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Abstract

We present a linearization strategy for mixed 0-1 quadratic programs that produces small formulations with tight relaxations.
It combines constructs from a classical method of Glover and a more recent reformulation-linearization technique (RLT). By
using binary identities to rewrite the objective, a variant of the first method results in a concise formulation with the level-1 RLT
strength. This variant is achieved as a modified surrogate dual of a Lagrangian subproblem to the RLT. Special structures can be
exploited to obtain reductions in problem size, without forfeiting strength. Preliminary computational experience demonstrates
the potential of the new representations.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A standard practice in optimizing a mixed 0-1 quadratic program is to employ an initial linearization step that transforms the
nonlinear problem into an equivalent linear form. For our purposes, two problems are said to be equivalent if they permit the
same set of solutions in the original variable space and the objective function values equal at the corresponding solutions. The
problem then becomes to optimize the resulting mixed 0-1 linear program. The motivation is to be able to solve the continuous
relaxation of the linear form as a linear program so that a computationally inexpensive bound on the optimal objective function
value to the nonlinear problem is available.
In order to achieve linearity, auxiliary variables and constraints are employed, with the newly defined variables replacing

predesignated nonlinear expressions, and with the additional constraints enforcing that the new variables equal their nonlinear
counterparts at all binary realizationsof the0-1 variables.Thecontinuous relaxationsof these representations tend tobe repeatedly
solved within enumerative frameworks as a means of fathoming nonoptimal or infeasible solutions. Of marked importance is
that, although two different mixed 0-1 linear formulations may equivalently depict the same nonlinear problem, their sizes and
continuous relaxations can drastically differ depending on themanner inwhich the auxiliary variables and constraints are defined.
This leads to two key considerations of reformulation size and strength.
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From a computational point of view, there are tradeoffs between these considerations. The smaller formulations tend to
promote inexpensive, though relatively weaker bounds. Certain larger representations are known to provide tighter bounds,
though more effort is required to compute them. Generally speaking, formulations whose continuous relaxations provide tight
approximations of the convex hull of solutions to the original nonlinear problem outperform the weaker representations. The
“trick” is to obtain representations that balance the tradeoffs between size and strength so that effective bounds can be cheaply
computed.
A classical linearization strategy that promotes very concisemixed 0-1 linear representations of mixed 0-1 quadratic programs

is due to Glover[11]. Given such a problem havingn binary variables, this method achieves linearity through the introduction
of n unrestricted continuous variables and 4n linear inequalities. As shown in[1], a straightforward variant requires onlyn
new nonnegative continuous variables andn new constraints. The problem conciseness results from the way in which each new
continuous variable replaces the product of a binary variable and a linear function.
A more recent reformulation–linearization technique (RLT) of Sherali and Adams[23,24] is dedicated to obtaining formula-

tions that promote tight approximations of discrete programs, with limited regard to problem size. The RLT provides for mixed
0-1 linear programs inn binary variables, an(n + 1)-level hierarchy of progressively tighter polyhedral outer-approximations
of the convex hull of solutions. These relaxations span the spectrum from the usual continuous relaxation at level 0 to the
convex hull at leveln. The RLT is identically applicable to quadratic programs, again providing a hierarchy of formulations.
We focus in this paper on the level-1 formulation, which was originally applied to mixed 0-1 quadratic programs in the ear-
lier works of [3,4], with computational experience reported in[5]. The strength of the RLT is due to the strategic manner
in which the products of variables and constraints are computed, and in the substitution of a continuous variable for each
product term.
A linearization of Lovász and Schrijver[20], when applied to pure 0-1 quadratic programs, produces the same representation

as the level-1 RLT. Thus, certain relationships we will establish between[3,4] and[11] encompass[20] as well.
Returning to the method of Glover[11], depending on the manner in which the objective function to the original quadratic

program is expressed, the strength of the continuous relaxation can vary.We show by first rewriting the objective function using
simple binary identities, and then applying the idea of Glover to replace select nonlinear expressions with continuous variables,
that concise formulations having the relaxation value of the level-1 RLT can be obtained. Thus we effectively combine the
advantages of conciseness and strength within a single program.
Our analysis expresses a variant of[11] as a type of surrogate dual on a Lagrangian subproblem of the level-1 RLT represen-

tation; we first solve the level-1 RLT formulation as a linear program, and then use a subset of the optimal dual values to place
specially designed equality restrictions into the objective function in such a manner that the subproblem has a block diagonal
structure. These dualized constraints are the binary identities that define the rewritten objective function. The constraints in each
subproblem block are then surrogated to obtain a variant of[11] with the strength of the level-1 RLT program. Two surrogate
constraints per block ensure an equivalent linear representation.We further show how special structures in the constraints can be
exploited to obtain reductions in problem size. These structures include set partitioning, variable upper bounding, and generalized
upper bounding. Our computational experience indicates the overall promise of such an approach and, in particular, the utility
of computing surrogates of the RLT constraints.

2. Mathematical background

We provide in this section limited mathematical background and notation that is needed to explain the research. In particular,
we describe the linearization of[11] and the RLT of[23,24].
To establish notation, we present the general form of a mixed 0-1 quadratic program, referred to as Problem QP, below.

QP : minimize l(x, y) +
n∑

j=1

gj (x, y)xj

subject to (x, y) ∈ X ≡ {(x, y) ∈ S : x binary}

Here,Sdenotes a polyhedral set in then discrete variablesx andmcontinuous variablesy, andl(x, y) andgj (x, y) for all j are
linear functions in these same variables. We assume without loss of generality for eachj thatgj (x, y) is not a function of the

variablexj sincex
2
j

=xj and that it does not contain a term of degree 0. Throughout, all indices run from 1 tonunless otherwise

stated, the setXR is used to denote any relaxation ofX in the variables(x, y), and the setS implies0� x� 1.
The methods of[11] and[23,24]are examined relative to Problem QP in Sections 2.1 and 2.2 respectively.
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2.1. Glover’s method

The procedure in[11] derives an equivalent mixed 0-1 linear representation of Problem QP by defining a new continuous
variablezj for each of then productsgj (x, y)xj found in the objective function. It further introduces, for eachj, four new
inequalities to enforce thatzj equalsgj (x, y)xj at all binary realizations ofx. When applied to QP, Problem G results.

G : minimize l(x, y) +
n∑

j=1

zj

subject to Ljxj� zj�Ujxj ∀j (1)

gj (x, y) − Uj (1− xj )� zj� gj (x, y) − Lj (1− xj ) ∀j (2)

(x, y) ∈ X

As in [11], for eachj,Lj andUj are lower and upper bounds, respectively, on the linear functionsgj (x, y) over(x, y) ∈ X. Such
bounds can be calculated as

Lj =min{gj (x, y) : (x, y) ∈ XR} and

Uj =max{gj (x, y) : (x, y) ∈ XR} (3)

where these problems are assumed bounded.
Inequalities (1) and (2) enforce the following equivalence between Problems QP and G: a point(x, y) is feasible to Problem

QP if and only if the point(x, y, z) with zj = gj (x, y)xj for all j is feasible to Problem G with the same objective value. Given
any(x, y) ∈ X, if somexj = 0, then (1) ensureszj = 0 with (2) redundant. If somexj = 1, then (2) ensureszj = gj (x, y) with
(1) redundant. In either case,zj = gj (x, y)xj for eachj.
Two simple observations lead to straightforward modifications of Problem G that reduce the problem size. First, since the

intent is to use Problem G to compute an optimal solution to QP, the equivalence between these two problems need only hold at
optimality. Consequently, we can eliminate the righthand inequalities of (1) and (2), and yet preserve the following equivalence:
a point(x, y) is optimal to Problem QP if and only if the point(x, y, z) with zj = gj (x, y)xj for all j is optimal to Problem G

with the same objective value. This observation was pointed out in[1], where it was also noted, providedS ⊆ XR, that the
optimal objective function value to the continuous relaxation of Problem G (obtained by removing thex binary restrictions) is
unaffected by this removal of constraints. Second, using Glover[12], the number of structural constraints can be further reduced
via either the substitution of variablessj = zj − Ljxj or sj = zj − gj (x, y) + Uj (1− xj ) for eachj. Such a substitution will
replacen structural inequalities with the same number of nonnegativity restrictions, so that the overall procedure requires only
n new nonnegative variables andn new structural constraints.
Before proceeding to Section 2.2 and reviewing the RLT procedure, we present below two enhancements to[11] that can

tighten the continuous relaxation. The first demonstrates how to strengthen the boundsLj andUj computed in (3) and used in
(1) and (2). The second introduces a rewrite of the objective function to QP using binary identities.

2.1.1. Enhancement 1: strengtheningLj andUj

The boundsLj andUj computed in (3) can directly impact the optimal objective function value to the continuous relaxation
of Problem G. We desire to increase the values of the lower boundsLj and decrease the values of the upper boundsUj to
potentially tighten the continuous relaxation. To do so, we employ a conditional logic argument introduced in[26] and expanded
in [19].
Let us beginwith the lefthand inequalities of (1). For any givenj, the associated inequality is essentially enforcing nonnegativity

of the product of the nonnegative expressionsxj andgj (x, y) − Lj as

xj [gj (x, y) − Lj ]�0

whereLj is as defined in (3). The variablezj in (1) replaces the quadratic termxj gj (x, y) above. The concept of conditional
logic applied to this quadratic inequality is that, since equality must hold under the condition thatxj = 0 regardless of the value
of gj (x, y), we only need ensure that the second term in the expression is nonnegative whenxj = 1. Using this logic, we can

replace the boundLj with L1
j

=min{gj (x, y) : (x, y) ∈ XR, xj = 1}.An identical argument holds for the righthand inequalities
of (1) since for eachj the associated inequality can be viewed as

xj [Uj − gj (x, y)]�0.

Here, the strengthened upper bound ongj (x, y), sayU1
j
, can be computed as in (3) with the additional restriction thatxj = 1.
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Similarly, by observing for eachj that the righthand and lefthand inequalities in (2) can be obtained by enforcing nonnegativity
of the products of the nonnegative expressions 1− xj with each ofgj (x, y)−Lj andUj − gj (x, y) respectively, we obtain that
the corresponding boundsLj andUj can be analogously tightened, this time under the conditional logic restriction thatxj = 0.

We use the notationL0
j
andU0

j
to represent these new bounds. The net result is to reformulate Problem G as G2 below.

