
MANAGEMENT SCIENCE
Vol. 17, No.9, May, 1971

Printed in U.s.A.

FLOWS IN ARBORESCENCES*t

FRED GLOVER

University of Colorado

This paper gives efficient methods for solving four specially strnctured network
problems that arise in connection with certain integer programming methods de-
veloped by Cook and Cooper, Hillier, and Glover. Such problems have also inde-
pendently been studied in inventory theory by Ignall and Veinott, who have de-
veloped extensive qualitative (nonalgorithmic) implications of their structures. In
the integer programming context, special subclasses of these network problems are
generated and solved as part of a strategy for solving more general integer linear
programs. By providing particularly efficient methods for accommodating somewhat
broader network structures, our results enable the development of related integer
programming solution strategies that generate more complex subproblems.

We show that the first of the four network problems can be solved by a procedure
that 8BBigns each variable a value exactly once, without subsequent revision. Proper-
ties of optimal solutions for the remaining problems are developed that enable the
algorithm for the first to be extended to the second and then, by suitable transforma-
tion of variables, to the third and last problems as well. Moreover, while the last
three problems involve an additional linear constraint that nullifies the "integer ex-
treme point property", we show that optimal integer solutions to these problems can
nevertheless easily be obtained from the optimal continuous solutions.

1. Introduction!

Special algorithms are given for four closely related network flow problems that
arise in solving integer programming problems by truncated enu~eration [4]. The con-
straints for these problems consist of nested inequalities on partial sums of variables
and a single linear inequality over all variables. In a network formulation these con-
straints can be represented by a capacitated arborescence with the linear inequality
restricting the flows from the source nodes.

It is shown that the structure of the first problem yields to a very efficient algorithm
in which each variable is assigned a value exactly once, without subsequent revision.
Properties of optimal solutions for the remaining problems are developed that enables
the algorithm for the first to be extended to the second, and then, by suitable transfor-
mations of variables, to be extended also to the third and last problems. In addition,
the solution properties are shown to provide an alternative algorithm for the first
problem and hence, by extension, for the other problems in turn. Finally, it is shown
that optimal integer solutions for the last three prob~ems can be easily obtained from
the optimal continuous solutions. i

2. Notation and Problem Statement

Let Sk, k = 1, "', m, denote a collection of distinct nonempty sets that contain
some or all of the indices j, j = 1, ..., n, and satisfy the nesting property:l

(p ~ q and S" n Sq ~.ef) =} (S" CiSq or Sq C S,,),

* Received April 1968; revised March 1970.
t An abbreviated version of the first portion of this paper appears in the IFORB Proceedings,

June 1969.
1 We use the symbol ~ to denote set incluBion and c to denote proper set incluBion.

568

569FLOWS IN ARBORESCENCES

For convenience we assume 8m = {I, 2, ..., n} (hence 8k C 8m for all k < m), and
8j = u} for j = 1, ..., n (hence m > n). Consistent with this, we also assume 8p C
8q =} P < q. Let x = (Xl, X2, ..., Xn)T denote a column vector of variables, A =
(ai, 0-2, ..., an) a row vector of constants such that al ~ 0-2 ~ ...~ a,., and define

Ik = }::jESk Xi .With each set 8k we associate finite constants Uk , Lk and the inequality

(1) Uk~/k~Lk, k=I,...,m,

where Lk ~ 0 for all k.
The problems we wish to solve are:
I. Maximize Ax (}::J=l ajxj) subject to (1).
II. Maximize (alternatively Minimize) 1m subjectito (1) and

I
(2) Ax ~ ao !" Ii

where ao is a given scalar constant.
III. Maximize (alternately Minimize) x" for any p, 1 ~ p ~ n, subject to (1) and

(2).
IV. Maximize (alternately Minimize) I" for any p, n < p < m, subject to (1) and

(2).
Three recently proposed truncated enumeration algorithms for integer programming

concern themselves with solving problems that are special cases of Problems I-IV as
part of a strategy for solving the more general integer programming problem. Thus the
methods developed here may be used with these and related algorithms as a means for
implementing such a strategy efficiently. The most recent of these algorithms, due to
Fred Hillier [7], seeks to impose restrictions on a convex combination of extreme points
of a simplex consistent with the nonnegativity and integrality of feasible lattice points.
The second algorithm, due to Cook and Cooper [2] (as modified by a proposal in [4]),
exploits a restricted form of (1) and (2) to supplement information obtained from the
Fourier elimination method. The third algorithm [5], for the 0-1 problem, provides the
chief source of motivation for this paper and specifies solutions for Problems I-IV when
the inequalities of (1) simplify to Um ~ 1m ~ Lm and 1 ~ Xj ~ 0 forj = 1, ..., n.
The solutions proposed in [5] can be modified to accommodate constraints Uk ~ Ik ~ Lk
for n < k < m provided the 8k are disjoint. However, to solve more general integer
programs by this approach, it is desirable to solve Problems I-IV rapidly when the
Xj are not 0-1 variables, and the sets 8k are not only disjoint but assume other struc-
tures as well.

We now derive the general results upon which such applications can be based.

3. A Network Representation2
The inequalities of (1) can be translated into those of a network flow problem over a

capacitated arborescence by means of a Hasse diagram (see Berge [1, p. 12]). We create
a network whose nodes are the sets Sk, k = 1, ..., m, an arc going from node p to
node q if:

(i) Sp c Sq , and
(ii) no Sk exists such that Sp C Sk C Sq .

To complete the network we also adjoin a sink node t and an arc from m to t (where,
say, t = m + 1).

We note that the nesting property defined in §2 immediately itnplies that each node

, I am indebted to R. Van Slyke for suggesting this representation

570 FRED GLOVER

k, except for t, has exactly one arc issuing from it,3 and we will identify each arc by the
name of its initial node. The constraints (1) may thus be preresented by attaching the
lower bound Lk and upper bound Uk to arc k and requiring a flow to the sink node t
that satisfies all arc capacities with unlimited supply available at the source nodes and
all other nodes k ~ m satisfying the usual conservation equations. The source nodes are
of course the minimal sets Si , j = 1, ..., n, and the v~ue of the flow across each arc
k, k ~ m, is identified as the value assigned to fk (henc~ to the vari$l.bles Xi for j = 1,

) .! ... n ', .i
Problem I then arises by assigning a weight ai to each unit of flow across arc j for

j ~ n and then seeking a feasible flow that maximizes total weight. Each of the other
problems consists of maximizing or minimizing the flow fp over some arc p, subject to
the restriction that the total weight of the solution be a~ least ao .

.I :14. An AlgorIthm for Problem I

For a given arc p, let P p denote the set consisting of 11 and all the arcs succeeding p
along the unique path from p to t; that is, P p = {k:Sp ~ Sk}.5 Let Bp denote the set of
arcs that are immediate predecessorsofp, thatis,Bp = {k:Sk C Spand ;itS,. 3 Sk C
S,. C Sp}. Finally, let Bp:k be tI1e set of all immediate predecessors of p except for the
one in Pk (i.e., Bp:k = Bp -Pk); and for P p C Pk, let Pk:p be the set of all successors
of k in Pk except for those that follow p (hence Pk:p = {h:Sk C S" ~ S,}). Note that
the indexing assumed earlier for the sets Sk implies that arc k is a pI1edecessor of arc p
(equivalently, P p C Pk) only if k < p, hence p E Pk implies k ~ p alnd k E Bp implies
k < p.Also,Pk:p = {h:h E Pkandk < h ~ p}.These definitions are illustrated in the
follo"ring diagram, where the nodes are represented by tircles with the node index ap-
pearing inside, and each arc receives the same index as node to its left.

