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INTEGER PROGRAMMING OVER A FINITE ADDITIVE GROUP*

FRED GLOVER"

Abstract. An algorithm is given for solving an integer program over an additive group. Computa-
tion times appear to grow more favorably with increases in the number of variables and group elements
than with the dynamic programming approach proposed by Gomory. A new property satisfied by
optimal solutions to the group problem is established by reference to the structure of the algorithm.
Extension of the algorithm to the general integer programming problem is developed in a sequel.

(I)

1. Introduction. In this paper we give an algorithm for solving the problem"

Minimize cx

subject to ex e, x__> 0 and integer, j 1,-.., n,

where the cj are nonnegative scalar constants, and 0 and the j,j 1,-.., n,
are elements of a finite additive group. We sometimes also refer to

__
cixj

in matrix notation as cx, where c--(cl, c2, ..-, Cn) and x
An example of (I) is the problem:

(I’) Minimize 3xl + 7X2 + 4X3
subject to 8xl + 3x2 + 5x3 6 (mod 11),

x, x2, x3 >= 0 and integer.

Alternatively, consider the linear integer programming problem:

(II) Minimize cixi
j=l

subject to ax.i + y b, 1,..., m,
j=l

x, Y’i ->- 0 and integer for all i, j,

where c, ai and bi are integer constants.
Applying the simplex method to (II) without the integer restriction on the

x/and y yields an equivalent representation .1

(II’) Minimize cjx
j=l

subject to ai.ix.i + y b, 1,..., m,
j=l

* Received by the editors November 16, 1966, and in final revised form December 4, 1968.- Department of Statistics and Operations Research, The University of Texas at Austin, Austin,
Texas 78712. This research was supported in part by the U.S. Office of Naval Research under Contract
NONR 760(24) NR 047-048.

It is assumed an optimal continuous solution exists.
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where the cj, aij and bi are rational, the xj and y are obtained by renaming the

x.i and Y’i (e.g., x Y2, x2 x4, etc.) and cj >= O, bi _>_ 0 for all and j. Problem (II’)
then becomes an instance of (I) by dropping the restriction y 0, giving:2

(III) Minimize cjxj
j=l

subject to aijxj bi(mod 1), 1,..., m.
j=l

The significance of (I) lies in the fact that under certain conditions, its solution
gives an optimal solution to (II) (see 7).

It frequently happens that all of the constraints

aijxj=bi(modl), i= 1,...
j=l

can be replaced by a single constraint

jxj -= eo (mod O),
j=l

m,

where D, o and the a.i are integer constants, so that (III) becomes equivalent to the
class of problems whose form is illustrated by (I’).

A variety of such problems containing from 50 to 1500 variables and from
100 to 4500 group elements have been solved with the algorithm of this paper.
Computational results are reported in 8.

2. Methods for solving (I). Two methods have been proposed for solving (I)
other than the method of this paper. The first, due to Ralph Gomory [4], is based
upon a dynamic programming recursion for the knapsack problem developed by
Gilmore and Gomory [1]. Refinements in this approach have also been suggested
by W. W. White I8]. Computation time is estimated to be proportional to riD,
where n is the number of variables and D the order of the additive group.

The second method, due to Jeremy Shapiro [6], is based on a dynamic pro-
gramming recursion for the knapsack problem developed by Shapiro and Wagner
[7]. No estimates of computation time are available for this method, although
the method appears intuitively to be quite promising.

The method of this paper takes a different approach that departs from the
dynamic programming framework. An appeal to the structure of the algorithm
establishes a new property satisfied by optimal solutions to (I) (see 7). Computa-
tion times for the method, as reported in 8, appear to depend somewhat more
favorably on n and D than a direct proportionality to riD.

This method can be considered a dual method, in that optimal solutions are
generated for a sequence of right-hand sides, until a feasible solution is found.

That (III) is in fact an instance of (I) derives from the elegant theory developed by Gomory in
[33, [4].
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3. Simplified version of the algorithm. We describe three versions of the
algorithm in this and the next two sections, beginning with the simple and working
toward the more complex (and more efficient). Formal justification of the principal
ideas and claims is deferred to 6.

To begin with, we eliminate degeneracy by assuming c > 0. If c >= 0 is
rational, this can be ensured as follows: multiply c by a positive integer large
enough to make all components integer in the resulting new c. Then replace all

c 0 by c.i 1/P, where P is a number such that .:o x =<_. P l. Thus any
feasible adjustments of {xjlcj was zero} cannot change the objective as much as a
unit change in any xj. In particular, it suffices to let P D (see 7). 3

The algorithm generates a sequence of solutions (vectors of nonnegative
x,).Associatedintegers) x(1), x(2), x(i), where x(i) is the vector (Xl, x2,

with x(i)is the "cost" c(i)= 2"=1 CjX} and the group element e(i)= =1 jX.
If e(i) Co, then x(i)is a feasible solution to (I). Each x(i) is generated from an
earlier solution x(p), called the predecessor of x(i), by incrementing one of the
components of x(p) by one. Thus if xf is the component of x(p) that is incremented
to give x(i), then we may write x(i) x(p) + er, where er denotes the vector with 1
in the rth component and O’s elsewhere. We observe that c(i) c(p) + c and
(i) (p) + .

We construct the sequence of solutions to satisfy the following conditions:

(i) If p 4= q, then x(p) :/= x(q).
(ii) Ifp < q, then c(p) <= c(q).

