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The paper describes a procedure for mixed integer programming that allows branches to be imposed
'by degrees', which can subsequently be revised or weeded out according to their relative influence.
It is an adaptive approach in which the branch and bound tree can be maillipulated and rl'Structured.
The approach also yields measures of the costs of imposing the branches that lead to integer
solutions, thus providing a built-in form of sensitivity analysis for evaluating the effect of integer

restrictions.

1. INTRODUCTION

THIS paper introduces a parametric branch
and bound (B&B) procedure that has greater
flexibility than ordinary B&B. Ol)ce a branch
is taken in ordinary B&B, it is largely irrevo-
cable-i.e. all descendant branches must inherit
the limitations imposed by their predecessors.
In parametric B&B, a descendant branch may
partly or wholly undo an antecedent branch.
Moreover, once a feasible mixed integer pro-
gramming (MIP) solution is obtained, then the
'actual' branches that achieved this solution
can be identified by weeding out uninfluential
branches created during the solution process.

The strategy underlying parametric B&B
is to incorporate variables and constraints
into the Qbjective function in a manner resem-
bling 'multi-objective' or 'goal programming'
approaches [1, 2,9]. The process is especially
direct for 0-1 MIP problems, which do not
require the creation of additional variables.
However, even in the general case, all calcula-
tions can be carried out relative to a compact
basis that is the same size as for the original

problem.
The use of weighted variables and con-

straints in the objective function also bears a
connection to 'Lagrangean' approaches [3,6,
10]. However, in contrast with Lagrangean
techniques, the weights are not designed to
solve a dual problem, but rather entirely over-

shoot dual feasibility. The process may be
viewed as that of constructing tentative duals
(at least implicitly), guided by considerations
relevant to the B&B setting. Also, in contrast
to standard B&B and its exploitation of dua-
lity, parametric branches are conveniently han-
dled by postoptimizing with the primal simplex
method, whereas ordinary branches are often
preferably handled by postoptimizing with the
dual simplex method. Instead of imposing a
branch either fully or not at all, parametric
B&B allows one to impose branches 'by
degrees'. This is extremely important for en-
abling branching alternatives to be carefully
analyzed-and revised, if desirable-at later
stages of the tree.

By its nature, parametric B&B yields infor-
mation about the cost of imposing branches
that lead to integer solutions. This information
can then be used in a sensitivity analysis for
evaluating the significance of integer restric-
tions. This type of analysis can also be coupled
with an approach that attaches penalties to de-
viations from constraints. Such an approach
yields a combined sensitivity analysis charac-
terizing the influence of integer assignments on
problem constraints.

2. PARAMETRIC B&B FOR 0-1
PROBLEMS

The basic ideas of parametric B&B are rela-
tively straightforward for 0-1 MIP problems,
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and we first examine them in this setting. For Drawing on the fact that the constraint Zo = 0
our purposes, the 0-1 problem will be written is equivalent to the 'partial assignment' Xj = 0,

...jEJ 0 and x j = 1, jEJ 1 we may use the objective
Minimize Xo = L cJx, (2-1) d . I h.. I . )IN J (2-1 ") as a eVlce to compe t 1S part1a asslgn-

L alJxJ .$; bl i£M (2-2) ment to hold. Clearly, if the parameters dj are
..selected large enough, then Zo = 0 must result

XJ ?; 0 jEM (2-3)

1 ?; xJ ?; 0 jEJ (2-4)

xJ integer jEJ (2-5)

where J is the index set of the integer variables
and is a subset of N. In our discussion of 0-1
problems, we will confine ourselves to elabor-
ating the principal ideas of parametric B&B,
together with illustrating the more rudimentary
types of considerations. In fact, most of the im-
plementation aspects of the 0-1 case require
no commentary other than to indicate the rele-
vant decision alternatives. Subsequently, more
advanced aspects of implementation will be in-
troduced for the general MIP case, and then
linked to the 'sensitivity analysis' framework.

