Integer Programming and Combinatorics

by Fred Glover

Integer programming and combinatorics are closely
linked. 1In the broadest sense their domains are identical,
though in practice some problems are popularly viewed to fall
more in the province of one than the other. "Combinatorics,"
as spoken of here, is the field of "combinatorial optimiza-
tion," whose prcblems characteristically have the form of
seeking a "best" subset of items (decisions, activities, etc.)
satisfying particular criteria from a structured finite set of
alternatives. "Best" is evaluated in terms of maximizing or
minimizing some functional. The structure of the finite set,
whatever it may be, is the feature to be exploited in devising
a systematic method to solve the problem, rather than simply
enumerating and comparing all alternatives (which in problems
of real world significance can require astronomical amounts of
computation)., A remarkable number of practical problems fall
into the integer programming/combinatorics area, Those
associated with the "combinatorics" label usually are problems
that are conveniently expressed in the specialized terminology
of graph or matroid theory. Those associated with the "integer
programming” labsl usually are more conveniently expressed in
mathematical programming terminology. Then there is a no-man's-
land of pfoblems that fall under either or both labels ac~-
cording to the flavor the author wishes to impart to them.

This chapter focuses primarily (though not exclusively)

on those problems and formulations that commonly find expression
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in integer programming terminclogy. (The graph theoretic
branch of combinatorics is covered in Chapter 3.)

Loosely speaking, integer programming is the domain of
mathematical optimization in which some or a2ll of the problem
variables are required to assume integer (whole number) values.
The nonlinear cltaracter of the integer regquirement is subtle
enough to accommodate an unexpected variety of other non-
linearities, permitting most "nonlinear" integer programs to
be sorted into ¢ linear component and an integer component.
Consequently, irteger programming is frequently regarded as
the domain of linear mathematical optimization (specifically,
"linear programming”) in which some or all of the problem

variables are irteger-constrained.

An Illustration

A very simple example of an integer program is that of
a gardener who reeds 107 pounds of fertilizer for his lawn, and
has the option ¢f buying it either in 35-pound bags at $14
each or in 24-pcund bags at $12 each. His goal is to buy {(at
least) the 107 rounds he needs at the cheapest cost. Letting
Xy be the number of 35-pound bags he buys and letting X, be
the number of 2{-pound bags he buys, he seeks to

Mir.imize l4ax, + 12x2

1

sul:ject to 35x, + 24x, > 107

1 2
X0 X, > 0 and integer.
The "and integer" stipulation means that the gardener
can't buy half or a third of a bag of fertilizer, but must buy

a whole bag or rone at all. Without this stipulation the



problem is an example of an ordinary linear programming

problem,

Significance of the Integer Restriction

To get a very rudimentary grasp of how the integer re-
striction can affect the character of the problem, consider
what would happen if the restriction were missing. The gar-
dener would ther 6bserve that fertilizer in the 35-pound bags
costs 40¢ a pourd and fertilizer in the 24-pound bags costs
50¢ a pound, ané¢ immediately perceive’ that his best policy
would be to buy 3-2/35 of the 35-pound bags. However, in the
presence of the integer restriction, his best policy is to
buy only 1 of the 35-pound bags and buy 3 of the 24-pound bags.
Clearly, his best policy has changed drastically, a not at all
unusual occurrence of requiring the variables to be integer
valued. (In fact, an example exists [56 ] of a "conditional
transportation problem" that can be summarized by a 5 x 5 cost
matrix and whose linear programming solution can be rounded in
more than a million ways, none of which yields a feasible--

let alone optimal--solution.)

Areas of Application

In the foregoing example, the interpretation and rele-
vance of the intzger restriction was clear, as it would also
be if one wished to determine an optimal number of airplanes,
cargo ships, or auman beings. However, a variety of problems
that seem on the surface to have little or nothing to do with

"integer constrained linear optimization" can nevertheless be



given an integer programming formulation. Indeed, the require-
ment of discreteness indirectly, if not directly, pervades

many significant classes of problems and provides integer pro-
gramming with application in an uncommonly wide variety of
theoretical and j»ractical disciplines. Production sequencing,
job shop scheduli.ng, logistics, plant location, assembly line
balancing, mineral exploration, capital budgeting, resource
allocation, and :facilities planning constitute a few of the
important indust:ial problem areas that frequently fall within
the wider domain of integer programming.

The uses of integer programming are not confined to in-
dustry, however, and also find application in many other com-
binatorial optim:.zation problems arising in engineering and
scientific contexts. Computer design system reliability, prime
implicant select:on, signal coding, and energy storage system
design all give 1rise to classes of problems with integer pro-
gramming formulat:ions.

Integer programming also has applications to economic
analysis. The asisumption of continuity underlying traditional
economic theory is incompatible with the existence of indivis-
ible plants, set up costs, and developmental expenditures.
Conclusions reacted by marginal analysis must, therefore, often
be amended (or stated with appropriate qualification) to ac-
commodate considerations which are the focus of integer pro-

gramming.

Mathematical Forrwlation of Linear and Integer Programs

A standard formulation of the linear programming




problem is:

n
Minimize I c.X.

n
subject to I a.,.¥.' < b, 1 = 1% o e
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or, in matrix notation

Minimize (ab 4
subject to Ax < b
x>0
where ¢ = (cj)l < pn’ X< (xj)n % 1° (aij)m % n and b =
B)y x 1+ The matrix inequality Ax < b can be used to sum-

marize constraints of the form Dx > 4@ and Dx = d by the well
known equivalences Dx > d&» -Dx < -d

and

Dx < d
Dx = d &
=aDxX < -ed
where e denotes the vector all of whose components equal 1,
interpreted to he a row or column vector according to context.
(Thus -eDx < -ecl sums the row inequalities of Dx < d and re-
verses their si¢mn.) Also, a problem with the objective Maxi-

mize dx can be zccommodated by the foregoing minimization

formulation by letting ¢ = -4.

Pure and Mixed lnteger Programs

A linear programming problem in which all components of
x are additionally constrained to be integer is called a pure

integer programning problem and one in which only some of the



components of x are additionally constrained to be integer is
called a mixed integer programming problem. Variables that

are not integer constrained are called continuous variables.

