MANAGEMENT SCIENCE
Vol. 17, No. 9, May, 1971
Printed in U.S.A.

FLOWS IN ARBORESCENCES*{

FRED GLOVER
University of Colorado

This paper gives efficient methods for solving four specially structured network
problems that arise in connection with certain integer programming methods de-
veloped by Cook and Cooper, Hillier, and Glover. Such problems have also inde-
pendently been studied in inventory theory by Ignall and Veinott, who have de-
veloped extensive qualitative (nonalgorithmic) implications of their structures. In
the integer programming context, special subclasses of these network problems are
generated and solved as part of a strategy for solving more general integer linear
programs. By providing particularly efficient methods for accommodating somewhat
broader network structures, our results enable the development of related integer
programming solution strategies that generate more complex subproblems.

We show that the first of the four network problems can be solved by a procedure
that assigns each variable a value exactly once, without subsequent revision. Proper-
ties of optimal solutions for the remaining problems are developed that enable the
algorithm for the first to be extended to the second and then, by suitable transforma-
tion of variables, to the third and last problems as well. Moreover, while the last
three problems involve an additional linear constraint that nullifies the ‘“‘integer ex-
treme point property’’, we show that optimal integer solutions to these problems ean
nevertheless easily be obtained from the optimal continuous solutions.

1. Introduction |

Special algorithms are given for four closely related network flow problems that
arise in solving integer programming problems by truncated enumeration [4]. The con-
straints for these problems consist of nested inequalities on partial sums of variables
and a single linear inequality over all variables. In a network formulation these con-
straints can be represented by a capacitated arborescence with the linear inequality
restricting the flows from the source nodes.

It is shown that the structure of the first problem yields to a very efficient algorithm
in which each variable is assigned a value exactly once, without subsequent revision.
Properties of optimal solutions for the remaining problems are developed that enables
the algorithm for the first to be extended to the second, and then, by suitable transfor-
mations of variables, to be extended also to the third and last problems. In addition,
the solution properties are shown to provide an alternative -algorithm for the first
problem and hence, by extension, for the other problems in turn. Finally, it is shown
that optimal integer solutions for the last three problems can be easily obtained from
the optimal continuous solutions. :

2, Notation and Problem Statement

Let Si, k& = 1, -+, m, denote a collection of distinet nonempty sets that contain
some or all of the indices 7, 7 = 1, - -+, n, and satisfy the nesting property 2

(p#q and S,nS; = F)= (S, |8 or S5, C8,).

* Received April 1968; revised March 1970.
1 An abbreviated version of the first portion of this paper appears in the IFORS Proceedings,

June 1969.
1 We use the symbol C to denote set inclusion and < to denote proper set inclusion.

568 !

FLOWS IN ARBORESCENCES 569

For convenience we assume S» = {1, 2, ---, n} (hence S C S»forallk < m), and

= {j} forj = 1, - - -, n (hence m > n). Consistent with this, we also assume S, C
S;=p <qLetz = (21,2, -, z,)" denote a column vector of variables, 4 =
(a1, a2, - - -, @) a row vector of constants such that a1 = a2 = -+ = a., and define
i = Z,-es,, z; . With each set Si we associate finite constants Uy, Li and the inequality

(1) Uk%fkng, k=]_’...,m,

where Ly = 0 for all k. ‘
The problems we wish to solve are: : i
1. Maximize Az (D_}=1 ajz;) subject to (1). } i
II. Maximize (alternatively Minimize) f. Sub]ectito (1) and \

2) Az = a | ‘

where g, 18 a given scalar constant.

III. Maximize (alternately Minimize) z, for any p, 1 £ p < n, subject to (1) and
2).

IV. Maximize (alternately Minimize) f, for any p, n < p < m, subject to (1) and
2).

Three recently proposed truncated enumeration algorithms for integer programming
concern themselves with solving problems that are special cases of Problems I-IV as
part of a strategy for solving the more general integer programming problem. Thus the
methods developed here may be used with these and related algorithms as a means for
implementing such a strategy efficiently. The most recent of these algorithms, due to
Fred Hillier [7], seeks to impose restrictions on a convex combination of extreme points
of a simplex consistent with the nonnegativity and integrality of feasible lattice points.
The second algorithm, due to Cook and Cooper [2] (as modified by a proposal in [4]),
exploits a restricted form of (1) and (2) to supplement information obtained from the
Fourier elimination method. The third algorithm [5], for the 0-1 problem, provides the
chief source of motivation for this paper and specifies solutions for Problems I-IV when
the inequalities of (1) simplify to Un = fn 2 Lmand 1 Z 5; =2 O0forj=1,---,n
The solutions proposed in [5] can be modified to accommodate constraints Uz = fi 2 L
for n < k < m provided the S; are disjoint. However, to solve more general integer
programs by this approach, it is desirable to solve Problems I-IV rapidly when the
x; are not 0-1 variables, and the sets S; are not only disjoint but assume other struc-
tures as well.

We now derive the general results upon which such applications can be based.

3. A Network Representation’

The inequalities of (1) can be translated into those of a network flow problem over a
capacitated arborescence by means of a Hasse diagram (see Berge [1, p. 12]). We create
a network whose nodes are the sets Sy, k& = 1, - -+, m, an arc going from node p to
node ¢ if:

) S, C S,, and |

(ii) no S; exists such that S, € S, C §,.

To complete the network we also adjoin a sink node ¢ and an arc from m to ¢ (where,
say,t =m + 1).
We note that the nesting property defined in §2 immediately implies that eachnode

* T am indebted to R. Van Slyke for suggesting this representation.

570 FRED GLOVER

k, except for ¢, has exactly one arc issuing from it,* and we will identify each arc by the
name of its initial node. The constraints (1) may thus be preresented by attaching the
lower bound L; and upper bound U to arc k and requiring a flow to the sink node ¢
that satisfies all arc capacities with unlimited supply available at the source nodes and
all other nodes k < m satisfying the usual conservation equations. The source nodes are

of course the minimal sets S;,j = 1, -+ -, n, and the value of the flow across each arc

k, k < m, is identified as the value assigned to fi (hence to the variables z; forj = 1,
4 {

<o, m). i

Problem I then arises by assigning a weight a; to each unit of flow across arc j for
7 £ n and then seeking a feasible flow that maximizes total weight. Each of the other
problems consists of maximizing or minimizing the flow f, over some arc p, subject to
the restriction that the total weight of the solution be ak; least ao .
4. An Algorithm for Problelm I }

For a given arc p, let P, denote the set consisting of p and all the arcs succeeding p
along the unique path from p to ¢; that is, P, = {k:S, & Si}.° Let B, denote the set of
arcs that are immediate predecessors of p, that is, B, = {k:S; C S, and # S.938 C
S, < 8,}. Finally, let B, be the set of all immediate predecessors of p except for the
one in P; (i.e., Byx = B, — P.); and for P, C Py, let Pi:, be the sat of all successors
of k in P, except for those that follow p (hence Py, = {h:S: € Sy & S,}). Note that
the indexing assumed earlier for the sets S; implies that arc k is a predecessor of arc p
(equivalently, P, C Px) only if & < p, hence p € Primpliesk < p and k € B, implies
kE < p.Also, Py, = {hth € Prand k < h < p}. These definitions are illustrated in the
following diagram, where the nodes are represented by ¢ircles with the node index ap-
pearing inside, and each arec receives the same index as node to its left.

