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In this paper we propose an operational framework within which the concept of diversity is measurable. Based
on an interspecies dissimilarity index, we develop a series of progressively more efficient integer programming
formulations with the objective of maximizing biological diversity under resource constraints. To illustrate the
solution procedure, the model is applied to the preservation of the crane family. We also show how additional
modelling considerations can be incorporated in a simple and direct fashion. Finally, an alternative approach
to measuring biodiversity is presented to e."templify that different measures of diversity can lead to differing
ecological conserL'ation policies.
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are. However, as pointed out by Norton! conservationists
almost invariably view diversity as species richness. Bio-
logical diversity is desirable since many species have
actual or potential economic benefits to man.3 Moreover
maximizing biodiversity will lead to a natural portfolio
diversification of future options for finding new sources of
food and/or medicine.4,5 Finally, the preservation of ge-
netic diversity is a frequent concern to geneticists and
biochemists.6.7

In the existing literature, a significant amount of discus-
sion has been devoted to the economic aspect of diversity
conservation. For example, economists have conducted
extensive analyses to estimate the value, direct or indirect,
of saving species that will ultimately become extinct.8
Another issue of growing concern is how to allocate
limited funding among various conservation activities to
optimize some diversity-related goal.9

The remainder of the paper is organized as follows. In
Section 2 the current literature on biological diversity is
reviewed. In Section 3 we propose an operational frame-
work within which the concept of diversity is quantifiable
as well as measurable. Basing the computation of diversity
on a interspecies dissimilarity measure, in Section 4 we
develop a quadratic zero-one integer programming model
with the objective of maximizing biodiversity subject to
resource constraints, which is subsequently converted into
an equivalent linear model in Section 5. In Section 6 we
present a simple application of the model to the preserva-
tion of diversity in the crane family. Following the intro-

1. Introduction

Human activities are destroying the natural world at an
ever increasing rate. As a result of environmental degrada-
tion, the global biological system is in crisis. Although
efforts have been made to protect endangered species,
resources available for preserving biological diversity, or
biodiversity, are limited. It is therefore important that
conservation expenditures be allocated in the most effi-
cient manner possible.

To ensure the optimal allocation of resources for the
preservation of biological diversity, it is necessary to de-
fine the term diversity. As one of the central themes in
ecology, diversity appears to be a simple, straightforward
concept of which people have an intuitive grasp. However,
there has been considerable debate on its defInition. The
problem is further complicated by the fact that a bewilder-
ing number of indices have been devised for measuring
biodiversity .

According to Magurran,l diversity measures take into
account tWo factors: species richness, i.e., number of
species and evenness, i.e., how equally abundant the species
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duction of an alternative measurement of biodiversity in
Section 7, a comparison is made between the two ap-
proaches examined in this paper using a real example on
DNA divergence in hominoid species. Finally in Section 8
we conclude that mathematical modelling of biological
diversity is an important area where significant progress
can be made both in theoretical development and in real-
world applications.

The quantity d(sj, Sj) represents the dissimilarity, or
distance, between Sj and SL!t is a function of the differ-
ences between the two Orus with respect to some at-
tributes of interest, such as petal color,16 unison call,17 the
number of gene substitutions per locus, IS and so on.

According to these conventions, we define Z, the diversity
of the elements over any subset I of N, as the sum of the
distances between each distinct pair of OTUs in this
subset. In particular, let P(I) = {(i, j): i, j EI and i <j}.
Then we may express Z as

Z=I[d(Sj' Sj): (i, j) EP(I)]

Such a quantitative definition of diversity will be used
in the sequel, except in Section 7 where an alternative
approach to the measurement of biodiversity is utilized.
Our goal in general will be to identify a best (maximally
diverse) subset I of elements in N.

4. Mathematical formulations for preserving biological

diversity

Consider the situation in which a conservation planner is
to allocate resources to preserve the biological diversity in
a habitat. Given a limited endowment for conservation, he
is confronted with the problem of determining which
species to protect so that the biological diversity in the
region is maximized. .

