
	 1	

Using Interval Scanning to Improve the Performance of the
Enhanced Unidimensional Search Method

Mahamed G. H. Omran
Department of Computer Science

Gulf university for Science & Technology,
Kuwait

Email: omran.m@gust.edu.kw

Vincent Gardeux
Ecole Internationale des Sciences du

Traitement de l’Information, Cergy-Pontoise,
France

Email: vincent.gardeux@eisti.fr

Rachid Chelouah
Ecole Internationale des Sciences du

Traitement de l’Information, Cergy-Pontoise,
France

Email: rachid.chelouah@eisti.fr

Patrick Siarry
Universite de Paris 12, LiSSi, Creteil, France

Email: siarry@univ-paris12.fr

Fred Glover
Leeds School of Business, University of Colorado, Boulder, CO 80309, USA

Email: fred.glover@colorado.edu

Abstract: This note suggests a simple modification to the Enhanced Unidimensional
Search (EUS) method where interval scanning is used to find the best value for the
ratio parameter of EUS. The proposed method, called stepped EUS (SEUS), is tested
on 12 functions with encouraging results.

Keywords: Continuous nonlinear function optimization, enhanced unidimensional
search, local search, interval scanning.

1. Introduction

We propose a modification of the Enhanced Unidimensional Search (EUS) algorithm
(Gardeux et al. 2009) which is designed for solving the continuous nonlinear function
optimization problem

(P) Minimize f(x) : L ≤ x ≤ U

The vector x = (x1, …, xn) is composed of real-valued variables, and the vectors L and
U are assumed finite and to satisfy L < U. The function f(x) is typically multi-modal,
so that local optima do not in general correspond to global optima.

EUS is an enhanced variant of the Classical Unidimensional Search (CUS) for solving
(P), and hence operates as a line search algorithm that runs dimension by dimension.
The method is easy to implement and good in handling high dimensional problems.

In brief overview, EUS starts from a randomly-generated initial solution, x. A
difference (“delta”) vector d is created and initialized by setting d = U – L, followed
by shrinking the size of d on subsequent iterations and continuing until a stopping
criterion is reached. The method successively focuses on a single variable xi, i ∈	 N =

	 2	

{1, …,n}, and selects the best neighbor from the two alternatives "x up“ and "x
down“ given by

xu = x + diei
xd = x – diei

where ei is the unit vector with a 1 in position i and 0’s elsewhere. (Hence xu and xd
are the same as x except for the ith component, where xi

u = xi + di and xi
d = xi - di.)

The value xi
u is reset to Ui if xi + di > Ui and xi

d is reset to Li if xi – di < Li.

The search then compares x with its 2 neighbor solutions xu and xd and updates x to
be the best of these, hence setting x = arg min(f(x), f(xu), f(xd)). Then, successive
dimensions i are treated in the same manner.

After one iteration, which consists of thus examining every dimension i, the
algorithm finds a restricted local optimum relative to the precision given by the vector
d. (We call this local optimum restricted, since if any change is produced during the
iteration it is possible that a better solution could be produced by a new pass of the
dimension i.) After each iteration, we test if the solution has been improved on at least
one dimension, if not d is multiplied by a ratio value fixed to 0.5, therefore shrinking
the size of its components. The d vector continues to shrink in this fashion until it
satisfies d < dmin, whose components are all fixed to 1×10-15 in order to obtain a
suitable precision. Gardeux et al. (2009) states that this ratio could be tuned but their
experiments show that 0.5 is suitable. The pseudo-code in Figure 1 details an iteration
of the algorithm, starting from the randomly generated initial x.

Procedure EUS
d = U - L
begin

for i = 1 to n
xu = x + diei
xd = x – diei
(update x to be the best of the 3 solutions)
x = arg min(f(x), f(xu), f(xd))

end
if no improvement has been found

d = 0.5d until d < dmin
end

end

Fig. 1 An iteration of the EUS algorithm

To avoid becoming trapped in a local minimum, EUS uses a restart procedure that
keeps the best solution found so far and re-initializes d to a new starting value after
reaching the termination point given by d < dmin,. Therefore, increasing the vector
dmin, may increase the potential number of restarts of the algorithm, but tends to
decrease the error accuracy. In order to better explore the search space, when the
restart procedure is activated, a new solution is generated that lies far from the
reference set. This technique uses the diversification generation method from the

	 3	

Scatter Search algorithm. It generates a collection of diverse trial solutions and selects
the one farthest from a reference set of previously visited restricted local optima.