Some of the relevant arc sets for this diagram are as follows:
|

8 = {jiforj=1,--,6 P &= (7,9, 10}
8 = {4, 6) Bu = {3,8,9)
S = {2, 5) Bus = 3, 8)

Ss = {1, 4, 6} Py = {7, 9}

S = {1: 2, 3, 4, 5, 6}

The strategy of the algorithm for Problem I is to obtain values L.* and U,*, the
latter representing “true” upper bounds on the flows f; for £ < 7, and values A; which
represent increments to cumulative lower bounds across each arc k for k > n. Then the
variables z; are assigned values one at a time, beginning first with z; and then, given
the assignment to z; , applying the same rule to determine the value for z., and so on.

3 This, and the fact that there are no cycles, characterizes the network as an arborescence. See
Berge [1, p. 160]. For fundamental theory of flows in more general networks, see also Ford and
Fulkerson [3].

¢ The proof of these remarks follows by observing their validity for the initial arcsj = n, then
for all arcs each of whose predecessors has already been validated, and hence eventually for ail
arcs of the network. :

s Using this definition, we note that Problem I is no less general than the one in which a weight
@'y is assigned to every arc k, since the two problems become equivalent by letting a; = > ker ;a'k
forj = 1, --- , n. Also we remark in passing that Problem I has the same set of feasible and op-
timal solutions if the orientation of every arc is reversed. These comments of course also apply
to Problems I1, II1, and IV.

FLOWS IN ARBORESCENCES 571

M=10
T=M+l=]
Fiaure 1. Example Arborescence (with ares directed from left to right)

We determine the incremental and revised upper and lower bounds as follows:

Forp =1, ,ndet L = L, Then,forp =n + L. ,mlet L, = EkeBka*,
L,* = Max (L,.,L,,),andA =L~ - L, 1

Beginning at the terminal arc m, we also deﬁne Un= Un* = Un. Then Workmg
backwards, if U,* has been determined, consider any arc p € B and define U,

Zke,,,,,L,, (eqmvalently, U,=U'~L\+L,*)and U,* = Min {U,, U,,}

Clearly, U*=2f, 2 L*isa necessary requirement for feas1b1hty However, it is
possible that no feasible flow exists in which f, attains the bound U,* or L,* for a given
arc p. We will give other bounds that f, must satisfy in §8 and identify bounds that
prov1de both necessary and sufficient feasibility criteria in §9. Nevertheless, the bounds
U,*, L,* and the numbers A, contain all the information needed to determine an op-
timal solution to Problem I, if such a solution exists. We make this assertion precise in
Theorem 1 and its corollary to follow.

Turorem 1.° If Problem I has an optimal solution, then it has an optumal solution such
that .
= U* fa >0
and
z; = Min {U*, L + D errn Ak ifar = 0.

CoRrOLLARY 1. If Problem 1 has a feasible solution, then it has a feasible solutwn x m
which, for an arbitrary single index j, x° assumes any value satisfying U;* = z° =
Mm{UJ ,L +Zk€l’:m '}'

We observe that Theorem 1 provides an algorithm for Problem I as follows. Let
z,’ denote the value of 2, in an optimal solution to Problem I. Setting z; = z° yields a
new problem with exactly the same form as Problem I, but in which, for all ¥ € Py,
Si is replaced by Si — {1} and L; and Uy are respeetively replaced by L — z," and
Ui — 2" Thus in the new problem z; can be treated as the “new” z; and consequently
assigned an optimal value by Theorem 1.

In followmg this procedure it is useful to determine the new values for L, L.*
Ay, Uy and U, by reference to the old ones, to avoid starting from scratch at each step.
We now indicate a set of short cut rules for accomplishing this.”

.$For proofs of the assertions of this paper, see Glover [6].

7 Computational savings can sometimes (but not always) result by mltlally replacing each
z; with z; — L; to yield new variables with zero lower bounds. In particular, the preliminary com-
putation for such a replacement will be worthwhile when the sets S have a nonempty intersec-
tion for k > n.

572 FRED GLOVER

If 2° > Ln + D xer,s, Ak, let w = £ Otherwise, let
w = Min {p:p € Py and Ly -+ Dier,, & = 2.7},

(Recall Py, = {k:k € Pyand 1 < k < p}.)
We will denote the new values of the bounds after z; is set equal to z," by L'y, L.*,
A, ete.
Evidently,if p ¢ Py, then L', = L', , L,” = L}, and A, =|A, . On the other hand,
if p € Py, then it may readily be verified that

L = L' — (In + Yrery, &) ifp < w,

=L —a ifp 2w
3,=0 ifp < "
=L+ EkEPl;w A — ifp =w,
4 ifp > w.

Then of course

L,=L>*—3, forpePy. |
The new values for U', and U,* when p € P, are given simply by
U,=Up,~z" and U,* =U,* — z’.

The values of U', and U,* are not so easily found when p ¢ P, , but we note that it is
possible originally to compute U, and U,”* only for p € Py, without bothering to com-
pute them for p ¢ P;. Thus, U', and U,* can be computed for p € P, (when 2, be-
comes the “new” z) by the original rule for computing U’, and U,*.

5. Properties of Optimal Solutions to Problems II, III, and IV

To develop methods for solving Problems II, ILI, and IV, we will first state certain
relationships between optimal solutions to these problems and optimal solutions to
Problem I.

For the material to follow we define Problem I’ to be the same as Problem I except
for the values of the bounds L; and U, (denoted by L' and U;' for Problem I').

TaeoremM 2.° Assume that L,' = Ly, Up' = U, and for all k > p, Li' = Ly and
Uit = U,. Assume also that Problems 1 and I' have feasible solutions. Then if 2° is an
optimal solution to Problem 1, there s an optimal solution ' to Problem ' such that (i)
g} =z forallj €8,, i)z < z’forallj € 8,,and (i) fi' = fi’forallk € P,.
Likewise, if ' is an optimal solution to Problem I, then there is an optimal solution 2° to
Problem 1 such that (1), (i), and (iii) are true.

The following two corollaries to Theorem 2 make it possible to obtain information
from an optimal solution to Problem IV for one value of p to be used in solving Problem
IV for another value of p.

COROLLARY 2.1. Let Problems I and I' be the same except that L, = Ly,and L,' < L,

where S, C 8, . Let L, assume the largest value such that Problem 1 has a feasible solution
satisfying (2) and let L, assume the largest value such that Problem 1" has a feasible sobu-

8 Arthur F. Veinott, Jr. and Edward Ignall have independently obtained Theorem 2 in their
very interesting paper [8] when Az is replaced by a strictly convex function.