(Thus, in the ordinary linear programming problems all vari-
ables are continuocus,)

The words "integer programming” often have reference
to the pure integer problem but we allow them also to refer to

the more general mixed problem depending on the setting.

Examples of Intejer Programming Prcblems

The Knapsack (or Loading) Problem

One of the simplest integer programming problems is the
knapsack problem, so called because it can be interpreted as
a problem of selecting a best set of items to go in a hiker's
knapsack, given ':he value he attaches to these items and an
upper limit on the amount of weight he can carry. A less well
known interpretation of the knapsack problem goes back to the
days of one of the early kings of Siam who was seeking an
ideal composition for his harem.* The king's preferences were
strongly influenced by hair color and, prompted by the royal
economist, he established a set of subjective utilities (called
"voodles" in Sianese) expressing these preferences as follows:

Hair types: Blornde Brunette Redhead Albino Bald

Yoodles: 7 5 9 6 3

*This higtorical information was contributed by Dr.
Eugene Woolsey, who assures me it is true,



Thus, letting X, denote the number of blondes in his harem,
X, the number of brunettes, etc., the king formulated his ob-
jective function to be
Maximize 7xl + 5x, + 9x3 + 6x4 + 3x5

Siamese harem girls were known to be hearty eaters so
the king got together with his royal cook and figured out how
much it cost to feed each type of girl for a week, and counting
on a maximum all.owable food bill of one hundred Siamese dolors
(the currency o:! that time), came up with a budget constraint
of
+ 57x. + 46x, + 19x

1 2 3 4 5
Not knowing whai to do with a fractional part of a girl, and

54, + 35x% < 100
unable to recogqnize a negative girl if he saw one, the king
added as an afterthought
xj > 0 and integer, i =1, ..., 5
and thus arose the first example of the knapsack problem (or,
if one prefers, the Siamese Harem problem).
In practice the variables of a knapsack problem are often
constrained to satisfy
xj < 1
(a restriction which the Siamese king himself was obliged to
observe in later years), in which case it is sometimes called
the "0-1" knapszck problem. More generally, the variables may
be required to satisfy Xy < Uj' in which case it is called the
"bounded variable" knapsack problem.

The knapsack problem is extremely easy to solve as an

ordinary linear program simply by ranking the variables



according to the ratios of the objective function coefficients
to the constraint coefficients. That is, writing the problem
as

Maximize rd.x.
J 3]

subject to Zajxj <b

X5 > 0 and integer
where dj > 0 and aj > 0 for all j, the variables are ranked by
a "primed indexing” so that
dl'/al' > dz'/az' > ...
where 1', 2', ..., constitute a permutation of the numbers 1,
2, «v. » Then the problem is solved by taking Xy, as large as
possible without wiolating the constraint Eajxj < b {(or any

bound imposed on x as in the 0-1 problem), then taking Xy

17

as large as possible subject to the value already assigned X117

and so on. Thus, in the Siamese Harem example we have
1*'=5,2"=3, 3' =2, 4" =4, 5" =1

and the optimal soslution for the unbounded problem is

Xg = 190/1%, Xy = Xy, = X, = X,

while the optimal solution for the 0-1 problem is

=0

Xg = 1, %, =1, = 24/35, x = Q

3 *2 S|
A frequently encountered generalization of the knapsack problem
is the so called "multi-dimensional"” knapsack problem whose
formulation "Miniwize c¢x subject to Ax < b, etc.," is charac-
terized by ¢ < 0 and A > 0. An obvious and sometimes useful
property of the multidimensional knapsack problem is that any

fractional (i.e., "not totally integer") x vector that satis-

fies Ax < b can b2 rounded down to produce an integer x that



satisfies Ax < ., Practical applications of the multidimen-
sional knapsack problem arise in capital budgeting, forestry,
and cargo loading.

We have given an extended description of the knapsack
problem not onlyvy for historical interest but also because, in
spite of its apparent simplicity, this problem reappears in
several guises and contexts in integer programming. (The
problem of the gardener described at the beginning of this
article is one Iorm of the knapsack problem.} In fact, a num-
ber of solution techniques in integer programming can be inter-
preted as a direct extension of a "knapsack method," or involve
the creation of "knapsack subproblems" whose solution provides
valuable information for the solution of the original problem,

More will be sa:..d about this subsequently.

The Fixed Charge Problem

The fixe«! charge problem is characterized by "one shot"
outlays (or set up costs) that are incurred in the process of
starting or renewing a business venture. For example, a
manager who is flaced with deciding which of several machines
to buy, automob:le plants to build, oil wells to drill, or
land areas to develop, must account not only for the continuing
costs of operation (once the projects are underway) but also
for the initial fixed cost required to initiate the projects.
This type of problem, especially in the presence of imbedded
networks, is one of the most frequently occurring problems in

practical applications,



A typica’l fixed charge problem has the form:
Minimize cx + ay
subject to Ax < b
x>0, y>0
where the vectors x and y have the same dimension and xj >0
implies Yj = 1. {Here, of course, c, & and b are not intended
to represent the ¢, A and b of the general integer programming
formulation given earlier.) The stipulation that xj > 0 im-
plies yj = 1 corveys the meaning that to make, buy, or process
any positive amcunt of x. incurs a fixed charge of aj (> 0).
It may be noted that xj = 0 automatically implies yj = 0 at
any minimizing solution, since whenever xj =0 and y. =1 a

3
better solution can always by obtained by setting y. = 0

J

(without causing any of the constraints to become unsatisfied).
However, the preceding formulation is not acceptable for inte-
ger programming since the constraint "xj > 0 implies Yj = 1"
is "logical" rather than linear. To put the problem in accept-
able form, we assume the existence of a bound Uj so that
Xy < Uj is satisfied for all values of Xy compatible with
Ax < b, x > 0. Then the constraint

U5¥5 2 *;
always holds for yj = 1, and moreover, if yj is. integer valued,
then xj > 0 implies yj > 1 and hence yj = 1 in a minimizing
solution (by the same reasoning that shows xj = ( implies
v: = 0). Thus, the integer programming formulation of the

J
fixed charge proslem may be written



Minimize cx + ay
subject to Ax <b
x -Uy <0
x >0, v >0, vy integer
where U = (Uj). It is also possible to add the constraint
y <e (i.e., yj < 1 for all j) to explicitly acknowledge that
the yj are 0-1 variables, but this is unnecessary under the

assumption that w« > 0, as already noted.