(iii) x(i) is an optimal solution to (I) when o is replaced by (i).
(iv) The solution sequence is finite, and e(i) eo for some x(i) if and only if

problem (I) has a feasible solution.
If we alternately interpret the j as ordinary column vectors, our strategy in

generating the x(i) may be seen to correspond quite closely to the strategy of the
dual simplex method in solving the ordinary linear programming problem. In
fact, the successive basic solutions determined by the pivot rules of the dual simplex
method satisfy exactly the same four conditions.

We shall introduce several of the fundamental ideas of the algorithm (in a
simplified form) by means of an example. Consider the problem:

Minimize 3xl -k- 7x2 + 4x3

subject to 8xl + 3x. + 5x3 -= 6(rnod 11)
given in as an instance of (I).

Table shows a sequence of solutions x(i) generated by the algorithm.4

Included in the table are the costs c(i), group elements e(i), and the indices Pi
and ri from which one may verify the relations

x(i) x(p) + e,

c(i) c(p) + c,

(i) (p) + czr
Here (as earlier), and throughout the paper, we let D denote the number of elements in the

additive group.
4 The specific rules of the algorithm follow the example.
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for p p, and r r,, where p, names the predecessor of solution i, and ri names
the variable which was incremented to get x(i) from

Note that the starting solution, x(1), is the 0-vector. Because x(1) has no
predecessor, r and P have not been assigned values.

TABLE

4 6 9 10 I1 12 13 14 15 16 17 18 19

c(i) 0 3 4 6 7 7 8
a(i) 0 8 5 5 2 3 10

3 2 3

Pl 2 3 3

9 10 10 11 11 12 12 13 13 14 14 14
2 10 0 7 8 10 4 7 8 4 5 6

2 3 2
4 5 6 7 3 8 7 9 10 11 12 6

0 0 2 0 0 3 2 0 4 0 3 2 2 1,, 0
0 0 0 0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 2 0 0 2 0 3 0 2 0

x X X X * * X *

To identify the contribution of each variable xj to the generation of Table 1,
we define a transition index tj which names the next solution from which x will
be incremented. That is, if x(1), x(2), ..., x(k 1) denote the solutions currently
generated, then x(k) will be one of the solutions x(tl) + el, x(t2) + e2, "-, x(tn)
+ en. That is, t will be the predecessor the next time x gets incremented. All of
the t are initially set equal to 1, so that x(2) will be one of the solutions
el,e2, ’’’, en.

As soon as xj is incremented, i.e., when x(t) + e x(k), then the predecessor
name is changed. The next time x gets incremented, its predecessor will be i
instead of tj, where5

min {i’i > tj and r, _>_ j}.
All that remains for the determination of x(k) is the selection of the particular

index r for which x(k) x(tr) + er. To do this we define a next costN c(t) + c
for each j. N is the cost c(k) when x(k) is generated from the predecessor x(tj), i.e.,
when

x(k) x(tj) + ej.

Then we select the index r by

N min {N1, N2,..., N,}
and set x(k)= x(tr) + e.

We summarize our foregoing remarks in the following description of the
procedure as developed to this point.

The reason for the stipulation ri ->_ j is to avoid duplications. For example, without this restriction
the solution x(5) el + e3 in Table could be generated both as x(2) + e and x(3) + el, since
x(3) e3.
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SIMPLIFIED ALGORITHM.
1. Begin with x(1) 0 and t 1 for j 1, ..., n. Designate the solutions

currently generated by x(i), 1, ..., k 1.
2. To generate the next solution x(k), select r to be one ofthej’s,j 1, ..., n,

by the rule N, rain (Nj). If more than one index j is a candidate for r by this
criterion, let r be the smallest of these indices. Then let x(k) x(t,) + e,.

3. Update t by setting it equal to its next value (note g, < k) and repeat the
foregoing process.

The reader may verify that this algorithm generates the sequence of columns
of Table 1. To facilitate this verification, Table 2 supplies the successive values
assumed by the tj and the Nj.

The entries for portions of the table left blank are the same as the nearest
preceding entries in the same column. The value of r (N, min {Nj}) at each stage

TABLE 2

j 2 3

c 3 7 4

t
N 3

t 2

N 6

tj

N

t 3

N 7

tj 4

N 9

tj

tj

tj

tj

5

10

6

10

3

11

7 4

7

12

r=l

r=3

r=l

r=l

r=2

r=3

r=l

r=l

r=l

10

12

13

14

16

17

18

j 2 3

c 3 7 4

tj 7

N 11

t 8

N 12

tj

tj

tj

tj

tj

r=l

6

14

9

13

r=2

r=l

r=3

14

16
r=l

10

13
r=l

11

14
r=l

12

14

13

15

r=l
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is indicated to the right of the appropriate portion of Table 2. It may be noted that
the amount of computation required in going from one iteration to the next is very
small.

This simplified procedure generates solutions that are unnecessary for solving
(I), and a glance at Table 1 discloses a variety of them: x(4), x(8), x(9), x(10), x(12),
x(13), x(15), x(16), x(17) and x(18). These solutions are dominated in the sense that
other solutions generated earlier in the table give the same (i) with as good or
better values for c(i). Since these solutions are superfluous, they can be dropped.

There is of course no gain in dropping the dominated solutions at this stage,
since the work devoted to generating them has already been done. However, if
each solution is checked to see if it is dominated before it is added to the table,
then the outcome is somewhat different. The x’s and *’s beneath Table 1 show the
columns that would never have entered the table. The x’s are attached to columns
that would have been checked for inclusion in the table, but rejected, and the *’s
are attached to columns that never would have been checked or generated at all
since they are descendants of other dropped columns.