Some of the relevant arc sets for this diagram are as follows:

Si = {j} for j = 1, ..., 6 Pr
tl {7, 9, 10} I

S7 = {4, 6} B10 {3, 8, 9}

S8 = {2,5} B10:7 {3,8}

S9 = {1,4,6} P.:9 j= {7,9}

SlO = {I, 2, 3, 4, 5, 6}
The strategy of the algorithm for Problem I is to obtain values Lk * and Uk *, the

latter representing "true" upper bounds on the flows fk for k ~ n, and values ~k which
represent increments to cumulative lower bounds across each arc k for k > n. Then the
variables Xi are assigned values one at a time, beginning first with Xl and then, given
the assignment to Xl , applying the same rule to determine the value for X2 , and so on.

a This, and the fact that there are no cycles, characterizes the network as an arborescence. See
Berge [1, p. 160]. For fundamental theory of flows in more general networks, see also Ford and

Fulkerson [3].
(The proof of these remarks follows by observing their validity for the initial arcs j ~ n, then

for all arcs each of whose predecessors has already been validated, and hence eventually for all

arcs of the network.
5 Using this definition, we note that Problem I is no less general than the one in which a weight

a'i is assigned to every arc k, since the two problems become equivalent by letting ai = EkEPi a'k
for j = 1, ...,n. Also we remark in passing that Problem I has the same set of feasible and op-
timal solutions if the orientation of every arc is reversed. These comments of course also apply

to' Problems II, III, and IV.

FLOWS IN ARBORESCENCES 571

0---

0-
0-
~
(i)-

--

0- --M=IO 3

T=M+I=II

FIGURE 1. Example Arborescence (with arcs directed from left to right)

We determine the incremental and revffied upper and lower bounds M follows:
Forp = 1, ...,n,letLp* = Lp.Then,forp = n+ 1, ...,m,letL'p = LkEBpLk*,
* (I) d * L' ILp = Max Lp, L p , an ~p = Lp -p. I
Beginning at the terminal arc m, we also define V'm = Um* == U... Then working

backwards, if Ur* hM been determined, consider any arc p E Br and define V'p =
* ~ *. I * I *) * . { ,Ur -L."kEBr:pLk (eqUlvalently,Up=Ur -Lr+Lp andU" =Min Up, Up}.
Clearly, Up* ~ fp ~ Lp* is a necessary requirement for feMibility. However, it is

possible that no feMible flow exists in which f p att~ the bound Up * or Lp * for a given

arc p. We will give other bounds that fp must satisfy in §8 and identify bounds that
provide both necessary and sufficient feMibility criteria in §9. Nevertheless, the bounds
Up*, Lp* and the numbers ~p contain all the informa.tion needed to determine an op-
timal solution to Problem I, if such a solution exists. We make this a.';I3ertion precise in
Theorem 1 and its corollary to follow.

THEOREM 1.6 If Problem I has an optimal solution, f}I,en it has an optimal solution such
that U *Xl = I ifal> 0
and

Xl = Min {Ul*, Ll + LkEPl:.. Ak} ifal ~ O.

COROLLARY 1. If Problem I has a feasible solution, then it has a feasible solution XO in
which, for an arbitrary single index j, x;O assumes any value satisfyin{J U;* ~ x;o ~
Min {U ;*, L; + LkEP;:.. A;}.

We observe that Theorem 1 provides an algorithm for Problem I as follows. Let
X1O denote the value of Xl in an optimal solution to Problem I. Setting Xl = X1O yields a
new problem with exactly the same form as Problem I, but in w}lich, for all kEPI,
Sk is replaced by Sk -{I} and Lk and Uk are respectively replaced by Lk -X1O and
Uk -X1O. Thus in the new problem X2 can be treated:lls the "new" Xl and consequently
assign,ed an optimal value by Theorem 1.

In following this procedure it is useful to determine the new values for Lk', Lk *,
Ak , U' k and Uk * by reference to the old ones, to avoid starting from scratch at each step.

We now indicate a set of short cut rules for accomplishing this.7

'For proofs of the assertions of this paper, see Glover [6J.
7 Computational savings can sometimes (but not always) result by initially replacing each

Xj with Xj -Lj to yield new variables with zero lower bounds. In particular. the preliminary com-
putation for such a replacement will be worthwhile when the sets S. have a nonempty intersec-
tion for k > n.

572 FRED GLOVER

If XIO > Ll + LkEPl:m ~k, let w = t. Otherwis~, let

.i~ 0w = l\fin {p:p E PI and L1 +! L..,kEPl:" ~k ~ Xl I.

(Recall PlOP = {k:k E PI and 1 ~ k ~ pl.) I
We will denote the new values of the bounds at1ter Xl is set equal to XIO by L / k , Lk *,

~k, etc.
Evidently, ifp (j: PI, then L'p = L'p, Lp* = Lp , and ~p =

t p. On the other hand,

if p E PI, then it may readily be verified that

-* * ""') ifLp = Lp -(L1 + L..,kEPl:" k P w,

= Lp* -XIO if P ~ w.

~p = 0 if p < 1f'

= L1 + LkEPt:w ~k -X10 if P = w,

if p > Uj.~p

Then of course

L'p=Lp*-~p forpEP1. 1

The new values for U'p and Up* when p E P1 are given simply by
-, , 0 -* * 0Up = Up -Xl and Up = Up -:1:1.

-, -*
The values of V p and V p are not so easily found when p EE PI, but we note that it is

possible originally to compute V'p and U p* only for p E PI, williout bothering to com-
-, -*

pute them for p EE Pl. Thus, V p and Vp can be computed for p E P2 (when X2 be-
comes the "new" Xl) by the original rule for computing V'p and Vp*.

5. Properties of Optimal Solutions to Problems II, III, and IV

To develop methods for solving Problems II, III, and IV, we will first state certain
relationships between optimal solutions to these problems and optimal solutions to
Problem I.

For the material to follow we define Problem r to be the same 88 Problem I except
1 1 1for the values of the bounds Lk and Uk (denoted by Lk and Uk for Problem I).

THEOREM 2.8 Assume that Lpl ~ Lp, U pI ~ U", and for all k ~ p, Lk 1 = Lk and

Ukl = Uk. Assume also that Problems I and r have feas~"ble solutions. Then if XO is an
optimal solution to Problem I, there is an optimal solution Xl to Problem r such that (i)
x/ ~ x;o for all j E Sp, (ii) x/ ~ x;o for all j IE Sp, and (iii) fkl ~ fko for all k E P p.
Likewise, if Xl is an optimal solution to Problem r, then there is an optimal solution XO to
Problem I such that (i), (ii), and (iii) are true.

The following two corollaries to Theorem 2 make it possible to obtain information
from an optimal solution to Problem IV for one valUe of p to be used in solving Problem
IV for another value of p.

COROLLARY 2.1. Let Problems I and r be the same except that Lpl ~ Lp and I.Jql ~ Lq,
where Sp C Sq .Let Lq assume the largest value such that Problem I has a f~"ble solution
satisf~'ng (2) and let Lpl assume the largest value such that Problem r has a feasible solu-

8 Arthur F. Veinott, Jr. and Edward Ignall have independently obtained Theorem 2 in their

very interesting paper [8] when Ax is replaced by a strictly convex function.