The Harmonious Ixpedition Problem and the Combinatorial

Matching Problem

The harmcnious expedition problem involves a group of
explorers who wish to embark on an expedition and take along
as many of their members as possible. However, certain pairs
of members do nct get along together, and if one of the pair
goes on the expedition the other will stay home. The problem
may be formulated as a 0~1 integer program by defining

1l if member j goes along
x Y =

J 0 i1f member j stays home

Then the objective is to
Maximize Exj
subject to the constraints

Xt 2L
for those pairs of members h and k that are not compatible.
The formulation is completed by requiring 1 > X5 > 0 and X
integer for all j.
The harmonious expedition problem is closely related

to the maximum cardinality matching problem from combinatorial




graph theory. Figure 1 shows a "typical" graph consisting of

nodes (points) and edges (lines) connecting them.

Figure 1

[\

A matching in such a graph is defined to be a set of edges
that share no common endpoints. Thus, by the numbering of
the edges shown .in Figure 1, edges 1 and 4 constitute a
matching, while edges 1, 5 and 7 do not (since edges 5 and 7
share a node in common). The maximum cardinality matching
problem is to de:ermine a matching containing the largest
number of edges. Its formulation is the same as that of the
harmonious exped:.tion problem by defining

1 if edge j is in the matching

X, =%
J 0 if edge j is not in the matching

introducing the constraints X * X < 1 for those pairs of
edges h, k that share a common endpoint,

A simple generalization of the harmonious expedition
problem arises by attaching a "worth" dj to each member j, and
seeking toc maxim:.ze the "total worth" Edjxj of the expedition
rather than the rnumber of members that go along. The corres-
ponding generalization of the graph theory problem is called

the maximum weight matching problem, and arises by assigning



a weight to each edge and seeking a matching whose edge weights
sum to the greatest value. Other generalizations readily come
to mind. For exémple, in the harmonious expedition problem,
one may identify sets rather than pairs of members that con-
stitute an "inharmonious group." If S denotes such a set, and
|s| denotes the number of its elements, then one may enforce

Zx_.518|—l
jes J

to assure that at least one member of § stays home.

The Efficacious Expedition Problem and the Combinatorial

Covering Problem

In this problem a group of explorers seek to minimize
the number of members who embark on an expedition. However,
for each of several critical skills there must be at least
one member possessing that skill who goes on the expedition
in order for the expedition to be carried out successfully.
Defining the variaoles x4 as for the harmonious expedition prob-
lem, and letting Si denote the set of members possessing the
ith skill, the problem is to

Minimize Exj
subject to the constraints

I < I
. j =
JESi

Again the formulation is completed by stipulating 1 > X > 0
and xj integer.

There is, as might be suspected, a closely related
problem from combinatorial graph theory, in this case called

the minimum cardinality covering problem. A cover (or




covering) is a set of edges whose endpoints include all nodes
of the graph. Thus, in Figure 1, the edges 1, 2, 3, 4, 5, 8,
9 constitute a cover, but the edges 1, 3, 5 and 9 do not. {(No
edge covers the node at the intersection of edges 7 and 8.} A
minimum cardinality cover is one containing the fewest number
of edges, and it:s formulation is the same as that of the effi-
cacious expedition problem by defining the Xy as for the
matching problem and letting Si denote the set of edges that
intersect at a node i (thus yielding one constraint for each
node of the graph).

Immediate generalizations of these problems arise by
assigning weights to edges and requiring the nodes to be multi-

ple covered,

A Delivery Problem

A company delivers merchandise to its customers each
day by truck (or railroad, air, barge, etc.). There are a
variety of feasiltile delivery routes, each one accommodating a
specified subset of customers and capable of being traveled by
a single carrier in a day. Each route also has a "cost"
associated with it, which may be just the length of the route,
or the cost of fiel to travel the route, etc. The goal is to
select a set of routes that will make it possible to provide
a delivery to each customer and, subject to this, minimize
total cost,

Define

(_l if route j is selected



and create an A matrix whose jth column has (constant) entries

vl . . .
{( 1 if customer is on route j

d.. = 9
12 L 0 if not

Denoting the cost of route j by cj, the delivery problem may
be written
Minimize cx

subjz2ct to Ax

e
x > 0 and integer,
where as before e is a vector of 1's (a column vector in this
case).
The delivery problem may also include a constraint of
the form
ij < ky
which restricts the total number of routes selected to be no
more than k (because, for example, the company can operate at
most k trucks on a given day).
Note that: for the specified form of A, the constraints
"Ax = e, x > 0 and integer" automatically imply xj =0 or 1
for each 3 (this would also be true if Ax = e were replaced by
Ax < e). We assume of course that there are no columns of A
that are all 0's (which would correspond to a route without
any customers). The matrix eguation Ax = e stipulates that

each customer will receive exactly one delivery each day.

Multiple Alternetive Problems

A variety of "dichotomous" or "multiple alternative"
situations can e accommodated by the introduction of appro-

priately defineé zero-one variables. Problems to which such



multiple alternative situations are relevant range from the
design of a nuclear reactor complex to the determination of
demand reservoir locations for a water resource allocation
proiject.
The common ingredient in these problems is a set of
constraining relations
A(1) b(l)

§023. . 029

b
IA

"
1A

p (T)

»
A

out of which at least g are required to be satisfied while the

remaining r - ¢ may be satisfied or not. Corresponding to each

k)

b(k) let M( denote a vector of the same dimension (which may

be different for different k) whose components are sufficiently
large that A(k)x < p &) 4 M(k) will be satisfied for all x
vectors relevant. to the problem under consideration. Thus,

the constraint

(k) (k) (k)

A x . £.b +ykM

(k)

where y, is a 0-1 variable, corresponds to A " 'x £ b for

K)o ptR) |, (R

Yy = 0 and to A~ for y, = 1. PFor at least

g of the inequalities A(k)x < b(k) to hold, at least g of the

Yy must be 0. ‘his is accommodated by introducing the con-

(k)

straints A o b(k) + ykM(k) for k = 1, ..., r and requiring

Zyk <r - d.