FLOWS IN ARBORESCENCES 573

tion satisfying (2). If z° 15 an optimal solution to lProblem 1, then there is an optimal
solution z* for Problem 1" such that 2! < x" forj € 8¢ — Sp;2' = 2" forj € 8, — Sy ;
and f! £ £ for all k € P,. Likewsse if z' is an optimal solution to Problem I', then
there is an optimal solution &° for Problem 1 such that x° and z satisfy the foregoing
properties.

COROLLARY 2.2. Let Problems I and I' be the same except that U,' < U, and U, 2 U,,
where S, C S, . Let U, assume the smallest value such that Problem 1 has a feasible solu-
tion satisfying (2) and U, assume the smallest value such that Problem I' has a feasible
solution satisfying (2). If 2° is an optimal solution to Problem 1, then there is an optimal
solution z* to Problem 1" such that z;' = " for 7 € 8¢ — Sp, 2 < ' forj € 8¢ — Sp,
and fi* = £ for k € P,. Likewise, if ' is an optimal solution to Problem I', then there
1s an optimal solution 2° to Problem 1 such that z° and ' satisfy the foregoing properties.

Our next two theorems, together with Theorem 2, give the main results of this sec-
tion that make it possible to develop efficient methods for Problems II, III and IV.

TrEoREM 3.1. Let Problem V be to mazimize Ax subject to (1), (2) and f, = f,",
where f,* is the largest value of fp for which a feasible solution to Problem V exists. Let
the indices 7 € S, be denoted 1,2/, - - - , 8, in ascending order, where 8 is the cardinality
of S, . Define the sequence of Problems ™, h=01,---,8,so that Problem 1% is the same
as Problem 1 except that LY = z forj € S, (where z° 7s optimal for Problem 1) and in
general Problem I is the same as Problem I1*™" except that Li» assumes the largest value
for which there is a feasible solution to Problem 1% satisfying (2). Then there is a set
(2"} of optimal solutions to the Problems 1" such that: (i) z; < ;" for all j & S, and
Gy = 2™ forallj € Sp,j # k' (in particular, 2}, = &} = Lj. for 1 £j < hand
2t = 3. for h < j £ 0). Moreover, 2* is an optimal solution to Problem V.

TaEOREM 3.2. Let Problem VI be to maximize Az subject to (1), (2) and f, = f,%,
where f,* is the smallest value of fp for which a feasible solution to Problem VI exists.
Let the indices j € Sy be given as in Theorem 3.1 and define the Problems 1" so that Prob-
lem T° is the same as Problem 1 except that Uy = z;’ for j € S, (where 2° is optimal for
Problem 1) and, in general, Problem T* s the same as Problem 1*™" except that, for
k=6 —h+ 1, Ut assumes the smallest value for which there is a feasible solution to
Problem 1% satisfying (2). Then there is a set {z*'} of optimal solutions to the Problems
1 such that () 2% = 2™ forallj € S, ; and (iiT 2 =z forallj € 8,,j #H.
Moreover, 2 is an optimal solution to Problem V1.

Theorem 4 provides a computational shortcut in solving Problems III and IV.
‘TueorEMm 4. Let Problems I and I' and the solutions z° and z* be given as in Theorem 2.

Then, if zr > x for r € Sy 4 follows that z} = z for all j & S, such that a; > a,.
We now show how to exploit these results algorithmically.

6. Algorithms for Problems|II, III, and IV
6.1 An Algorithm for Problem 11.

The Algorithm we give for Problem II is also fundamental to the algorithms for
Problems III and IV. Moreover, the procedural ideas developed for all of these prob-
lems will be combined in a highly efficient composite algorithm after the requisite foun-
dations have been laid below. We first consider the case in which the objective is to
maximize f, subject to (1) and (2). Let z° denote an optimal solution to Problem I

574 FRED GLOVER

(determined, for example, by the method of §4). Tl*en an optimal solution z' to Prob-
lem II is obtained as follows: | .

To maximize f,, : : + o [

1. Let z;' = z; for all j such that a; > 0. |

2. Suppose that ;' has been determined for all j < v (where a, < 0). Let z’denote
the current solution (feasible for Problem I) defined by z;* = z;' forj < v and z;* = z;°
forj 2 v .

3. Define B, = Minke, {Us — £’} and . = (@0 — D0 0;27°) /0y (v2 = = if a, = 0).

4. Letz,' = Min {y,, 2, + 8,}.If 2,' = v, , alsolet z;' = z, for all j > v. Otherwise,
return to instruction 2 with v at its next larger value (untily = m).?

In reality, the solution z' given by the foregoing algorithm not only maximizes fn
subject to (1) and (2) but also maximizes Az subject to (1) and f» = f.'; i.e., z' is an
optimal solution to Problem V of Theorem 3.1 for p = m. To verify this using Theorem
3.1, we need only show that the value specified for z,' in instructions 1 and 4 is the
largest possible value satisfying (1), (2), and x; = #,” for j 5 v. This is obviously true
for instruction 4 by the definitions of v, and 8, . To see that it ig also true for instruc-
tion 1, let h be the least] for which there exists a solutlon z ﬂeaSIble for Problem I
such that z/ > z and «* = 2°. Then, the solution ' * defined by 2’ = z° and 2 = z;°
for j # h is feasible for Problem I and Az” = Az® (from the optimality of z°) implies
ar < 0. Consequently, the largest possible value for z,' for all a, > 0 is just z,”.

The algorithm for Problem II when the objectivé is to minimize f,, subject to (1)
and (2) corresponds to the preceding algorithm in the same way that Theorem 3.2
corresponds to Theorem 3.1. Thus, we first seek the smallest value of z, subject to (1),
2), a.nd z; = z; for j < m; then seek the smallest value of z,, subject to (1), (2),
T, = z, and z; = z;" forj < » — 1, and so on. The precise form of the algorithm
follows :

L

To minimize fn :

1. Let ;) = z; for all j such that a; < 0.

2. Suppose that ;' has been determined for all j > » (where a, = 0). Let 2” denote
the current solution (feasible for Problem 1) defined by z;* = z;' forj > vand z;* = z;°
forj = v.

3. Define 8, = Mimes, { fio — Lz}, and |

71” = (a() - Zj#v ajsz)/av (’Yv’ = - 0 if Ay, = 0).

4. Letz,! = Max {v,,z,) — B8, }.Ifz,” = v, also let z;* = z,° for all j < v. Other-
wise, return to instruction 2 with v at its next smaller value (untily = 1)."

The justification of this algorithm is analogous to the justification of the algorithm
for maximizing J., , noting that the solution ' in this case solves Problem VI of Theorem
32forp =

We observe that the algorithms we have given for Problem II are even more efficient
than the algorithm for Problem I, provided an optimal solution to Problem I has
already been obtained.

Also, when minimizing f,, , if 2 has been obtained by the method of §4, then instruc-

% An apparent minor change that can improve the efficlency of this method is to define u =
Max (h:h € P, and Ui — fa? = 8,) at instruction 3. Then set z; = z;° forall j € S.,j > v, at in-
struction 4 and exclude these j as candidates for v at instruction 2.

10 To shorteut computation, define v = Max (h:h € P, and fi* — Lx = B,!) at instruction 3.
Then set z! = z;° for all § € 8., j < v, at instruction 4, and exclude these j as candidates for
v at instruction 2.