G2 : minimize l(x, y) +
n∑

j=1

zj

subject to L1j xj� zj�U1
j xj ∀j (4)

gj (x, y) − U0
j (1− xj )� zj� gj (x, y) − L0j (1− xj ) ∀j (5)

(x, y) ∈ X

Here,

L1j =min{gj (x, y) : (x, y) ∈ XR, xj = 1} and

U1
j =max{gj (x, y) : (x, y) ∈ XR, xj = 1} (6)

and

L0j =min{gj (x, y) : (x, y) ∈ XR, xj = 0} and

U0
j =max{gj (x, y) : (x, y) ∈ XR, xj = 0}. (7)

By definition we have thatL1
j
�Lj , L

0
j
�Lj , U

1
j
�Uj , andU

0
j
�Uj for eachj. Of course, if for somej the problems in either

(6) or (7) have no solution then the variablexj can be fixed to a binary value in QP, with QP infeasible if both (6) and (7) have
no solution.
SinceProblemG2affords a potentially tighter relaxation thanGwithout additional effort, the remainder of this paperwill focus

on comparisons to G2. We note that although the righthand inequalities of (1) and (2) of Problem G can be eliminated without
altering the optimal objective function value to G or its continuous relaxation, providedS ⊆ XR, the analogous argument for
G2 does not hold.While binary equivalence between Problems QP and G2 will continue to hold when the righthand inequalities
of (4) and (5) of G2 are eliminated, the continuous relaxation of G2 could be weakened.
The example below demonstrates that the relaxation of ProblemG2 can give a tighter bound than that ofG, and that the removal

of the righthand inequalities of (4) and (5) can weaken the continuous relaxation of G2 (though never beyond the relaxation
value of G).

Example 2.1. Consider the following instance of Problem QP havingn= 2 binary variablesx and no continuous variablesy so
that the functionsl(x, y), g1(x, y), andg2(x, y) reduce tol(x), g1(x), andg2(x), respectively.

minimize 3x1 − 3x2 + (−1x2)x1 + (0x1)x2
subject to x ∈ X ≡ {x ∈ S= {(x1, x2) : 2x1 − 2x2� − 1,−x1 + x2�0, x1�0,

− x2� − 1} : x1, x2 binary}
Thus,l(x)=3x1−3x2, g1(x)=−1x2,andg2(x)=0x1 inQP.Wefirst compute thebounds(L1, L2)=(−1,0)and(U1, U2)=(0,0)
as prescribed in (3) withXR =S, and then construct ProblemG. The optimal objective value to the continuous relaxation of G is
−2.Next formProblemG2bycomputing thebounds(L11, L

1
2)=(−1,0)and(U1

1 , U
1
2 )=(−1,0)as in (6), and(L01, L

0
2)=(−1

2,0)

and(U0
1 , U

0
2 ) = (0,0) as in (7), again usingXR = S. The optimal objective value to the continuous relaxation of G2 is−1.5,

which exceeds the value−2 obtained using G. However, if we eliminate the righthand inequalities of (4) and (5) in G2, the
optimal objective value to the continuous relaxation of G2 is weakened to−2.

2.1.2. Enhancement 2: rewriting the objective function
The manner in which the objective function to Problem QP is expressed can affect the relaxation value of Problem G2.

Indeed, even a minor adjustment such as the recording of a quadratic termxixj asxj xi can alter the value. The below example
demonstrates such an alteration.
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Example 2.2. Consider the following instance of Problem QP havingn = 4 binary variablesx and no continuous variablesy.

minimize − 4x1 + x2 + x4 + (5x2 − x3 − 2x4)x1 + (−2x3)x2 + (x4)x3 + (0)x4
subject to x ∈ X ≡ {x ∈ S= {x : 0� x� 1} : x binary}

The functionsl(x) andgj (x) for j = 1, . . . ,4 are accordingly:l(x) = −4x1 + x2 + x4, g1(x) = 5x2 − x3 − 2x4, g2(x) =
−2x3, g3(x)= x4, andg4(x)= 0. Programs (6) and (7) give(L11, L

1
2, L

1
3, L

1
4) = (L01, L

0
2, L

0
3, L

0
4) = (−3,−2,0,0) and(U1

1 ,

U1
2 , U

1
3 , U

1
4 ) = (U0

1 , U
0
2 , U

0
3 , U

0
4 ) = (5,0,1,0) so that ProblemG2 (and also ProblemG for this instance) becomes the below.

minimize − 4x1 + x2 + x4 + z1 + z2 + z3 + z4

subject to − 3x1� z1�5x1
− 2x2� z2�0x2
0x3� z3�1x3
0x4� z4�0x4
5x2 − x3 − 2x4 − 5(1− x1)� z1�5x2 − x3 − 2x4 + 3(1− x1)

− 2x3 − 0(1− x2)� z2� − 2x3 + 2(1− x2)

x4 − 1(1− x3)� z3� x4 − 0(1− x3)

0− 0(1− x4)� z4�0− 0(1− x4)

0� x� 1, x binary

(Observe thatz4 = 0 at all feasible solutions so that this variable could have been eliminated from the problem.) The op-
timal objective function value to the continuous relaxation is−21

4 , with an optimal solution(x1, x2, x3, x4, z1, z2, z3, z4)

= (34,0,1,0,−9
4,0,0,0).

If we add the quantity52(x1x2 − x2x1) to the objective function so that the coefficient onx2 in g1(x) decreases to
5
2 and

the coefficient ofx1 in g2(x) increases to52, we getU1
1 = U0

1 = U1
2 = U0

2 = 5
2, with all other lower and upper bounds

unchanged. The continuous relaxation to the resulting linearization has the optimal objective function value−5 with optimal
solutions(x1, x2, x3, x4, z1, z2, z3, z4) = (1,0,1,0,−1,0,0,0), (1,0,0,1,−2,0,0,0), and(1,0,1,1,−3,0,1,0). As they
are integral, these points are also optimal to Problem QP.
In light of the above example, the question arises as to how best express the objective function to QP before applying the

method of[11]. In fact, we can also consider quadratic terms that involve complementsx̄j of the binary variablesxj , where
x̄j = 1− xj . Specifically, suppose we add multiples of the binary identities

xixj = xj xi ∀(i, j), i < j (8)

xi x̄j = xi − xixj ∀(i, j), i �= j (9)

yi x̄j = yi − yixj ∀(i, j), i = 1, . . . , m (10)

to the objective function using suitably dimensioned vectors�1, �2, and�3 , respectively, to obtain an equivalent problem to QP
of the below form:

QP(�) : minimize l�(x, y) +
n∑

j=1

g�
j (x, y)xj +

n∑
j=1

h�
j (x, y)x̄j

subject to (x, y) ∈ X

where

l�(x, y) = l(x, y) +
n∑

j=1




n∑
i=1
i �=j

�2ij xi +
m∑
i=1

�3ij yi


 , (11)

g�
j (x, y) = gj (x, y) −

j−1∑
i=1

�1ij xi +
n∑

i=j+1

�1jixi −
n∑

i=1
i �=j

�2ij xi −
m∑
i=1

�3ij yi ∀j (12)
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and

h�
j (x, y) = −

n∑
i=1
i �=j

�2ij xi −
m∑
i=1

�3ij yi ∀j. (13)

Thebasic premise of[11] can beapplied to eachquadratic expressiong�
j
(x, y)xj andh�

j
(x, y)x̄j . Of course, in order to linearize

the newly introduced expressionsh�
j
(x, y)x̄j , an additionalncontinuous variables and 4n inequalities beyond themethod of[11]

are employed. As we will see in Section 3, however, the resulting formulations afford very tight linear programming bounds that
relate to the level-1 RLT relaxation value, and certain of these 4n inequalities can be removed from consideration. Interestingly,
Section 4.1 identifies special structures for which these additional variables and constraints are not needed to achieve the level-1
relaxation strength. For now, let us replace the quadratic expressionsg�

j
(x, y)xj , andh�

j
(x, y)x̄j with continuous variablesz1

j

andz2
j
, respectively, and define 8n linear inequalities to ensure that each of these variablesz1

j
andz2

j
equals their respective

quadratic expression at all binary realizations ofx. The problem below emerges.

G2(�) : minimize l�(x, y) +
n∑

j=1

z1j +
n∑

j=1

z2j

subject to L�1
j xj� z1j� U�1

j xj ∀j (14)

g�
j (x, y) − U�0

j (1− xj )� z1j� g�
j (x, y) − L�0

j (1− xj ) ∀j (15)

L̄�0
j (1− xj )� z2j� Ū�0

j (1− xj ) ∀j (16)

h�
j (x, y) − Ū�1

j xj� z2j�h�
j (x, y) − L̄�1

j xj ∀j (17)

(x, y) ∈ X

Here, for eachj, the valuesL�1
j

andU�1
j

are computed as in (6) as

L�1
j =min{g�

j (x, y) : (x, y) ∈ XR, xj = 1} and

U�1
j =max{g�

j (x, y) : (x, y) ∈ XR, xj = 1} (18)

while the valuesL�0
j

andU�0
j

are computed as in (7) as

L�0
j =min{g�

j (x, y) : (x, y) ∈ XR, xj = 0} and

U�0
j =max{g�

j (x, y) : (x, y) ∈ XR, xj = 0}. (19)

Similarly, for eachj, the valuesL̄�1
j

andŪ�1
j

are computed as

L̄�1
j =min{h�

j (x, y) : (x, y) ∈ XR, xj = 1} and

Ū�1
j =max{h�

j (x, y) : (x, y) ∈ XR, xj = 1} (20)

with the valuesL̄�0
j

andŪ�0
j

computed as

L̄�0
j =min{h�

j (x, y) : (x, y) ∈ XR, xj = 0} and

Ū�0
j =max{h�

j (x, y) : (x, y) ∈ XR, xj = 0}. (21)

The notation QP(�) and G2(�), and the superscript� used throughout these problems as well as in (18)–(21), are to denote their
dependence on the values of� = (�1, �2, �3). We elected to substitutēxj = 1− xj for all j so that the variables̄xj do not appear
in (16), (17), (20), or (21).
Regardless of the chosen values of�, the mixed 0-1 linear program G2(�) is equivalent to the quadratic program QP, with the

optimal objective value to the continuous relaxation of G2(�), sayv(�), providing a lower bound on the optimal objective value
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to QP. The task is to determine an� that provides the maximum possible lower bound. That is, we wish to solve the nonlinear
program

NP : v∗ =max
�

v(�) =min


l�(x, y) +

n∑
j=1

z1j +
n∑

j=1

z2j : (14)–(17), (x, y) ∈ S


 . (22)

In Section 3, we solve Problem NP by comparing it to the level-1 RLT formulation of[23,24], reviewed in the following section.

