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Abstract: This note suggests a simple modification to the Enhanced Unidimensional 
Search (EUS) method where interval scanning is used to find the best value for the 
ratio parameter of EUS. The proposed method, called stepped EUS (SEUS), is tested 
on 12 functions with encouraging results. 
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1. Introduction 

We propose a modification of the Enhanced Unidimensional Search (EUS) algorithm 
(Gardeux et al. 2009) which is designed for solving the continuous nonlinear function 
optimization problem 
 

(P) Minimize f(x) : L ≤ x ≤ U 

The vector x = (x1, …, xn) is composed of real-valued variables, and the vectors L and 
U are assumed finite and to satisfy L < U. The function f(x) is typically multi-modal, 
so that local optima do not in general correspond to global optima.  

EUS is an enhanced variant of the Classical Unidimensional Search (CUS) for solving 
(P), and hence operates as a line search algorithm that runs dimension by dimension. 
The method is easy to implement and good in handling high dimensional problems. 

In brief overview, EUS starts from a randomly-generated initial solution, x. A 
difference (“delta”) vector d is created and initialized by setting d = U – L, followed 
by shrinking the size of d on subsequent iterations and continuing until a stopping 
criterion is reached. The method successively focuses on a single variable xi, i ∈	  N = 
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{1, …,n}, and selects the best neighbor from the two alternatives "x up“ and "x 
down“ given by 
 

xu = x + diei        
xd = x – diei        

 
where ei is the unit vector with a 1 in position i and 0’s elsewhere. (Hence xu and xd 
are the same as x except for the ith component, where xi

u = xi + di and xi
d = xi - di.)   

The value xi
u is reset to Ui if xi + di > Ui and xi

d is reset to Li if xi – di < Li. 
 
The search then compares x with its 2 neighbor solutions xu and xd and updates x to 
be the best of these, hence setting x = arg min(f(x), f(xu), f(xd)). Then, successive 
dimensions i are treated in the same manner. 
 
After one iteration, which consists of thus examining every dimension i, the 
algorithm finds a restricted local optimum relative to the precision given by the vector 
d. (We call this local optimum restricted, since if any change is produced during the 
iteration it is possible that a better solution could be produced by a new pass of the 
dimension i.) After each iteration, we test if the solution has been improved on at least 
one dimension, if not d is multiplied by a ratio value fixed to 0.5, therefore shrinking 
the size of its components. The d vector continues to shrink in this fashion until it 
satisfies d < dmin, whose components are all fixed to 1×10-15 in order to obtain a 
suitable precision. Gardeux et al. (2009) states that this ratio could be tuned but their 
experiments show that 0.5 is suitable. The pseudo-code in Figure 1 details an iteration 
of the algorithm, starting from the randomly generated initial x.  
 

Procedure EUS 
d = U - L 
begin 

for i = 1 to n 
xu = x + diei  
xd = x – diei  
(update x to be the best of the 3 solutions) 
x = arg min(f(x), f(xu), f(xd)) 

end 
if no improvement has been found 

d = 0.5d until d < dmin 
end 

end 
 
Fig. 1 An iteration of the EUS algorithm 
 
To avoid becoming trapped in a local minimum, EUS uses a restart procedure that 
keeps the best solution found so far and re-initializes d to a new starting value after 
reaching the termination point given by d < dmin,. Therefore, increasing the vector 
dmin, may increase the potential number of restarts of the algorithm, but tends to 
decrease the error accuracy. In order to better explore the search space, when the 
restart procedure is activated, a new solution is generated that lies far from the 
reference set. This technique uses the diversification generation method from the 
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Scatter Search algorithm. It generates a collection of diverse trial solutions and selects 
the one farthest from a reference set of previously visited restricted local optima. 
 

2. The Stepped EUS (SEUS) 

SEUS uses interval scanning to tune the ratio implicitly used in EUS. In addition, a 
fixed number of iterations is used to terminate EUS (rather than using dmin). The 
proposed algorithm is shown in Figure 2. 