FLOWS IN ARBORESCENCES 575

tion 1 may be changed to specify z;' = x,° for all j such that a; i 0. The reason for this
is that the rule prescribed by Theorem 1 treats a; = 0 as though a; < 0. It may also
be noted that the procedure of §4 treats the a; as/though @y > a2 > -+ > a.. In
particular, the use of the indexing of the a; in this procedure (and also in the pro-
cedures of this section) imposes a ranking that corresponds to rEpla/cing a; by a; — Je,
where ¢ > 0 is sufficiently small that a; > 0 implies a; — je > 0. For Problems II- IV
¢ must also be small enough that A2’ > a, + €2 jz, for all z° satisfying (1). This
implicit perturbation clearly admits only one optimal solutiob to Problem I and
extends the applicability of Theorem 4.

4

6.2 An Algorithm for Problem I11.

We first consider the problem of maximizing z, subject to (1) and (2). As before,
we actually solve Problem V of Theorem 3.1 (in this case for f, = z,).

Define a new vector z so that z; = 2° — z; for j # p and 2, = fn — fu® =
>t (z; — x;), where 2° is optimal for Problem 1. Also define T, = S; if p ¢ Si
and T% = (Sm — Si) U {p} if p € S;. Finally, let g = X jere2;.

By reference to these definitions, (1) can alternately be stated fi" — L; = g, =
- Uifp€Teand Ue — fi° = g = Ln — £ if p € T . Applying Theorem 2,
there is an optimal solution to Problem III (and, more particularly, ProblemV) such
that z, = 7., 2; < z;" forj % p, and fn = fa". From the definition of the z;, this
yields z; 2 0 for all j and hence g = 0 for all k. Thus, letting My = f — Ly if p € T
and M, = Ux — £ if p € Ty, Problem III can be restated:

Maximize g, = 2. j-12; + z, subject to

3) Mi2gp20, k=1 -,m |
and : ! 9
(4) 2102 2 ap — A ol
where

4 4 .
a, =a, and a; = a, — a; for 7 #= p.

Correspondingly, the associated restatement of Broblem I is to maximize A’z sub-
jeet to (3), (4), and g, = g,.*, where ¢," is optimal value for g, in Problem III.
This latter problem has exactly the form of Problem V when p = m, since the fact that
the S; satisfy the nesting property implies that the T satisfy this property, also. Con-
sequently, to maximize z, subject to (1) and (2) (i.e., solve Problem V for z, = f,),
it suffices to solve the above problem with the method given for solving Problem II
(solving Problem V for p = m) in §6.1. However, an optimal solution is first required
for the corresponding Problem I (i.e., maximize Az subject to (3)). For the special
form of this problem, the following algorithm may be used.

Algorithm for Problem 1 when L = O for all k

1. Let z,” = 0 for all 7 such that a; £ 0. _

2. Suppose z;° has been determined for all j < ¢ and @, > 0. Define z7 — z;° for
j <wvandz® = 0forj = . '

. 3. Let z,” = Mimes, {Us — fi'}. Repeat instruction 2 for the|next larger value of »
unless none remain such that a, > 0.

This algorithm clearly applies to the form of Problem I associated with maximizing
g» above. Its validity is established by reference to Theorem 1, since L, = 0 for all &
implies Ay = O for all k > n and hence U;* = Miniep; (Us).

576 FRED GLOVER

Given the assignment z; = z;’ for j < v, the current value of U,* is just the value
assigned z,’ by instruction 3, which is optimal by Theorem 1 for a, > 0." The fact that
L, + D er,., Ax = O justifies the z; = 0 for a; < 0 in instruction 1.

We note that solving Problems I and II when the above algorithm can be used for
Problem I corresponds computationally to solving only Problem II when a; < 0 for

all 7, since the above algorithm does no work to assign values to z;° for a; < 0 and the-

algorithm for Problem II does not change the values of the z,’ for a; > 0.

Another shorteut in computation is afforded by Theorem 4, which implies that in an
optimal solution to Problem III (Problem V for z, = f,) we may immediately set
z; = z;° (hence z; = 0) for all j such that a; < a,. Also, if a, > 0, then it is obvious
that one may similarly set z, = 0.

Now, we turn to solving Problem III when the objective is to minimize x, subject to
(1) and (2). For this case, define z; = z; — z;" forj > p and 2z, = fw = fm. Then by
Theorem 2 there is an optimal solution z to Problem III (Problem VI for f, = x,)
that implies z; = O for all j. Given T and g: as above, (1) can be restated

Ui—f'Z ¢ =0 forall ksuch that p ¢ T,
f — Lz g =0 forall ksuch that p € Ts.

Also, (2) becomes
Za,-'z,- Z a — A$° | j

where @, = —a, and a; = a; — a, for j # p. Findlly, the objective Minimize z,
becomes

Minimize — D j=12; + 2,
which is equivalent to the objective

Maximize D j-z; — 2. \

Thus, when minimizing z,, Problem III reduces to the same form of Problem II en-
countered when maximizing z, (although with different constants) and can be solved in
accordance with our prevmus remarks. It should be noted that Theorem 4 applies in
this case to prescribe z; = x;° (hence z; = 0) for all j such that a; > a,. Also, if @, < 0
then one may permissibly set z, = 0.

6.3 An Algorithm for Problem IV.

The algorithm for Problem III stipulated in §6.2 immediately gives an algorithm
for Problem IV via Theorems 3.1 and 3.2.

To maximize f,, first solve Problem IV (in the notation of Theorem 3 1) by the
procedure of §6 2 (maximizing x " subject to the stated condltlons) Since z° is optimal
for Problem I" and Problem I" corresponds to Problem 1% as Problem III does to
Problem 1, the starting solutlon 2° for the procedure of §6.2 is already given.

Next, we solve Problem I by the procedure of §6.2, where in this case the starting
solution “z®” is the solution to Problem I". Solving each Problem I in turn by th1s
form of successive postoptimization eventually yields the solution z* to Problem 1%,
whlch is also optimal for Problem IV (Problem A\ for n<p < m). The fact that Prob-
lem T* is more restricted than Problem I®™’ and " is an extension of z* ™’ suggests

11 Ope can alternately compute the values of the U;* as in §4, noting in this case that k € Bx
implies Uz* = Min {Us , Us*}. This remark also applies to the determination of 8, in the algorithm
for Problem I1, which corresponds to a current U,* for the incremental value of z. .

that the
2h in P1
optimal
Corol
the z; «
speedin
The
in this
64 A

Ush
applie
of §6.

The
conce
the p
How:
rang
surp:

w
tive
defe

Con

FLOWS IN ARBORESCENCES 577

that the procedure should be relatively efficient. We note also that, if the value for
zp in Problem I" is restrained from being larger by (2), but not (1), then ¥ is itself
optimal for Problem IV and it is unnecessary to solve Problems I* for & > h.

Corollaries 2.1 and 2.2 can also be used in this eontext to provide tighter bounds for
the z; and Theorem 4 can be used to fix some of the z; at constant values, thereby
speeding the computation.