2.2. The RLT

The RLT produces, for mixed 0-1 linear and polynomial programs, a hierarchy of successively tighter linear programming
approximations. At each level of the hierarchy, the linear problem is equivalent to the nonlinear program when thex binary
restrictions are enforced, but yields a relaxation when the binary restrictions are weakened to0� x� 1. At the highest level
n, wheren represents the number of binary variables, the linear program is exact in that the feasible region gives an explicit
description of the convex hull of solutions to the nonlinear program, with the linear objective function equalling the original
nonlinear objective at each extreme point solution. Consequently, at this highest level, thex binary restrictions can be equivalently
replaced by0� x� 1.
The RLT consists of the two basic steps ofreformulationand linearization. The reformulation step generates redundant,

nonlinear inequalities by multiplying the problem constraints by product factors of the binary variables and their complements,
recognizing and enforcing thatx2

j
= xj for each binary variablexj . The linearization step recasts the problem into a higher

variable space by replacing each distinct product with a continuous variable. The hierarchical levels are defined in terms of the
product factors employed, with the individual levels dependent on the degrees of these factors. We concern ourselves in this
paper with the (weakest) level-1 formulations, originally appearing in[3,4]. For a thorough description of the basic RLT theory,
the reader is referred to[23,24], with a detailed overview of the various applications and extensions in[25].
Let us construct the level-1 RLT representation of Problem QP. Suppose, without loss of generality, that the polyhedral setS

is given by

S=

(x, y) :

n∑
i=1

arixi +
m∑
i=1

driyi� br ∀r = 1, . . . , R


 (23)

and that the linear functionsgj (x, y) for all j are expressed as follows:

gj (x, y) =
n∑

i=1
i �=j

Cij xi +
m∑
i=1

Dij yi ∀j = 1, . . . , n. (24)

The reformulation step multiplies each inequality definingS by each binary variablexj and its complement(1− xj ) for all

j = 1, . . . , n, substituting throughoutx2
j

= xj for all j. The linearization step then substitutes a continuous variable for each

product in the objective function and constraints, in this case lettingw1
ij

= xixj for all i =1, . . . , n, i �= j, and�1
ij

= yixj for all

i = 1, . . . , m.We choose here to implement additional substitutions found within[23,24]. In particular, we letw2
ij

= xi − w1
ij

for all i =1, . . . , n, i �= j, and�2
ij

= yi − �1
ij
for all i =1, . . . , m throughout each constraint which was multiplied by a(1− xj )

factor, and then explicitly enforce these substitutions as constraints. Clearly, we have thatw1
ij

= w1
ji
for all (i, j), i < j , and so

these restrictions are also enforced, resulting in the following program:

QPRLT : minimize l(x, y) +
n∑

j=1




n∑
i=1
i �=j

Cijw
1
ij +

m∑
i=1

Dij �
1
ij




subject to
n∑

i=1
i �=j

ariw
1
ij +

m∑
i=1

dri�
1
ij� (br − arj )xj ∀(r, j), r = 1, . . . , R (25)

n∑
i=1
i �=j

ariw
2
ij +

m∑
i=1

dri�
2
ij� br (1− xj ) ∀(r, j), r = 1, . . . , R (26)
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w1
ij = w1

ji ∀(i, j), i < j (27)

w2
ij = xi − w1

ij ∀(i, j), i �= j (28)

�2ij = yi − �1ij ∀(i, j), i = 1, . . . , m (29)

(x, y) ∈ S (30)

x binary

Inequalities (25) result from multiplying the constraints ofSby xj for eachj while inequalities (26) result from multiplying
these same constraints by each(1− xj ) and making the substitutions of (28) and (29).

The RLT theory enforces at all feasible solutions to QPRLT thatw1
ij

= xixj andw
2
ij

= xi(1− xj ) for all (i, j), i �= j , and

that�1
ij

= yixj and�2
ij

= yi(1− xj ) for all (i, j), i = 1, . . . , m.As alluded to above, the level-1 RLT formulation[23,24]does

not need to explicitly include constraints (27) through (29), nor the variablesw1
ij
for all (i, j), i > j , w2

ij
for all (i, j), i �= j ,

and�2
ij
for all (i, j), i = 1, . . . , m. Instead, the substitutions suggested by these constraints can be performed to eliminate the

corresponding variables, making the restrictions themselves unnecessary. In addition, inequalities (30) are unnecessary as they
are implied by (25), (26), (28), and (29).We choose here to consider the larger form given by QPRLT, as the additional variables
and constraints facilitate our arguments in the upcoming section.

3. Combining conciseness and strength

The main result of this section is that the optimal objective function values to Problem NP and the continuous relaxation of
Problem QPRLT equal, and that an optimal value of� for NP can be obtained from any optimal dual solution to QPRLT, using
the multipliers corresponding to constraints (27)–(29). This will hold true provided that the setXR used to compute bounds
(18)–(21), and found in (14)–(17), is defined as the setS, which we henceforth assume. We also assume for eachj = 1, . . . , n
that min{xj : x ∈ S} = 0 and max{xj : x ∈ S} = 1 since otherwise variables can be accordingly fixed to binary values. The
significance of this result is that the strength of the level-1 RLT formulation can be captured in a program having the concise
size of G2(�).
Certain notation is adopted for convenience. Consistent with the construction of Problem QPRLT, let the expressions

�g�
j
(x, y)xj �L and�h�

j
(x, y)xj �L denote, for eachj, the linearized forms of the productsg�

j
(x, y)xj andh�

j
(x, y)xj , respectively,

obtained by substitutingw1
ij

= xixj for all i �= j , and�1
ij

= yixj for all i = 1, . . . , m so that

�g�
j (x, y)xj �L =

n∑
i=1
i �=j

Cijw
1
ij +

m∑
i=1

Dij �
1
ij

−
j−1∑
i=1

�1ijw
1
ij +

n∑
i=j+1

�1jiw
1
ij −

n∑
i=1
i �=j

�2ijw
1
ij −

m∑
i=1

�3ij �
1
ij ∀j (31)

by (12) and (24), and

�h�
j (x, y)xj �L = −

n∑
i=1
i �=j

�2ijw
1
ij −

m∑
i=1

�3ij �
1
ij ∀j (32)

by (13). Consequently, since the linearization operation gives

�g�
j (x, y)xj �L = g�

j (x, y) − �g�
j (x, y)(1− xj )�L ∀j, (33)
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we have by substituting (28) and (29) into (31) that

�g�
j (x, y)(1− xj )�L =

n∑
i=1
i �=j

Cijw
2
ij +

m∑
i=1

Dij �
2
ij

−
j−1∑
i=1

�1ijw
2
ij +

n∑
i=j+1

�1jiw
2
ij −

n∑
i=1
i �=j

�2ijw
2
ij −

m∑
i=1

�3ij �
2
ij ∀j. (34)

Similarly, since

�h�
j (x, y)xj �L = h�

j (x, y) − �h�
j (x, y)(1− xj )�L ∀j, (35)

we have by substituting (28) and (29) into (32) that

�h�
j (x, y)(1− xj )�L = −

n∑
i=1
i �=j

�2ijw
2
ij −

m∑
i=1

�3ij �
2
ij ∀j. (36)

For eachj, the notation�g�
j
(x̂, ŷ)x̂j �L and�h�

j
(x̂, ŷ)x̂j �L is used to denote the values�g�

j
(x, y)xj �L and�h�

j
(x, y)xj �L at the

point (x̂, ŷ, ŵ, �̂) as prescribed by (31) and (32), respectively.
We use this notation in the proof of the below theorem. This theorem formally states the dominance of the level-1 RLT

representation relative to Problem G2(�).

Theorem 1. The optimal objective function value to the continuous relaxation of Problem QPRLT is an upper bound on the
optimal objective value to the relaxation ofG2(�), regardless of the chosen�.

Proof. Arbitrarily select a vector�. It is sufficient to show, using obvious vector notation, that given any feasible solution
(x̂, ŷ, ŵ, �̂) to the continuous relaxation of QPRLT, the point(x̂, ŷ, ẑ) havingẑ1

j
=�g�

j
(x̂, ŷ)x̂j �L for all j andẑ2

j
=�h�

j
(x̂, ŷ)(1−

x̂j )�L for all j is feasible to the relaxation of G2(�) with the same objective function value. Toward this end, for eachj, twice
surrogate inequalities (25), once each with an optimal set of dual multipliers to the minimization and maximization problems in
(18), to verify by (31) that(x̂, ŷ, ẑ) satisfies the lefthandand righthand inequalities, respectively, of (14). Similarly, for eachj, twice
surrogate inequalities (26), once each with an optimal set of dual multipliers to the minimization and maximization problems
in (21), to verify by (36) that(x̂, ŷ, ẑ) satisfies the lefthand and righthand inequalities, respectively, of (16). In an analogous
manner, again twice surrogate the inequalities (25), once each with optimal dual multipliers to the optimization problems in (20)
to verify by (32) and (35) that (17) is satisfied, and twice surrogate inequalities (26), once each using optimal dual multipliers to
(21) to verify by (34) and (33) that (15) is satisfied. Hence(x̂, ŷ, ẑ) is feasible to G2(�).The objective function value to G2(�) at
this point isl�(x̂, ŷ)+ ∑n

j=1(�g�
j
(x̂, ŷ)x̂j �L + �h�

j
(x̂, ŷ)(1− x̂j )�L), which equals the objective value to QPRLT at(x̂, ŷ, ŵ, �̂)

since the former is by definition obtained by adding constraints (27), (28), and (29) to the objective function of QPRLT using
multipliers�1, �2, and�3, respectively. This completes the proof.�

In order to establish our desired result equating the optimal objective function values to Problems NP and the continuous
relaxation ofQPRLT,with anoptimal� toNPconsisting of a partial optimal dual vector toQPRLT,weconstruct a Lagrangiandual
to this latter problem. In particular, weplace constraints (27)–(29) into the objective function using themultipliers�=(�1, �2, �3).

Incorporating the notation of (11), (31), and (36), Problem LD results.

LD : maximize�(�)

where

�(�) =min


l�(x, y) +

n∑
j=1

�g�
j (x, y)xj �L +

n∑
j=1

�h�
j (x, y)(1− xj )�L : (25), (26), and(30)


 (37)

Our argument is based on a special block-diagonal structure that the Lagrangian subproblem�(�) possesses. This structure was
our reason for explicitly including constraints (27), (28), and (29) in QPRLT, as opposed to substituting out the variablesw1

ij

for all (i, j), i > j , w2
ij
for all (i, j), i �= j , and�2

ij
for all (i, j), and then removing these restrictions. Indeed,�(�) has 2n
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separate blocks: one block over each of constraints (25) and (26) for eachj, coupled by the restrictions(x, y) ∈ S found in (30).
The theorem below shows that this structure can be exploited to efficiently compute�(�) by solving a linear program whose
objective function is expressed in terms of the parametersL�1

j
andL̄�0

j
of (18) and (21), and whose constraints are the coupling

restrictions(x, y) ∈ S.