It is not evident that solutions can be dropped legitimately at the point at
which they are discovered to be dominated, unless they are dominated by a solu-
tion with a strictly lower cost. In fact, it can be shown that dropping dominated
solutions can cause the method never to generate a feasible solution to (I), let
alone an optimal one, if an improper tie-breaking rule is used in the choice of r at
instruction 2.

A disguised complexity in the process of dropping solutions arises from the
fact that some of the tj’s can thereby become "undefined." On the other hand,
from an ability to drop solutions also comes an ability to impose bounds on
variables, thereby further limiting the number of solutions examined.

The procedural details for accommodating these facts are given in the next
section.

4. Procedures for handling dominated solutions and upper bounds. To supple-
ment our previous remarks we define a list G(k), k 1, 2, ..., D, where G(k) 0
if none of the x(i) currently generated gives (i) gk (gk denotes the kth group
element). Otherwise, if (p) gk for some p, then G(k) p. G(k) names the solution
index (or "iteration") p for which the right-hand-side element, (p), is gk.

The use of the G-list in dropping dominated solutions is as follows. When
preparing to generate the solution x(k) x(tr) + er, identify the group element gh

such that gh (tr)+ . Then x(t)+ e is permitted to be generated as x(k)
only if G(h) 0, whereupon G(h)is set equal to k. Otherwise, if G(h) >= 1, then
x(tr) + er is dominated by the previously generated solution x(i) for i= G(h),
and thus is not recorded in the table. Note that xr might eventually be incremented
even if x(t) + er is dominated at iteration k. Therefore, whether or not it is domi-
nated, the next step is to find the next value ir for t,. We now define

rain {i :i > t,r <__ ri and G(q) 0,

where gq denotes the group element (i) + }.
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As already intimated, there may not be a next value for tr that satisfies this
definition. Thus, we introduce the set T {j:tj is defined}. Initially, T contains
all the j, j 1, ..., n (since tj 1 for all j). Thereafter, the composition of T can
vary. But from the results of 6, T cannot become empty unless (I) has no solution.

We now summarize these remarks by describing an algorithm for (I) that
accommodates dominated solutions.

To begin, let T {j:j 1, ..., n}, tj 1 for allje T, G(h) 0 for h 1, ...,
D and G(D) 1, where go is the "0" group element, generated by the starting
solution x(1) 0. If ao 0, the problem is trivially solved by x(1).

Otherwise, we denote the solutions generated at the current stage of the
method by x(1), ..., x(k 1)and the next step is to generate x(k).

ALGORITHM FOR (1).
1. If Tis empty, problem (I) has no solution. Otherwise, identify the index r

such that

Nr min {N}.
jet

If more than one j qualifies to be r, let r be the smallest of the qualifying indices.

2. Let gh denote the group element given by gh (t) + .
(i) If G(h) >= 1, do nothing at instruction 2. Go to instruction 3.
(ii) If G(h)= 0, indicating that gh has not previously been generated,

generate the solution x(k) x(t) + e and let G(h) k. If (k) o,
x(k) is optimal for (I) and the method stops.

3. Update tr to its next value (using the expanded definition of this section).
If the updated value of t does not exist, remove r from T.

4. If a new solution x(k) was not generated at instruction 2, then return to step
to pick up the next smallest Nj. But if a new x(k) was generated, check whether any
of the j Tcan be returned to T; i.e., whether j __< rk and G(h) 0 for gh given by
gh Z(k) -t- Zj. Let tj k for all such j added back to T, and then return to step
to generate x(k) for the next larger value of k.

We illustrate the algorithm above by applying it to the problem:

Minimize 3Xl + 4x2 + 5x3 + 7x4
subject to 5X + 9X2 + 3X3 -+- 4x4 (mod 10).

Table 3 gives the sequence of solutions generated by the algorithm.

c(i)
(i)

pi

Xr

TABLE 3

4 5 -6 10

0 3 4 5 7 8 9 10 12 13
0 5 9 3 4 8 2 6 7

2 3 2 3
3 4 4 4 7 8

0 2
0 2 2 2 2 3 3
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Notice that in place of recording the vector x(i) for each column, as in the
and the value of the single variableearlier example, we have instead recorded xj

(for r ri). The formula for determining these values is as follows. Let x(p)Xr
denote the predecessor of x(i), i.e., x(i)= x(p) + er. Then xj Z x + 1, and

1 otherwise.xp+ lifrp randxr=Xl
The successive iterations of the algorithm that produced the columns of this

table are summarized in Table 4. As before, entries for portions left blank are the
same as the nearest preceding entries in the same column.

TABLE 4

j 2 3 4

cj 3 4 5 7
ej 5 9 3 4

tj

(tj) + j

tj

tj

tj
4 Nj

(tj) + j

tj
5 Nj

o( j) -t-

tj

o(tj) q- Oj

tj

O(tj) h- Oj

tj

O(tj) + oj

tj

3 4
5 9

3 3
7 8
4 8

7
12
7

8
13

7
13

5 7
3 4

4
10
6

r=l

r=2

r=3

r=l

r=4

r=2

r=3

r=l

r=l
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The steps of the algorithm can be traced from the tables as follows. From step 1
of Table 4, r 1, producing column 2 of Table 3. Thereupon, the next value for tl
would ordinarily be 2, except that (2) + 01 10 _= 0, and 0 has already been
generated ((1) 0). Consequently, since there are no other possible values for
l, it becomes undefined, as indicated by the asterisks in step 2.

At step 2, r 2, producing column 3 of Table 3. t becomes defined again
(t 3) and the next value of 2 is determined (t2 3), as shown in step 3 ofTable 4.