In the 0-1 setting, consider any two disjoint
subsets J 0 and J 1 of J and the 'contrived'
objective function

Minimize Zo = do + L dJxJ -L dJxJ ;2tl')
joJo joJ,

where all of the d j are positive, and where

do = L dJ,
joJ,

By the form of Zo, if there exists a feasible solu-
tion to the LP problem (2-1H2-4) that satisfies
Xj = 0 for jEJo and Xj = 1 for jEJ 1 then this
will be an optimal solution to the LP problem
in which (2-1 ') replaces (2-1). (In fact, this
assignment of values to the x j for jEJ oU J 1 is
uniquely optimal when feasible, and hence
must occur at an LP extreme point. Note that
this gives a rather simple proof of the fact that
feasible integer assignments are unique extreme
points of the pure 0-1 problem and occur at
one or more extreme points of the mixed 0-1

problem.)
In addition, by the definition of do, it follows

that Zo ~ 0 for all feasible LP solutions, and
Zo = 0 only for a solution that yields the
assignment x j = 0 for jEJ 0 and x j = I for jEJ ,.
Consequently, the creation of a composite
objective function

Minimize Uo = Xo + Zo (2-1")

assures by the non-negativity of Zo that
Min Uo ?; Min xo'

provided the corresponding partial assignment
is feasible.

Handling the composite objective function in
parametric B&B

The first stage of the parametric B&B
approach for 0-1 problems utilizes these ideas
to influence the creation of partial assignments
through manipulation of the parameters d j'
However, instead of assigning these parameters
preemptively large values, more moderate
values are assigned and then monitored in
order to determine interactive effects relevant
to the B&B setting. By the familiar Lagrangean
type of argument, we may observe

Min {xo subject to Zo = 0]
= {Min "0 subject to Zo = 0: ~ Min "0

and hence the composite objective function
(2-1") always yields a lower bound on the ordi-
nary B&B objective (in which Zo = 0 is expli-
citly imposed). This type of bound information
can be used for fathoming in a manner resem-
bling that of the ordinary B&B approach. We
will discuss the way to accommodate fathomed
alternatives in the parametric setting after in-
troducing the notion of a 'parametric branch'.

0-1 Parametric branching
The branch step for the 0-1 parametric

approach is a 'tentative' operation that either
becomes consolidated or revised on the basis
of information subsequently generated Quite
simply, if the branch corresponds to the assign-
ment x, = 0 then the current objective Uo is
updated to become Uo + drxr and if the branch
corresponds to the assignment Xr = 1 then Uo
is updated to become Uo + dr(1 -xr) or equi-
valently Uo + drx~ where x~ is the slack variable
for the inequality Xr ~ 1. The weight dr is
selected so that the updated representation of
Uo is dual infeasible, and therefore, allows re-
optimization with the primal simplex method.

To illustrate, suppose the current LP repre-
sentations of Uo and Xr are given by

"0 = 12* + 5! .~3 + Ii X4 + 4xs,

x, = i-2x3 + X4 + ixs.
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,

Then for the branch x,. = 0 any value of d,.
satisfying d,. > 5t/2 will cause the new objec-
tive Uo + d"x,. to be dual infeasible. (The ratio
5t/2 is exactly the pivot ratio for the dual sim-
plex method that would be identified if one
were to introduce the constraint x,. ~ 0.) Thus,
for example, selecting d,. = 3, we obtain the
new Uo objective

Uo = 13 -1 X3 + 4* X4 + 6t Xs.

The negative coefficient for X3 of course signals
that re-optimization may now be undertaken
with the primal simplex method.

Alternatively, for the branch x,. = 1 a value
of d,. satisfying d,. > It/! will succeed in estab-
lishing dual infeasibility for the objective
Uo + d,.x~ where X~ = 1 -X,.. (Here 1 t/! is the
pivot ratio for the dual simplex method relative
to the constraint X,. 2: 1.) Thus, for example,
selecting d,. = 2 we obtain the new objective

Uo = I~i + 91 X3 -i X4 + 2; Xs.