Suppose there are n species in the habitat designated by
SI' S2' ..., and sn' It is assumed that, due to limitations of
resources available, only a total amount of b > 0 is avail-
able and Cj> 0 is the amount of the resource required to
preserve species Sj' i EN. We define a binary variable Xj
for each species, where Xj = 1 indicates that species Sj
will be preserved and Xi = 0 otherwise, i EN. Finally, for
P(I) as previously defined, let P = P(N). A quadratic
zero-one programming model for maximizing biodiversity
is then

2. Literature survey

Biological diversity refers to the richness and equal abun-
dance of species. The study of biodiversity intrigued many
of the early investigators of the natural world, and it
continues to stimulate the minds of biologists today.tO.tt
Magurrant provides a succinct summary of the relevant
work on ecological diversity, including a practical guide to
the measurement of ecological diversity. Solow et al.12
give a critique of some simple proposals for measuring
biodiversity. They also suggest a new approach for analyz-
ing a number of conservation issues. In his recent study,
WeitzmanS develops a diversity function that satisfies a
basic dynamic programming equation. Moreover, a novel
index of taxic diversity has been introduced by Vane-
Wright et al.t3 and applied to the evaluation of wildlife
conservation.

During the recent efforts in preserving biological diver.
sity, researchers have drawn upon the tools of mainstream
resource economics to assess the benefits of individual
species.t4 Ray,tS on the other hand, emphasizes the impor-
tance of higher-taxon diversity. Along the same line,
Eiswerth and Haney 9 have shown how the consideration

of interspecies genetic difference might affect the alloca-
tion of limited budget among habitats for preserving eco-

logical diversity.
Given the volume of relevant research on biological

diversity, few previous studies have employed the tools in
mathematical programming to address the issue of diver-
sity maximization. This paper aims at the formulation of
the maximum biodiversity problem as an integer program
as well as the solution of such an optimization model. A
comparative study will also be performed to show how
different approaches to diversity measurement can lead to
different conclusions.

(Ml)

MaximizeZ = ![d(sj, Sj)XjXj: (i, j) EP]

subject to

l"[CjXj: i eN] ~ b

Xje{O,l}, ieN

Apparently, the foregoing problem is trivial if only two
species are to be preserved. We simply rank all the inter-
species distances in descending order. Then, beginning
with the top of the list, the first pair of species should be
selected for which the preservation requirement does not
exceed the total anlount of resource available. In other
words, we should choose to preserve the first pair of
species sp and Sq so that Cp + Cq ~ b. However it can be
shown by scaling that the general maximum biodiversity
problem is reducible to the maximum diversity problem
examined by Kuo et al.19 which has been shown to be
NP-hard.20 Consequently the maximum biodiversity prob-
lem is NP-hard as well; nanlely (MU is so intractable that

3. Measurement of diversity
From our perspective, a sensible approach to biological
diversity involves two steps: flISt selecting a measure of
dissimilarity and then calculating diversity. Let N = {I, 2,
..., n} be an index set and let S = {Si: i EN} be a set of
operational taxonomic units (CTUs) in biological taxon-
omy.16 Further let d: S X S -+ R + be a distance function

which satisfies the following conditions:

d(sj,sj)~O' i,jEN

d(Sj, Si) =0, iEN

d(sj,sj)=d(sj,sj)' i,jEN
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no existing algorithms can be applied to obtain (and
verify) the optimal solution within a reasonable amount of
time as a polynomial function of the problem size.

5. Linearization of nonlinear zero-one programs

Although several algorithms are available for solving
quadratic integer programs such as (Ml),21-24 they are
relatively inefficient even for medium-sized problems and
have not found widespread use in real-life applications. In
order for nonlinear models to be solved effectively, it is
desirable that they be transformed into equivalent linear
models. Toward this end it can be established that, based
on the results of Glover and Woolsey,25 (Ml) can be
converted into the following linear integer program:

subject to

I[cjxj:iEN]~b

-Xj+Yjj~O, (i, j) ep

-Xj+Yij~O, (i, j) EP

Yij~O, (i, j) EP

xjE{O,l}, iEN

(M3) can be further refined using the observations of
Glover,26.27 but its present form gives a useful formulation
for treating the maximum biodiversity problem.

MaximizeZ = I[d(Si' Sj)Yij: (i, j) EP]

subject to

l'[CiXi: i EN] ~ b
,

xi+Xj-Yij~l, (i,j)EP

-Xi+Yij~O, (i,j)EP

-Xj+Yij~O, (i,j)EP

Yij~O, (i,j)EP

xiE{O,l}, iEN

We note that since d(Si' s)~O for all (i, j)EP,
constraint (1) will be nonbinding at an optimal solution
and hence can be disregarded. Thus (M2) reduces to (M3)
presented below:

(1)

6. An application

In this section, we will describe an application of the
maximum biodiversity model to the conservation of the
crane family under resource constraints. We will use (M3),
the simplest linearized form of the model, and show how
particular concerns can be addressed by incorporating ad-
ditional constraints into the formulation.