573FLOWS IN ARBORESCENCES

tion satisfying (2). If XO is an optimal solution to ~roblem I, then there is an optimal
solution Xl for Problem Y such that xl ~ XjO for j E Sq -Sp ; Xjl ~ XjO for j (f Sq -Sp ;
and fkI ~ fko for all k E P q. Likewise if Xl is an Qptimal solution to Problem y, then
there is an optimal solution XO for Problem I such that XO and Xl satisfy the foregoing

properties.
COROLLARY 2.2. Let Problems I and Y be the same except that U"I ~ Up and U qI ~ U q ,

where Sp C Sq .Let U q assume the smallest value such that Problem I has a feasible solu-
tion satisfying (2) and U pI assume the smallest value such that Problem Y has a feasible
solution satisfying (2). If XO is an optimal solution to Problem I, then there is an opu"mal
solv,tion Xl to Problem Y such that Xjl ~ XjO for j E Sq -Sp, Xjl ~ XjO for j (f Sq -Sp,
and fkI ~ fko for k E P q. Likewise, if Xl is an opti1hal solution to Problem y, then the1.e
is an optimal solution XO to Problem I such that XO and Xl satisfy the foregoing properties.

Our next two theorems, together with Theorem 2, give the main results of this sec-
tion that make it possible to develop efficient methods for Problems II, III and IV.

THEOREM 3.1. Let Problem V be to maximize Ax subject to (1), (2) and fp = fp*,

where fp* is the largest value of fp for which a feasible solution to Problem V exists. Let
the indices j ESp be denoted 1', 2', ..., 8', in ascending order, where 8 is the cardinality

h' 0' .of Sp .Define the sequence of Problems I ,h = 0, 1, ..., 8, so that Problem I u the same
as Problem I except that L~' = XjO for j E Sp (where XO is optimal for Problem I) and in
general Problem Ih' is the same as Problem I(h-I)' except that L~: assumes the largest value
for which there is a feasible solution to Problem rh-I)' satisfy'tng (2). Then there is a set
{Xh'} of optimal solutions to the Problems Ih' such that: (i) x;' ~ xjh-I)' for all j (f Sp and
(.') h' (h-I)' {, all . S . h' (.. la h' j' Lj' I" 1 . h nd11 Xj = Xj Jor .1 E P,J ~ 1,nparucu r,xj' = xi' = j'Jor ~J ~ a

x;: = x~, for h < j ~ 8). Moreover, X8' is an optimal solution to Problem V.

THEOREM 3.2. Let Problem VI be to maximize Ax subject to (1), (2) andfp = fp*,

where fp* is the smallest value of fp for which a feasible solution to Problem VI exists.
Let the indicesj E Sp be given as in Theorem 3.1 and define the Problems Ih' so that Prob-
lem 10' is the same as Problem I except that ~' = XjO for j E Sp (where XO is optimal for
Problem I) and, in general, Problem Ih' is the same as Problem rio-I)' except that, for
k = 8 -h + 1, U~: assumes the smallest value for which there is a fea8'tole solution to
Problem rh-I)' satisfying (2). Then there is a set {x"'1 tJf optimal solutions to the Problems
h' th (.) h' (h-I)' I" all . S nd (" ~ h' (h-I)' I" all . S . h'I such at 1 Xj ~ Xj Jor J E p; a 11 Xj ~ Xj Jor J E p, J ~ .

Moreover, X8' is an optimal solution to Problem VI.

Theorem 4 provides a computational shortcut in solving Problems III and IV.

THEOREM 4. Let Problems I and Y and the solutions XO and Xl be given as in Theorem 2.
Then, if Xrl > xro for r E Sp it follows that XjI = ,'I:jO for all j EE Sp such that aj > ar.

We now show how to exploit these results algorithmically.

6. Algorithms for Problems I II, III, and IV

6.1 An Algorithm for Problem II.

The Algorithm we give for Problem II is also fundamental to the algorithms for
Problems III and IV. Moreover, the procedural ideas developed for all of these prob-
lems will be combined in a highly efficient composite algorithm after the requisite foun-
dations have been laid below. We first consider the case in which the objective is to
maximize fm subject to (1) and (2). Let XO denote an optimal solution to Problem I

574 FRED GLOVER

(determined, for example, by the method of §4). ~en an optimal solution Xl to Prob-
lem II is obtained as follows:

.."~,:, t :;!, I !To max.m.~ e 4" .!:,,~'A! "~,O' '
I..., Jm. '" vc* ",

I 0. I1. Let Xi = Xi for all J such that ai > O. I
2. Suppose that xl has been determined for allj <: v (where a. ~ 0). Let x2denote

the current solution (feasible for Problem I) defined !by X;2 = xl for j < v and X;2 = XiO
f '>or J = v.

3. Define.8. = MinkEP. {Uk -Ik2} and 'Y. = (ao -L;;". a;x;2)/a. ('Y. = 00 if a. = 0).
4. Let X.l = Min {'Y. ,x"o + .8,,}. If X"l = 'Y. , also l~t xl = Xio for allj > v. Otherwise,

return to instruction 2 with v at its next larger value: (until v = m).9
In reality, the solution Xl given by the foregoing algorithm ~ot only maximizes 1m

subject to (1) and (2) but also maximizes Ax subjeQt to (1) andjm = Iml; i.e., Xl is an
optimal solution to Problem V of Theorem 3.1 for p ~ m. To veriify this using Theorem
3.1, we need only show that the value specified fov X.l in instnilctions 1 and 4 is the
largest possible value satisfying (1), (2), and Xi = :11;2 for j ~ v. This is obviously true
for instruction 4 by the definitions of 'Y. and.8.. To ,see that it i$ also true for instruc-
tion 1, let h be the least j for which there exists a solution X2 feasible for Problem I
such that Xi2 > x;o and X2 ~ xo. Then, the solution x* defined by Xh3 = Xh2 and X;3 = x;o
for j ~ h is feasible for Problem I and AxO ~ Ax3 ~from the optimality of xo) implies
ah ~ O. Consequently, the largest possible value for ;C.l for all av > 0 is just x.o.

The algorithm for Problem II when the objectiv~ is to minimize 1m subject to (1)
and (2) corresponds to the preceding algorithm in: the same way that Theorem 3.2
corresponds to Theorem 3.1. Thus, we first seek the ~mallest value of Xn subject to (1),
(2), and Xi = Xio forj < n; then seek the smallest value of Xn-l subject to (1), (2),
Xn = Xnl and Xi = Xio for j < n -1, and so on. The precise form of the algorithm
follows:

To minirr:ize 1m ~ "I.!,
1. Let Xi = Xi for all j such that ai < O.
2. Suppose that xl has been determined for allj ~ v (where a. ~ 0). Let X2 denote

the current solution (feasible for Problem I) defined by Xi2 = xl for j > v and Xi2 = x;O
f .<or J = v.

3. Define .8-' = MinkEP" I. Ik2 -Lk}, and

'Y.' = (ao -L;;,,- a'-'Xi2)/a- ('Y.' ~ -00 if a" = 0).

4. Let X.l = Max {'Y.', x.O -.8-'1. If xv' = 'Y-', also let xl = x;o for allj < v. Other-
wise, return to instruction 2 with v at its next smaller value (until v = 1):°

The justification of this algorithm is analogous to the justification of the algorithm
for maximizingJm, noting that the solution Xl in this case solves Problem VI of Theorem
3.2 for p = m.