Values of d,. such as those selected in these
examples may not be sufficiently large to insure
that the branches for X,. = 0 and x,. = 1 will
utlimately be enforced. However, as previously
noted, the procedure does not seek preemptive
values but rather seeks to analyze the conse-
quences of more moderate values. (In this con-
nection, it is easily established that if a dual
pivot on the constraint x,. ~ 0 or x,. 2: 1 would
achieve primal feasibility in one step, then any
value of d,. that exceeds the dual pivot ratio
will achieve exactly this same solution in one
primal iteration.)

This extremely simple type of 'local' imple-
mentation step for 0-1 parametric B&B has
a direct analog in a variety of standard 'para-
metric' approaches for ordinary linear pro-
gramming. The crucial aspect in the B&B set-
ting is the way in which this step is used-i.e.
the manner in which the parametric branches
are processed to yield information and branch-
ing alternatives not available to ordinary B&B.
Thus, in particular, parametric branches of the
form just illustrated are not regarded as iron-
clad impositions nor are they initially assigned
a sequential ranking. Indeed, it may well occur
at a subsequent step that an 'earlier' branch
will be discovered to be superfluous in terms
of other more influential branches. We discuss
this aspect of the approach next.

Revised and augmented parametric branches

Branches that are currently uninfluential can
easily be singled out by the parametric B&B
procedure as follows. Suppose the updated LP
representation of Uo gives Xr or x; (depending
on which of the two variables was previously
assigned a weight) a coefficient that equals or
exceeds dr. (The implication, of course, is that
Xr or x; is currently non basic.) Then, reducing
this coefficient by dr still leaves the objective
dual feasible. This means that the parametric
branch can be eliminated without changing the
current LP solution.

The step of weeding out uninfluential
branches (i.e. those subject to elimination) can
be postponed until a feasible 0-1 solution is
obtained. Then, all variables whose parameter
values can be reduced to zero may be excluded
from the branching category. (An exception
occurs for branches that are antecedents of a
compulsory branch, as described in the next
section.) The remaining variables and para-
metric branches may further be ranked, for
example, according to the magnitude of the dr
values that are required to make the current
solution optimal. In this fashion, the 'actual'
branches of the B&B process, and their
sequence, are decided upon at a stage in which
the true significance of these branches can
more accurately be assessed.

Another means for evaluating the relative in-
fluence or significance of a branch occurs when
a branching variable 'resists' its weight and
becomes basic. The decision must then be
whether to increase or decrease dr. (The latter
may be a compounded step that both decreases
dr to 0 for the current parametric branch and
then assigns dr a positive value for the alterna-
tive branch.) By means of such decisions,
earlier parametric branches may either be
revised or reinforced.

The technical aspects of implementing these
ideas are relatively simple, and hence, we con-
fine ourselves to the task of discussing only
the more prominent strategic considerations,
deferring the particulars of implementation to
the general MIP case, where they are more
critical.

Compulsory branches and sequences
The minimization of Uo as noted earlier pro-

vides a lower bound on the optimum value of
Xo subject to the partial assignment associated
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with Zo = O. Whenever this bound equals or
exceeds the value of Xo for the best MIP solu-
tion currently known (which automatically
occurs when the current LP solution in fact
provides this best MIP solution), then all
further continuations of the partial assignment
are identified as unproductive in the usual
B&B sense. This immediately provides the
option of 'back-tracking'-i.e. of deciding
which parametric branch underlying the cur-
rent LP solution should be considered the 'last
branch'. The observation that the determina-
tion of the last branch can be deferred to yield
a more flexible variant of the LIFO procedure
was first made by Tuan [11]. In the current
approach, this determination can be based, for
example, on the current dj values (after weed-
ing out uninfluential branches). Thus, in this
fashion, a sequential ordering is gradually im-
posed on the branches.

Having identified a last branch, the alterna-
tive branch is now imposed as compulsory. This
means that the method does not allow this
branch to be reversed or discarded (following
the usual backtracking rules), until the current
partial assignment is fathomed. In particular,
as soon as a compulsory branch is identified,
all other parametric branches that are cur-
rently in force (i.e. all those for which dj is
currently positive) must be considered as prior
to the compulsory branch. This does not im-
pose any particular sequence on these prior
branches (until backtracking again compels
one to be identified as a 'last member'), but
does impose induced bounds on the parameters
d j. That is, these positive d j coefficients cannot
be reduced below their current values as long
as the compulsory branch remains in effect.

