in green) located on the north tip appear to be 
separated from other stops of the same cluster. 
Based upon the Thiessen polygon created for 
this dataset, these stops are in fact adjacent to 
other stops in the same green cluster; hence, the 
results do not violate the connectivity condition 
by reference to this polygon. Furthermore, since 
the clusters have very clean boundaries, the user 
of the system can adjust the result by moving 
selected groups of stops between clusters to 
make the visual appearance of the outcome more 

esthetically pleasing. 
As mentioned earlier, we have not found a 

clustering algorithm that is able to handle the 
challenge of creating balanced and connect 
clusters found in the logistics industry. In order 
to demonstrate the significant difference 
between the proposed algorithm and a widely 
used alternative clustering algorithm, we 
conduct benchmark tests comparing the 
outcomes of our approach with those obtained 
by the K-means algorithm. All datasets are 
selected from real applications, albeit 
geographic locations are different. We have 
restricted the form of the benchmarks to permit 
the K-means algorithm to be applied. In 
particular, while our algorithm is able to handle 
heterogeneous stops having different capacities, 
such a scenario cannot be handled by the 
K-means algorithm. Therefore, to permit a 
comparison we set all capacities to be 1. The 
balancing goal then becomes that of balancing 
the number of stops in each cluster.  
Computational results are listed in the following 
table, which identifies the size of a problem in 
terms of the number of stops to be clustered and 
the ideal number of stops in each cluster. For the 
K-means and the B&C algorithm, we list the 
computation times and report the minimum and 
maximum number of stops for each problem to 
show the degree of balance achieved. 

The table confirms that the K-means 
algorithm is very fast, as expected. However, it 
lacks the capacity to create well balanced 
clusters and consequently performs poorly 
relative to this criterion, severely restricting its 
value for applications in the logistics industry. 
The B&C algorithm takes longer to achieve its 
results but produces clusters that are appreciably 
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superior in terms of the balance criterion. It is 
interesting to note that as the number of clusters 
increases, the computation time usually 
decreases for a given dataset. This reflects the 
fact that when the number of clusters increases, 
the B&C algorithm requires fewer steps to 
improve the overall solutions (clusters). The 
computation time also depends on the 
geographic characteristics of the area where the 
stops are located, and on how the stops are 

distributed in the area.  
A Real World Application 

Our B&C algorithm has been used in a real 
world application for a delivery service 
company as a system to plan daily delivery 
territories. The results dramatically confirmed 
the effectiveness of the algorithm, which made it 
possible to reduce the number of vehicles 
employed while increasing the number of 
customers served per vehicle. In addition, a  

Table 2 Computational comparisons 

K-means Algorithm Our algorithm Problem 
Size 

(number 
of stops) 

Num. 
clusters 
(Avg. # 
stops) 

Min. stops 
in a 

cluster 

Max. 
stops in a 

cluster 

CPU 
time 

Min. stops 
in a 

cluster 

Max. 
stops in a 

cluster 
CPU time 

1063 3 (354) 61 770 1 sec. 354 355 19 min. 23 sec.
1063 9 (118) 41 348 2 sec. 118 118 7 min. 2 sec. 
1063 15 (71) 26 255 2 sec. 70 71 6 min. 
1884 5 (377) 10 878 2 sec. 293 411 3 min. 2 sec. 
1884 10 (188) 10 564 2 sec. 177 189 2 min. 50 sec.
1884 17 (111) 13 329 2 sec. 101 120 1 min. 23 sec.
3058 10 (306) 173 808 6 sec. 300 320 4 min. 20 sec.
3058 15 (204) 105 698 12 sec. 200 208 3 min. 52 sec.
3058 20 (153) 79 426 7 sec. 145 168 4 min. 
5247 10 (528) 273 1226 18 sec. 510 545 25 min. 45 sec.
5247 20 (262) 135 848 10 sec. 253 270 10 min. 50 sec.
5247 30 (175) 51 676 10 sec. 143 192 6 min. 50 sec.

Table 3 Benefits of algorithm 

Number of Vehicles Employed 
Before System Deployed After System Deployed 
40 20 
Number of Customers Serviced per Vehicle 
Before System Deployed After System Deployed 
60 93 
Number of Products Delivered per Vehicle 
Before System Deployed After System Deployed 
45 75 
Average Vehicle Loading Rate 
Before System Deployed After System Deployed 
51% 81% 
Time Spent on Planning Territories 
Before System Deployed After System Deployed 
days < 30 minutes  
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substantial increase resulted in the number of 
products delivered per vehicle, accompanied by 
a significant improvement in the average vehicle 
loading rates. Finally, the amount of time spent 
on planning the territories was reduced from 
days to less than half an hour.  

Table 3 displays the results before and after 
the system was deployed.  

In summary, the algorithm succeeded in 
identifying a collection of territories that made it 
possible for the vehicle routing system to create 
efficient delivery routes that achieved significant 
economic outcomes. 

5. Conclusions 
Our B&C algorithm for creating balanced 

and connected clusters provides an effective 
means for exploiting Thiessen polygons, as 
demonstrated by computational tests on datasets 
drawn from real world applications. The 
re-rooting component and utilization of 
spanning-tree data structure of our algorithm 
succeeds in retaining connectivity in an efficient 
manner throughout the solution improvement 
steps. The computational outcomes further 
disclose the algorithm’s robustness, which 
enables a user to apply the algorithm without 
extensive tuning and without having to change 
parameter values to solve problems whose 
objectives belong to a common class. These 
features afford significant advantages in 
reducing the planning time and increasing the 
quality of outcomes obtained in designing 
service territories. 

Future research will focus on enhancements 
to handle additional problem considerations and 
to introduce additional algorithmic features, 
including (1) a capability to handle conditions 

where particular service persons or vehicles 
cannot service particular stops in a territory (2) 
the introduction of adaptive memory 
metaheuristics (principally tabu search) to guide 
the current local search process to yield better 
solutions; (3) the utilization of multi-core CPU 
to speed up the algorithm; and (4) the creation of 
corresponding advanced data structures to 
maintain algorithmic efficiency.  
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