According to Peters,28 most researchers agree that there
are 14 existing species of crane, though Walkinshaw29 has
considered the African crowned cranes as the 15th species.
These have been listed in Table 1.12.30

Suppose a new wildlife preservation program is initi-
ated to protect cranes. The total funding is $1 million and
it costs $150,000 to conserve any of the 14 existing crane
species. The problem is to determine which species should
be preserved so that the biological diversity is maximized.

To begin, we need information about the extent to
which a crane species differs from the others. While in
literature no single approach to diversity measurement
captures all the dimensions of interspecies dissimilarity,
geneticists have used a number of methods to measure the
distinctiveness between taxa.18 We will employ data on
the differences between the DNA sequences of different
species resulting from the DNA-DNA hybridization
method.31 The genetic distances, which are calculated as
the delta median melting points between homologous and
heterologous hybrids, between each pair of the 14 crane
species have been summarized in Table 2,12.30 where
average melting points have been used to establish the
symmetry of the distance matrix.

In light of the maximum biodiversity model (M3), the
problem of determining which species of crane to conserve
can be formulated as the following mixed linear integer

program:

Latin name
--~

(M4)

+O.65Y13.14
(2)

Maximize Z = 3.75Yl.2 + 3.85Yl,3 +

+ 150,OOOX14

subject to

150,OOOXl + 150,000xz +

~ 1,000,000
-Xl +Yl.2 S 0

-XI +YI,3 ~O
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-X13 + Y13.14 ~ 0

-X2 + Yl.2 ~ 0

-X3 + Yl,J ~ 0

-X14 + Y13.14 ~ 0

Yl.2' Yl.3' ..., Y13.14~O

Xl,X2' ...,X14E{O,1}

danger of inbreeding in populations isolated in nature
reserves. We can meet this additional requirement by
replacing each of the objective function coefficients in the
maximum biodiversity model that lie below a chosen value
t with -M, where t represents the threshold value of
genetic distance and M is an extremely large positive
number. For instance, suppose that in the previous illustra-
tion the genetic distance between each distinct pair of the
crane species to be preserved must be at least t = 1.18. To
maximize the biological diversity and yet satisfy the addi-
tional constraint, we make the following replacements in
equation (2) of (M4): d(sz, S3) = -9,999, d(sz, S4) =
-9,999, d(sz, $8) = -9,999, ..., d(S13' $14) = -9,999. It

Can be shown that the optimal solution to the new problem
calls for the preservation of the following six species of
crane with a total diversity of 34.2: South African, blue,
wattled, Siberian, sandhill, and Japanese.

If, however, the conservation planner wishes to maxi-
mize the minimum genetic distance between each pair of
the cranes to be preserved, the following ,t maximin"

biodiversity model can be utilized to achieve the goal:

(M5)

+ 150,OOOX14

Maximize Z = w
subject to

150,000Xl + 150,000xz +

s 1,000,000
(M- 3.75)Yl,Z + w;:; M

(M -3.85)Yl,3 + w:5. M

(M- 0.65)YI3,14 + w ~M

-XI +YI,2~0

-Xl +YI,3 ~ 0

-X13 +Y13.14 ~ 0

-X2 + Yl.2 ~ 0

-X3 +Yl.3 ~ 0

Using LINDO32 to solve the problem, we obtain an
optimal solution of (x;, x;, x;, x;, xs., xi, x;, x;,

) (1 oX9 ' XIO' XII' X12' X13' Xl4 = , ,1, 1, 1, 0, 1, 0, 0, 0, 1,
0, Q, 0) with a total diversity of Z. = 34.5. The result
indicates that the subset of cranes exhibiting the highest
degree of biodiversity consists of South African, blue,
wattled, Siberian, sarus, and hooded.