This latter constraint may also be replaced by
Ly, = r - d

to accomplish the same result.



Zero-One Polynomnial Problems

Nonlineair 0~1 programming problems of the form
Minimize £(x)

subject to gi(x) <0 i=1, ..., m

X 0 or 1 for all j

J
where f and g; are polynomials, can be replaced by equivalent
linear 0-1 programming problems by the rules

1. Replace all nonzero powers of xj by xj itself (since

2 3
for ., =0 or 1, x. = x, = x: etc,
. i B B )
2. Repl:zce each cross product ﬂjeij by a 0-1 variable
X which is required to satisfy

xQ zjéij + l - ]QI

and
< . .
xg £ (5% /0]
where |Q| denotes the number of elements in Q.
The justification of the second rule follows from the

fact that the indicated lower bound for Xq is always redundant

until . = |@|, (which occurs when x; = 1 for all jeQ), in

je™j
which case it inplies xQ > 1, and the indicated upper bound

always requires x, < 1 (hence x. = 0) until Z'eij = |Q|, in

Q. Q J

which case it permits xQ = 1, Thus xQ = 1 if xj = 1 for all

jeQ (and xQ = 0 otherwise), which identifies the wvalue of x

to be the same zs that of “jeij'

expressing these polynomials still more effectively [ 28 ].

Q
Ways have been developed for



Equivalence of a1 Bounded Variable Integer Program to a 0-1

Integer Program

There are several ways to express an integer program
in bounded variables as a problem in 0-1 variables,
To illus—:rate, suppose each integer variable x. of the

original problen can be required to satisfy 0 < xj < Uj for

some finite upper bound Uj' Then we may replace xj by the

linear expression

X

o .+ . “coe s
XOj lej 1 4x2] + + 2 er
where each X4 5 is a 0-1 variable and r is the unique integer
for which 2F < Uj < 2r+l_ Two other ways to replace an integer

variable by a weighted sum of 0-1 variables arise simply by
taking all weigkts equal 1 (yielding an ordinary sum of Uj
different variakles)} and by taking the weights to be the
positive integers 1, 2, 3, ..., Uj' with the added restriction
that the sum of the 0-1 variables associated with these latter
weights not exceed 1.

Because cf the generality of the 0-1 problem, and be-
cuase a high percentage of practical problems exhibit "natural-
ly occurring™ 0~1 variables, a good deal of attention has been
devoted to methods and results for the 0-1 case. In fact, a
variety of nonlinear programming problems can be expressed as
integer programming problems (within a desired degree of
approximation) by the use of 0-1 variables. Two of the more

significant ways of doing this are as follows:



Piecewise Linear Approximation of a Separable Nonlinear Function

A nonlinear function f(x) (x = (xj)n is called

4 l}
separable if it can be written in the. form £(x) = fl(xl) +
fz(xz) + ... + £_(x_), where each f. is a function of the

n'n j
single variable xj. If the functions fj are sufficiently well~
behaved, it may be possible to fit them with reasonable piece-
wise linear approximations without too much difficulty. In
this context we shall for convenience drop the j subscript and
understand f(x) to designate one of the functions fj(xj) where
now x is a single variable rather than a vector. For example,
such a function f£(x) and its linear approximation L(x) might

be as shown in the following diagram, where £(x) is the curved

line and L(x) is the broken straight line.

The domaia of these functions has been divided into
intervals [6k=1' Gk] k=1, ... § over which L(x) is an un-
broken straight line., We let Oy denote the slope of L(x) on
the interval [Gk_l,ék] and observe that if x e[ék_l,ék] then
L{x) = L(8, 1) + op (x = & _;). This fact makes it possible to

represent L(x) by a linear function as follows. Let Yy be a



0-1 wvariabkle ancé let Zy be a continuous variable with the in-

terpretation thet Yy = 1l corresponds to x €l[8 k—l’ﬁk] and 2y

is nonzero only if Y 1, in which case it represents the

quantity x - 6k-l' Then, L(x) may be expressed as

iy B0y o)

given the constraints

i

Ly, =1

k=1 K
and
(6 = Spy)yy 2 7 20,
Yy > 0 and integer k=1, «0u, T

This representation can be made valid even if L(X)} is
not continuous, To do this, onhe selects the Gk so that L{(x)
is continuous on the half-open interval [Gk_l,Gk), and inter-
prets y, = 1 to mean x s[ﬁk_l,Gk), whereupon 2z, is constrained
to satisfy (Gk - ék_l)yk- € 2 2, > 0, for € a small positive
number,

It is also quite possible to make the representation
valid when L{x) is defined over disjoint intervals. In parti-
cular, if L(x) is defined only at the points Gk, then one can
simply represent L(x) by g L(Gk)yk, without any reference to
the Z, variables, K=t

There is another way to represent L(x) which, however,
requires L(x) tc be continuous. Under this assumption, L(x)
may be written

r

L(0) +kilakzk
where now the 2, have the interpretation of equaling the length



of the interval [Gk_l,ﬁk] if x > Sk, equaling x - ﬁk—l (as
before) if x e[Gk_l,Gk], and equaling 0 if x < Gk-l' {Thus,
Ezk = x.) This interpretation is assured by imposing the con-
straints
Va1 (O = Spoq) 27 2y (8 =8 )
Y, 2 0 and integer k=1, ..., r
where by convention Yo © 1. Then "yk = 1" corresponds to

X

(A%

6k." The constraints imply that 1 > Y1 2 ¥y e 2 Yo
and that each Z, assumes exactly the value indicated by the
foregoing discussion.

This second way of representing L(x) can be slightly
modified to accommodate discontinuous functions and functions
defined over disjoint intervals by including the 0-1 variables
in the expression for L(x).