Step 4 of Table 4 is generated routinely. At step 5, however, r 4 is indicated,
except that 0(1) + 4 4 has by now been generated ((5) 4), and hence the
next permissible value is sought for t4. There is none, and so t4 becomes undefined
(as indicated by the asterisks). The actual value of r at step 5 is therefore r 1.

At step 6, r 2 is indicated, but cz(3) + (X2 8 has been generated ((6) 8).
Thus, the next value of 2 is determined, giving t2 4. In this case, N2 is still
minimum, and so r 2 gives the correct value of r. Steps 7, 8 and 9 of Table 4 are
determined similarly.

The optimal x-vector can be recovered as follows. Begin with x 0 and the
index of the optimal (last) column of Table 3.

Let xr x + xer (for r ri) and identify the group element gh 0(i) Xr(Zr
From the G-list (or simply by scanning back through the table) locate the column
for which gh (i) (i.e., set i= G(h)), and then repeat this procedure until

The foregoing also works by replacing x with at each step, so that the x
values need not have been recorded for this purpose. Using either procedure, we
see that an optimal solution is given by x (1 0 2 0).

values are not needed to recover the optimal solution, but canand xrThe x,
be used to serve another more fruitful purpose. Specifically, whenever a solution
x(t) + e, is rejected as the next x(k) at instruction 2, postpone this rejection,

it follows that6temporarily designating x(k)= x(t) + e,. Then if xr xj,
x(k) x,e,. Moreover, since x(k) is dominated, one may reasonably guess that x

in all undominated solutions’this is shown to be true inwill satisfy x N x,
Lemma 5, 6.

We denote the upper bound so determined for x by U. After checking for
such a bound, we discard, without being recorded, the dominated solution tem-
porarily designated x(k), and the process continues.

Similarly, one may check to establish an upper bound for x at instruction 3
when seeking the updated value , for t, since the chance to identify dominated
solutions also arises there.

To make use of the upper bounds Uj thus determined, one expands the
definition of j to

(i) + }j min {i’i > tj,j r, xj < U and G(h) 0, where gh

A slightly quicker way to check whether x(k) xer is to record a flag for each x(k) which takes

the value 0 if x(k) xer and otherwise. The flag for a successor x(q) of x(k) is the same as for x(k)
ifrq rk, and is ifG rk.
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The stipulationV xj < U is easily checked after checking for j _<_ ri, since

xi 0 ifj < re, and xi is precisely the value recorded in the table as r ifj r.
Had such upper bounds been computed in generating Tables 3 and 4, U1

would have been determined at step 2 of Table 4, U4 0 at step 5 and U3 2 at
step 8. Also, accounting for U1 would have avoided two attempts to determine
a next value for tl in going from step 5 to 6, and accounting for U4 0 would
have avoided repeated checks to see whether t should become defined once again
after step 5.

5. An accelerated version ofthe algorithm. We now show how to solve problem
(I) by generating only a subset of the x(i) produced by the algorithm in 4.

First note that the algorithm in 4 generates optimal solutions x(i) in order
of increasing cost, stopping when a solution with the desired right-hand side is
reached. Let x* be the optimal x-vector which is to be generated by the algorithm.
Consider two nonnegative integer vectors x" and x such that x* x + x and
Icx cxa] min Icx" cx’], where x’ and x" range over all pairs of nonnegative
integer x that sum to x*. We prove in 6 (Lemmas 6 and 7) that vectors qualifying
to be x and x will be generated by the algorithm. Consequently, we hereafter
denote these solutions by x(a) and x(b), where, say, a < b.

Since c(a) and c(b) are either equal or nearly so, it may be expected that x(a)
and x(b) will be generated somewhat before x*. But since x* x(a)+ x(b), it
would be possible to stop immediately after generating x(b), eliminating the
generation of all subsequent solutions.

Let c(k) c(p), where k and p are candidates for b and a, so that x(k)
+ x(p) x*’7 is >= 0 because k > p. The accelerated algorithm will generate
candidates for x(a) and x(b) in order of increasing (or nondecreasing) 7- The trick
is to know when the optimal x(k) and x(p), namely x(a) and x(b), have been
generated.

Clearly, the first step is to check each time a new x(k) is generated at instruction
2 to determine whether G(q) >= 1, where gq is the group element eo e(k). If so,
x(k) + x(p) is a feasible solution to (I), where p G(q) (<= k). However, x(p)
+ x(k) may not be optimal, and, in general, several feasible solutions to (I) may be
found by repeating this check for successive x(k).

Let x’ denote the best of these solutions. Now, if x’ is not optimal, then
c(b) + c(a) < cx’. Furthermore, until x(b) is finally generated, it must be true that
c(b) >= Nr, because candidates for x(b) are generated in order of increasing cost.
Consequently, c(a) < cx’ N, and an upper bound for c(s) is found by identifying
the largest c(i) (call it c(a’)) such that c(i) < cx’ Nr. Since c(b) Nr and c(a)
<= c(a’), it must be that c(b) c(a) >= N c(a’). Moreover, since c(b) and c(a)
are as nearly the same as possible, it is also evident that c(b) c(a) <= Cm, where
c,, max {cj). Thus once N- c(a’)> Cm becomes satisfied, x(b) has tlready
been generated and x’ is the optimal solution.