The procedure for minimizing f, is precisely analogous to that of maximizing fy,
in this case solving the problems I*’ of Theorem 3.2.

6.4 A Composite Algorithm for Problems 11, 111 and IV.

Using the results of the proceding sections, we will give an algorithm that can be
applied to solve Problems 11, ITT or IV without defining new variables 2; by the rules
of §6.2 (although these definitions are implicitly relied upon).

The composite algorithm is sufficiently detailed to be somewhat difficult to follow
conceptually at first examination and for restricted applications the algorithms of
the preceding sections (which are easy to program for the computer) are preferable.
However, the composite algorithm not only has the advantage of applying to a greater
range of problems than the previous algorithms but also can be organized to rival or
surpass these methods in efficiency (see §10). ‘

We will assume that z° is the (unique) optimal solution to Problem I obtained rela-
tive to the perturbation discussed at the end of §6.1 and we will continue to implicitly
defer to this perturbation by using the indexing of the g; to determine rank.

Composite algorithm for maximizing f, .

1. To begin, let fi' = £’ forallk andlet 8 = S,and T = S, — Sy.
(Optional): Contract S and T by the definitions™

8 = 8 — {j:j € S for some k such that S S 8, and /i’ = Uy}
T = T — {j:j € 8, for some k such that S¢ & S,, S, & Sk, and /i° = L}
I U > fi’ forall k € Py, let v = ¢t (= m + 1). Otherwise, let
v = Min {k:k € P, and fi* = Uy}

andlet T =Tn&S,. ‘
2. If S = &, ' is optimal and the process stops. Otherwise, let r = Min {j:j € S}.
3. 1fT = & and v # ¢, stop (z' is optimal). Otherwise, let

If s does not exist and a, > 0,1et 8 = S — {j:a; > 0and j < Min {A:h € T}}, and
return to 2. ‘

4. Ifv = t (hence Uy > fi' forall k € P,),if a, < 0:and either a, > 0 or s does not
exist let

s=Max{j:j€ Tandj <rl.

8, = Mimger, (U fi'},
Ny = if a =0, and |
v, = (@ — Az")/a, ifa <O.

12 Tn this section, we will use instructions of the form X = X — ¥ to mean that the new X is
equal to theold X — Y.

FRED GLOVER

For notational convenience, to reduce the number of prescriptions in 7 and 8 below,
let s = 0 and define ey = 0,8 = « and Py = . Then go to instruction 7.

5. If s does not exist and instruction 4 is inapplicable, let 8 = § — {r} and return
to 2.

6. If instructions 4 and 5 are not applicz*ble (hence s exists), let

= Minkep,_p, {Ub —ffkl};

8, = Minker,_p, {fi ‘J L}, ;

ve = (@ — AZ' (g, + a.) if ¢, > a,,

¥.= o if a = a,

7. Let 8 = Min {3,, 6., v,} and redefine z' so that z' = 2 + (e, — e).

8. One or more of the following cases hold:

(@) If6 = v,,let S = 8 — {r}. If also N in {8,, 8,1 > 0, then z' is optimal and

the algorithm stops.

(b) Ifé =6,,let T =T — S,,,Whereqn=Ma.x{kk€P — Pyand fi! = Lyi}.

(c) If & = 5,, define u = Ma.x{k k€P, ,k < p,and fi' = Ud. If u exists,

letS =8 — 8,. Alsoif f,' < Usforallk € P — P,,let v be unchanged. Other-
wise, define v = Min {k:k € P, — P, a,ndfh1 =U,} andlet T = TnS,.

A Hs>0letT=1T-— {55 >r}.

) T =, 1letS =8 — {j:a; > 0}.

9. If r is removed from S by one of the above instructions, return to 2. Otherwise,
return to 3.

Justification for the Composite Algorithm.® The algorithm is an application of
Theorems 2, 3.1 and 4, and the earlier remarks of §6. The sets S and T respectively
consist of those z; for j € S, and j ¢ S, whose optimal values have not yet been de-
termined. The initial contracting of S and ﬂ' in instruetion 1 is justified directly by
Theorem 2(i) and (ii).

Selecting r in instruction 2 prepares the method to solve Problem I" as defined in
Theorem 3.1 for &’ = r. We observe (as earlier) that Problem I* stands in the same
relation to Problem I®™’ as Problem III stands to Problem I (more precisely as
Problem V stands to Problem I when f, = z,). The choice of s thus may be seen to
correspond to establishing a revised indexing for the coeﬁiments aj (= a. — a;) of
the variables z; as defined in §6.2, treating Problem I¥ as Problem III (w1th r taking
the role of p). Instruction 4 a.ccommodates the exceptional coefficient a, = a,.

Restricting s so that s < r in instruction 3 accords with Theorem 4 (and the im-
plicit perturbation) which implies that z; = 0 for a; < a,. The inapplicability of
instruction 4 when a, > 0 follows from the observation that a, > 0 implies a. = 0.
Also, when s does not exist, the only variable currently to be assigned a value is 2,
(unless it has already been assigned a value), which justifies the provision for s not
existing in instructions 4 and 5. These remarks also justify the stipulation for contract-
ing § in instruction 3 when s does not exist and a. > 0. 8 (a) and (c) assure that 4 can-
not be visited twice for the same value of r.

By Theorem 3.1 and the remarks of §§6,1 and 6.2, the optimal value for z; is its

13 A less intuitive and more elaborate descnphpn of this algorithm is given in §10, where it is
used to solve a numerical example problem.

FLOWS IN ARBORESCENCES 579

maximum value when values are assigned consecutively in the proper indexing se-
quence established by instructions 3, 4 and 5. Moreover, by the definitions of §6.2,
the value of z, represents an increment to z, and the value qf 2, represents an incre-
ment to z, and a decrement to z,. Thus, the maximum valye of z; is precisely & as
specified in instruction 7 (based on instructions 4 and 6).

We now consider the cases of instruction 8. For case (a), we let 8 = § — {r} if
if 8 = v, since z, cannot be further increased. To see this, nTte that v, < « implies
either a, > a, at instruction 6 or a, < 0 at instruction 4, and @y = Az" for the new z*
at instruction 7. Suppose r were not removed from S. The fac¢ that the coefficient of 2;
is negative in order to yield § = v, < « (at instruction 4 for § = r or instruction 6 for
J = s) implies that coefficients of all subsequent z; must also be begative, andé =+,=0
will oceur for all subsequent § and v, until » changes. Thus, thejsolution being generated
is unaltered by removing r from S immediately. The terminating condition of (a) is
similarly justified by observing that once both § = v, and Min (s, , 5.} > 0," thens = 0
thereafter (both for the current r and all subsequent r).”* :

Instructions 8 (b) and (c¢) are justified by the fact that in each successive Problem
1" the optimal value of z; does not increase for j ¢ S, and does not decrease forj € S, .
Instruction 8 (d) applies Theorem 4, noting that j < r “effectively” corresponds to
a; > a. by the implicit perturbation. Finally, (e) uses the observation of §6.2 that
T = & implies no z; for j € S, can increase unless a; < 0. Note that either S or 7'
(or both) must be diminished by at least one element in (a), (b), or (c).”