If the fuaction L(x) that approximates f(x) is convex,
and if the problam objective is to minimize f(x)}, then the
guantity L{0) + Eakzk provides an acceptable linear expression
for L(x) without introducing 0-1 variables Yy The only stipu-
lation required is that

%% 7 %k-1 2 %
This follows fromn the fact that

20 k=l; on-'r

ul 2 CL2 z L B z ak

and is implied by the convexity of L(x).

Solution Methods for Integer Programming Problems

The number of solution methods--and special variations
for special cases--that have been proposed for integer pro-

gramming problems are legion. However, nearly all of them can



be described in terms of a single framework. We will indicate
this framework, and then provide illustrations of a few of the
more popular methods that are special instances of it.

Methods for solving integer programming problems typi-
cally proceed by generating a succession of related problems

which we will call descendants of the original problem. For

each descendant, an associated relaxed problem is identified

that is easier to solve than the problem it came from (which
will be called its source problem). The solution to the relaxed
problem determinzs the resolution of its source; i.e., whether
the source may be discarded or replaced by one or more descen-
dants of its own (hence, which are also descendants of the
original problem). Thereupon, one of the descendants is
selected which has not yet been discarded or replaced and the
process repeats until no more unresolved descendants remain.
In a variety of methods (as, for example, cutting methods},
the resolution of a problem gives rise to exactly one descen-
dant, though there is typically a choice among several alterna-
tives to provide the identity of this descendant,

We will now characterize the nature of descendants and

relaxed problems more precisely.

Descendants

In the samne way that a relaxed problem has a source, a
descendant problem has a parent (an immediate predecessor from
which the descenclant "issues"). A collection of immediate
descendants of a given problem is required to have the property

that at least one of these descendants has the same optimal



solution as its parent. In case the parent problem has multiple
optima, the restriction is that some nonempty subset of these
optima must constitute the set of optimal solutions for one of
its descendants.

Two commol examples of descendant problems with these
properties will b= useful. In the so-called cutting approach,
an inequality or 2quation~-=-called a "cut"--is deduced that is
satisfied by all solutions to the parent. (To be useful, the
cut usually must 10t be satisfied by the optimum for the relaxed
problem which has been solved in lieu of the parent.) The cut
is then appended to the parent to yield a single new problem
which has exactly the same set of optimal solutions as the prob-
lem from which it descended.

In the branch and bound approcach, for the second example,
a collection of inegqualities (or equations) is deduced, so that
each admits some subset of the solutions to the parent problem
as feasible, and 30 that the union of these subsets includes all
feasible solutions to the parent., Each of the derived ineguali-
ties~=-or "provisional cuts"--is adjoined to the parent problem
separately from the others (since it is not known in advance
which one will adinit an optimum solution to the parent as feas~-
ible), thus credting a collection of descendants having the
properties indica‘:ed.

In still other approaches (such as certain graph theory
methods), nothing is added to the parent problem, but the
manner in which the problem is "represented"” is modified,
based on the solu:ion to the relaxed problem, to produce a

single descendant for which the process is repeated.



Relaxed Problems

The principal characteristic of a relaxed problem is
that its constrazints are less restrictive--i.e., admit a
larger {or no smaller) range of feasible solutions--than the
constraints of its source problem. Frequently, a relaxed prob-
lem is created simply by discarding some of the constraining
conditions of its source. For example, in integer programming,
a commonly emplcyed relaxed problem is the ordinary linear
programming proklem (which arises by dropping the integrality
requirements). A relaxed problem may alsc have a different
objective function than its source, provided the optimum objec-
tive function value for the relaxed problem does not exceed
that for the sotrce (in the minimization context).

These stipulations immediately give rise to the fol-
lowing "double inequality": optimal objective function value
for the relaxed problem < optimal objective function value for
the source problem < objective function value for the source
problem for any feasible solution to the source.

It follows that, whenever solutions can be found that
make the first and the last quantities in this double inequal-
ity equal, then the middle quantity is compelled to equal thé
same value as the other two guantities, and an optimal solution
has been found for the source problem.

Duality theories for linear, nonlinear and combinatorial
programming involve the specification of a problem which is an
instance of a relaxed problem as just defined, and thus which

causes the double ineguality to hold. The dual problem in



each of these duality theories is to find a "strongest" re-
laxed problem fi’om among the problems in its category--i.e.,
a relaxed problem that makes the first quantity in the double
inequality the .largest.

Only a strongest relaxed problem can possibly force the
double inequality to hold as an equality and thereby serve as
a tocl for identifying an optimal solution to the source prob-
lem, (Howewver, even a strongest relaxed problem--from those
in the category specified by a particular duality theory--may
not be able to force equality, in which case the resulting
condition is kncwn as a "duality gap.")

In view cf these remarks, the methods that derive from
the framework under consideration may properly be called

duality exploiting methods. In fact, one of the important

features of these methods is that they give a means for solving
the source problem even when duality gaps occur. The manner

in which they do this relies on the iterative creation of
descendants to szrve as source problems, and on making use of
three useful properties of their associated relaxed problems:

(1) Whenever a relaxed problem lacks a feasible solu-
+tion, then so do=s its source;

(2) the ootimum objective function value for a relaxed
problem provides a lower bound for the optimum objective func-
tion wvalue for tie source problem; and

(3) if an optimal solution to a relaxed problem yields
the same objective function value for the socurce problem as

for the relaxed »roblem (which it automatically does if the



two objective functions are the same), and if this solution
is feasible for :he source problem, then it is also optimal
for the source p:roblem.,

Consequen:ly, whenever conditions (1) or (3) hold, the
process of solving the relaxed problem "disposes of" the
gsource problem, —thereby accomplishing a hard task (solving
the source) by undertaking an easier one (solving the relaxed
problem). Moreovrer, if a ceiling has been established for
the optimum objective function value of the source problem, so
that the optimum must fall below this ceiling if it is to be
acceptable (as commonly occurs in branch and bound methods),
then the solution of the relaxed problem also disposes of the
source problem under condition (2), provided the lower bound
identified by this condition equals or exceeds the imposed
ceiling.