2. The Stepped EUS (SEUS)

SEUS uses interval scanning to tune the ratio implicitly used in EUS. In addition, a
fixed number of iterations is used to terminate EUS (rather than using dmin). The
proposed algorithm is shown in Figure 2.

ratio = 0.1
Generate an initial solution y randomly.
while ratio < 1
 x = y
 d = U - L
 for t=1 to tmax

for i = 1 to n
xu = x + diei
xd = x – diei
(update x to be the best of the 3 solutions)
x = arg min(f(x), f(xu), f(xd))

end
if no improvement has been found

 d = ratio.d
 end

end
 ratio = ratio + 0.1
end

Fig. 2 Pseudo code of SEUS.

	 4	

3. Experimental Results

In this section we compare the performance of SEUS with that of EUS when applied
to 12 test problems with n ranging from 2 to 30. The initialization ranges for each
problem are the same as in their “original sources”:

http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page364.htm

http://solon.cma.univie.ac.at//glopt.html

The results reported in this section are averages and standard deviations over 30
simulations. Each simulation was allowed to run for 2000 iterations (a fixed number
of iterations is used to terminate both EUS and SEUS). The same best solution (out of
1000 solutions) was used for both algorithms.

All the tests are run on an Apple MacBook computer with Intel Core Due 2 processor
running at 2.0 GHz with 2GB of RAM. Mac OS X 10.5.6 is the operating system
used. All programs are implemented using MATLAB version 7.6.0.324 (R2008a)
environment.

Table I summarizes the results obtained by applying EUS and SEUS to the
benchmark functions. The table reports the average gap, Avg. GAP, where the
optimality gap for a given solution x and the best solution x* is defined as:

GAP = |f(x) – f(x*)|.

The results show that SEUS performed better than (or equal to) EUS on almost all the
benchmark functions.

Notice that the comparison is relatively “unfair” because SEUS will call EUS 9 times
with different values of ratio. However, the results show that with a simple
modification that does not introduce any new parameter we could get the “best” ratio
to use for a given problem. In addition, the results show that the ratio parameter has a
significant effect on the performance of EUS. For example, our experiments show
that the "optimal" ratio value for Normalized Schwefel's function was 0.9. This
function was not solved with good accuracy with the 0.5 ratio, showing that this
function need a slower convergence in order to be solved properly. The initial 0.5
value could result in a too fast convergence.

	 5	

References

V. Gardeux, R. Chelouah, P. Siarry and F. Glover. Unidimensional search for solving
continuous high-dimensional optimization problems. In the proceedings of the 2009
9th International Conference on Intelligent Systems Design and Application, pp. 1096-
1101, 2009.

 EUS SEUS

Function GAP(SD) GAP(SD)

Sphere (n = 30)

 0(0) 0(0)

Rastrigin (n = 30)

6.692745e+01

(1.187047e+01)

1.956753e+00

(1.182555e+00)

Michalewicz (n = 10)

1.232538e+00

(4.591956e-01)

2.819791e-01

(2.095615e-01)

Step (n = 30) 0(0) 0(0)

Rosenbrock (n = 30)

1.107339e+00

(1.787840e+00)

5.152956e-03

(5.678218e-03)

Ackley (n = 30)

4.612607e-14

(1.223366e-14)

3.558635e-14

(7.503647e-15)

Griewank (n = 30)

5.753899e-03

(5.469051e-03)

0(0)

Normalized Schwefel
(n = 30)

9.766790e+01

(4.995761e+00)

5.400125e-13

(8.672276e-14)

Salomon (n = 30)

5.066540e+00

(2.020299e+00)

1.796540e+00

(3.221515e-01)

Rotated Hyper-
ellipsoid (n = 30)

9.244927e-20

(2.239516e-19)

6.229013e-25

(2.423284e-24)

Goldstein and Price
(n = 2)

4.588922e-14

(2.845551e-15)

3.782160e-14

(1.265088e-14)

Shekel (n = 4)

5.294651e+00

(3.341180e+00)

4.847920e+00

(3.571269e+00)

Table I. Mean and standard deviation (SD) of the function
optimization results.