There are, however, three important excep-
tions to the strict maintenance of induced
bounds. The first and obvious exception occurs
by deciding upon some partial sequence for the
parametric branches and employing a tree
search rule that jumps back over some of the
'later' branches of this sequence. Then, the in-
duced bounds can be disregarded for the
branches thus bypassed. (The same remark
holds for branches that are released or reversed
as a result of carrying out a backtracking step
with the LIFO rule.) The second exception
occurs by redeciding the status of the branch
that has been designated compulsory. That is,
a compulsory branch may be revised, if the

reconfigured objective Uo that results after a
series of additional iterations makes this
appear eminently desirable. (Such a process
must, of course, be sufficiently systematized to
guard against circularity.) Finally, just as com-
pulsory branches may be imposed as standard
branches rather than parametric branches (as
by the use of pre-emptive weights), so may the
identified antecedents of the compulsory
branches be imposed in the standard fashion.
This imposition, however, does not carry with
it an implied sequence for the antecedents
themselves. Further, greater flexibility is
achieved by monitoring the values of par-
ameters that would suffice to maintain the im-
posed branches, thereby retaining the option
of amending the status of these branches at
subsequent stages.

3. PARAMETRIC B&B FOR
GENERAL MIP PROBLEMS

Many of the same strategic notions discussed
in the preceding section carryover to the gen-
eral MIP problem. However, there is a very
significant difference between the general prob-
lem and the 0-1 problem. Specifically, in the
general case, there may not exist weights that
will cause all of the branching inequalities to
be satisfied. Moreover, if such weights exist,
they may be very hard to find, or cause some
inequalities to be unnecessarily over-satisfied,
thus failing to identify integer solutions. We
now examine the special techniques that permit
these difficulties to be overcome and allow the
general approach to be implemented success-
fully.

Branching schemes for the general MIP
problem may be viewed as the successive impo-
sition of upper and lower bounds on the prob-
lem variables. Thus, at any particular stage, the
integer variables are governed by restrictions
of the form

Vi ~ Xi ~ Li jEJ (3-1)

where U j and Lj may represent original
bounds on x j or those currently inherited by
branching. The general parametric approach
seeks to incorporate such bound restrictions
into the objective function in a manner that
will enable the same types of evaluations and
manipulations that are possible in the 0-1 set-

ting.
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This is accomplished by introducing non-
negative variables Z j and the inequalities

i

uJ+zJ?JxJ~LJ-zJ j£J. (3-2)

Thereupon, the Z j variables are incorporated
into the minimization of Xo to create the com-
posite objective function

Minimize Uo = I CJXJ + I dJzJ. (3-3)
)EN )E}

It is clear that for the weights dj sufficiently
large all of the Z j will be 0 and (3-2) will reduce
to (3-1}-provided, of course, that (3-1) is con-
sistent with the original problem constraints.
Also, for d j > 0 we have

Min Uo ~ Min Xo

and
Min (xo subject to (3-1):

= Min {uo subject to (3-1): ~ Min Uo.

Thus, the same bound relationships hold in the
general MIP settings as in the 0-1 context
upon introducing (3-2) and (3-3).

The problem at hand is how to manage the
system (3-2) and (3-3) effectively. This is ex-
tremely important because otherwise, the intro-
duction of (3-2) and (3-3) doubles the number
of integer variables and adds a corresponding
number of new constraints. The following
approach for dealing with this problem consti-
tutes an adaptation of procedures for 'weighted
deviation' problems introduced in [7].