Utilizing these cbservations, we now state the general
procedural format: for Huality exploiting"methods in integer

programming and combinatorial optimization.

Duality Exploiting Methods: General Framework

1. Begin with a "problem list" that contains the
original problem as its only member,

2. Select: a problem from the list, (If there are no
problems on the .ist at this point, the method stops and the .
best solution so far found is optimal for the original problem.
If no such "cand:date" solutions were found, the original prob-

lem has no feasible solution.)



3. Solve a relaxed problem=--or a collection of re-
laxed problems---corresponding to the selected problem

--If a relaxed problem lacks a feasible solution
(cf. condition 1)), discard the selected problem and return
to Step 2,

-~If the optimum objective function wvalue for a
relaxed problem equals or exceeds the ceiling given by the
obijective function value for the best candidate solution for
the original problem so far found {cf. condition (2)), discard
the selected problem and return to Step 2.

--If neither of the preceding situations apply, and
if an optimal solution to a relaxed problem is optimal for
the selected problem (c¢f. condition (3}), then check this
solution to see if it is feasible for the original problem.
(The check is urnecessary for standard branch and bound and
cutting appfoaches--as previously characterized--since for
these the set of feasible solutions to each selected problem
is a subset of the feasible solutions to the original problem.)
If feasibility for the original problem is established, then
record this solution as the new best candidate solution for
the original prcblém, and return to Step 2.

--If none of the preceding circumstances apply,
treat the selected problem as a parent problem and generate
a set of one or more descendants (as by the use of cuts, pro-
visional cuts, &n updated problem representation, etc.), so
that these descendants have the properties previously stipu-

lated. Add these descendant problems to the list (in place
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of their parent) and return to Step 2.

Some comnients about the foregoing framework are in
order. First, standard technigues for obtaining successively
stronger relaxec problems can be used in Step 3. These tech-
nigues apply to relaxed problems that are created by replacing
some subset of the constraints of the source problem with a
nonnegative linear combination of these constraints, where
this linear combination is either absorbed into the objective
function, as in generalized Lagranzean approaches, or used to
form one or more "summarizing” constraints, as in the surrogate
constraint apprcaches. (These two types of relaxation ap-
proaches will be discussed in more detail later.) Aall of the
techniques for creating successively stronger relaxed problems
utilize some variant of the following simple strategy:

(i) solve the current relaxed problem

(ii) if the solution is not feasible for the source
problem, identify a subset of the violated constraints and a
subset of the "oversatisfied" constraints (so that at least
one of these subsets is nonempty) and modify the relaxed prob-
lem by increasing the weights of the linear combination associ-
ated with the first set and by decreasing the weights associated
with the second set. The amount of increase or decrease may
vary for each coastraint, in a given set, but the net change
is made sufficiently great so¢ that the previous solution to the
relaxed problem secomes nonoptimal relative to the modified
form of the relaxed problem. (The Frank-Wolfe algorithm

[ 19, 43] is a popular technique of this type. In fact, many



of the penalty function methods for nonlinear programming
ﬁtilize essentially the same strateqy, except that the
"weights" may apply to functions other than linear cnes.)

Another comment is that, as an adjunct to Step 2 or 3,
one can optionally employ heuristic approaches to generate
"trial solutions" to the selected problem, whereupon these
solutions can b2 tested to see whether they provide improvéd
candidate solutions for the original problem.

Further, in addition to this option, there are three
main places in —the duality exploiting framework where choice
enters: in selecting the next problem from the list; in
choosing a relaxed problem (or collection of relaxed problems)
for a given source problem; in deciding which cut or which
set of provisional cuts, etc., should be generated to produce
the new descendznt problems. Fach of these choice areas is
critical to efficient implementation (see [ 4 , 20, 22, 52,33
55 ,57 1).

Another thing to be noted is that provisional cuts must
tend to be a great deal stronger (more restrictive) than or-
dinary cuts if, as often happens, the branch and bound option
is to be preferred to cutting, since the use of provisional
cuts leads to two or more descendants of each given problem,
and these descendants must somehow be easier to solve than the
single descendant of the cutting approach if the total solu-
tion time of branch and bound is not to suffer. But there is
one advantage to branch and bound that may be extracted even

if some of the provisional cuts are rather weak, provided at



least some of them are sufficiently strong. For problems

that require excessive amounts of computer time to solve opti-
mally, it may nevertheless be possible that relatively good
candidate solutions can be found early in the game using
branch and bound, and hence the method may be arbitrarily
stopped at a reasonable cut-cff point and the best solution

found to that time used in lieu of a guaranteed optimum.

Accommodating Primal and Primal-Dual Methods in the Duality

Exploiting Framework

A class cf methods not subsumed by the preceding frame-
work is the class of "primal" methods. Nevertheless, these
methods are easily characterized, and can be incorporated into
the foregoing framework as an alternative means of providing
trial solutions to the problem selected in Step 2, or as a
means of improving a candidate solution generated in Step 3,
or even in some cases, as a means of completely solving a re-
laxed problem or its source.

A method classified as "primal" proceeds by producing
a succession of feasible solutions, each better (or no worse)
than its predecessor. The "primal strategy" operates by im-
posing all constraints of the source problem, plus a number of
additional constraints which require admissible'solutions to
be "nearly the same" as the current feasible solution to the
source. ({In the primal simplex method, for example, the addi-
tional constraints compel all current nonbasic variables ex-
cept one to equal 0, thus allowing a very limited deviation

from the soluticn associated with the current bhasis. In the



primal maximum flow method, similarly, all flow changes are
restricted to cccur on an elementary path which currently has
a positive "net. capacity," again compelling a modified solu-
tion to lie clcse to the current one,} The resulting more
highly constrained problem is typically much easier to solve
than its source (just as an appropriately generated relaxed
problem is much easier to solve than its source), and will
always yvield a feasible solution at least as good or better
than the one currently at hand.

Primal m=thods that are guaranteed to cbtain an optimal
solution are much harder to come by in integer programming than
in linear programming [44 , 62, 63 , 64 ] but the "primal strate-
gy" can still be a viable solution technigue. In fact, the
primal methods for integer programming are actually "primal-
dual" methods, insofar as they may be interpreted as combining
problem relaxation with problem restriction.