 

ratio = 0.1 
Generate an initial solution y randomly. 
while ratio < 1 
 x = y 
            d = U - L 
 for t=1 to tmax 

for i = 1 to n 
xu = x + diei  
xd = x – diei  
(update x to be the best of the 3 solutions) 
x = arg min(f(x), f(xu), f(xd)) 

end 
if no improvement has been found 

   d = ratio.d 
  end 

end  
 ratio = ratio + 0.1 
end  
 
Fig. 2 Pseudo code of SEUS. 
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3. Experimental Results 

In this section we compare the performance of SEUS with that of EUS when applied 
to 12 test problems with n ranging from 2 to 30. The initialization ranges for each 
problem are the same as in their “original sources”: 

http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page364.htm 

http://solon.cma.univie.ac.at//glopt.html 

The results reported in this section are averages and standard deviations over 30 
simulations. Each simulation was allowed to run for 2000 iterations (a fixed number 
of iterations is used to terminate both EUS and SEUS). The same best solution (out of 
1000 solutions) was used for both algorithms.  

All the tests are run on an Apple MacBook computer with Intel Core Due 2 processor 
running at 2.0 GHz with 2GB of RAM. Mac OS X 10.5.6 is the operating system 
used. All programs are implemented using MATLAB version 7.6.0.324 (R2008a) 
environment.  

Table I summarizes the results obtained by applying EUS and SEUS to the 
benchmark functions. The table reports the average gap, Avg. GAP, where the 
optimality gap for a given solution x and the best solution x* is defined as: 

GAP = |f(x) – f(x*)|. 

The results show that SEUS performed better than (or equal to) EUS on almost all the 
benchmark functions.  

Notice that the comparison is relatively “unfair” because SEUS will call EUS 9 times 
with different values of ratio. However, the results show that with a simple 
modification that does not introduce any new parameter we could get the “best” ratio 
to use for a given problem. In addition, the results show that the ratio parameter has a 
significant effect on the performance of EUS. For example, our experiments show 
that the "optimal" ratio value for Normalized Schwefel's function was 0.9. This 
function was not solved with good accuracy with the 0.5 ratio, showing that this 
function need a slower convergence in order to be solved properly. The initial 0.5 
value could result in a too fast convergence. 
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 EUS SEUS 

Function GAP(SD) GAP(SD) 

Sphere (n = 30) 

 0(0) 0(0) 

Rastrigin (n = 30) 

 

6.692745e+01 

(1.187047e+01) 

1.956753e+00 

(1.182555e+00) 

Michalewicz (n = 10) 

 

1.232538e+00 

(4.591956e-01) 

2.819791e-01 

(2.095615e-01) 

Step (n = 30) 0(0) 0(0) 

Rosenbrock (n = 30) 

 

1.107339e+00 

(1.787840e+00) 

5.152956e-03 

(5.678218e-03) 

Ackley (n = 30) 

 

4.612607e-14 

(1.223366e-14) 

3.558635e-14 

(7.503647e-15) 

Griewank (n = 30) 

 

5.753899e-03 

(5.469051e-03) 

0(0) 

 

Normalized Schwefel 
(n = 30) 

 

9.766790e+01 

(4.995761e+00) 

5.400125e-13 

(8.672276e-14) 

Salomon (n = 30) 

5.066540e+00 

(2.020299e+00) 

1.796540e+00 

(3.221515e-01) 

Rotated Hyper-
ellipsoid (n = 30) 

9.244927e-20 

(2.239516e-19) 

6.229013e-25 

(2.423284e-24) 

Goldstein and Price 
(n = 2) 

4.588922e-14 

(2.845551e-15) 

3.782160e-14 

(1.265088e-14) 

Shekel (n = 4) 

 

5.294651e+00 

(3.341180e+00) 

4.847920e+00 

(3.571269e+00) 

Table I. Mean and standard deviation (SD) of the function 
optimization results. 

 