Let si and si denote slack variables for the
inequalities of (3-2), yielding the equations

xJr-zJ+sj=Ujo (3-4)

-x. -z + s'~ = -L tJ J }

Adding these two ,equations, we obtain

-2z.+s'.+s J"=U.-L. (3-5)} J J r

Equation (3-5) identifies a 'primal relationship'
between the variables Z j, si and si. On the
'dual' side, let U j, vi and vi represent dual vari-
ables associated with the non-negativity restric-
tions on Zp si and s] respectively. (That is, the
defining equations for U j, vi and vi are respect-
ively given by the Z p si and s] columns of the
primal.) Then, since the coefficients of zp si and
si are d p 0 and 0 in (3-3), it follows from (3-4)
that the relationship between the columns for
Zj, si and si can be summarized by

UJ + vj + vi = dt (3-6)

This relationship, in conjunction with (3-5),
provides the key to implementing the general
paramatric B&B approach without modifying

the size of the LP tableau. In particular, it is
readily established that at least one of the vari-
ables Z p s} and sj must be basic and at least
one must be nonbasic.

Consequently, only one of the three primal
variables need be explicitly jncluded in the tab-
leau at any given time, whereupon the form
of the other variables is always known from
(3-5) and (3-6). Similarly, Xj need not be in-
cluded in the tableau since it is always capable
of being recovered from an equation of (3-4).
The fundamental relatiQnships of the approach
as they apply in the present setting can be sum-
marized as follows. (Formal proofs of these
relationships are omitted, since their derivation
is a direct consequence of (3-5) and (3-6).)

(R.O}-Of the two variables (from the group
Z j' sj and sj) that are not explicitly included
in the LP tableau, one is currently basic and
one is currently nonbasic.

(R.l}-If the explicit variable is nonbasic:

(a) The tableau row for the implicit basic
variable is precisely the primal equation (3-5).

(b) The tableau column for the implicit non-
basic variable is the negative of the column
for the explicit variable, except that the objec-
tive function coefficient for the implicit variable
is dj minus the objective function coefficient
of the explicit variable, and the column coeffi-
cient that corresponds to the implicit basic
variable is as given in (a).

(R.2}-If the explicit variable is basic:

(a) The tableau column for the implicit non-
basic variable is precisely the dual equation
(3-6). Thus, the objective function coefficient is
dj and the column has unit coefficients in the
positions corresponding to its two companion
basic variables, with O's elsewhere.

(b) The tableau row for the implicit basic
variable is obtained by substituting the current
expression for the explicit basic variable in
(3-5) and giving the implicit nonbasic variable
a unit coefficient [as in (a)].

We can now give the rules for implementing
the parametric B&B approach that result from
these relationships. After stating these rules, we
will illustrate their use by numerical example.

1. The initial step solves the LP problem with-
out the additional variables and constraints
of (3-4).
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irrelevant unless the other slack becomes
basic-or until a new branch is introduced by
tightening one of the U j or Lj values. Branch-
ing can occur only if both of the slacks sj and
sJ are basic and positive (since otherwise x j
would be assigned an integer value or lie out-
side one of its provisional current bounds) and
thus, in this case, one can simply jettison all
three of the Sft sJ and Z j variables [after reco-
vering Xj from (3-4)] and start again with Step2.

In accordance with these observations, if
either U j or Lj is a 'true' bound for x r then
this bound can be rigidly enforced simply by
rendering Z j an ineligible pivot column (e.g. by
increasing dj) whenever the slack variable as-
sociated with the true bound is nonbasic. (If
Z j becomes basic when the alternative slack is
non basic, (3-5) implies that x j must satisfy its
appropriate bound, and condition 4(c) assures
that the critical slack will not become nonbasic
unless Z j is nonbasic.)

We now illustrate these considerations with
the following numerical example.

Example
Consider the MIP problem represented by

the following 'condensed' tableau format,
where Xl and X2 are the integer variables.

X2

2. The parametric branching step introduces
the restrictions (3-4) in a tableau for which
x j is basic and does not satisfy U j 2: x j 2: L j-

(a) Identify the equation of (3-4) which im-
plies Z j > 0 for sj and sj nonnegative (i.e.
the equation corresponding to the 'violated
bound');
(b) Omit the slack variable sj or sj from the
equation identified in (a), and use this
reduced equation to replace x j with Z j by
direct substitution. The omitted slack vari-
able is the implicit non basic variable, and
slack variable of the .other equation of (3-4)
is the implicit basic variable. (These implicit
variables are irrelevant at this point). The
variable Z j is now basic.