The duality exploiting framework becomes a framework
for both primal and primal-dual methods simply by incorpor-
ating the primal strategy in Step 3. Moreover, the use of
cuts {and provisional cuts) in a primal strategy can be carried
out in a manner that assures these cuts are valid for the
source problem. Specifically, cuts derived in the process of
generating a succession of restricted problems by a primal
approach may be inferred relative only to constraints shared
in common with fhe source problem. (This is in fact one way
of interpreting the known primal IP methods.) Thus in the

general primal-cdual framework, the generation of cuts or
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provisional cuts to create descendant problems can be guided

by an imbedded primal strategy.

Some Examples of Specific Methods

For a clearer understanding of how the foregoing frame-
work can be applied, illustrations will be provided of some of
the more popular methods that occur as variants of this frame-

work,

A Cutting Plane Method

For the rure integer programming problem, where all
variakles are integer-valued, a commonly employed method is
that proposed by Gomory [ 31]. BAn equation from the Tucker
form of a linear programming tableau (see Chapter 1) may be
written as

X, = aio + X ai. (-t.),
i jen 13 3
where X is an integer variable and the tj' jeN, are the cur-
rent nonbasic variables, assumed to be constrained to non-
negative integer values. A cut equation implied by this
equation is
8 = lj=if, - U (=)
io jen 1] j
where 3 is a nonnegative integer variable, and the constants
fij are the "posiltive fractional parts" of the constants aij’
that is fij = aij
the largest integer not exceeding the guantity inside. 'Since

- [aij], where the square brackets represent

X does not have to be nonnegative, the cut can be taken from
any equation obtained as some integer linear combination of

tableau equations.



A standard method for using such cuts results from the
general framework by selecting the relaxed problem to be the
ordinarybLP proslem at Step 3. A cut is then obtained from
an equation for which a4, is not an integer (hence fio > 0),
thereby producing a single descendant (having the same set of
feasible solutions as its parent). For each successive de-
scendant selected at Step 2, the relaxed LP problem is solved
in Step 3 by 'poutoptimizing" with the dual simplex method.

Recently,. a number of advances have been made in cutting
theory by reference to subadditive functions [ 11, 34 , 35, 46]
and specially constructed convex domains [ 2, 3, 10, 27, 45, 61]
Stronger cuts obtained from these advances may permit cutting

methods to be applied with greater efficiency than in the past.

A Branch and ggygg Method

A simple procedure that has had some success in certain
mixed-integer problem applications is the "Dakin branching
scheme” [ 16] of branch and bound, which again takes the re-
laxed problem of Step 3 to be the ordinary linear program.
This approach generates two descendants from a given problem
by reference to an integer variable Xy whose current LP solu-
tion value, x;, is noninteger. These descendants arise by
respectively (i.e., separately) adjoining the two constraints
X, < [Xi*] and Ry > [xi*] + 1 to the parent problem,

More elatorate branch and bound schemes employ "penalty
calculations®” from relaxed problems that may differ from the

LP problem. These penalties yield a lower bound on the amount

* * )
by which compelling Xy < [xi ] or X > [xi ] + 1 will cause
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the optimum objective function value for a descendant problem
to differ from that of its parent, thereby allowing some de-
scendants to be discarded immediately, and allowing others to
be put "on the kottom" of the problem list as unlikely possi-
bilities for yielding an improved candidate solution.

Some of the relaxed problems from which penalties and
other typical uses of relaxed problems derive will now be dis-

cussed.

Problem Relaxatig&

Perhaps the most common generic form of problem relax-
ation is "generalized Lagrangean relaxation," which incorpor-
ates a subset of the problem constraints into the objective
function.

Using the notation by which the linear and integer pro-
gramming problens were earlier defined, the Lagrangean ap-
proach associates nonnegative weights ug with a subset of the
problem inequalities (with index set P, say) to create the
modified objective function

n n

Minimize I c.x. + £ u, (% a,.x. - b.)
j=1 1 1 iep * j=1 23 .

The constraints thus absorbed into the objective function are
"dropped" from the constraint set for the relaxed problem.

The updated okijective function coefficients of the simplex
method for LP problems arise by exactly this technique (here
the constraints "taken up" are those corresponding to the non-
basic variables). In fact, most duality theory of mathemati-

cal programming is based on this type of relaxation, so it



covers a very wide swath indeed. Variations in the application
of this approach are covered in {17 , 18, 22,23 , 40, 54 ].

A second form of problem relaxation that has found
considerable application in integer programming is "surrogate
constraint relaxition," which replaces subsets of problem con-
straints by one or more "surrogate constraints." A surrogate
constraint likew:.se may be expressed in terms of nonnegative
weights u, . ieP, used to define the Lagrangean (though the
values of these weights that give a strongest relaxation are
usually different. for the two approaches). The original objec-
tive function remains unchanged, but the constraints associated

with the index set P are replaced by

b Xy < T u.by
Uy s | B &

n
K T S T |
= ieP

iep tj=1

Although of recent vintage [ 1, 21, 25 ) surrogate constraint
relaxation in sone cases provides stronger penalties than La-
grangean relaxation, and a new mathematical programming duality
theory has emerged from this type of relaxation [29 , 36 ,
37 1 that may lead to increased use, The use of knapsack
methods to solve more general problems than knapsack problems
occurs primarily in this setting.

The remaining form of relaxation commonly employed is
a "group theoretiz" relaxation that arises by dropping the
nonnegativity conditions on the variables that are basic in
an optimal LP solution, but retaining all integer restrictions.
This relaxation can actually be viewed as an instance of
generalized Lagraigean relaxation, and can be supplemented by

further use of this type of relaxation, but is of unique



interest due to the special group theory structure it provides.
Studies of this form of relaxation may be found in [33, 34, 35
44 , 543,

Finally, a duality that accommodates both generalized
Lagrangean and surrogate constraint relaxation--and their
composite-~in a single framework is now available [ 29 ], and
combinations of these approaches are beginning to find use in

practice [ 52 1.