According to Johnsgard,33 among the 14 existing species
of crane, the Siberian crane (#5) and the whooping crane
(#12) are considered endangered. While the current opti-
mal choice includes the former, it omits the latter. It might
be desirable that all the members of a given subset of
species, indexed by 1 CN, be preserved. More generally,
we may seek to assure that at least a certain minimum
number L(J) of the species from this subset be conserved.
This can be handled by adding the constraint l'[Xj: i El]
~ L(J) to the model. If we do this for 1 = {5, 12} and
L(l) = 2 to ensure the preservation of Siberian and
whooping cranes, the optimal solution of (x;, x;, x;,
x;, x;, xi, x;, x;, x;, x;o, X;l' X;2' X;3' X;4) = (1, 0,
1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0) shows that the following six
species should be protected: South African, blue, wattled,
Siberian, sarus, and whooping. The total biological diver-
sity for this collection of cranes is Z. = 33.65. Upper
bounds on numbers of species from a given subset can be
accommodated in a similar way, thus making certain that
particular subsets are not" over-represented II in the opti-

mal solution.
It is sometimes important to impose a minimum inter-

species genetic distance in the conservation of wildlife
when polymorphism is a major concern or when there is a

Table 2. Genetic distances among crane species.

12
3.65
1.25
1.30
1.30
1.65
1.40
1.45
1.50
1.35
0.15
0.35
0.00
0.65
0.65

13
3.55
1.50
1.15
1.25
1.50
1.75
1.50
1.75
1.30
0.60
0.60
0.65
0.00
0.65

14

3.80

1.55

1.75

1.40

1.65

1.55

1.40

1.35

1.05

0.35

0.55

0.65

0.65

0.00

7
3.70
1.50
1.75
1.50
1.15
1.40
0.00
0.60
0.50
1.15
1.80
1.45
1.50
1.40

8
3.60
1.15
1.00
1.40
1.50
1.20
0.60
0.00
0.65
1.10
1.40
1.50
1.75
1.35

9
3.60
1.05
1.15
1.35
1.60
1.10
0.50
0.65
0.00
1.10
1.15
1.35
1.30
1.05

10
3.55
1.00
1.05
1.10
1.25
1.10
1.15
1.10
1.10
0.00
0.20
0.15
0.60
0.35

11
4.05
1.05
1.20
1.60
1.55
1.45
1.80
1.40
1.15
0.20
0.00
0.35
0.60
0.55

5
3.55
1.80
1.90
1.55
0.00
1.45
1.15
1.50
1.60
1.25
1.55
1.65
1.50
1.65

6
3.90
1.35
1.30
1.20
1.45
0.00
1.40
1.20
1.10
1.10
1.45
1.40
1.75
1.55

2
3.75
0.00
0.50
1.10
1.80
1.35
1.50
1.15
1.05
1.00
1.05
1.25
1.50
1.55

3
3.85
0.50
0.00
1.25
1.90
1.30
1.75
1.00
1.15
1.05
1.20
1.30
1.15
1.75

4
4.10
1.10
1.25
0.00
1.55
1.20
1.50
1.40
1.35
1.10
1.60
1.30
1.25
1.40

1
2
3
4
5
6
7
8
9

10
11
12
13
14

0.00
3.75
3.85
4.10
3.55
3.90
3.70
3.60
3.60
3.55
4.05
3.65
3.55
3.80
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Table 3. Species list of six higher primates.
Table 4. Genetic distances among hominoid

species.

Furthermore, the formula for computing the diversity over
the elements in Q, D(Q), is as follows:

D(Q) = max{d(sj, Q\{sJ) +D(Q\{sJ)}
jet

Now, let f(Q, y) be the maximum diversity over the
elements in Q subject to the total resource availability of
y. A dynamic programming formulation for the constrained
maximum biodiversity problem is presented below:

(M6)

Recursive function:
f(Q, y) = max{d(sj' Q\{sj)

jet

I
I +f(Q\{sj, y -cJ, 0 ~y ~ L Cj

jel

(3)

Boundary conditions:

f({Si},y)=Oforally~O,iEN (4)

Objective function: f(S, b) (5)

The dynamic program (M6) consisting of equations (3),
(4), and (5) can be solved through the recursive fIXing

process.34

In what follows, we will compare the integer program-
ming-based model (Ml) with the dynamic programming-
based model (M6) by considering a real example in which
the objective is to maximize the genetic variety. Pertinent
information on six major species of hiwer primates has
been shown in Table 3 and Table 4.5. 5 The goal is to

determine the subset of species with the largest genetic
variability with respect to DNA divergence.-

Given the fictitious cost of $240,000 for preserving any
of the six hominoid species, we have obtained the optimal
solutions to both (Ml) and (M6) under different budgetary
constraints. These have been displayed in Table 5.