3. The next component step of parametric
branching is to create (or increase) the
weight d j for a selected variable Z j that is
currently basic, To do this, add dj times the
current Z j equation to the objective function
equation, where dj denotes the increment in
dp selected large enough to require re-opti-
mization with the primal method. (The effect
of this step on any currently implicit non-
basic variables is immediately given in rela-
tion (R.l)(b), since none of the implicit non-
basic variables governed by (R.2)(a) are
affected except for the companion of Z j
whose coefficient is always dj-)

4. An arbitrary iteration of the primal method
can be implemented by the following obser-
vations:

Xo = -9 -4

X4
IXs =(a) An implicit nonbasic variable provides

an eligible pivot column if and only if its ...
explicit companion is non basic and has a The problem constraInt equatIons are read dl-

coefficient exceedin
g d . (as It f I -rectly from the tableau (e.g. X4 = 7 -5Xl -

.J a resu 0 re a 2 3 ) P" h .
I d Itions (R.2)(a) and (R l)(b» X2 + X3. Ivotmg on t e clrc e e ement

(b
) If a n . m I.. t . b'. . bl .with the primal simplex method yields the opti-

I p ICl non aslc varIa e IS
I LP blI t d l" h . I h .ma ta eause ec e lor t e PIvot co umn, t en It can

replace the previous explicit variable, which
now becomes implicit.
(c) No implicit basic variable need be con-
sidered in determining the pivot row unless
both slack variables sj and sj are basic. If
an implicit basic variable provides the pivot
row, it replaces the currently explicit basic Suppose now that we wish to branch parame-
variable as the new explicit variable. trically on the inequality X2 ~ 3 by Step 2 of

the preceding rules, thus obtaining U 2 = 3 and
Condition 4(c) is a direct consequence of L2 = 0 (where L2 = 0 represents a true lower

(3-5) and implies that once a slack variable of bound). The first equation of (3-4) implies
(3-4) first becomes implicitly basic, it remains z 2 > 0 and yields z 2 = Xx -U 2 upon omitting