Theorem 2. Given any vector�, the value�(�) in (37) is equal to the optimal objective function value of the linear program

LP(�) : minimize


l�(x, y) +

n∑
j=1

L�1
j xj +

n∑
j=1

L̄�0
j (1− xj ) : (x, y) ∈ S


 , (38)

where for each j, L�1
j

andL̄�0
j

are computed as in(18)and(21), respectively.

Proof. The proof is to show for eachj that an optimal set of dual multipliers to the corresponding inequalities in (25) of LD can
be computed using any optimal dual solution to the minimization problem in (18) and that an optimal set of dual multipliers to
the corresponding inequalities in (26) of LD can be computed using any optimal dual solution to the minimization problem in
(21). The result must then hold since the dual to Problem LP(�) in (38) is the dual to the minimization problem of (37), where
the multipliers to constraints (25) and (26) of LD have been fixed in the former at an optimal set of values.
Suppose for a givenj that we solve the minimization problem in (18) to obtain a primal optimal solution, and denote it byw̃1

ij

for all i �= j and�̃1ij for all i to represent thexi andyi variables, respectively. Further suppose that we fix the dual multipliers
to the associated constraints in (25) equal to the computed optimal duals to (18). Similarly, suppose we solve the minimization
problem in (21) to obtain a primal optimal solution, and denote it byw̃2

ij
for all i �= j and�̃2ij for all i to represent thexi andyi

variables, respectively. Further suppose that we fix the dual multipliers to the associated constraints in (26) equal to the computed
optimal duals to (21). Repeating for eachj we obtain dual multipliers for all the constraints (25) and (26). Solve the dual to
Problem LDwith these fixed dual values, which necessarily satisfy dual feasibility relative to thew1

ij
,w2

ij
, �1

ij
, and�2

ij
variables,

to obtain an(x̂, ŷ) ∈ Sand multiplierŝ�. The fixed duals for (25) and (26) together with�̂ define a dual feasible solution to LD
since dual feasibility relative to the variablesxi andyi are ensured by solving the reduced dual to Problem LD. Moreover, for
the same reason,(x̂, ŷ) and�̂ satisfy complementary slackness relative to (30) since they are optimal primal and dual solutions,
respectively, to this same problem. Finally,(x̂, ŷ, ŵ, �̂) with ŵ1

ij
= w̃1

ij
x̂j andŵ

2
ij

= w̃2
ij
(1− x̂j ) for all(i, j), i �= j , and with

�̂1ij = �̃1ij x̂j and�̂2ij = �̃2ij (1− x̂j ) for all (i, j) satisfies primal feasibility and complementary slackness to (25) and (26) by (18)
and (21) since the inequalities are simply scaled by either the nonnegative valuex̂j or 1− x̂j . This completes the proof.�

The main result now follows.

Theorem 3. The optimal objective function values to Problems NP and the continuous relaxation of QPRLT are equal, with
any optimal set of dual values�1, �2, and �3 to constraints(27), (28),and (29) of QPRLT, respectively, solving NP, where
� = (�1, �2, �3).

Proof. Since Problem LD is the Lagrangian dual to QPRLT obtained by placing constraints (27), (28), and (29) into the
objective function using multipliers� = (�1, �2, �3), it follows directly that�(�) equals the optimal objective function value to
the continuous relaxation of QPRLT at any� comprising part of an optimal dual solution to this latter problem. By Theorem
2, this value in turn equals the optimal objective function value to LP(�) of (38). Now, suppose we delete the 4n inequalities
(15) and (17), and the 2n righthand inequalities of (14) and (16) from G2(�). An optimal solution to the continuous relaxation
of the resulting program must then havez1

j
= L�1

j
xj andz2

j
= L̄�0

j
(1− xj ) for eachj, providing the same objective value in

the continuous relaxation of this reduced version of G2(�) as LP(�). Theorem 1 thus ensures that the optimal objective function
value to the continuous relaxation of G2(�) must equal that of LP(�) at every such optimal�. This completes the proof.�

The above theorems and proofs collectively explain how to construct instances of G2(�) that provide the greatest possible
relaxation value. Such constructions are based on optimal dual solutions to the continuous relaxation of QPRLT, permitting the
optimal objective function values to the relaxations of G2(�) and QPRLT to equal. Given any such optimal dual solution, the
�-vector used to computeG2(�) are themultipliers to (27), (28), and (29), respectively, as stated inTheorem3.The decomposition
argument in the proof of Theorem 2 essentially establishes the lefthand inequalities of (14) and (16) as surrogates of inequalities
(25) and (26) using the prescribed optimal dual solutions. The proof of Theorem 1 demonstrates that all inequalities (14)–(17) are
surrogates of inequalities (25)–(29). Hence, Problem G2(�) can be considered as a surrogate dual to a Lagrangian subproblem
of QPRLT, where the equality restrictions (27), (28), and (29) are both dualized and treated as constraints.
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Three remarks relative toG2(�) arewarranted. First, and as used in the proof of Theorem3, Theorems 1 and 2 combine to show
that for any dual-optimal� to (27)–(29) of QPRLT, only the 2n lefthand inequalities of (14) and (16), together with the(x, y) ∈ S
restrictions, are needed to have G2(�) and QPRLT provide the same relaxation value. The additional 6n restrictions enforce that,
for eachj =1, . . . , n, z1

j
=g�

j
(x, y)xj andz2j =h�

j
(x, y)(1−xj ) at all(x, y) ∈ X. This is in contrast to our discussion in Section

2.1.1 and Example 2.1 explaining that the omission of the righthand inequalities in (4) and (5) can alter the optimal relaxation
value of G2. For general�, the righthand inequalities of (14)–(17) cannot be omitted in G2(�) without potentially sacrificing
relaxation strength, but such omissions can be performed for any dual-optimal�. Second, and as pointed out in Section 2.1 for
Problem G, the 4n righthand inequalities in (14)–(17)are unnecessary in Problem G2(�) since the desired equivalence between
G2(�) and QP is needed only at optimality. Finally, and again as noted in Section 2.1 for Problem G, a substitution of variables
in terms of the slack variables for either (14) or (15), and in terms of the slack variables for either (16) or (17), will reduce the
number of structural inequalities by 2n. The net effect of the constraint eliminations and variable substitutions from the prior
two remarks is to obtain an equivalent mixed 0-1 linear representation of QP that has only 2n auxiliary structural constraints in
2n additional nonnegative variables, and has the relaxation strength of the level-1 RLT formulation[23,24].

4. Exploiting special structure

Special structure in the constraints defining the setSof Problem QP can lead to more efficient implementations of[11] that
give the level-1 RLT relaxation value. We consider two general structures. The first deals with instances where restrictions (28)
and (29) in the relaxation of QPRLT all have multipliers of 0 in an optimal dual solution. Included within these instances is the
family of quadratic set partitioning problems. The second arises when special subsets of the restrictions, fewer than 2n, imply
the bounding restrictions0� x� 1 so that a specially structured RLT[26] can be employed. For this second case, the relaxation
strength of the specially structured RLT can exceed that of QPRLT.

4.1. Pure 0-1 programs with equality restrictions

Consider the implications of Theorem 3 when the relaxation of QPRLT is known to have an optimal dual solution with
multipliers�2 = 0 and�3 = 0 corresponding to (28) and (29), respectively. The Theorem maintains that the optimal objective
function values to Problems NP and the continuous relaxation of QPRLT equal, and asserts that� = (�1,0,0) solves NP, where
�1 is any optimal set of dual values to (27). This is significant since, when such conditions are met, a linearization of QP
having onlyn additional inequalities inn additional nonnegative variables with the strength of the level-1 RLT relaxation is
possible. This is a savings ofn inequality restrictions andn variables over the formulation of the previous section. The reason
is that Problem G2(�) will reduce in size. For such� vectors,h�

j
(x, y) = 0 for all j by (13) so that programs (20) and (21)

give L̄�1
j

= Ū�1
j

= L̄�0
j

= Ū�0
j

= 0 for all j. By (16) and (17), we then have thatz2
j

= 0 for all j in G2(�). The formulation

G2(�) thus simplifies to G2′(�) below, where we have recognized the righthand inequalities of (14) and (15) as redundant at
optimality.

G2′(�) : minimize l�(x, y) +
n∑

j=1

z1j

subject to L�1
j xj� z1j ∀j (39)

g�
j (x, y) − U�0

j (1− xj )� z1j ∀j (40)

(x, y) ∈ X

As with Problems G2 and G2(�), a substitution in terms of the slack variables to either set of constraints (39) or (40) can be
made to obtain the desired formulation.
We now invoke the RLT theory to identify an important class of problems that have�2 = 0 and�3 = 0 in an optimal dual

solution to the relaxation ofQPRLT.Consider the special cases ofQPwhere there are no continuous variablesyand the constraints
defining the setSare all equality, except for restrictions of the formx� 0. Here, as before,S is assumed to implyx� 1, though
in this case such an assumption forfeits generality. Using obvious notation, Problem QP can be rewritten as QP′.

QP′ : minimize l(x) +
n∑

j=1

gj (x)xj

subject to x ∈ X ≡ {x ∈ S : x binary}
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The setSand the linear functionsgj (x) for all j simplify from their respective descriptions in (23) and (24) to the below.

S=

x� 0 :

n∑
i=1

arixi = br ∀r = 1, . . . , R


 (41)

gj (x) =
n∑

i=1
i �=j

Cij xi ∀j = 1, . . . , n (42)

The RLT theory[23–25]does not require multiplying the equality restrictions ofSby the factors(1− xj ) for all j provided
that these equations ofS are preserved in the level-1 representation. Nor does it require multiplying thex� 0 inequalities by
these same(1− xj ) factors. For both sets of multiplications, the resulting linearized inequalities would be implied by the other
restrictions. The latter implication is due tox ∈ S enforcingx� 1, so that the setS, together with the multiplication of the
restrictions ofSby the factorsxj , will imply such expressions. In other words, restrictions of the type (26) are redundant in the

relaxation of QPRLT, making (28) and (29) also redundant so that�2 = 0 and�3 = 0 at an optimal dual solution as desired.
(Each equation in (41) can be expressed as two inequalities to fit the form of (25).)
Observe that the family of quadratic set partitioning problems are encompassed by QP′ and therefore can be reformulated in

terms of G2′(�). Since G2′(�) is a function of only the vector�1 in such problems, a direct consequence of Theorem 3 is that the
level-1 RLT relaxation value can be achieved by strategically “splitting” the objective coefficients on the quadratic termsxixj
andxj xi in such a manner that, for each(i, j) with i < j , the coefficient on the termxixj is decreased by the same quantity

that the coefficient on the termxj xi is increased. The vector�
1 dictates such a split by placing identities (8) into the objective

function so that for each(i, j) with i < j , xixj is decreased andxj xi is increased by the value�
1
ij
.