It is seen that while the optimal solutions to both
models are the same when b = $500,000 and b =

-X14 + Yl3,l4 ~ 0

YI,2' YI,3' ..., Y13.14~0

XI,X2, ...,X14E{0,1}

The LINDO solution turns out to be (x;, x{, x;, x;,
) (1 0Xs ' X6' X1' Xg, x9' XIO' XII' X12' X13' Xl4 = , , 1,

1, 1,0, 1,0,0,0, 1,0,0,0) with a total biodiversity of
Z' = 1.'-0. .

Finally, we observe that resource constraints of a much
more general fonn can be introduced into the maximum
biodiversity model. Specifically, if Cki represents the
amount of resource k E M = {I, 2, ..., m} required to
ensure the preservation of species i and bk represents the
total amount of resource k available (such as available
land area of a particular type of habitat, available quantity
of a particular type of food supply, or available budget for
obtaining additional necessary forms of sanctuary or food,
etc.), then we may incorporate the following constraints in
the model:

I:[CkiXi:iEN]~bk, kEM

Constraints of this form make it possible to model a wide
variety of considerations in a straightforward way when
examining the maximum biodiversity problem and other
related issues.

7. An alternative measurement of biological diversity

In contrast to the framework proposed in the present study,
WeitzmanS considers the measurement of ecological diver-
sity from a different perspective and suggests an alterna-
tive approach which is based on the concept of dynamic
programming.34 As before, let N = {I, 2, ..., n} be an
index set and let S = {Si: i EN} be a set of OTUs. Let
I ~ N be the index set for Q ~ S. According to Weitzman,S
the distance between any element Si E S and Q is defined
as the distance between Si and its nearest neighbor in Q;

namely,

d(Si' Q) = min d(Si' Sj)
jel

Table 5. Optimal solutions based on two models.

Optimal solution Maximum diversity Optimal solution Maximum diversity

$500,000
$750,000

$1,000,000
$1,250,000

(0,0,1,0,1,0)
(0,0, 1.1, 1, 0)
(1,0,1,1,1,0)
(1,1,1,1,1,0)

532
1,366
2,478
4,085

532
889

1,139
1,298
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$750,000, they differ in the cases of b = $1,000,000 and
b = $1,250,000. Moreover, given the same optimal solu-
tions, the maximum total diversities resulting from both
models differ.

8. Conclusion

We have proposed a new framework for measuring and
computing biological diversity of a habitat. Our maximum
biodiversity model is based on introducing and exploiting
measures of genetic distinctiveness for selecting the opti-
mal subset of OTUs to conserve when resource limitations
prevent the preservation of all the species. An application
of the model in a rudimentary form is illustrated for the
preservation of endangered crane species with the maxi-
mum genetic diversity. We also demonstrate the various
ways to expand the model to handle additional relevant
conc~rns. Furthermore, the results from a comparative
study demonstrate how different approaches to the mea-
surement of biodiversity may lead to different conservation
policies.

We note that there are many ecological systems in
which the extinction of some species may threaten the
survival of 'others. In such cases, the interspecies interac-
tion can be accounted for by incorporating the joint proba-
bility distribution into the maximum biodiversity model.s.12
Throughout this paper, we have focused exclusively on the
biological diversity among species. It should be pointed
out, however, that maximum diversity alone can be highly
misleading as a yardstick in making conservation deci-
sions. Economic values accruing from individual species9
or the value of saving species8 should also be explored.

The development of what May II has called the calculus

of biological diversity is still very much in its infancy. The
methodology suggested here represents only one approach
to this calculus. It is hoped that the present work will
stimulate further interest in the measurement and computa-
tion issues of this important research area.

References
1. Magurran. A. Ecological Diuersicy and Its Measurement. Princeton

University Press. Princeton. NJ, 1988
2. Norton. B. G. The Preserliation of Species. Princeton University

Press. Princeton. NJ. 1986
3. Helliwell. D. R. Assessment of conservation values of large and

small organisms. J. Enuiron. Management 1982, 15. 273-277
4. Oldfield. M. L. The Value of Conseruing Genetic Resources. U.S.

Department of the Interior, Washington. DC. 1984
5. Weitzman. M. L. On diversity. Q. J. Econ. 1992, 107(2). 363-406
6. Harris. L. D., McGlothlen. M. E. and Manlove, M. N. Genetic

resources and biotic diversity. The Fragmented Forest, ed. L D.
Harris, University of Chicago Press, Chicago, IL, 1984. 93-107

701

Appl. 

Math. Modelling, 1995, Vol. 19, November