The handling of the U can alternately be accommodated by requiring "j _<_ di" instead of
"j =< ri and x < Uj" in the definition of the [, where di r if x Ur (r ri), and d r other-
wise.
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Frequently, a smaller value can be given for Cm than max {cj}, thereby per-
mitting earlier termination of the algorithm. To see this, let c(b)- c(a).
Then if x’ is not optimal, 2c(a) + 6 < cx’, and hence < cx’- 2c(a). Suppose
each ej is scanned before starting the algorithm and if ej o, the solution x ej
is admitted as a candidate for x’. This implies that if x’ is not optimal, it is also true
that x(a) O, and hence c(a) > c(1). Thus 6 < cx’ 2 c(1), and c,, may alternately
be given by Cm max {cj:cj < cx’ 2 c(1)}.

The cutoff level thus determined will generally succeed in stopping the algo-
rithm considerably in advance of generating x*. However, the whole process
becomes more effective by dropping solutions that would ordinarily be retained.
Specifically, when x(p) + x(k) is found to be feasible for (I), both x(p) and x(k) and
all their successors can be eliminated from further consideration (Lemma 7, 6).
This is easily accomplished for x(k) simply by not recording it in the table (although
G(h) is assigned some positive value to permit solutions dominated by x(k) to be
dropped). To prevent additional successors from being generated it suffices to set

r 0 (or r rp in case it is desired to recover the value of rp later). Similarly,
one may locate successors x(i) of x(p) that are already generated, and set r 0
(or r r) to assure that no more of their successors will be generated. Clearly
this process can be carried out for as many generations of descendants of x(p) as
desired. However, the chances offinding a descendant of x(p) beyond an immediate
successor are probably remote.

The main content of the foregoing discussion can be summarized by pre-
scribing the following changes in the constructions of the algorithm as stated in
4.

Change in instruction 1. If no feasible solution for (I) has previously been
found, the instruction remains unchanged. Otherwise, let x’ denote the best solution
found. Identify N, (as before), let c(a’)= max {c(i) c(i) < cx’-N}, and let
Cm max {cj} (or c. max {c:cj < cx’- 2c(1)} if the solutions x ej,
j 1, ..., n, have been included as candidates for x’). If one of the following
conditions holds, then x’ is optimal for (I) and the method stops:

(i) Tis empty;
(ii) c(a’) or Cm does not exist;

(iii) Nr- c(a’) > Cm.
Change in instruction 2. If 2(i) is applicable, the instruction is unchanged. If

instruction 2(ii) is applicable, set G(h) k (as before) but postpone all other work
involved in recording x(k,). Identify the group element gq o (k) and the index
p G(q). If p 0, the generation of x(k) is recorded, as before, and nothing further
is done. But if p _> 1, then x(p) + x(k) is feasible for (I) and is designated the
new x’ if c(p) + c(k) < cx’ (letting cx’= o if x’ does not exist). Furthermore,
the generation of x(k) is not recorded, and if p 4: k, rp is set equal to 0 (or to
--rp) to prevent generating new successors of x(p). (One may also replace ri
by ri for successors x(i) of x(p) already generated, and similarly for their succes-
sors, etc.)

Except for these changes, the algorithm remains the same as before. Note
that the dropping of x(k) and x(p) specified by the changed instruction 2 may
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provide upper bounds for some of the xj in the manner described in the latter part
of4.

We trace the course taken by the accelerated version of the algorithm by
examining Table 3. Since the accelerated version is the same as the original except
for checking for new solutions x(k)+ x(p) and dropping their successors, we
confine ourselves to determining the effect of these operations on the columns of
the table.

The first candidates found for x(a) and x(b) are x(4) and x(6)--e(4) + e(6)
11 1--yielding cx’= c(4)+ c(6)= 13. We shall now verify that this is

optimal. First, no successors of x(4) or x(6) need be generated. Thus, changing
from 3 to 0 and masking over the column for x(6) (which. is not actually generated
by the accelerated method) insures that x(7) will be bypassed. Also, x(8) need not
be generated, since it is also a successor of x(4). However, to avoid its generation
would ordinarily require checking the current tj and updating 3 which is found to
equal 4. But the method stops without generating x(8) by checking the relation
N, c(a’) > cm. Specifically, upon preparing to generate x(8), Nr 10; hence
c(a’) < 13 10, giving c(a’) 0. Also, c,, 7, and the .relation becomes 10 0
> 7, which is true, thus signaling optimality and directing the method to stop.

The optimality of x(4) + x(6) can also be verified more quickly if the pre-
liminary scanning is used to admit each e as a candidate for x’ (none of the e
qualify).

Then c,, < cx’-2c(1)= 13- 6, giving c,, c3 5. Before updating N,
from 9 to 10, the relation N c(a’) > c is 9 3 > 5, the validity of which again.
signals optimality.

6. Theorems and proofs. We refer to the simplified (incomplete) form of the
algorithm given in 3 by stipulating that no solutions are dropped, and the
complete form of the algorithm (including the use of upper bound restrictions) by
stipulating that solutions are dropped.

LEMMA 1. Ifno solutions are droped and the algorithm is not permitted to stop
upon generating So, then the method will generate every x-vector having finite com-
ponents.

Proof. Note that c > 0 implies every j,j 1, ..., n, will be selected as r at
finite intervals. Suppose x x’ is not generated. Then neither would the method
generate x(i) x’ eu, where u is the first nonzero component of x’. For clearly
u <= ri, which means tu must eventually be set equal to ri and hence x’ generated.
Repeating this argument implies that 0 is not generated; contrary to x(1) 0.

LEMMA 2. No solution is generated twice, whether or not some solutions are
dropped.