We observe that the algorithms we have given for Problem II a,re even more efficient
than the algorithm for Problem I, provided an optimal solution to Problem I has
already been obtained.

Also, when minimizing 1m , if XO has been obtained by the methoo of §4, then instruc-

t An apparent minor change that can improve the efficiency of this method is to define u =
Max (h:h E P. and UA -f,,2 = ,8.) at instruction 3. Then set Xi = Xio for all j E Su, j > v, at in-
struction 4 and exclude these j as candidates for v at instruction 2.

10 To shortcut computation, define u = Max (h:h E P.. and fAt -L" = ,8.1) at instruction 3.
Then set xl = Xio for all j E Sa. j < v, at instruction 4, and exclude these j as candidates for
v at instruction 2.

575FLOWS IN ARBORESCENCES

tion 1 may be changed to specify xl = XjG for all j;fh that aj ~ O. The reason for this
is that the rule prescribed by Theorem 1 treats aj 0 as though a; < O. It may also
be noted that the procedure of §4 treats the aj as though a1 > ~ > ...> an. In
particular, the use of the indexing of the aj in thi procedure (and also in the pro-
cedures of this section) imposes a ranking that corresponds to rbplacing aj by aj -J.E,
where E > 0 is sufficiently small that aj > 0 implie~ aj -jE > O. For Problems II-IV
E must also be small enough that AxO > au + E ~!XjO for all XO satisfying (1). This
implicit perturbation clearly admits only one opral solutior to Problem I and
extends the applicability of Theorem 4. s'c/

! C}:c l"\C' 6.2 An Algorithm for Problem III. "

We first consider the problem of maximizing x" ljIubject to (1) and (2). As before,
we actually solve Problem V of Theorem 3.1 (in this case for f" := x,,).

0. d ..° Define a new vector z so that Zj = x -Xj rpr J ~ P an Zp = Jm -Jm =
2:::i=l (Xj -Xjo), where XO is optimal for Problem I. Also define Tk = Sk if P (f Sk
and Tk = (Sm -Sk) U {p} if p E Sk. Finally, let Uk = 2:::iETk Zj.

By reference to these definitions, (1) can alte~tely be stated fkO -Lk ~ Uk ~
fkO -Uk if P (f Tk and Uk -fkO ~ gl: ~ Lk -fkP if p E Tk. Applying Theorem 2,
there is an optimal solution to Problem III (and, n1oreparticularly, Problem V) such
that x" ~ x"o, Xj ~ XjO for j ~ p, and fm ~ fmo. From the definition of the Zj, this
yields Zj ~ 0 for allj and hence gl: ~ 0 for all k. Thus, letting M~ = fiO -Lk if P (f TI:
and Mk = Uk -fkO if P E TI:, Problem III can be restated:

Maximize gp = 2:::i-1 Zj + xpo subject to

(3) MI: ~ gl: ~ 0, k = 1 ...,m,

and
~n , > °(4) Lij=1aj Zj = au -x

where
I d I ~ f . ap == ap an aj = ap -aj or J ~ p.

Correspondingly, the associated restatement of roblem I is to maximize A I z sub-

ject to (3), (4), and UP = gp*, where Up* is opti al value fGr gp in Problem III.
This latter problem has exactly the form of Problem V when p = m, since the fact that
the Sk satisfy the nesting property implies that the tk satisfy this property, also. Con-
sequently, to maximize xp subject to (1) and (2) (~.e., solve PrGblem V for Xp = fp),
it suffices to solve the above problem with the method given for solving Problem II
(solving Problem V for p = m) in §6.1. However, a,n optimal solution is fust required
for the corresponding Problem I (i.e., maximize A'z subject to (3». For the special
form of this problem, the following algorithm may e used. I

AlgQrith~ far Problem I when Lk = 0 far all k I
1. Let Xi = 0 for allj such that aj ~ o. .,
2. Suppose Xio has been determined for all j < and a. > ~. Define Xi2 -XjO for

j < v and Xi2 = 0 for j ~ v. I
3. Let x.O = MinkEl'. { Uk -fk2}. Repeat instruc on 2 for the I next larger value of v

unless none remain such that a. > O.
This algorithm clearly applies to the form of Pro~lem I associated with maximizing

gp above. Its validity is established by reference to !Theorem 1, since Lk = 0 for all k
implies ~ = 0 for all k > n and hence U j* = MinA.EPi (Uk).

576 FRED GLOVER

that the
/0'

x,"' inPJ

optimal
Coro1

the X; I

speediD
The

in this

6.4 A

Usn
applie
of §6

Tht

conce
the p
Howl

rangt

surp:
W

tive
defe

Given the assignment Xj = XjO for j < v, the current value of U.* is just the value
assigned x.o by instruction 3, which is optimal by Theorem 1 for a. > 0:1 The fact that
L. + LkEP.:", Ak = 0 justifies the XjO = 0 for aj ~ 0 ~ instruction 1.

We note that solving Problems I and II when the a1i>ove algorithm can be used for
Problem I corresponds computationally to solving only Problem It when aj ~ 0 for
allj, since the above algorithm does no work to assign values to XjO for aj ~ 0 and the
algorithm for Problem II does not change the values of the XjO for aj > O.

Another shortcut in computation is afforded by Theotem 4, which implies that in an
optimal solution to Problem III (Problem V for Xp =7 fp) we may immediately set
Xj = XjO (hence Zj = 0) for all j such that aj < ap. AjJ$o, if ap > 0, then it is obvious
that one may similarly set Zp = O.

Now, we turn to solving Problem III when the objec~ive is to minimize xp subject to
(1) and (2). For this case, define Zj = Xj -XjO fori ;=,p and zp = fmo -fm. Then by
Theorem 2 there is an optimal solution x to Problem III (Problem VI for fp = xp)
that implies Zj ~ 0 for allj. Given Tk and gk as above, (1) can be restated

0Uk -fk ~ gk ~ 0 for all k such that p ~ Tk,

fkO -Lk ~ gk ~ 0 for all k such that p E Tk.

Also, (2) becomes
L a;'z; ~ ao -Axo I I

= a; -ap for j ~ p. Finailly, the objective Minimize xpI
where all

becomes
= -all and ai'

CO7lM..."",,R olllimlZe -L..,j-l Zj + :l!p ,

which is equivalent to the objective I
M .."",,R .axImlZe L..,j-I Zj -Xp.

Thus, when minimizing Xp, Problem III reduces to t~ same form of Problem II en-
countered when maximizing xp (although with different constants) and can be solved in
accordance with our previous remarks. It should be nQted that Theorem 4 applies in
this case to prescribe Xj = XjO (hence Zj = 0) for all j suCh that aj > ap. Also, if ap < 0
then one may permissibly set Zp = o. 16.3 An Algorithm for Problem IV.

The algorithm for Problem III stipulated in §6.2. ediately gives an algorithm
for Problem IV via Theorems 3.1 and 3.2.

To maximize fp, first solve Problem y' (in the notjation of Theorem 3.1) by the
procedure of §6.2 (maximizing xl' subject to the stated Conditions). Since XO is optimal

0' p 0'for Problem I and Problem I corresponds to Problem I as Problem III does to
Problem I, the starting solution XO for the procedure of §6.2 is already given.