Practical Considerations

Some aspaects of solving integer programming problems
in practice deserve mention, fogether with a few accompanying
cautions.

First of all, some integer programming problems seem
to be inherently difficult to solve, regardless of the method
employed. Thug, while simple approaches such as rounding may
be clearly futile for such problems, there may also be no
other method ({(currently known) that is capable of producing an
optimal or even a feasible integer solution in a reasonable
length of time.

Secondly, even for those problems that can be solved
relatively efficiently by existing integer programming metheds,
it is a useful rrecaution to be skeptical about the presumed
optimality of an "optimal" solution. The real world situa-
tions which integer programming formulations are sometimes
called upon to model can be rather complex, and, the question
of imperfect data entirely aside, it is easy to overlook cer-

tain aspects of these situations that should be reflected in



the constraints or the objective function. In such instances
an optimal integsr programming solution may be hazardous to
implement unless a number of checks and safeguards are used

to make sure that the solution exhibits characteristics appro-
priate to the situation modeled. Indeed, on the positive

side, obtaining absurd or inappropriate optimal solutions is

a very useful way to identify unreasonable assumptions and in-
adeguate informa:ion that may have gone into the model, thereby

permitting an improved model to be developed.

Integer Programs with Special Structures

Some integer programming problems, such as the classical
"transportation” and "assignment" problems discussed in many
linear programming text books, have the fortunate property
that the linear programming solution, or more precisely, every
extreme point so.lution automatically assigns integer values to
the variables. C(onsequently, the standard linear programming
methods are entirely sufficient to solve these problems and no
special integer programming techniques are required.

There are also other integer programming problems with
very special structures, but that do not have the "integer ex-
treme point" property. Most of those discussed earlier in this
chapter are of such a type. For these, the 1inéar programming
solution generally does not provide an integer solution, and
other approaches must be sought. Precisely what approach
should be used tc solve a specially structured problem? This
question is a very difficult one, and a great deal less is

known about matching integer programming methods to problem
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structures than one weould prefer. Nevertheless, ignorance is
not total on this issue, and guidelines are in the process of
being established [ 22,24 , 48 , 52, 55,59 ]. These guidelines
must be taken cautiously, however, for approaches that ini-
tially seem ineffective in certain contexts are sometimes
found to be far more effective when slightly modified or when
implemented in a slightly different way. But the question of
matching methods to problems also has other facets. Some
problems have more than one integer programming formulation,
and a problem that appears almost wholly intractable under
one formulation may be readily solved under another. Recent
disclosures in this area can be found in [ 18, 24, 28,55 , 59 ,
60 1.

A still more basic issue for some problems is whether
they should be formulated as integer programs at all, Vir-
tually every mataematical programming problem whose functions
map into the field of real numbers can be approximated to an
arbitrary degree of accuracy (if not precisely) by a corres-
ponding integer »>rogramming problem, However, it is a perti-
nent question whather such "artificial" integer programs are
worth the bother to formulate, or whether it would be better
to tackle these >roblems in their "natural" form with an appro-
priately designedl solution technique. To make matters murkier,
the question of what constitutes a "natural" or an "artificial”
form for a problem is itself a rather difficult one. Part of
the issue is clearly empirical; a new algorithm may change an

"artificial" formulation into a "natural" one by readily
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solving problers posed in that formulation. Important ad-
vances in this area are provided by the special solution
methods developed for "latice point" and "disjunctive” prob-
lems [ 13 , 47, 48 ].

On the other hand, it is also true that part of the
question of whether an integer programming formulation is na-
tural or not has to do with the issue of sheer size. A vari-
ety of nonlinear programs and combinatorial optimization prob-
lems tend to "blow~up" when formulated as integer programs.

A problem that appears to involve a modest number of parameters
and restrictions in a nonlinear or combinatorial formulation
may easily turn out to have a staggering number of variables
and constraints in an integer programming guise. Another cau-
tion at this point: 1it's not entirely clear that size should
be the bugbear it's sometimes taken to be. For, frequently
accompanying the problem "blow up" is a corresponding reduc-
tion in its "dersity." That is, the problem matrices corres-
ponding to these large integer programs are usually exceedingly
sparse, containing only a small number of nonzero elements.

The development of special computer technigues for handling
sparse matrices has been very active in recent years and may
conceivably revise some of our opinions about the formidability
of certain classes of "1argé“ integer programs in the near
future. This is particularly true for problems involving im-
bedded networks, due to substantial recent advances in handling

network structures [ 14,30 ].



On the other hand, special problem structures often
suggest special approaches for accommodating them. It is
a truism that thare nearly always exists a special methoed that
is more efficient for such problems than a general method.
{Again, applications involving imbedded networks offer a case
in point.) Indezd, the general method itself, adapted and
tailored to the :ipecial structure, is usually an example of a
"more efficient special method." It frequently occurs that
spacial methods devised for combinatorial (and even some non-
linear) problems are in fact refinements of more general in-
teger programmin:g methods.

Finally, a truly significant area that is forever being
rediscovered, fleetingly heralded for its importance, and
then somehow subnerged in the rush to devise more foolproof
and rigorously founded approaches, is that of heuristics.

In the present context, heuristics refer to intelligent

schemes for obtaining "good" solutions. Such schemes typically
provide no assurance of obtaining optimal solutions, or ewven
ultimately of obtaining any solution. A systematic cataloging
of the features of good heuristic methods in integer programming
and combinatorics is not an easy thing, though a few attempts
have been made [ 8 , 15, 26 , 417,

In the real world, the mathematical guarantee of "con-
vergence to an optimum in a finite number of steps"” can amount
to a warranty thet a solution will be obtained one day before
doomsday {(optimistically speaking, in the case of some integer

programming problems)., Consequently, the usefulness of a



particular algorithm can well be said to depend on its "heuris-
tic content.” 1In this view, which gradually seems to be
gaining in favor, the active pursuit of heuristic principles
may hold promise of unlocking dcors that presently remain
closed, leading to the efficient implementation of integer

programming in wiat are presently "hard" problem areas.
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