Interestingly, as thecelebratedquadratic assignment problem (QAP) is aquadratic set partitioningproblem, it canbe formulated
in terms of G2′(�). In fact, Kaufman and Broeckx[16] (see also[8,9] for related implementations) incorporated Problem G,
less the redundant righthand inequalities (1) and (2), in both a mixed-integer solver and Benders’ decomposition algorithm
[6], but reported “disappointing” computational results. Hahn et al.[14], on the other hand, obtained superior results in an
enumerative strategy that computes bounds obtainable from the level-1 RLT formulation (see[13]). These authors solved the
Nugent et al.[22] size 25 test problem and the Krarup and Pruzan[18] size 30a problem to optimality. Our contention is that
the performance difference between[14] and[16] is primarily due to the linearization strength. Adams and Johnson[2] showed
the theoretical superiority of the level-1 RLT relaxation to the majority of published bounding strategies for the QAP. It appears
promising, therefore, to combine the strength of the level-1 formulation with the conciseness of the linearization in[11] by
suitably constructing G2′(�). Of course, onemust solve the level-1 relaxation to obtain the vector�1, but the structure of QPRLT
lends itself to efficient methods, as noted in[13,15]. Even so, an optimal�1 is not required, a near-optimal dual solution suffices.
We conclude this section with an example to demonstrate the utility of splitting the objective coefficients for a quadratic set

partitioning problem, and how the level-1 RLT relaxation provides such an optimal split.

Example 4.1. Consider an instance of Problem QP′ havingn = 7 binary variablesx, where the functionl(x) is defined as

l(x) = 6x1 + 4x2 + 5x3 + 10x4 + 6x5 − 4x6 + 3x7,

where the coefficientsCij of gj (x) found in (42) for each(i, j) are given by the(i, j)th entry of the matrix

C =




∗ 0 0 0 0 0 0
−10 ∗ 0 0 0 0 0
8 −6 ∗ 0 0 0 0

−4 −8 −6 ∗ 0 0 0
0 −8 10 −10 ∗ 0 0
1 −10 −3 0 −8 ∗ 0

−10 0 −6 −10 −6 −8 ∗



,

and where the setS in (41) is defined as

S= {x� 0 : x1 + x2 + x3 = 1, x3 + x4 + x5 = 1, x5 + x6 + x7 = 1}.

The formulation of[11]with the boundsofSection 2.1.1,which isG2′(0), is obtainedby computing(L�1
1 , L�1

2 , L�1
3 , L�1

4 , L�1
5 ,

L�1
6 , L�1

7 )= (−14,−18,−6,−10,0,0,0) and(U�0
1 , U�0

2 , U�0
3 ,U�0

4 , U�0
5 , U�0

6 , U�0
7 )= (9,−6,10,0,−6,0,0) as prescribed
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in theminimization problems of (18) and themaximization problems of (19), respectively, to generate (39) and (40). The optimal
objective value to the continuous relaxation of G2′(0) is−10.50.
Next constructQPRLT.Following thediscussionof this section, inequalities (26), (28), and (29) arenot necessary. Furthermore,

constraints (25) are equality, and the coefficientsDij anddri are all 0 as there are no continuous variables. The optimal objective
value to the continuous relaxation of QPRLT is−8, which is the integer optimum objective.
Upon solving this relaxation of QPRLT, we obtain an optimal set of dual variables�̂1 to constraints (27) witĥ�1ij for each

(i, j), i < j, given by the(i, j)th entry of the matrix.

�̂1 =




∗ 0 0 4 16 −5 6
∗ ∗ 0 7 6 9 6
∗ ∗ ∗ 0 0 3 6
∗ ∗ ∗ ∗ 0 0 10
∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗




We then “split” the quadratic objective coefficients by settingC′
ij

= Cij − �̂1ij andC
′
ji

= Cji + �̂1ij for all i < j to obtain the

following new quadratic cost matrixC′:

C′ =




∗ 0 0 −4 −16 5 −6
−10 ∗ 0 −7 −6 −9 −6
8 −6 ∗ 0 0 −3 −6
0 −1 −6 ∗ 0 0 −10
16 −2 10 −10 ∗ 0 0
−4 −1 0 0 −8 ∗ 0
−4 6 0 0 −6 −8 ∗




Problem G2′(�̂) with �̂ = (�̂1,0,0) is the formulation of[11] with strengthened bounds and cost matrixC′. This formula-
tion is obtained by computing(L�1

1 , L�1
2 , L�1

3 , L�1
4 , L�1

5 , L�1
6 , L�1

7 ) = (−4,−2,0,−7,−16,−9,−16) and(U�0
1 , U�0

2 , U�0
3 ,

U�0
4 , U�0

5 , U�0
6 , U�0

7 ) = (6,5,10,0,−6,5,−6). The continuous relaxation has an optimal objective function value of−8, with
an optimal (binary) solution given by(x1, x2, x3, x4, x5, x6, x7) = (0,1,0,1,0,1,0). Consistent with the result of Theorem 3
and the discussion of this section, this is the bound yielded by the level-1 RLT.

4.2. Structured binary functions

We consider in this section a special case of ProblemQPwhere the restrictions defining the setX give rise top linear functions
fk(x), k = 1, . . . , p, of the binary variablesx that satisfy the following two conditions:

1. each linear functionfk(x) for k = 1, . . . , p realizes either the value 0 or 1 at every(x, y) ∈ X, and
2. the (valid) linear inequalitiesfk(x)�0 for k = 1, . . . , p imply that:

(a) 0� x� 1, and
(b) fk(x)�1 for k = 1, . . . , p.

We assume without loss of generality that the inequalitiesfk(x)�0 do not imply for anyj that eitherxj >0 or xj <1 since
otherwise the variablexj can be fixed to a binary value and removed from the problem. We also henceforth assume for each
k = 1, . . . , p that min{fk(x) : x ∈ S} = 0 and max{fk(x) : x ∈ S} = 1 since otherwisefk(x) can be fixed to a binary value.
Such functionsfk(x) may be explicitly found in QP, or can result from substitutions and/or scalings. For example, given an

equation
∑n

i=1arixi = br in Swherearn is nonzero, the expression(br − ∑n−1
i=1 arixi)/arn equals the binary variablexn, so

that this expression can serve as such a functionfk(x). In order to exploit these functions to obtain more concise representations
than QPRLT, however, we needp<2n. As we will later discuss, such a collection ofp<2n restrictions satisfying conditions 1
and 2 arise from various special structures, including variable upper bounding and generalized upper bounding. For convenience,
we represent the functionsfk(x) as

fk(x) = �k0 + �k1x1 + �k2x2 + · · · + �knxn ∀k = 1, . . . , p (43)

where�kj for all (k, j), k = 1, . . . , p, j = 0, . . . , n, are scalars.
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We consider a special application of the method of Glover[11] that exploits such functionsfk(x) in the following section.

4.2.1. Glover’s method
Givenfk(x), k = 1, . . . , p, satisfying conditions 1 and 2, suppose we rewrite the objective function to Problem QP in terms

of these functions andp + 1 additional functions��
k (x, y), k = 0, . . . , p, so that

n∑
j=1

gj (x, y)xj =
p∑

k=1

��
k (x, y)fk(x) − ��

0(x, y) for all (x, y), x binary. (44)

Here, for eachk = 1, . . . , p, the expression��
k (x, y) is a linear function of the variablesx andywhose coefficients are defined

in terms of the vector� = (�1, �2) as

��
k (x, y) =

n∑
i=1

�1ikxi +
m∑
i=1

�2ikyi . (45)

The function��
0(x, y) is also linear in the variablesx andy, and must be defined in terms of the vector� as

��
0(x, y) =

n∑
i=1




p∑
k=1

�1ik(�k0 + �ki )


 xi +

m∑
i=1




p∑
k=1

�2ik�k0


 yi (46)

for (44) to hold true. Recall that we had earlier assumed without loss of generality that for eachj, the expressiongj (x, y) is
not a function of the variablexj and that it does not contain a term of degree 0. Hence, the lefthand sum in (44) has no linear
terms. The function��

0(x, y) compensates for the linear terms within the products��
k (x, y)fk(x) of the righthand sum in (44),

including thexi variables arising from the substitutionxi = x2
i
.

Functions��
k (x, y) for k = 0, . . . , p satisfying (44) must exist, and they are not necessarily unique. Observe for eachj that

since the linear inequalitiesfk(x)�0 for k = 1, . . . , p imply xj�0 by condition 2a, there must exist a nonnegative linear

combination of the functionsfk(x)with multipliers, say�k , yieldingxj : that is,
∑p

k=1�kfk(x)=xj .Consequently,gj (x, y)xj
can be expressed as

∑p
k=1[gj (x, y)�k]fk(x) so that��

k (x, y)=gj (x, y)�k for all k=1, . . . , p and��
0(x, y)=0 for this special

case. We can therefore sequentially progress through eachj and adjust the functions��
k (x, y) accordingly to satisfy (44).

Now, given a vector� for which (44) holds true, the idea is to linearize Problem QP by substituting for eachk = 1, . . . , p, a
continuous variablezk for the product�

�
k (x, y)fk(x) in the objective function. In the same spirit as (39) and (40), we will then

devise linear restrictions that ensurezk = ��
k (x, y)fk(x) for eachk = 1, . . . , p at optimality to the linear problem. Toward this

end, compute for eachk = 1, . . . , p, valuesL�
k
andU�

k
as

L�
k =min{��

k (x, y) : (x, y) ∈ XR, fk(x) = 1} and

U�
k =max{��

k (x, y) : (x, y) ∈ XR, fk(x) = 0} (47)

where, as with (3), these programs are assumed bounded. Consistent with the definition in Section 2, the setXR is any relaxation
of X in the variables(x, y). Then form the following program.

G3(�) : minimize l(x, y) − ��
0(x, y) +

p∑
k=1

zk

subject to L�
k fk(x)� zk ∀k = 1, . . . , p (48)

��
k (x, y) − U�

k (1− fk(x))� zk ∀k = 1, . . . , p (49)

(x, y) ∈ X

Problem G3(�) is our equivalent mixed 0-1 linear reformulation of QP.As desired, inequalities (48) and (49) enforce for each
k = 1, . . . , p that zk = ��

k (x, y)fk(x) at optimality. To see this, consider anyk = 1, . . . , p, and any(x, y) ∈ X. Condition 1
stipulates thatfk(x) equals either 0 or 1. Iffk(x) = 0, inequalities (48) enforcezk = 0 at optimality with (49) redundant. If
fk(x) = 1, inequalities (49) enforcezk = ��

k (x, y) at optimality with (48) redundant. Hence,zk = ��
k (x, y)fk(x).