Next, we solve Problem 12' by the procedure of §6.2, where in this case the starting
solution "xo" is the solution to Problem y'. Solving each Problem 1'" in turn by this
form of successive postoptimization eventually yields the solution x" to Problem I",
which is also optimal for Problem IV (Problem V for n K p < m). The fact that Prob-
lem I/o' is more restricted than Problem 1(/0-1)' and x/o' is an extension of X(l&-l)' suggests

]

11 O~e can alternately compute the values of the U i* as in §4, noting in this case that k E B"
implies U t * = Min {U t .u" *,. This remark also applies to the determination of .8. in the algorithm
for Problem II, which corresponds to Ii current U.* for the incremental value of x. .

577FLOWS IN ARBORESCENCES

that the procedure should be relatively efficient. We note also that, if the value for
X~; in Problem I/o' is restrained from being larger by (2), but not (1), then x/o' is itself
optimal for Problem IV and it is unnecessary to solve Problems Ik' for k > h.

Corollaries 2.1 and 2.2 can also be used in this context to provide tighter bounds for
the X; and Theorem 4 can be used to fix some of the X; at constant values, thereby
speeding the computation.

The procedure for minimizing If' is precisely analogous to that of maximizing If'I
in this case solving the problems I/o' of Theorem 3.2.

6.4 A Composite Algorithm for Problems II, III and IV.

Using the results of the proceding sections, we will give an algorithm that can be
applied to solve Problems n, III or IV without defining new variables zi by the rules
of §6.2 (although these definitions are implicitly relied upon).

The composite algorithm is sufficiently detailed to be somewhat difficult to follow
conceptually at first examination and for restricted applications the algorithms of
the preceding sections (which are easy to program for the computer) are preferable.
However, the composite algorithm not only has the advantage of applying to a greater
range of problems than the previous algorithms but al~ can be organized to rival or
surpass these methods in efficiency (see §10).

We will assume that XO is the (unique) optimal soluti6n to Problem I obtained rela-
tive to the perturbation discussed at the end of §6.1 and we will continue to implicitly
defer to this perturbation by using the indexing of the !li to determine rank.

Composite algorithm!or maximizing!p.
~'

1. To begin, let!! = !kO for all k and let 8 = 8p and T = 8m -8 ..
(Optional): Contract 8 and T by the definitions!!

08 = 8 -{j:j E 8k for some k such that 8k ~ 8p Fd!k = Uk}

T = T -{j:j E 8k for some k such that 8k ct: 8p" 8p ct: 8k, and !kO = Lk}

If Uk > !kO for all k E Pp, let v = t (= m + 1). ,Otherwise, let

v = Min {k:k E Pp and!ko =' Uk}

and let T = T n S. .
2. If S = .0, Xl is optimal and the process stops. Otherwise, let r = Min {j:j E S}.
3. If T = .0 and v ~ t, stop (xl is optimal). Otherwiise, let

I.II i

8 = Max {j:j E T and j < !r}. }.!,;1

If 8 does not exist and ar > 0, let S = S -{j:aj > 0 ~dj < Min {h:h E T}}, and
return to 2.

4. If v = t (hence Uk > j; for all k E P p), if ar ~ 0 and either a. > 0 or 8 does not
exist let

!kl} ,8r = MinkEPr { Uk

'Yr = «; if ar = 0, and I

'Yr = (ao -Ax1)jar if a. -< O.

11 In this section, we will use instructions of the form X = IX -Y to mean that the new X is

equal to the old X -Y.

FRED GLOVER

For notational convenience, to reduce the n~mber of prescriptions in 7 and 8 below,
let 8 = 0 and define eo = 0, ~o = 00 and Po =! J2f. Then go to instruction 7.

5. If 8 does not exist and instruction 4 is i/napplicable, let S = S -{r} and return
to 2.

6. If instructions 4 and 5 are not applic4ble (hence 8 exists), let

.1~r = MmlEPr-P, {V" 1f,,},

~. = Min1EI'.-Pr {f,,1 -J Lk}, 1

'Yr = (ao -Axl (ar r a.) ifa.>ar,

if a. = a,'Y. = 00

7. Let~ = Min {~r, ~" 'Yr} and redefine Xl so that Xl = Xl + ~(er -e,).
8. One or more of the following cases hol~:
(a) If ~ = 'Yr, let S = S -{r}. If alSb Min {~r, ~,} > 0, then Xl is optimal and

the algorithm stops.
(b) If~ = ~"let T = T -Sq, whereq ~ Max {k:k E P, -Ppandf; = Lk}.
(c) If ~ = ~r, define u = Max {k:k E lfr, k ~ p, and fkI = Uk}. If u exists,

1let S = S -S... Also if fk < Uk for aIIk E P p -P, , let v be unchanged. Other-
wise, define v = Min {k:k E Pp -P. andfkI = Uk} and let T = Tn S..

(d) If~ > O,letT = T -{j:j > r}.
(e) If T = 52f, let S = S -Ij:aj > OJ.
90 If r is removed from S by one of the a,bove instructions, return to 2. Otherwise,

return to 3.
Justification for the Composite Algorithm:3 The algorithm is an application of

Theorems 2, 3.1 and 4, and the earlier remarks of §6. The sets Sand T respectively
consist of those Xj for j E Sp and j EE Sp whbse optimal values have not yet been de-
termined. The initial contracting of S and rr in instruction 1 is justified directly by
Theorem 2(i) and (ii).

Selecting r in instruction 2 prepares the rpethod to solve Problem r' as defined in
Theorem 3.1 for h' = r. We observe (as e~lier) that Problem lA' stands in the same
relation to Problem rA-I)' as Problem III istands to Problem I (more precisely as
Problem V stands to Problem I when fp = Xp). The choice of 8 thus may be seen to
correspond to establishing a revised indexing for the coefficients aj' (= ar -aj) of
the variables Zj as defined in §6.2, treating IProblem lA' as Problem III (with r taking
the role of p). Instruction 4 accommodates the exceptional coefficient ar I = ar.

Restricting 8 so that 8 < r in instructiod 3 accords with Theorem 4 (and the im-
plicit perturbation) which implies that Zj r= 0 for aj < ar. The inapplicability of
instruction 4 when ar > 0 follows from the observation that ar > 0 implies ar = 00
Also, when 8 does not exist, the only varia,ble currently to be assigned a value is Zr
(unless it has already been assigned a value), which justifies the ,provision for 8 not
existing in instructions 4 and 5. These remaI'ks also justify the stipulation for contract-
ing S in instruction 3 when 8 does not exist aJid ar > 0.8 (a) and (c) assure that 4 can-
not be visited twice for the same value of r.

By Theorem 3.1 and the remarks of §§6,1 and 6.2, the optimal value for Zj i.i its

13 A less intuitive and more elaborate descript~n of this algorithm is given in §10, where it is

used to solve a numerical example problem.

FLOWS IN ARBORESCENCES 579

maximum value when values are assigned consecutively in i the proper indexing se-
quence established by instructions 3, 4 and 5. Moreover, by the definitions of §6.2,
the value of Zr represents an increment to Xr and the value <IIf z. represents an incre-
ment to Xr and a decrement to x.. Thus, the maximum Valr! e of Zi is precisely 0 ag

specified in instruction 7 (baged on instructions 4 and 6).
We now consider the cages of instruction 8. For cage (a), we let S,= S -{r} if

if 0 = 'Yr since Xr cannot be further increaged. To see this, n~te that 'Yr < IX) implies
either a. > ar at instruction 6 or ar < 0 at instruction 4, and lao = Axl for the new Xl
at instruction 7. Supposer were not removed from S. The fact that the coefficient of Zi
is negative in order to yield 0 = 'Yr < IX) (at instruction 4 for j = r or instruction 6 for
j = 8) implies that coefficients of all subsequent Zi must also be pegative, and 0 = 'Yr = 0
will occur for all subsequent 0 and 'Yr until r changes. Thus, thelsolution being generated
is unaltered by removing r from S immediately. The termin$ting condition of (a) is
similarly justified by observing that once both 0 = 'Yr and Min j{Or, O.} > 0,14 then 0 = 0
thereafter (both for the current r and all subsequent r)!"