Evidently, the process must return to 2 if r is removed from S and return to 3
otherwise, as stipulated in instruction 9. Thus, the algorithm accomplishes the suc-
cessive solution of the Problems I*" of Theorem 3.1, taking advantage of tight upper
and lower bounds to preassign certain z; their optimal valués by appropriately con-
tracting S and T. o

Composite Algorithm for Minimizing f,. The algorithm for minimizing f, may be
deseribed in terms of the algorithm for maximizing f, by stipulating the following
changes (justified by Theorems 2, 3.2, 4, and our earlier remarks).

Every occurrence of a; > 0 is replaced by a; < 0 and every occurrence of a; < 0
is replaced by a; > 0 (including j = r and j = s).

In instructions 1 and 8, L, is replaced by Ui and Ui by L; | In instructions 2 and 3,
Min and Max replace each other and inequalities in indices (f < r, j < Min) are re-
versed (j > r,j > Max).

In instructions 4 and 6, fi' — L; and U, — fi' replace ea.ct* other and a, and a, are
replaced by their negatives in defining v, . f

In instruction 7, the new z' is given by replacing 8 with —3$.

In instruction 8 (d), 7 < r becomes 7 > r. Otherwise the q,lgorithm for minimizing
f» 18 the same as for maximizing f, .

We remark that the composite algorithms (like the earlier algorithms for Problems 11,
111, and IV) not only obtain an optimal value for f, , but subject to this also maximize
Azx. |

14 Min {3, , 5,}] > 0 will always hold if the optional contraction of Lg and 7 in instruction 1 is
executed. i

% A precise proof of the assertion requires showing that 5 = 0 for each possible way that v, =
for subsequent r. We omit a detailed argument to exhaust the possibilities since it involves only a
straightforward application of our previous observations.

16 A possible exception occurs when 8 is visited directly after 4 and only v exists in 8 (¢). But
then 4 is inapplicable thereafter and the exception cannot be repeated. Note that this implies
8 (d) and 8 (e) may be regarded as optional. In fact, if the optional contraction of S and T by
instruction 1 is performed, then 8 (d) and 8 (e) are redundant.

580 FRED GLOVER

7. A Special Alternative Algorithm for Problem I

Drawing on the results of §§4 and 5, we give an alternative algorithm for Problem
I that can be used as a basis for solving Problems II, III and IV by the procedures of
§6. In the process we define new modified bounds which lead to feasibility theorems for
these problems.

The alternative algorithm for Problem I is a mirror image of the algorithm of §4
and proceeds by assigning a value first to z, , then to z,_; and so on until a complete
solution is obtained. To describe this algorithm, we reverse the roles of upper and lower
bounds in §4 in the following definitions. For j < n, let U}* = U;. Then, forj > n
(proceeding in the order of indexing), let |

U = Yien, Ur* and| U* = Min {Us, U/},

Corresponding to Ay of §4, define 6, = Ur* — U,” (note 6, < 0). Finally, let
Ly =L, = Ln and, for k < m, k € B, (proceeding in reverse order of indexing),
let Le” = L7™* — D aen,. Un* and Li* = Max {L,, L"}.
The counterpart of Theorem 1 using these definitions is as follows:
THEOREM 5. If Problem 1 has an optimal solution, then it has an optimal solution
such that ‘
Ta = Lu* fan £0
and
T = Max {L3%, Us + 2icrnnbi} if an > 0.

By replacing the symbol U (asin U, U,”, ete.) with L, replacing L with U, doubling
every asterisk and prime, and reversing all inequalities (except those involving in-
dices) the new values for the bounds L,”, L *, U,”, Us*, and 6, , based on the assign-
ment T, = ., are exact counterparts of the “updated” bounds specified in §4 and
may be determined from them. (For example, the modified definition of w becomes
w = Min {p:p € Paand U, + D ier, 0 < 2.').)

In addition, drawing on Corollary 1 and its counterpart, we may state the following
results.

CoroLLARY 3. If Problem 1 has a feasible solution, then it has a feasible solution z°

in which ;" assumes any value satisfying U;* = z,° = L*.
8. Feasible Solutions to Problem I

Corollary 1 of § and Corollary 3 of §7 provide information about the range of
values z; can take, given the existence of a feasible solution to Problem I. In this sec-
tion we give necessary and sufficient conditions for the existence of a feasible solution
to Problem I and specify upper and lower bounds for each arc that exactly constrain
the range of feasible flows across that are.

We begin by specifying such bounds for the arc m.

TaEOREM 6. If Problem 1 has a feasible solution, then it has a feasible solution z°
such that f,. assumes any value satisfying Ln* £ ful < U,

We note that a single forward pass through the arborescence suffices to determine
the bounds Ux* and L, that exactly constrain the flow across are m by Theorem 6.
We now show that the bounds Uy * and L,* generated in this forward pass in fact pro-
vide necessary and sufficient criteria for feasibility.

TaeorEM 7. Problem 1 has a feastble solution if and only if Ur* z L* Jor all k.

The bounds L:* and U;*, while sufficiently limiting to determine the existence or

for Problem
ocedures of
heorems for

rithm of §4
s complete
»r and lower
y, forj > n

Finally, let
f indexing),

mal solution

U, doubling
wolving in-
L the assign-
din §4 and

w becomes

he following

3 (
e solution x

he range of
In this see-
ble solution
ly constrain

solution z'

o determine
Theorem 6.
in fact pro-

“for all k.

existence or

FLOWS IN ARBORESCENCES 581

nonexistence of a feasible solution, are ngt in general the most restrictive necessary
bounds on fi’ (except when k = m). Bomixds that do exhibit this restrictive property
are given in the next theorem.

Treorem 8. Let Li* = Max {L*, Li*} and U* = Min {U*, Ut*}. If Problem I
has a feasible solution, then for any arc p e is a feasible solution =° such that §,’ as-
sumes any value satisfying L,* < £ < U*.

It may be observed that the bounds L* and U:* of Theorem 8 can be determined by
two passes through the arborescence. Th is accomplished by replacing the original
bounds L;, . U, with the bounds ¥, Uz * lobtained on a forward pass and then com-
puting Le* and U.* on a backward pass by reference to these revised bounds. The
resulting L:* and U,* must be at least as limiting as L;*, U:* and hence, by Theorem
8, must be equal to them if Problem I has T feasible solution.

Problems II, IIT and IV

‘We assume for this section that all L; and U are integers and that the x; are required
to take integer values. Clearly, the integer requirement for the z; poses no difficulty
for Problem I, since the optimal solution obtained by the implicit perturbation acknowl-
edged in §6.1 will automatically assign infeger values to the z;. On the other hand,
Problems II, III and IV do not share this property with Problem I.

The results of §§6 and 7 nevertheless imply that an optimal integer solution to
Problems I1, IIT and IV can be obtained sinjp[;ly by rounding the fractional (continuous)
solution. It should be stressed that Problems II-1V are among the very few for which
such a rounding process is legitimate. \

To emphasize the significance of this reéult we state it as our final theorem.