Observe that the construction of G3(�) requires only that the functionsfk(x) satisfy condition 1 and thex� 0 restrictions of
2a. Condition 1 ensures thatzk = ��

k (x, y)fk(x) for all k = 1, . . . , p at optimality to G3(�) while the nonnegativity restrictions
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onx of condition 2a establish the existence of functions��
k (x, y), k = 0, . . . , p, satisfying (44). Thex� 1 restrictions of 2a and

condition 2b are not used here, but are needed in the construction of the special-structure RLT in the upcoming section.
G3(�) compares favorably to G2(�) in terms of problem size whenp<2n. Recall from the concluding paragraph of Section

3 that a reduced version of G2(�) requires 2n auxiliary variables and 2n additional structural constraints, since the righthand
restrictions in (14)–(17) are not necessary to ensure equivalence between Problems G2(�) and QP at optimality, and since
substitutions in terms of slack variables can bemade. G3(�), on the other hand, involvespadditional variables and 2p additional
constraints. As with G2(�), the size of G3(�) can be reduced by performing a substitution of variables in terms of the slacks for
either (48) or (49), resulting in onlyp auxiliary constraints inp additional nonnegative variableszk . This is a savings of 2n − p

variables and 2n − p constraints realized by the special-structure formulation over the standard model.
Depending on the vector�, the continuous relaxation of G3(�) obtained by relaxing the(x, y) ∈ X restrictions to(x, y) ∈ S

can have different optimal objective function values. It is desired to obtain a vector� that satisfies (44) and yields the maximum
such objective value. Notationally, we wish to solve the nonlinear (special-structure) problem:

NSP: �∗ = max
� satisfies(44)

�(�) =min


l(x, y) − ��

0(x, y) +
p∑

k=1

zk : (48), (49), (x, y) ∈ S


 . (50)

We consider in the following section an application of the RLT using functionsfk(x) that satisfy the prescribed conditions 1
and 2.

4.2.2. Special-structure RLT
Givenp linear functionsfk(x), k=1, . . . , p, satisfying conditions 1 and 2, the special-structure RLT theory of[26] motivates

a linear reformulation of QP that has a relaxation strength at least that of QPRLT. The key ingredient is that the nonnegative
functionsfk(x) for k=1, . . . , p are used as the product factors in lieu of the standard factorsxj and(1−xj ) for all j =1, . . . , n.
The idea is that, since the nonnegativity of these specialfk(x) factors implies the nonnegativity of the standard factors as set
forth in condition 2a, the linearization resulting from these special factors will also imply the standard linearization.
Thederivationof the special-structure level-1RLT linearizationproceeds in a similarmanner to the constructionofQPRLT.The

reformulation stepmultiplies every constraint in (23) defining the setSbyeachfk(x), andappends theseRpnew restrictions toQP,
substituting throughout the binary identity thatx2

j
=xj for all j. Here, we choose in the linearization step to substitute a continuous

variablewij for every occurrence ofeitherproductxixj or xj xi for all (i, j), i < j , and a continuous variable�ij for every
occurrence of the productxiyj (equivalentlyyj xi ) for all (i, j), i = 1, . . . , m, within the objective function and constraints. We
let the notation�xifk(x)�L, �yifk(x)�L, and�gj (x, y)xj �L denote the linearized versions ofxifk(x), yifk(x), andgj (x, y)xj ,

respectively, under such substitutions. We then introduce continuous variablesvk
i

= �xifk(x)�L ∀ (i, k), k = 1, . . . , p, and

	ki =�yifk(x)�L ∀ (i, k), i =1, . . . , m, k=1, . . . , p. These variables are substituted throughout theRpnew inequalities, with
p(n+m) constraints used to explicitly equate these variables to their substituted expressions. Finally, since condition 1 ensures
for eachk thatfk(x)fk(x) = fk(x) for all (x, y) ∈ X, we explicitly enforce that�fk(x)fk(x)�L = fk(x) for all k = 1, . . . , p.
Problem SQPRLT, the version of QPRLT resulting from this application of the special-structure RLT, is as follows.

SQPRLT: minimize l(x, y) +
n∑

j=1

�gj (x, y)xj �L

subject to
n∑

i=1

ariv
k
i +

m∑
i=1

dri	
k
i � brfk(x) ∀(r, k), r = 1, . . . , R, k = 1, . . . , p (51)

n∑
i=1

�kiv
k
i = (1− �k0)fk(x) ∀k = 1, . . . , p (52)

�xifk(x)�L − vki = 0 ∀(i, k), k = 1, . . . , p (53)

�yifk(x)�L − 	ki = 0 ∀(i, k), i = 1, . . . , m, k = 1, . . . , p (54)

(x, y) ∈ S (55)

x binary

Problems QPRLT and SQPRLT are similar in structure. Inequalities (51) are of the same type as (25) and (26), while (53) and
(54) are of the form (27)–(29). Thew1

ij
andw2

ij
variables of QPRLT are absorbed in thevk

i
variables of SQPRLT, as are the�1

ij
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and�2
ij
variables absorbed in the	ki . The variablesw

1
ij
and�1

ij
of QPRLT essentially play the role ofwij and�ij , respectively,

in the objective function and restrictions (53) and (54) of SQPRLT. Eqs. (52) are the restrictions�fk(x)fk(x)�L = fk(x) for all
k =1, . . . , p, upon noting from (43) that�fk(x)fk(x)�L = �k0fk(x)+∑n

i=1�kiv
k
i
for eachk =1, . . . , p.Observe that, in fact,

SQPRLT reduces to QPRLT when thefk(x) factors default toxj and(1− xj ) for all j. Similar to (30) of QPRLT, restrictions
(55) enforcing(x, y) ∈ Sare not necessary in SQPRLT as they are implied by (51), but we maintain them for convenience.
A final comment relative to the construction of SQPRLT will be used in the next section. We do not multiply the constraints

in (23) by each of thep nonnegative expressions 1− fk(x) to create theRpadditional restrictions

n∑
i=1

ari(xi − vki ) +
m∑
i=1

dri(yi − 	ki )� br (1− fk(x)) ∀(r, k), r = 1, . . . , R, k = 1, . . . , p. (56)

Condition 2b has that the inequalitiesfk(x)�0 for all k = 1, . . . , p collectively imply 1− fk(x)�0 for eachk, so that the
RLT theory[26] assures inequalities (56) are implied by (51) in the continuous relaxation of SQPRLT. This was our reason for
originally introducing condition 2b.

4.2.3. Enhancing Glover’s method with the RLT
The structure of Problem QPRLT that permitted its reformulation as a concise mixed 0-1 linear program having the strength

of the level-1 RLT relaxation is also found in SQPRLT, so that the arguments of Section 3 found in Theorems 1–3 carry over
directly to the special-structure instance. For such cases, this leads to a concise formulation of the size of G3(�) having the same
relaxation strength as SQPRLT. Similar to our arguments in Section 3, we assume that the setXR used to compute the bounds
(47), found in (48) and (49) of G3(�), hasXR = S.
Consider first the relationshipbetween theoptimal objective function values to thecontinuous relaxationsofProblemsSQPRLT

and G3(�). The theorem and proof below show that the former value is at least as large as the latter.

Theorem 4. Given any vector� satisfying(44), the optimal objective function value to the continuous relaxation of Problem
SQPRLT is an upper bound on the optimal objective value to the relaxation ofG3(�).

Proof. Consider any vector� satisfying (44). Using obvious vector notation, it suffices to show that, given any feasible solution
(x̂, ŷ, ŵ, �̂, v̂, �̂) to the continuous relaxation of SQPRLT, the point(x̂, ŷ, ẑ) havingẑk = ���

k (x̂, ŷ)fk(x̂)�L for all k is feasible to
the relaxation of G3(�) with the same objective function value. For eachk = 1, . . . , p, surrogate inequalities (51) and Eq. (52)
with an optimal set of dual multipliers to the(x, y) ∈ S restrictions and thefk(x)= 1 constraint of the minimization problem in
(47), respectively, to verify by (53) and (54) that(x̂, ŷ, ẑ) satisfies (48). Now, recalling from condition 2b that inequalities (56)
are implied by (51), surrogate (56) and (52) with a computed optimal set of dual multipliers to the(x, y) ∈ S restrictions and the
negative of the computed dual value to thefk(x) = 1 constraint of the maximization problem in (47), respectively, to verify by
(53) and (54) that(x̂, ŷ, ẑ) satisfies (49). Hence(x̂, ŷ, ẑ) is feasible to the continuous relaxation of G3(�). The objective function
value to G3(�) at this point isl(x̂, ŷ) − ��

0(x̂, ŷ) + ∑p
k=1ẑk , which equals the objective value to the relaxation of SQPRLT at

(x̂, ŷ, ŵ, �̂, v̂, �̂) by (44). This completes the proof.�

The block diagonal structure of QPRLT demonstrated in the proof of Theorem 2 is present in SQPRLT. To see this, suppose
we form a Lagrangian dual to the continuous relaxation of SQPRLT by placing constraints (53) and (54) into the objective
function. Then the subproblem over (51), (52), and (55) can be solved viap + 1 independent blocks. Specifically, consider such
a Lagrangian dual where we use the same vector notation� = (�1, �2) for the dual multipliers to (53) and (54) as was used in
equations (44)–(46) of Section 4.2.1.

SLD : maximize
(�)

where


(�) = min


l(x, y) +

n∑
j=1

�gj (x, y)xj �L

+
p∑

k=1




n∑
i=1

�1ik(v
k
i − �xifk(x)�L) +

m∑
i=1

�2ik(	
k
i − �yifk(x)�L)


 : (51), (52), (55)


 (57)

We restrict attention to those instances of� that permit a dual feasible completion to the relaxation of SQPRLT (so that dual
feasibility with respect to thewij and�ij variables is satisfied). Otherwise, the Lagrangian subproblem
(�) is unbounded below
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since (51), (52), and (55) of (57) do not involve the variableswij or �ij . Observe that this restriction is precisely the same as
enforcing that the vector� satisfies (44). Consequently, for such values of�, the calculation of
(�) simplifies to:


(�) =min


l(x, y) − ��

0(x, y) +
p∑

k=1




n∑
i=1

�1ikv
k
i +

m∑
i=1

�2ik	
k
i


 : (51), (52), (55)


 . (58)

The block diagonal structure of the Lagrangian dual problem (57), equivalently (58), is exposed in the proof of the following
theorem. This theorem and proof, designed for the special-structure linearization SQPRLT, parallels Theorem 2 and its proof.

Theorem 5. Given any vector� satisfying(44), the value
(�) in (58) is equal to the optimal objective function value of the
special-structure linear program

SLP (�) : minimize

l(x, y) − ��

0(x, y) +
p∑

k=1

L�
k fk(x) : (x, y) ∈ S


 , (59)

where for each k,L�
k
is computed as in(47).