Instructions 8 (b) and (c) are justified by the fact that infach successive Problem
I'" the optimal value of Xi does not increage for j ~ S" and doe not decreage for j E Sp.
Instruction 8 (d) applies Theorem 4, noting that j < r "eff ctively" corresponds to
ai > ar by the implicit perturbation. Finally, (e) uses the bservation of §6.2 that
T = ro implies no Xi for j E Sp can increage unless ai ~ o. (Note that either S or T
(or both) must be diminished by at leagt one element in (a~,(b), or (C)!6

Evidently, the process must return to 2 if r is removed from S and return to 3
otherwise, as stipulated in instruction 9. Thus, the algorithm accomplishes the suc-
cessive solution of the Problems I'" of Theorem 3.1, taking advantage of tight upper
and lower bounds to preassign certain Xi their optimal values by appropriately con-
tracting Sand T. i

Composite Algorithm for Minimizing f". The algorithm for minimizing fp may be
described in terms of the algorithm for maximizing f" by ~tipulating the following
changes (justified by Theorems 2, 3.2, 4, and our earlier r~marks).

Every occurrence of ai > 0 is replaced by ai ~ 0 and ev~ry occurrence of ai ~ 0
is replaced by ai > 0 (including j = r and j = 8). !

In instructions 1 and 8, Lk is replaced by Uk and Uk by Lk ~ In instructions 2 and 3,
Min and Max replace each other and inequalities in indices C!i < r, j < Min) are re-versed (j> r,j > Max). '

In instructio~s 4 and. 6, f~l -Lk .and Uk -fkl replace eac~ other and ar and a. are
replaced by theIr negatIves m defining 'Yr. '

In instruction 7, the new Xl is given by replacing 0 with -~.
In instruction 8 (d), j < r becomes j > r. Otherwise the 4Igorithm for minimizing

f" is the same ag for ma...amizing f p .
We remark that the composite algorithms (like the earlier al~orithms for Problems II,

III, and IV) not only obtain an optimal value for f", but subj~ct to this also maximize
Ax. !

I'Min {&.. , &.} > 0 will always hold if the optional contraction of ~ and T in instruction 1 is
executed. !

U A precise proof of the assertion requires showing that & = 0 for ea~h possible way that 'Y.. = 00
for subsequent T. We omit a detailed argument to exhaust the possibilities since it involves only a
straightforward application of our previous observations.

16 A possible exception occurs when 8 is visited directly after 4 and only v exists in 8 (c). But
then 4 is inapplicable thereafter and the exception cannot be repeated. Note that this implies
8 (d) and 8 (e) may be regarded as optional. In fact, if the optional contraction of 8 and T by
instruction 1 is performed, then 8 (d) and 8 (e) are redundant.

580 FRED GLOVER

7. A Special Alternative Algorithm for Problem I

Drawing on the results of §§4 and 5, we give an alternative algorithm for Problem
I that can be used as a ba.'Jis for solving P~blems II, III and IV by the procedures of
§6. In the process we define new modified bounds which lead to feasibility theorems for
these problems.

The alternative algorithm for Problem I is a mirror image of the algorithm of §4
and proceeds by assigning a value first to 'f,n , then to Xn-l and so on until a complete
solution is obtained. To describe this algorithm, we reverse the roles of upper and lower
bounds in §4 in the following definitions. ~or j ~ n, let U;* = U j. Then, for j > n
(proceeding in the order of indexing), let i

" ~ ** ! ** . {U "
}Uk=L.,jEB~Uj andU" =Min ",U",

Corresponding to Ak of §4, define Ok = U:* -Uk" (note Ok ~ 0). Finally, let
L:'* = Lm" = Lm and, for k < m, k E B. (proceeding in reverse order of indexing),

" ** ~ ** ** { " \let Lx = L. -L.,"EBr:~ U" and Lk =9 Max Lk, Lk .
The counterpart of Theorem 1 using th~se definitions is as follows:

THEOREM 5. If Problem I has an optimal 8olutilm, then it has an optimal 8olution
such that !

x" = L:* if an ~ 0
and

x" = Max {L:*, Un + L"EPa:..OJ if a,. > O.

By replacing the symbol U (as in U", Uq*, etc.) with L, replacing L with U, doubling
every asterisk and prime, and reversing all inequalities (except those involving in-
dices) the new values for the bounds L,,", L:*, U,,", U:*, and 0", based on the assign-
ment x" = x"o, are exact counterparts of the "updated" bounds specified in §4 and
may be determined from them. (For example, the modified definition of w becomes
w = Min {p:p E Pa and U" + L"EPa:"O" ~ x"ol.)

In addition, drawing on Corollary 1 and lits counterpart, we may state the following
results.

COROLLARY 3. If Problem I has a feasible 8olution, then it has a feasible 8olution XO
in which XjO assumes any value 8atisfying U j* :?;; XjO :?;; L1*.

8. Feasible Solutions to Problem I

Corollary 1 of §4 and Corollary 3 of §7 provide information about the range of
values Xj can take, given the existence of a feasible solution to Problem I. In this sec-
tion we give necessary and sufficient conditions for the existence of a feasible solution
to Problem I and specify upper and lower bounds for each arc that exactly constrain
the range of feasible flows across that arc.

We begin by specifying such bounds for the arc m.

THEOREM 6. If Problem I has a feasible 8olution, then it has a feam'ble 8olution XO
such that f",o assume8 any value 8atisfying L",* ~ f",o ~ U:'*.

We note that a single forward pass through the arborescence suffices to determine
the bounds U:'* and Lm* that exactly constrain the flow across arc m by Theorem 6.
We now show that the bounds U:* and L" * generated in this forward pass in fact pro-

vide necessary and sufficient criteria for feasibility.
THEORI;M 7. Problem I has a feasible 8olution if and only if U:* :?;; L" * for all k.

The bounds L" * and U:*, while sufficiently limiting to determine the existence or

581FLOWS IN A~ORESCENCES

for Problem
:ocedures of
heorems for

rithm of §4
a complete

~r and lower
1, for j > n

Finally, let
f indexing),

nal solution

U, doubling
lvolving in-
l the assign-
i in §4 and
w becomes

~e following

~ 8olution Xl

he range of
In this sec-

.ble solution
Iy constrain

0solution x

0 determine
Theorem 6.
in fact pro-

for all k.

existence or

nonexistence of a feasible solution, are n~t in general the most restrictive necessary

bounds onfko (except when k = m). Bo~ds that do exhibit this restrictive property

are given in the next theorem.

11 { * **} 11 . { * **
THEOREM s. Let Lk = Max Lk ,Lk ! and Uk = Mill Uk , Uk }. If Problem I

has a feas1-ole solution, then for any arc p ~e is a fea81-ole solution XO such that fpo as-

sumes any value satisfying Lp1l ~ fpO ~ U~1I.