Xl X4 X3

Xo = 2

~~~

Xl
X, =
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the slack variable 52. Thus, the tableau equa-
tion for z 2 is given by

By Step 3, we again seek to add a sufficient
multiple of z 1 to the current objective function
to produce a dual infeasibility. Since the impli-
cit non basic variable 82 has a coefficient which
is the negative of the explicit Z2 coefficient (i.e.
-t), we must take the effect of 82 into account
in the manner noted parenthetically in Step 3.
By relation (R.IXb), the current objective func-
tion coefficient of z 2 is 1 -! = !. This yields
the 'expanded' current Uo and z 1 rows as fol-
lows

XI X. X3

Z2 =X2 -~ =uI~~_-!J

Next, by Step 3, we add a sufficient multiple
of this equation to the objective equation to
create dual infeasibility. Any value exceeding
the 'dual pivot ratio' 1/(5/2) will do, and we
select a multiple of 1 to give Uo = Xo + lz2
or

Z2 ,X4 X3 51

-131 !! J i cX4XI X3
-Uo =

uo=l-lil-i r'~
1-"~I-z___~ ZI

'
Thus, putting Steps 2 and 3 together (replacing
the X2 equation by the Z2 equation and replac- From this, we see that ai. multiple of 2 suffices
ing Xo by uo) we obtain the tableau to produce dual infeasibility thereby giving the

Xl -~4 X3 new objective function representation

-,

-ii-
2
5

1
~

Uo =
Ii X4 X3

iZ2 =

Xs =

Uo =1

Z2 52

"0 =E~~E~~ 13

Note that the 'expansion' used in this example
The primal simplex method now pivots on the was not really necessary since the fact that Z2
circled element to obtain has a positive coefficient immediately implies

that we consider the implicit variable instead
Z2 x4 X3 of-rather than in addition to--the explicit

variable.
Because 52 gives the eligible pivot column,

we replace Z2 by 52 (so that Z2 now becomes
implicit) to yield the tableau

!
1f

XI =
Xs =

52 X4 X3---
-j ¥ t
-+--

-t ! -!I

1/ -! -¥I

=-l2!1

4
3"

if

-j -t

-J?- ---¥

Since optimality is re-established in a single
pivot, this is the same tableau that would havebeen obtained by a 'dual' pivot on the con- Uo =

straint X2 S 3 (except for the Z2 column). With ZI =
Z2 and 52 both non basic (the first explicitly, Xs =

the second implicitly), we may infer that the
current value of X2 is 3 (as seen by (3-4) with Re-optimization with the primal method gives
U 2 = 3). Consequently, at the present stage the
parametric branch has achieved the same effect
as an ordinary branch, although we do not
assign the branch a sequential 'slot' and leave
it open to subsequent revision.

Suppose that Xl ~ I is selected to provide
the next parametric branch. By Step 2, the rele-
vant expression for Zl is Zl = Ll -Xl =
1 -Xl giving the tableau representation

z.

X4 X3.'---
t 2.-J.--~

--J

"0 =

52 =
Xs = 1O,

-,

The variables of (3-4) associated with Xl and
X2 have integer values in this tableau, and
hence so do Xl and X2' Specifically, direct ap-
plication of (3-4) yields Xl = 1 and X2 = 1

(noting that s~ and Z2 are implicitly nonbasic).
Also, since Zl and Z2 are both in the current

Zz x. X3

Zl =111 t!=:il



152 Glover--Parametric Branch and Bound

basic solution, it follows that Uo and Xo have
the same value.

We now analyze the parametric branches
that provided this current integer solution. By
relation (R.2)(a), the objective function coeffi-
cient of Z2 is d2. Thus, reducing the coefficient
of Z2 by d2 (which effectively removes Z2 as
a weighted variable in the objective function)
still yields the same LP optimum. By our
earlier observations for the 0-1 case, this
means that the branching restriction that gave
rise to Z2 is currently 'uninfluential', and thus
we can shrink the B&B tree to the single re-
striction x I 2. t.

At this stage, since the current solution is
locally optimal, it is unproductive to proceed
with the present line of branching. Thus Xl 2. 1
is replaced by the compulsory branch X I ~ 0,
and the solution process continues.

4. PARAMETRIC B&B AND MIP
SENSITIVITY ANALYSIS

Two types of sensitivity analysis are avail-
able with parametric B&B as illustrated in the
preceding section. The first involves identifying
the 'cost' of branches that lead to particular
integer solutions. For example, in the earlier
numerical example, it was noted that essen-
tially no cost attached to branching on Xl to
obtain the first integer solution. (Consequently,
the integer restriction for Xl was judged 'condi-
tionally superfluous' and the branch was dis-
carded in this instance.) Further, the tableau
that yields the integer solution assigns z 1 an
objective function coefficient of l, which means
that dl can be reduced from its present value
of 2 to 2 -l = I without altering the LP opti-
mum. This places the cost of the X 1 branch
underlying this solution at 1, which provides
a measure of the relative significance of this
branch and the integer restriction on X 1 in the
current solution. Specifically, we can conclude
that relaxing this branch will result in at least
1 unit of improvement in the objective function
for each unit of change in the value of Xl. Cor-
responding interpretations apply to situations
in which multiple branches underlie an integer
solution.

The second type of sensitivity analysis in-
volves the explicit assignment of penalties to
deviating from particular problem constraints.

Coupling this penalty procedure with para-
metric 8&8, the interactive effect of constraint
deviations and parametric branches becomes
susceptible to evaluation. For example, the
updated cost of a variable representing a con-
straint violation identifies the net effective cost
of imposing the constraint relative to a given
integer solution. Thus, if the constraint is in
fact violated at this solution, the d j values for
the parametric branches not only reflect
branching costs relative to the 'original' objec-
tive function but also relative to the penalty
incurred from the violated constraint. This
enables a more realistic form of problem solv-
ing in situations where constraint deviations
may be tolerable at a cost. The entire analysis
and solution process can be conveniently car-
ried out by merging the compact basis pro-
cedures illustrated for the MIP problem with
the more elaborate procedures of [7] to main-
tain the working tableau the same size as the
original.
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