Proof. It is sufficient to show for eachk that an optimal set of dual multipliers to the corresponding constraints in (51) and (52)
of (58) can be computed using any optimal dual solution to the minimization problem in (47). The reason for this is that the dual
to SLP(�)must then be the dual to
(�) of (58), where the multipliers to (51) and (52) of
(�) in (58) have been fixed in SLP(�)
at an optimal set of values.
Given anyk = 1, . . . , p, solve the minimization problem in (47) to obtain a primal optimal solutionṽk

i
for all i = 1, . . . , n

and	̃
k
i for all i =1, . . . , m, to represent thexi andyi variables, respectively. Fix the dual multipliers to the associated inequality

restrictions in (51) of (58) to the computed optimal duals to the constraints ofS in (47), and fix the dual to the associated equation
in (52) of (58) to the computed dual to thefk(x) = 1 restriction. Progress through eachk = 1, . . . , p, to obtain multipliers for
all restrictions in (51) and (52). Solve the dual to (58) with these dual values fixed to obtain an(x̂, ŷ) ∈ S and multipliers�̂.
The fixed duals to (51) and (52), together with�̂, define a dual feasible solution to (58), and(x̂, ŷ) and�̂ satisfy complementary

slackness to (55). Finally,(x̂, ŷ, v̂, �̂)with v̂k
i

= ṽk
i
fk(x̂) for all (i, k), k=1, . . . , p, and	̂

k

i = 	̃
k
i fk(x̂) for all (i, k), i =1, . . . , m,

andk = 1, . . . , p, satisfies primal feasibility and complementary slackness to (51) and (52) by (47) since restrictions (51) and
(52) are scaled by the nonnegativefk(x̂). This completes the proof.�

The relationship between the objective function values to Problems SQPRLT and G3(�) for vectors� satisfying (44) is
considered in the following theorem. This theorem parallels Theorem 3 for Problems SQPRLT and G2(�).

Theorem 6. The optimal objective function values to Problems NSP and the continuous relaxation of SQPRLT are equal, with
any optimal set of dual values�1 and�2 to constraints(53)and(54)of SQPRLT, respectively, solving NSP,where�= (�1, �2).

Proof. Problem SLD is the Lagrangian dual of the continuous relaxation of SQPRLT obtained by placing equations (53) and
(54) into the objective function using multipliers� = (�1, �2). Consequently,
(�) given in (57) equals the optimal objective
value to the continuous relaxation of SQPRLT at any vector� constituting part of an optimal dual solution. But since the
variablesw and � appear only in constraints (53) and (54) of SQPRLT, such an optimal� must satisfy (44), so that
(�)
simplifies from (57) to (58). Theorem 5 states that
(�) is equal to the optimal objective value to SLP(�). Now consider Problem
G3(�) without thep inequalities (49). An optimal solution to the continuous relaxation of this reduced problem must have
zk = L�

k
fk(x) for eachk = 1, . . . p, yielding the same optimal objective value as SLP(�). Theorem 4 then gives that the

optimal objective value to the continuous relaxation of G3(�)must equal that of
(�) at every such optimal�.This completes the
proof. �

The net effect of Theorems 4–6 is to establish, for instances of QP promoting functionsfk(x) that satisfy the prescribed
conditions 1 and 2, concise linear reformulations of the form G3(�) that have tight continuous relaxations. Not only are the
formulations G3(�)more concise than G2(�) whenp<2n, but they can also promote tighter continuous relaxations. Recalling
from the discussion at the beginning of Section 4.2.2 that the continuous relaxation of SQPRLT is at least as tight as that of
QPRLT, it follows from Theorems 4 and 6 that�∗� v∗, where�∗ andv∗ are as defined in (50) and (22), respectively. Moreover,
the formulation SQPRLT will also have fewer variables and constraints than QPRLT whenp<2n, which can affect the effort
required to optimally solve Problems NSP and NP.
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Functionsfk(x) for k = 1, . . . , p havingp<2n and satisfying conditions 1 and 2 arise in practice. One instance is variable
upper bounding where certain constraints have the formxi� xj . In particular, consider an instance of Problem QP where there
exists a subset of then binary variablesx, sayx1, x2, . . . , xn1, so that the restrictions inX imply 0� x1� x2� · · · � xn1�1.
Then, instead of using the 2n1 standard product factorsxj and 1−xj for j=1, . . . , n1, we can employ then1+1 functionsfk(x),
wheref1(x)= x1, fk(x)= xk − xk−1 for k = 2, . . . , n1, andfn1+1(x)= 1− xn1 as specialized factors. Condition 1 is satisfied
since the restrictions 0� x1� x2� · · · � xn1�1 are by assumption implied byX. Condition 2a is satisfied for eachj =1, . . . , n1,

since for each suchj, we havexj = ∑j
k=1fk(x) and 1− xj = ∑n1+1

k=j+1fk(x). As each variablexj with j = 1, . . . , n1 thus
satisfies 0� xj�1, we have that condition 2b must hold true because each functionfk(x) has at most one positive term, and this
term is upper bounded by 1.
We provide below a small example to demonstrate the utility of exploiting variable upper bounding restrictions.

Example 4.2. Consider the following instance of Problem QP havingn = 3 binary variablesx and no continuous variablesy
so that the functionsl(x, y), g1(x, y), g2(x, y), andg3(x, y) reduce tol(x), g1(x), g2(x), andg3(x), respectively. (Similarly, the
upcoming functionsh1(x, y), h2(x, y), andh3(x, y) reduce toh1(x), h2(x), andh3(x), respectively, and the functions�

�
k (x, y)

reduce to��
k (x) for k = 0, . . . ,5.)

minimize − 5x1 + x2 + 0x3 + (0x2 + 0x3)x1 + (4x1 + 0x3)x2 + (2x1 − 2x2)x3
subject to x ∈ X ≡ {x ∈ S= {(x1, x2, x3) : 2x1 − 2x2 − 2x3� − 3, x1�0,−x1 + x2�0,

− x2� − 1, x3�0,−x3� − 1} : x1, x2, x3 binary}

Thus,l(x) = −5x1 + x2 + 0x3, g1(x) = 0x2 + 0x3, g2(x) = 4x1 + 0x3, andg3(x) = 2x1 − 2x2. Problem QPRLT has three
equations in (27):w1

12=w1
21,w

1
13=w1

31, andw
1
23=w1

32. Six restrictions are present in (28):w2
12=x1−w1

12,w
2
13=x1−w1

13,

w2
23 = x2 − w1

23, w
2
21 = x2 − w1

21, w
2
31 = x3 − w1

31, andw
2
32 = x3 − w1

32, with no restrictions in (29) since no variablesy

exist. The optimal objective function value to the continuous relaxation of QPRLT is−3
7, with (x1, x2, x3) = (37,

6
7,

6
7). An

optimal dual solution for the three constraints of (27) is�112= 26
7 , �

1
13= 2

7, and�123= −2
7, with the nonzero optimal duals to

the constraints in (28) being�213 = 8
7, �

2
23 = −8

7, and�221 = �231 = 2
7. Theorem 3 ensures that the optimal objective value to

Problem NP of (22) hasv∗ =−3
7, and that this value is realized when these dual values to (27) and (28) define�. The associated

representation G2(�) is as follows, where the unnecessary righthand inequalities in (14)–(17) are not listed.

G2(�) : minimize − 27

7
x1 + 1

7
x2 + 2

7
x3 + z11 + z12 + z13 + z21 + z22 + z23

subject to
24

7
x1� z11

24

7
x2 + 0x3 − 24

7
(1− x1)� z11

− 1

7
x2� z12

2

7
x1 − 2

7
x3 − 0(1− x2)� z12

− 2

7
x3� z13

4

7
x1 − 4

7
x2 − 0(1− x3)� z13

− 3

7
(1− x1)� z21

− 2

7
x2 − 2

7
x3 + 2

7
x1� z21

0(1− x2)� z22

0x1 + 0x3 − 0x2� z22

0(1− x3)� z23

− 8

7
x1 + 8

7
x2 − 4

7
x3� z23

x ∈ X



ARTICLE IN PRESS
W.P. Adams et al. /Discrete Optimization ( ) – 19

Here, by (11)–(13) we havel�(x) = −27
7 x1 + 1

7 x2 + 2
7 x3, g

�
1(x) = 24

7 x2 + 0x3, g
�
2(x) = 2

7 x1 − 2
7 x3, g

�
3(x) = 4

7 x1 − 4
7 x2,

h�
1(x)= −2

7 x2 − 2
7 x3, h

�
2(x)= 0x1 + 0x3, andh

�
3(x)= −8

7 x1 + 8
7 x2. Also, (18)–(21), withXR = S, give(L�1

1 , L�1
2 , L�1

3 )=
(247 ,−1

7,−2
7), (U

�0
1 , U�0

2 , U�0
3 ) = (247 ,0,0), (L̄�0

1 , L̄�0
2 , L̄�0

3 ) = (−3
7,0,0), and(Ū

�1
1 , Ū�1

2 , Ū�1
3 ) = (−2

7,0,
4
7).

Now consider the special product factorsf1(x)= x1, f2(x)= x2− x1, f3(x)=1− x2, f4(x)= x3, andf5(x)=1− x3, which
satisfy conditions 1 and 2. The optimal objective value to the continuous relaxation of SQPRLT is 0 with(x1, x2) = (1,1), an
integer optimal. Eqs. (53) are of the formx1−v11=0,−x1+w12−v21=0,x1−w12−v31=0,w13−v41=0,x1−w13−v51=0,

w12 − v12 = 0, x2 − w12 − v22 = 0, −v32 = 0, w23 − v42 = 0, x2 − w23 − v52 = 0, w13 − v13 = 0, −w13 + w23 − v23 = 0,

x3 − w23 − v33 = 0, x3 − v43 = 0, and−v53 = 0, with no equations present in (54). An optimal dual solution has the nonzero

values�112 = 2, �122 = −2, and�132 = −2. These computed values of�1give by (45) and (46) that��
0(x) = −2x1 − 2x2,

��
1(x) = ��

3(x) = ��
4(x) = ��

5(x) = 0x1 + 0x2 + 0x3, and��
2(x) = 2x1 − 2x2 − 2x3. To form G3(�), solve the optimization

problems in (47) fork=1–5 toobtain(L�
1,L

�
2,L

�
3,L

�
4,L

�
5) = (0,−3,0,0,0)and(U�

1,U
�
2,U

�
3,U

�
4,U

�
5) = (0,0,0,0,0).

The following instance of G3(�) results, having an optimal objective value of 0 to the continuous relaxation so that�∗ = 0 in
(50) as asserted in Theorem 6.