Proof. Let x(q) be the first solution that duplicates a previous one, say x(p).
Then for some h < q and k < p, x(q) was generated as x(h) + er and x(p) was
generated as x(k) + e, where r is the first nonzero component of x(q) and x(p).
Thus x(k) x(h), and since x(q) is the first duplicating solution, h k. When
x(p) was generated t h, and then t, was increased, never to be decreased. Con-
sequently, x(q) could not have been generated from x(h), contrary to assumption.
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LEMMA 3. If no solutions are dropped, p < q implies8

(i) c(p) < c(q) or

(ii) c(p) c(q)and x(p) > x(q).
Proof. Note that either (i) or (ii) is satisfied for q 2 and p < q (hence p 1).

Suppose the lemma is true for all q < k and p < q. We prove it true for q k and
p h < k. Write x(k) =. x(k’) + e,, x(h) x(h’) + e,. When x(h) was generated,
c(h) Nv and either Nv < N, or N N, and v < u. If t, (and N,) are the same
when x(k) is generated as when x(h) was generated, then the proof is immediate.
If t, and N, change, then let N’, be the new N, when generating x(k). We have
N’, c(t’,) + c, and Nu c(t,) + c,. But t, < t’u < k and, by hypothesis, (i) or (ii)
holds relative to p t, and q t’,. It follows immediately that (i) or (ii) must also
hold relative to p h and q k.

LEMMA 4. Let S denote the sequence of solutions generated by the simplified
algorithm and suppose this algorithm is modified so that occasionally solutions are
not generated but bypassed (according to any rule whatsoever). The resulting
sequence of solutions S’ is a subsequence ofS (i.e., contains a subset of the solutions
of S in the same relative order).

Proof It is evident from Lemma that S and S’ are well-defined. Denote those
x(i) in S by xl(i) and those x(i) in S’ by x2(i). Let be the subsequence of S obtained
by deleting from S eachxl(i) such that x(i) 4= x2(k) S’. We note by Lemmas 2
and 3 that the components of must be a permutation ofthose ofS’. Thus, designate
the smallest such that xa(i) by , the next smallest by , and so on. Then we
wish to prove that x(i)= x2(i) for all x2(i) GS’. Suppose otherwise, and let
p min {i’xl() - x2(i)}. Also identify the indices q and r such that x(/5) xZ(q)
and x2(p) xl(?). It is assured by Lemma 2 that q, r > p. Since g if and only
if s for all and s, we have xl(.) x() + e, for some u and some h < p, and
x2(p) x2(k) + eo for some v and some k < p. Now, x(/3) was generated before
xl(?), but xl(?) x2(p) implies x(?) x() + e. Since k < p, this means that
when x 1(/3) was generated, t, (=/) was well-defined (v T). Thus there was a choice
to make between generating x(/) and x(?). Similarly, x2(p) was generated before
x2(q), but xZ(q) x2(h) -+- eu, SO that, by analogous reasoning, there was a choice
to make between generating x2(p) and x2(q) when x2(p) was generated in S’. But
/ < ? thus implies q < p, providing a contradiction.

Remark. Lemma 4 establishes the validity of Lemma 3 for the case when solu-
tions are dropped.

LEMMA 5. Ifa solution x’ is dropped at instructions 2 or 3 of the complete algo-
rithm, then there is no vector x* >- x’ that is a lexicographically largest optimal
solution.

Proof. Suppose this lemma is false, and let x’ be the first solution dropped
that has a lexicographically largest optimal descendant, x’ is dropped because
there is a solution x(i) already generated such that c(i) <= cx’ and (i) jx. Let

8A vector y is defined to be lexicographically larger than a vector z, written y : z, if the first
nonzero component of y z is positive.
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x* x’ + x" be the lexicographically largest optimal solution. Since (i) x
and c(i) <= cx’ it must be true that x(i) + x" is also optimal. Moreover, c(i) cx’.
But then x(i) is lexicographically larger than x’ (since x’ would have been generated
later than x(i)) and in turn x(i)+ x" is lexicographically larger than x’ + x",
contrary to assumption.

Lemmas 1 to 5 immediately imply the next theorem.
THEOREM 1. The algorithm of 4 yields an optimal solution to (I) or verifies

that no feasible solution exists, after generating at most D solutions x(i), each of
which is optimalfor (I) with o replaced by a(i).

The succeeding results refer to the accelerated algorithm of 5.
LEMMA 6. Let x(a) and x(b), a < b, be two solutions such that x(a) + x(b) is

optimal for (I), and, moreover, let b be the least index (b >= a)for which two such
x" > 0solutions can be found. Then c(b)- c(a) <= cx’ .-cx" for all solutions x,

such that x’ + x" is optimalfor (I) and cx’ >_ cx".
Proof. Let x and xp be two solutions qualifying as x’ and x" and minimizing

cx’ cx". Thus the lemma asserts c(b) -c(a) cx cxp. The lemma is trivially
true for cxp 0; hence suppose cxp > O.

Let a %xpj and aq ax, where xp3 and x are the jth components
ofxp and xq. Define problem (I) to be the same as (I) with a replacing ao and (I) to
be the same as (I) with a replacing a0. Since cxp, cx < c(x + x), it follows from
Theorem 1 and Lemma 3 that there exist x(p) and x(q) generated in the process of
solving (I) such that x(p) is optimal for (Iv) and x(q) is optimal for (I). Suppose p =< q.
By assumption b =< q, and hence c(b) <__ c(q). But since c(q) + c(p)= c(a) + c(b),
it follows that c(a)>= c(p) and hence c(q)- c(p)--c(b)- c(a), proving the
lemma.