It may be observed that the bounds Lk1l ~nd Uk1l of Theorem S can be determined by

two passes through the arborescence. Th l is accomplished by replacing the original bounds Lk, Uk with the bounds Lk*, U:* obtained on a forward pass and then com-

puting L:* and Uk* on a backward pass y reference to these revised bounds. The

resulting L:* and Uk* must be at least as :miting as Lk1l, Uk1l and hence, by Theorem

S, must be equal to them if Problem I has 'f feasible solution.

9. Integer Solutions to jProblems II, III and IV

We assume for this section that all Lk an ~ Uk are integers and that the Xi are required

to take integer values. Clearly, the intege requirement for the Xi poses no difficulty

for Problem I, since the optimal solution ob aiDed by the implicit perturbation acknowl-

edged in §6.1 will automatically assign in eger values to the Xi. On the other hand,

Problems II, III and IV do not share this property with Problem I.

The results of §§6 and 7 nevertheless imply that an optimal integer solution to

Prob~ems II, III and IV can be obtained siniply by rounding the fractional (continuo~).

solutIon. It should be stressed that Proble~ II-IV are among the very few for ,vhich

such a rounding process is legitimate. i

To emphasize the significance of this re~ult we state it as our final theorem.

THEOREM 9. If Xl is an optimal fractional solution to Problem V of Theorem 3.1

(Problem VI of Theorem 3.2) obtained relative to the perturbation of §6.1, then at most

two of the xl will not be integers. If only xiiI is not an integer, then r E 8p ; and if both

Xr1 and x.1 are not integers, then r E 8p, s ~ 8p and Xr1 + X.1 is an intege1'. FinallZI, let

Problem V' be the same as Problem V (Pro~lem VI' the same as Problem VI) except that

fp is required to assume its largest (smallest) integer value. Then an optimal (continuous)

solution to Problem V' (Problem VI') as~s each Xi an integer value, and is obtained by

rounding Xr1 down (Up) for r E 8p (if it is n4t an integer), and rounding X.1 up (down) for

s (f 8p (if it is not an integer). !

10. A NumeJical Example

!

To illustrate the ideas of the foregoing sections we apply the algorithm of §4 for

PI:Oblem I and the composite algorithm of !§6.4 for Problem IV to the arborescence on

the follo,ving page. I

The nodes of the arborescence are drawp as circles, with the node index inside the

circle, which also gives the index of the arc issuing from the right of the node. It may

be seen that n = 11 andm = 17. Also, the fjets 8k are given by 81 = /1}, 82 = {2}, ...,

811 = fll}, 812 = /3,4\,813 = {I, 5, 1°1,814 = {S, II}, 816 = {3, 4,6, 9}, 816 =

{1,5,7,S, 1O, II}, 817 = /1,2,...,11}. i

The numbers to the left of the initial nodfs (j ~ n) are the constants ai of the vector

A = (13,12,7,5, -1, -2, -5, -6, -7, !-11). We also stipulate that ao = 48. The

pair of numbers above each arc gives the ralues of the bounds Lk, Uk.

Solving Problem I. !

We depict the solution of Problem I ~ the algorithm of §4 in Table 1. The first

column gives the indices of the arcs k, an~ the second gives the vector (Lk, Uk) for

582 FRED GLOVER

~12

"-..
"'.,

~""