Tueorem 9. If z' is an optimal fractional solution to Problem V of Theorem 3.1
(Problem VI of Theorem 3.2) obtained relatwe to the perturbation of §6.1, then at most
two of the x, will not be integers. If only x,. s not an mteger then r € S,, ; and 1f both
x,' and z,' are not integers, then r € S, s § Sp and z,' + z,' is an integer. Finally, let
Problem V' be the same as Problem V (Problem V1 the same as Problem V1) except that
fo is required to assume its largest (smallest) integer value. Then an optimal (continuous)
solution to Problem V' (Problem VI') assigns each x; an integer value, and is obtained by
rounding x," down (up) for r € Sy (if it is nat an integer), and rounding z. up (down) for
s ¢ S, (¢f 1t is not an integer). |

9. Integer Solutions to

10. A Numerical Example

To illustrate the ideas of the foregoing sections we apply the algorithm of §4 for
Problem 1 and the composite algorithm of \§6 4 for Problem IV to the arborescence on
the following page.

The nodes of the arboreseence are drawn as circles, with the node index inside the
circle, which also gives the index of the arc issuing from the right of the node. It may
be seen that n = 11 and m = 17. Also, the sets S; are given by S; = {1}, 8, = {2}, - - -,
Su = {ll}s S = {37 4}’ Sy = {17 57 10 ’ Sy = {8) 11}1 Sy = {37 4: 6’ 9}} S =

{1,5,7,8,10, 11}, S8y = {1,2,---,11}.
The numbers to the left of the initial nodes (§ < n) are the constants a; of the vector
= (13,12, 7, 5, -2, —5, —6, -7, \—11) We also stipulate that a, = 48. The

pau' of numbers above each arc gives the Va.lues of the bounds L, U:.

Solving Problem 1. ‘

We depict the solution of Problem I bd the algorithm of §4 in Table 1. The first
column gives the indices of the arcs k, and the second gives the vector (Li, Us) for

582 FRED GLOVER

36,38

@

F1gure 2. Diagram of Example Arborescence

each k, which may be seen to correspond to the bounds indicated in the diagram of the
L*, U*) for k < n (n = 11), and (Ii*, U.*, A:) for k > n. An empty space in a
vector means that the value of that component is unchanged from the previous vector.
(The location of the empty space is emphasized by the use of commas when ambiguity
may otherwise result.)

Asterisks in a column identify the ares k € P; where z; is the variable currently
being assigned a value. The value L; +' Zkep,.:_ A; can thus immediately be deter-
mined by reference to the asterisks.

The appropriate values underlying the assignment z; = z,’ are given by the entries
in the column preceding the one headed z; = z,’. The column headed z; = z;° gives
the new values after the assignment is made.”

Some comments about implementing the algorithm of §4 are in order. First, we
have not bothered to record the current values of L; and Uy’ in Table 1 since they are

11 T verify these values by band computation it is useful to write them in pencil under the ap-
propriate ares in the diagram, erasing old values and replacing them by current ones as they are
computed.

FLOWS IN ARBORESCENCES 583

TapLe 1

(Ea®, Up®) for & = mand (L®, Us®, a1) for 2> n

Initial z® H eI 4 ol = § T ¥ 4 £y

{ 0,0
0, O*

e -

B
t

1 @ 0.0*

s a2

= O
(S
-

o0
=1
t

=
-
L=l

| . 5wy \
I ! [L . 0,0

i 13,20 15, ,0 | 18, 14 14 *®
V. e | 11,16,1% 15 11, A | 6.5, ®

17 36,58 : aid 32,34, * 25,40,2% 25,25, 0" M, 210" 19,19, *

notlgxsed except as a notational convenience to help ?eﬁne the current L,*, U:*, and
A

-As observed in §4, it is possible to determine U " bnly for k € P;, where z; is the
variable currently being assigned a value. We have instead elected in Table 1 to com-
pute updated values of U.* (as well as L,* and A;) for all ares k.

To facilitate this computation, note that U, = U," implies U:* = U+ (and hence
U:* requires no updating) for all k such that Sy & S, . Moreover, for w as defined in
§4, it is readily verified that U* = U,* for all 8¢ ¢ S..

This last fact makes it possible to “postpone” an |explicit assignment of values to
some of the z; and thereby reduce the amount of necessary updating. Specifically, if
L* = U,*, then of course z = L;* (= L;) is the on#y possible value of z,, and hence
w = j. But then L;* = Li;* — 2 and U:* = U.* — 27’ for k € P;, while all other
bounds remain unchanged (including the new A; values). Consequently, the values to
be prescribed for subsequent variables will be the sax*xe if z is not assigned the value
L; , but is simply bypassed. Thus, it is convenient to skip to the first j remaining such
that L;* < U;* and continue the algorithm from there. When no Jj (= n) are left,
those z; that were bypassed can all be set equal to L; to complete the process.

This procedure has been followed in Table 1, as may be seen by noting that the
assignment z' = 5 is followed directly by 2 = 4, bypassing z; . Similarly, z5’ = 4
is followed by zs’ = 2, bypassing #s and z;. Finally, ¥ = L;* holds for all remaining
j = n after the assignment 7 = 2, and the algorithm terminates. The optimal solu-
tionisz* = (4,4,5,2,4,4,4,2,8,1,0), yielding Az] = 60.

18 Note too that to determine U’ it is convenient (upon computing Us*) to compute Us* —
Li* + Ay and leave this amount unchanged to find U’y = (Uy* — Ln* + Ax) + La* for all k € Ba .

584 FRED GLOVER

Solving Problem IV \

Before illustrating the solution of Problem IV, we will supplement the general
description of the composite algorithm of §6.4 by giving explicit rules for implementing
the instructions that define §, , 3, , and the sets S and 7.

To begin, we assign numbers o = Uy — fi° (fi! — L if minimizing f,) to all ares
k such that k € P, or 8; € 8, and assign ax = fi’ — Ly (Ui — £’ if minimizing f,)
to all other ares. Then the rules for determining ., 8, and for contracting S and 7'
in instructions 1, 3, 4, 6 and 8 of the composite algorithm can be implemented as
follows." Instructions 2, 7 and 9 remain unchanged and 5 becomes superfluous. Except
as indicated below, our remarks apply both to maximizing and minimizing f, .

1. As before, initially let S = S,, T = S,, — S, and z' = 2°, where z° is optimal
for Problem 1. |

(a) Determine new values o for a; when k P,.. and p < m as follows. (If
p = m there is nothing to determine.) Begin with ¢ = Min {k:k € Py} and let
a,* = a,. Then, if a* has been determined for €Pypmand . = 0,let v = A
and drop all arcs & of the arborescence such that Si ¢ S, , hence contracting T so that
T = TnS,. (Note that this obviates the determination of a;* for k € P;., .) But if
ax® > 0,k € By, and " has not been determined, then let ax* = Min {a,*, oz}. If
by this process a.” is eventually determined and a,,* > 0, thenletv = ¢.