LEMMA 7. Let x(a) and x(b) be as in Lemma 6, and suppose there are solutions
x(h) and x(k), h < k < b, such that x(h) + x(k) is feasible for (I). Then there is no
vector z >= 0 that satisfies one or more of thefollowingfour conditions"

(i) x(h) + z x(a),
(ii) x(h) + z x(b),
(iii) x(k) + z x(a),
(iv) x(k) + z x(b).
Proof. Since k < b, x(h) + x(k) is not optimal, and hence c(h) + c(k) > c(a)

+ c(b). Condition (i) implies x(h) + z + x(b) is optimal, hence there exists x(v) such
that x(v) + x(h)is optimal and c(v) < c(k). Consequently v < k, and x(v) and x(k)
qualify to be x(a) and x(b), contrary to k < b. Conditions (ii), (iii) and (iv) lead to
similar contradictions.

Lemmas 6 and 7 establish the next theorem.
THEOREM 2. The accelerated algorithm willfind an optimal solution ifone exists

and, in particular, will generate x(a) and x(b) ofLemma 6.

7. Properties of optimal solutions. The characteristics of the solution sequence
x(1), x(2), ..., generated by the algorithm, make several properties of optimal
solutions to (I) immediately evident. For example, let nj denote the order of the
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subgroup generated by all multiples of j. Then, since njej is the 0-element, the
solution njej is dominated by x(1), and x) <= nj 1 holds for every x(i) generated.
The existence of optimal solutions with this property is proved by Gomory in [4].

Moreover, there are at most D of the x(i) (including x(1) 0), and the sum of
the variables in each is only one more than in its predecessor. Thus it is evident that

< D for all x(i). The existence of optimal solutions with this property is
also proved by Gomory in [4].

We see that solutions satisfying both of the two foregoing properties exist
and, in fact, are the only solutions generated by the algorithm.

More recently Gomory has proved that optimal solutions may be found that
satisfy91-l= (Xj -[" 1) =< D. It may be observed that this property is somewhat

i<Dstronger than xj
We shall prove a different property that is also considerably stronger than
< D by a direct appeal to the structure of the algorithm.Xj

THEOREM 3. Let (I i) denote problem (I) with o replaced by gi for 1,..., D.
Then there exists a set ofoptimal solutions xl for (I1), xZfor (I2), xDfor (ID), such
that max {x,x2, x} + max {x,x,..., x} + + max {x,x,,...,
D-1.

Proof. Label the group elements to correspond to the a(i) generated by the
algorithm; i.e., gl a(1), g2 (2), ’’’, gD (D), where a0 go. Then the
solutions xi specified by the theorem are precisely the x(i) generated by the algo-

2rithm of 4. To see this, let Uj max {x),xj,., x} for j 1,..., n. The
theorem asserts U D 1. Beginning with j 1, delete each x(i) which is
derived from its predecessor by incrementing only x. No solution x(k) is deleted

k differs from the correspondingin which any of the components x,x,--., x,
component of the predecessor of x(k). Consequently, x2, x3, ..., x, attain their
maximum values in the undeleted solutions. There are at least U of the x(i) to be
deleted, leaving at most D- U solutions behind (one of which is x(1)= 0).

is only one larger than in one of theMoreover, in each remaining x(k), =2 xj

preceding x(k). Thus since there are at most D U solutions other than
x(1) 0, ,j=zXJk =< D- 1- U. We repeat this process for j 2, n.

k < D j Uj Finally, we obtain 0 < D 1At each step r, j=+ xj =" Uj or " Uj < D as claimedj=l j=l

The Uj in the proof ofthe preceding theorem constitute upper bounds for the xj
that apply regardless of which group element o happens to be. One way to deter-
mine such a set of Uj is to apply the algorithm until every g is generated, and then
compute max {x),..., xy} for each j. There is also a second much faster way. Sup-
pose the definition of [j is simplified so that, when x(tj) + ej is generated as the solu-
tion x(k), j is set equal to k. Further suppose the method is stopped only when T
becomes empty. This "modified" version ofthe algorithm has the following features.

(i) Only solutions of the form lej, 2ej, 3ej, are generated for each j.

(ii) As soon as a solution hej is dropped (checked but not generated), j is
removed from Tand never returns. At this point Uj can be recorded as h 1.

Reported by W. W. White in [8].
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It may be observed that the foregoing method will usually generate fewer (and
never more) than the D solutions required to determine the Uj with the unmodified
algorithm. Moreover, all comparison operations in determining the next value
j of tj are eliminated. No upper bounds are checked for the variables, since a
variable drops from T as soon as its upper bound is attained and verified. Because
of this, T also tends to shrink more rapidly than with the unmodified algorithm,
reducing the number of effective problem variables. Finally, there is no need to
check those j T to see if they should be put back into T.

By Lemma 4, the sequence of solutions generated is a subsequence of that
generated if no solutions are dropped. (Here some of the solutions are "dropped"
by the restrictive definition of j.) Solutions bypassed due to dominance considera-
tions are therefore truly dominated and would not be generated in any case.
Consequently, the U.i are valid (although possibly not as restrictive as those
obtained from the sequence of x(i) generated by the unmodified algorithm) and
satisfy U < D 1 by the proof of Theorem 3.

$. Computational experience. Roughly five hundred problems have been
solved with the algorithm, containing from 50 to 1500 variables and from 100 to
4500 group elements. The problems all have the form

Minimize CjXj
j=l

subject to jxj o (mod D),
j=l

x >= 0 and integer,

where the cj and j are positive integers.
The c were randomly generated to lie within a specified interval, and several

different intervals were tested to.determine the effect on computation times.
The zj were generated by selecting 1 randomly from the set S 1, 2, .-.,

D 1}, 2 randomly from thesetS {1}, 03 randomly from theset S {1, 2},
and so on. Thus, p q for p 4: q was avoided, although one might expect this
situation to arise in practice, thereby making it possible to reduce the number of
problem variables.