7

5

~-6

~

.13

~ ~

~

/?-_2~~!--If8)7 3 6 3 8 18

~~~

""
@--~---~~~-

-/

~~

'-l /

?(jO'('~-7

~/-5

./

-9

/'

(jf-2

FIGURE 2. Diagram of Example Arborescence

each k, which may be seen to correspond to the bounds indicated in the diagram of the
(Lk*, Uk*) for k ~ n (n = 11), and (Lk*, Uk *, ~k) for k > n. An empty space in a
vector means that the value of that component is unchanged from the previous vector.
(The location of the empty space is emphasized by the use of commas when ambiguity
may otherwise result. )

Asterisks in a column identify the ar~ k E P j where Xj is the variable currently
being assigned a value. The value Li +' LkEPi:-~k can thus immediately be deter-
mined by reference to the asterisks.

The appropriate values underlying the assignment Xi = XjO are given by the entries
in the column preceding the one headed Xi = Xio. The column headed Xj = XjO gives
the new values after the assignment is made:7

Some comments about implementing the algorithm of §4 are in order. First, we
have not bothered to record the current Values of Lk' and Uk' in Table 1 since they are

17 To verify these values by hand computation it is useful to write them in pencil under the ap-
propriate arcs in the diagram, erasing old values and replacing them by current ones as they are

computed.



583FLOWS IN ARBORESCENdES

not used except ag a notational convenience to helP f efille the cun-ent Lk *, Uk *, and
A 18

L:1k ."'"As observed in §4, it is possible to determine Uk * nly for k E P j, where Xj is the

variable currently being agsigned a value.. We have" stead elected in Table 1 to com-
pute updated values of Uk* (as well as Lk* and dk) f r all arcs k.

To facilitate this computation, note that Up' ~ Up implies Uk* = Uk* (and hence
Uk* requires no updating) for all k such that 8k ~ .Moreover, for was defined in
§4, it is readily verified that Uk * = Uk * for all 8k q: ...

This last fact makes it possible to "postpone" an explicit assignment of values to
some of the Xj and thereby reduce the amount of n~cessary updtloting. Specifically, if
Lj* = U j*, then of course XjO = Lj* (= Lj) is the o~~y possible value of Xj, and hence

-* * 0 -* ,;;i 0w = j. But then Lk = Lk -Xj and Uk = Uk 1- Xj for k E Pj, while all other
I

bounds remain unchanged (including the new dk valttes).. Consequently, the values to
be prescribed for subsequent variables will be the sarpe if XjO is not assigned the value
Lj , but is simply bypassed. Thus, it is convenient to .p to the first j remaining such
that Lj* < U j* and continue the algorithm from t ere. When no j (~ n) are left,
those Xj that were bypassed can all be set equal to Lj 0 complete the process.

This procedure has been followed in Table 1, as ay be seen by noting that the
assignment XSO = 5 is followed directly by X50 = 4, ypassing X4. Similarly, X50 = 4
is followed by XSO = 2, bypagsing X6 and X7. Finally, j* = Lj* holds for all remaining
.i ~ n after the assignment XSO = 2, and the algorit m terminates. The optimal solu-
tion is XO = (4,4,5,2,4,4,4,2,8,1,0), yielding Ax = 60.

18 Note too that to determine U'c it is convenient (upo~ computing U,,*) to compute U,,* -
L,,* + A" and leave this amount unchanged to find U'c = (U~* -L,,* + A,,) + Lc* for all k E B" .



584 FRED GLOVER

Solving Problem IV J .I

Before illustrating the solution of Problem I ,we will supplement the general
description of the composite algorithm of §6.4 by ~g explicit rules for implementing
the instructions that define 15, , 15. , and the sets S apd T.

To begin, we assign numbers ak = Uk -fkO (fkj -Lk if minimizingfp) to all arcs
k such that k E P p or SA: C Sp, and assign aA: = f~o -Lk (Uk -fA:° if minimizing fp)
to all other arcs. Then the rules for determining &,' 15. and for contracting S and T
in instructions 1, 3, 4, 6 and 8 of the composite algorithm can be implemented as
follows:9 Instructions 2, 7 and 9 remain unchanged and 5 becomes superfluous. Except
as indicated below, our remarks apply both to maximizing and minimizing f p .

1. As before, initially let S = Sp, T = Sm -~p and Xl = xo, where XO is optimal
for Problem I.

(a) Determine new values ak* for ak when k Pp:m and p < m as follows. (If
p = m there is nothing to determine.) Begin wi q = Min {k:k E Pp:m} and let
aq* = aq. Then, if a" * has been determined for E P p:m and a" * = 0, let v = h

and drop all arcs k of the arborescence such that SA: Q: S. , hence contracting T so that
T = Tn S.. (Note that this obviates the determi ation of ak * for k E P":m.) But if
a" * > 0, h E Bk, and ak * has not been determined, then let aA: * = Min {a" *, ak}. If
by this process a". * is eventually determined and a". * > 0, then let v = t.

(b) Determine new values ak * for ak when k ~ P p:m as follows. Let ap* = ap and,
for all h E P po. and .all ~ E B,,:p, let ak * := aA:.

[ (For notational ~onvenie~c~, let

P ,,:1 = P ,,:m.) Then, if a" has been determIned fo h E P p:". and a" = 0, elimmate

all arcs k from consideration such that SA: ~ S (as by "disconnecting" h from
the arborescence), thus letting S = S -S" if S" -Sp and T = T -S" otherwise.

* *If, on the other hand, a" > o and aA: has not been determined for some k E R",
define ak * = Min {ak, a" *}. Repeat until no more ak * can be determined by the rule

(hence aj* has been determined for allj E S u T, for the remaining Sand T).
(c) Redefine ak = ak * (i.e., update aA:) for all arcs k remaining for which ak * has

been determined.
3. In this instruction the definition of 8 becomes$ -Max U:j E T} (Min U:j E T}

if minimizing f,,) and the conditional contraction f S when 8 does not exist, etc., is

given by S = S -{j:aj > OJ (S -{j:aj ~ O} if ..mizingf,,).
4. The only change in this instruction is to let'

Or = Min far, am}

and define g = m (for instruction 8). i
6. Instruction 6 remains unchanged except that tjhe definitions of 15. and 15. simplify

to 15. = a. and 15. = Minta., ag}, where g = Max {k:k E PI' -P.}.
8. This instruction updates the ak and performs the functions of the old instruction

20 !

8 as follows. i
(a) If 15 = 'Y., Xl is optimal and the algorithml stops. Define ak* = ak --15 for

kEP.-P.andkEP.-P.. :

18 This particular statement of the composite algorithm was purposely avoided in §6.4 in favor

of the more intuitive description that facilitated the algorithm's justification. Hopefully, the
elaboration of details in the present description will thereby be more easily understood.

10 The divisions of the new instruction 8 do not precisely correspond to those of the old. The use

of the optional rules for contracting Sand T in instruction 1 account for the elimination of cases
8 (d) and (e) of §6.4 and the changes in instructions 3 and 8 (a).



FLOWS IN ARBORESCENCES 585

(b) If ag* > 0 and g < m (for g given * instruction 6), let

Q = fk:k E Pg an~ g < k < v}.
:eneral
enting

narcs
ingfp)
and T
tedag

~xcept

>timal

s. (If
ld let
= h

) that
3ut if
!k}. If

If Q = 50, then part (b) of instruction 81 may be byp3B8ed. Otherwise, identify
h = Min {k:k E Q and ak = a,*}. If h does not exist, let ak* = a,* for k E Q. But if h
exists, let ak * = ak for all k E Q such that k ~ h and let ak * = a,* for all k E Q such

that k < h.
(c) If a,* = 0 (for g given in 4 or 6), red~fine v so that

v ~ Min /k:k E Pp -!P. and ak* = OJ,

and drop all arcs k such that Sk q: S. , hence ] contracting T so that T = T n S. .
(d) If 8 ¥ 0, let q = Max /k:k E P. -IPr}. If $ = 0 (from instruction 4), for

definitional purposes let q = 0 and Sg = 50. 'lihen for h such that S" ~ Sp or S" ~ Sg ,
if a" * is determined and a" * = 0, remove aJl arcs k from consideration such that

Sk ~ S" , thus letting S = S -Sh if Sh ~ Sp ~d T = T -Sh otherwise.
(e) If a" * has been determined and ah * = la", then ak * = ak (hence these ak need

not be updated) for all k such that Sk ~ SA . jl

(f) Finally, if ah > ah * > 0, then for k E Bh let ak * = Min {ak , aA *}.
(g) When no more ak * can be determined by these rules, redefine at = ak * for

those k left for which ak * was determined (letting the other at retain their old values).

The justification for these instructions follows from the justification of §6.4 and the
definitions of Or, O. and the sets Sand T. It lis to be observed that the at represent
upper bounds on flow increments and decrem~nts and, except for the arcs k E P p:m ,

and,
}, let
mate
from
wise.

R",
rule

hM

: 

TJ
~., is

-lily

,Ion

for

Ivor
the

use
LSeS



586 FRED GLOVER

ak* corresponds to ak as Uk* corresponds to Uk, takiPg into account the fact that all

lower bounds are zero.
The result of applying the composite algorithm to maximize /13 of the example

problem, subject to Ax G; 48, is summarized in Tablt 2. As before, a blank space in-

dicates that the entry is unchanged from the correspo ding entry in the preceding col-

umn. The initial elements of S are indicated by the s bol S to the left of the appro-

priate arc indices in the table (the initial elements of T consist of all remaining k ~ 11).

The X's indicate the arcs of the arborescence that are dropped by the revision process,

thus in particular indicating for k ~ 11 the arcs e .ated from 8 and T.
Starting values for the ak are given by using the riginal computed values of Lk *

and Uk* in place of Lk and Uk. I

The indices r, 8, and the value of ~ in each of the 11 two columns are determined by

reference to information in the preceding column. Re .sed values for the ak in the final

column are omitted since the optimal solution has een obtained.Th . al I .. b 1 0 9 5 1 0 1 0e optlm so utlon IS seen to e X3 = X3 -.,. = ,X5 = X5 + I = 5, XI0 = XI0

+ f = It, and xl = Xio for all other j, yielding a m imum value for /13 of lOt.

References I

1. BERGE, CLAUDE, The Theory oj Graphs and Its Applications, John Wiley &; Sons, Inc., New

York, 1002.
2. COOK, R. A. AND COOPER, L., "An Algorithm for Integer Linear Programming," Report No.

AM65-2, School of Engineering and Applied Science, Washington University, St. Louis, Mo.,
(presented at the 28th National ORSA Meeting, November 1965).

3. FoRD, L. R., JR. AND FULKERSON, D. R., Flows in Networks, Princeton University Press,
Princeton, New Jersey, 1962.

4. GLOVER, FRED, "Truncated Enumeration Methods for Solving Pure and Mixed Integer Linear
PrograIn8," WP-27, Operations Research Center, University of California, Berkeley, (pre-
sented at the 29th National ORSA Conference, May 1966).

5. -, "A Multiphase-Dual Algorithm for the Zero-One Integer Programming Problem,"
Journal oj the Operations Research Society oj America, ~November-December 1965).

6. -, "Flows in Arborescences," NONR 760(24) NR 047-0't8, Carnegie Institute of Technology,

Pittsburgh, Pennsylvania, (July, 1967). *7. HILLIER, FREDEmcK, S., "An Optimal Bound and Scan orithm for Integer Linear Program-
xning," Technical Report No.3, Department of Industr.al Engineering, Stanford University,

(August 1966).
8. IGNALL, EDWARD AND VEINOTr, JR., ARTHUR F., "OptimJity of Myopic Inventory Policies for

Several Substitute Products," Management Science, V~. 15, No.5 (January 1009), pp. 284---

304. !

~