(b) Determine new values o,* for ai when k ¢ P,.,, as follows. Let " = a, and,
for all & € Py, and all k € By, let av™ = .| (For notational convenience, let
P,.. = Py .) Then, if a* has been determined for A € P, and o* = 0, eliminate
all arcs k from consideration such that S, € S (as by “disconnecting” k from
the arborescence), thus letting S = § — 8, if S € S, and T = T — S, otherwise.
If, on the other hand, m* > 0 and «.* has not been determined for some k € By,
define o,* = Min {a, a.*}. Repeat until no more ;* can be determined by the rule
(hence a;* has been determined for all J € Su T, for the remaining S and T').

(¢) Redefine ax = o™ (i.e., update o) for all arcs k remaining for which a* has
been determined.

3. In this instruction the definition of s becomes f = Max {j:j € T} Min {j:5 € T}
if minimizing f,) and the conditional contraction of S when s does not exist, etc., is
givenby 8 = 8 — {j:ia; > 0} (S — {j:e; < 0} if minimizing f,).

4. The only change in this instruetion is to let

3, = Min {a,, an}

and define g = m (for instruction 8). ‘

6. Instruction 6 remains unchanged except that tlhe definitions of 8, and 8, simplify
to 8. = o, and &, = Min {a,, a,}, where g = Max {k:k € P, — P,}.

8. This instruction updates the ax and performs the functions of the old instruction
8 as follows.”

(@) If 3 = v,, ' is optimal and the algorithm| stops. Define a,* = o — & for
keP, — P,andkec P, — P,.

» This particular statement of the composite algorithm was purposely avoided in §6.4 in favor
of the more intuitive description that facilitated the algorithm’s justification. Hopefully, the
elaboration of details in the present description will thereby be more easily understood.

 The divisions of the new instruction 8 do not precisely correspond to those of the old. The use
of the optional rules for contracting S and T in instruction 1 account for the elimination of cases
8 (d) and (e) of §6.4 and the changes in instructions 3 and 8 (a).

reneral
enting

1l ares
ing f,)
and T
ted as
ixeept

»timal

s. (If
d let

= h
) that
3ut if
w If

and,
3, let
inate
from
wise.
" By,
rule
has

T
3, is

lify
ion

for

Wwor
the

1ses

FLOWS IN ARBORESCENCES 585

() If a,* > 0 and g < m (for g given m instruction 6), let
Q=1kk€ Pandg < k < v}.

If @ = &, then part (b) of mstructlon 8| may be bypassed Othermse, identify
h = Min {k: k € Qand ¢ = o,%}. If & does not exist, letak = oy fork € Q. Butif h
exists, let o.* = ap forall k € Q such that k& = % and let o™ = o, " forall k € @ such
that & < h. ‘

(¢) If a,* = 0 (for g given in 4 or 6), redéﬁne v so that

v = Min {k:k € P, — P, and o,* = 0},

and drop all arcs & such that S; ¢ 8,, hence contracting T so that T = Tn S, .

(d) Ifs = 0,let ¢ = Max {k:k € P, — PJ}. If s = 0 (from instruction 4), for
definitional purposes let ¢ = 0 and S, = . Then for & such that S, C S, or S C S,
if an* is determined and o* = 0, remove all arcs k from consideration such that
S & Sy, thus letting 8 = 8 — 8,if 8, C S andT =T — S;. otherwise.

() If os* has been determined and a* = \os, then &* = oy (hence these a; need
not be updated) for all k such that S, € 8.

(f) Finally, if a5 > a;, > 0, then for k € |Bilet av® = Min {oy, an*}.

(g) When no more ak can be determined by these rules, redefine oz = a,* for
those k left for which a;* was determined (letting the other oy retain their old values).

The justification for these instructions follows from the justification of §6.4 and the
definitions of §,, 8, and the sets S and 7. It ‘is to be observed that the o) represent
upper bounds on flow increments and decrements and, except for the arcs k € P,.,,,

TaBLE 2
ak
k r=35 r o= 10
Starting RI;'IS’:J,, 5= 31 i= ; s
1 0 X
2
3 4 3
4 0 X
5 1 X
6 0 X
7 0 X
8 2 X
9 0 X
10 5 2 1
11 0 X
12 4 3
13 2 1
14 0 X
15 4 3
16 7 6
17 0
S S B
a0 — Azl | —12 -12 | —12 —4
@ — a, -8 —14
(8, 85, vr) 1,4,3/2 1,3, 2/7

586 FRED GLOVER

a.” corresponds to oy as U,* corresponds to Uy, taking into account the fact that all
lower bounds are zero.

The result of applying the composite algorithm *;o maximize fi; of the example
problem, subject to Az = 48, is summarized in Ta.blg 2. As before, a blank space in-
dicates that the entry is unchanged from the corresponding entry in the preceding col-
umn. The initial elements of S are indicated by the symbol S to the left of the appro-
priate arc indices in the table (the initial elements of T'consist of all remaining ¥ < 11).
The X’s indicate the arcs of the arborescence that are dropped by the revision process,
thus in particular indicating for k¥ < 11 the arcs eliminated from S and T.

Startmg values for the a; are given by using the original computed values of L*
and U.* in place of L; and Us. i

The indices r, s, and the value of & in each of the last two columns are determined by
reference to information in the preceding column. Revised values for the a; in the final
column are omitted since the optlmal SOhlthll has een obtamed

The optimal solution is seen to be =2 —$ = 3% s =z + 1 =5, Tiy = Tio
+ 2 = 12, and z;* = z,° for all other j, yielding a maximum value for fis of 103.

References

1. BerGE, CLaUDE, The Theory of Graphs and Its Applicat%ons, John Wiley & Sons, Inc., New
York, 1962.

2. Cooxk, R. A. ANp CooPER, L., “An Algorithm for Integer Linear Programming,’”” Report No.
AMS65-2, School of Engineering and Applied Science, Washington University, St. Louis, Mo.,
(presented at the 28th National ORSA Meeting, November 1965).

3. Foro, L. R., Jr. aND FuLkeRrsoN, D. R., Flows in Networks, Princeton University Press,
Princeton, New Jersey, 1962.

4. GLOVER, FrED, “Truncated Enumeration Methods for Solving Pure and Mixed Integer Linear
Programs,” WP-27, Operations Research Center, University of California, Berkeley, (pre-
sented at the 29th National ORSA Conference, May 1966).

5. ——, “A Multiphase-Dual Algorithm for the Zero-One Integer Programming Problem,’’
Journal of the Operations Research Society of America, (November-December 1965).
6. ——, “Flows in Arborescences,”” NONR 760(24) NR 047-048, Carnegie Institute of Technology,

7. HiLuer, FREDERICK, 8., “An Optimal Bound and Scan Algorithm for Integer Linear Program-
ming,”’ Technical Report No. 3, Department of Industrial Engineering, Stanford University,
(August 1966).

8. IenaLL, EDWARD AND VEINOTT, JR., ARTHUR F., “Optimality of Myopic Inventory Policies for
Several Substitute Products,”’ M anagement Scumce, Vi | . 15, No. 5 (January 1969), pp. 284~
304. i

Plttsburgh Pennsylvania, (July, 1967). Aq&