Representative tables of computation times follow. All times reported are in
seconds of central processing time on the CDC 6600.1 The ci were arranged in
ascending order before starting the algorithm but the time for this preliminary
ordering is not included.

The tables are headed with the symbols n, D, Total, Av., Fast and Ratio.
"Total" gives the time for the algorithm of 4 to solve problem (I) for every value
of o. That is, the algorithm is permitted to continue until (1), (2), ..., (D) are
all generated. Since, in practice, one will often be interested in solving (I) for a

The code was written in FOWIRAN IV.
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particular value of Co, the times to solve (I) for 11 o e(D/5), e(2D/5), , z(D)
were averaged to give an idea of expected computation time, and this average
appears in the column headed "Av."

The "Fast" column gives the computation time for solving problem (I) with
the accelerated version of the algorithm. The accelerated version was applied to (I)
with eo (D) (thus requiring more computation than with eo at any other value).

The "Ratio" column gives the ratio of the "Fast" column to the "Total"
column, indicating the relative efficiency of the accelerated version to the version
of the algorithm of 4.

From Tables 5, 6 and 7 it may be seen that computation times tend to become
longer as the relative difference between the largest and smallest cj decreases. 12

In Tables 5 and 6 the effect of holding n constant and increasing D is an almost
exactly proportional increase in the "Total" times. The increase in "Total" times
in Table 7 for n and D => 1000 is somewhat less than proportional to increases in D.

TABLE 5

_<c _<400

500

1000

1500

501 .148
1002 .270
1503

1000
2002
3003

1501
3002
4503

.421

.245

.452

.680

.439

.888
1.274

A Fast
.096 0981
.175 .197!
.274 .334

.176 .154

.307 .382

.479 .577

.288 .333

.559 .555

.838 .855

Ratio

.662

.730

.793

.629

.845

.849

.759

.625

.671

D

50O

1000

150O

501
1002
[503

1001
’.002
3003

1501
3002
,503

TABLE 6

301 =< cj =<. 700

Total

.739
1.326
2.297

2.537
4.388
6.663

4.481
8.790
13.916

.507

.843
1.237

1.858
2.996
3.972

3.485
5.565
7.996

Fast

.376

.409

.645

1.092
1.294
2.081

1.724
2.252
3.717

Ratio

.509

.308

.281

.430

.295

.312

.385

.256

.267

11 The numbers D/5, 2D/5, were of course replaced with their nearest integers.
12 This may be due in part to a less than optimal computer subroutine for determining Nr at

each iteration.
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TABLE 7

5OO

6Ol cj <_ 1000

1000

1500

Total mv,

501 1.226 1.017
1002 2.041 1.508
1503 3.146 2.060

4.749 3.999
6.373 5.194
9.592 6.738

8.240
12.006 10.286
15.471 12.201

1001
2002
3003

1501
3002
4503

Fast

.445

.509
1.207

5.393
1.532
2.567

Ratio

.363

.249

.384

1.136"
.240
.268

.129

.199

.294

5O

100

5O

100

5O

TABLE 8

D Total Fast

100 .050 .020

150 .061 .024

Ratio

.400

.393

200 .081 .035 .436

100 .056 .029 .516

150 .072 .033 .458

200 .153 .035 .228

100 .065 .013 .200

150 .088 .019 .215

100 200 164 .044 .268

__< cj =< 40

31 __< cj __< 70

61 =< c =< 100

Also, for the ranges of cj in which the computation times are longer (Tables
6 and 7), the "Av." and "Fast" times become increasingly favorable relative to the
"Total" times. The superiority of the accelerated version of the algorithm is quite
evident from the fact that the "Fast" times in Tables 6 and 7 are not only better
than the "Total" times, but are also considerably better than the "Av." times. An
exception occurs for n-- 1000 and D- 1001 in Table 7, as indicated by the
asterisk beside the "Ratio" entry. The reason for this exceptional divergence from
the pattern evident in the other entries is not known.

While computation times appear to increase roughly in proportion to increases
in D, they do not increase in proportion to increases in n. For example, in Table 5,
a proportional increase in computation time would lead one to expect the "Total"
and "Fast" times for n 1500 and D 1501 to be roughly 1.2 and .99 seconds
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(multiplying the times for n 500 and D 1503 by three). In contrast, they are
actually .439 and .333 seconds.

More dramatic examples arise by comparing the times 13 of Table 8 to those
of Tables 5, 6 and 7. At first glance the Table 8 times are very small, since most of
the "Total" times are under .09 seconds and most of the "Fast" times are under
.04 seconds. However, if the computational time were to increase in proportion
to nD, as in the group algorithm of [4], the times for "corresponding" ranges of cj
would be greater by a factor of from 4 to 40 than the times appearing in Tables
5, 6 and 7. For example, extrapolating from n 50 and D 150 for 1 N cj =< 40
would give a "Total" time of 54.900 seconds for n 1500, D 4503 in Table 5,
as compared to 1.274 seconds.

Such comparisons do not yield a precise formula linking computation times
and increases in n and D, both because of the effect of different ranges of cj and
because of probable shortcomings of the computer code in determining Nr

min {cj} and in determining the current composition ofthe set T. 14 Nevertheless,
without attempting to be definitive, the tables do establish definite patterns in the
performance of the algorithm: in particular, that the accelerated version of the
algorithm is distinctly superior to the version of 4 and that computation times
for both versions increase at a considerably more favorable rate than nD.
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