G3(�) : minimize − 3x1 + 3x2 + z1 + z2 + z3 + z4 + z5

subject to 0x1� z1

0x1 + 0x2 + 0x3 − 0(1− x1)� z1

− 3(x2 − x1)� z2

2x1 − 2x2 − 2x3 − 0(1+ x1 − x2)� z2

0(1− x2)� z3

0x1 + 0x2 + 0x3 − 0x2� z3

0x3� z4

0x1 + 0x2 + 0x3 − 0(1− x3)� z4

0(1− x3)� z5

0x1 + 0x2 + 0x3 − 0x3� z5

x ∈ X

The chosen instance of QP permits further reductions in G2(�) and G3(�) (e.g.z22 = 0 can be substituted from G2(�) and
z1 = z3 = z4 = z5 = 0 can be substituted from G3(�)). Regardless of such substitutions, transformations of variables in terms
of the slacks can be used to reduce the numbers of structural constraints in both programs. In any case, G3(�) is more concise
than G2(�) and also provides a tighter relaxation.

Other functional formsfk(x) that satisfy conditions 1 and 2, and naturally arise in practice, result from generalized upper
bounding restrictions. Here, the setX implies that a subset of then variablesx, sayx1, x2, . . . , xn1, satisfies

∑n1
j=1xj�1. Then

we can use then1 + 1 functionsfk(x), with fk(x) = xk for k = 1, . . . , n1 and withfn1+1(x) = 1− ∑n1
j=1xj as specialized

product factors. A similar situation arises with a special order set restriction of the form
∑n1

j=1xj = 1, since such an equation
reduces to a generalized upper bounding constraint upon treating any selected binary variable as a slack. Again, the special
structure promotes a more concise formulation with a potentially tighter continuous relaxation.

5. Computational experience

Our formulations are based on a rewrite of the objective of Problem QP, together with the generation of surrogates of the
constraints in QPRLT. The surrogates are motivated by ideas in[11] to maintain equivalent representations. But a question that
arises is the computational performance of G2(�) relative to the concise Problem G2 and to the larger Problem QPRLT. In
particular, we are interested in the CPU times needed for Problems G2(�) and QPRLT within a branch-and-bound framework.
Although Theorem 3 tells us that G2(�) and QPRLT have the same relaxation value when all variables are free, strength in
the former can be forfeited when variables are fixed to binary values. In this section, we provide preliminary computational
experience to demonstrate the potential of G2(�) and the surrogates used in constructing this formulation.
We chose to conduct our test runs on the 0-1 quadratic knapsack problem. This problem has applications in capital budgeting,

and has historically attracted research interest. It is a special case of QP where there are no continuous variablesy and the setS
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Table 1
Computational performance

Problem G2 Problem QPRLT Problem G2(�)

n �(G2) Nodes CPU �(QPRLT) Nodes CPU �(G2(�)) Nodes CPU
Gap Gap Gap

10 23.21 0 0 8.88 0 0 8.88 8 0
20 28.05 45 0 6.27 7 0 6.27 44 0
30 30.70 421 0 3.69 24 1 3.69 102 0
40 31.19 3899 2 3.87 185 15 3.87 826 1
50 29.65 7043 4 3.13 132 24 3.13 771 1
60 31.58 146,430 119 2.47 470 129 2.47 2559 3
70 31.71 92,967 99 2.60 662 333 2.60 4465 5
80 32.57 1,232,794 1519 2.77 877 680 2.77 8676 9
90 * * * 3.34 2529 2673 3.34 57,730 73
100 * * * 2.93 1266 2059 2.93 59,001 94

in (23) consists of a single structural inequality together with the bounding restrictions0� x� 1. It takes the form

QKP : minimize l(x) +
n∑

j=1

gj (x)xj

subject to x ∈ X ≡ {x ∈ S : x binary}
with l(x) = ∑n

j=1cj xj , gj (x) = ∑n
i=1,i �=jCij xi∀j = 1, . . . , n, andS ≡ {x : ∑n

j=1aj xj� b, 0� xj�1∀ j = 1, . . . , n}.
Three formulations of QKP were submitted to the mixed-integer solver of CPLEX 8.0. The first is Problem G2, where we

removed the righthand inequalities of (4) and (5), and made the substitution of variablessj = zj − L1
j
xj for all j in order to

have onlyn new structural restrictions. These modifications are consistent with the observations at the end of Section 2.1, and
are implemented for computational experience. The second is QPRLT, adjusted per the remarks in the closing paragraph of
Section 2.2. We substituted the variablesw1

ij
for all (i, j), i > j, andw2

ij
for all (i, j), i �= j, out of the problem, and removed

constraints (27), (28), and (30) to make this version as streamlined and competitive as possible. (The variables�1
ij
and�2

ij
and the

constraints (29) are not present since there are no continuous variables in QKP.) Finally, we solved Problem G2(�) without the
righthand inequalities of (14)–(17), and upon making the substitution of variabless1

j
= z1

j
−L�1

j
xj ands

2
j

= z1
j

− L̄�0
j
(1− xj )

for all j. Consistent with Theorem 3, the vector� was chosen as an optimal set of dual values to (27) and (28) of the relaxation
of QPRLT.
The input for QKP is as follows. Motivated by[7,10,21], aj for all j are integers taken from a uniform distribution over the

interval [1,50], andcj for all j andCij for all (i, j) with i < j are integers taken from a uniform distribution over the interval

[1,100], with Cij set toCji for all i > j.We letb = 1
2
∑n

j=1aj to help ensure a consistent level of difficulty.
All tests were implemented in ANSI C++, compiled using Visual C++.Net, and executed on a Dell Workstation 340 equipped

with a 2.53GHz Pentium 4 processor and 1.5G of PC800 ECC RDRAM running Windows XP Professional. The formulations
were modelled using ILOG Concert Technology 1.1.
Results are reported inTable 1in terms of averages of ten problems, so that a total of 300 test problems are summarized. The

first column records the numbers of binary variablesn for 10–100 in increments of 10. The next three columns consider Problem
G2, and give the gaps between the optimal binary objectiveOPTto QKP and the optimal values�(G2) to the relaxations of G2 as
a percentage ofOPT, computed as(OPT −�(G2))/OPT ×100, the numbers of nodes enumerated, and the total CPU execution
times in seconds. The next three columns give the same information for QPRLT for the same test problems, with the gaps between
OPTand the optimal values�(QPRLT) to the relaxations of QPRLT computed as(OPT − �(QPRLT))/OPT × 100. The final
three columns repeat this same information for G2(�). The CPU times represent all effort, including that required to compute
the boundsL1

j
andU0

j
via the minimization problems in (6) and the maximization problems in (7), respectively, for Problem

G2, and that for solving the relaxation of QPRLT (using CPLEX’s Crossover Barrier Method with default settings) to obtain the
desired� vector as well as to computeL�1

j
, U�0

j
, L̄�0

j
, andŪ�1

j
via the associated programs in (18)–(21) for G2(�). An asterisk

indicates the average solution time for the ten sample problems exceeded the 35,000 CPU second limit.
Three observations are obvious from the results ofTable 1. First, Problem QPRLT has a significantly tighter relaxation value

than ProblemG2. Column two shows the gaps for ProblemG2 ranging from 23.21% to 32.57%while columns five and eight give
the gaps for QPRLT ranging from 2.47% to 8.88%. (Columns five and eight are identical by Theorem 3.) Second, Problem G2
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takes less total CPU time thanQPRLT for problems up to sizen=70, but requiresmore time forn�80.Though ProblemQPRLT
examines considerably fewer nodes than G2 for all values ofn�20, the extra effort required to solve the tighter relaxations
is not justified for the smaller-sized problems. Third, and most important to this study, Problem G2(�) outperformed the other
two formulations, never requiring more CPU time than either of these alternatives. Some strength of the relaxation values for
G2(�) was lost beyond that of QPRLT as indicated by the numbers of nodes enumerated in columns six and nine, but the effort
to examine the extra nodes was more than offset by the simpler bound calculations of G2(�), as is seen by comparing columns
seven and ten.
The results ofTable 1indicate that G2(�) is competitive with Problems G2 and QPRLT. Of course, the performance can

be influenced by various factors, including problem type, input data, and strength of the relaxations of QPRLT. But the ad-
vantages to computing surrogates of constraints of QPRLT is apparent, as a means of balancing problem size and relaxation
strength.

6. Conclusions

A general strategy is presented for linearizing mixed 0-1 quadratic programs so as to capture the desirable properties of
concise size and tight relaxation strength within a single model. To accomplish this, two well-known linearization methods
are reviewed and combined: the classical method of[11] and the level-1 representation of the reformulation-linearization
technique (RLT) found in[23–25]. The first such method generates concise programs while the second promotes tight lin-
ear programming relaxations. Our study begins by enhancing the formulations in[11] using a conditional logic argument
of [19,26] to adjust certain constraint coefficients, and a rewrite that alters the form of the objective function using a vari-
able substitution based on binary identities. Both these enhancements are designed to strengthen the relaxation
value.
The key observation motivating our new formulations is that the programs in[11], after applying the enhancements of

conditional logic and objective rewrite, can be expressed as a type of surrogate dual of a Lagrangian subproblem of the level-1
RLT representation.Thedualized constraints define theobjective function rewrite, and the subproblempossessesablock-diagonal
structure which inherently recognizes the strengthening due to conditional logic. Two surrogate constraints per subproblem block
ensure an equivalent linearization. The objective rewrite and the surrogate constraints that combine to yield the tightest possible
relaxation value are defined in terms of a computed optimal dual solution to the continuous relaxation of the level-1 RLT
formulation, giving the resulting formulation the relaxation strength of the level-1 program.
Special structures within the constraints are identified that promote smaller formulations than the standard approach. One such

structure arises in the general class of quadratic set partitioning problems. For this class, the level-1 RLT strength is available
within a formulation of the type[11] enhanced via conditional logic, upon making simple transformations that strategically
split, for each(i, j) pair with i < j , the objective coefficients on the product termsxixj andxj xi . Here, the dualized constraints
define an “optimal” split. Other special structures include variable and generalized upper bounding. For these type restrictions,
the special-structure RLT theory of[26] leads to more concise, tighter level-1 RLT representations than the standard RLT, which
in turn motivates more concise and tighter versions of[11].
The results in this paper are of theoretical interest because they tie together two different linearization methods, and because

they demonstrate how to combine the positive attributes of both methods within one formulation. But it is important to be able
to use these new programs to more effectively solve nonlinear mixed 0-1 problems. We presented preliminary computational
experience on the 0-1 quadratic knapsack problem to demonstrate the potential of such formulations, and believe that improved
algorithms for general and specially structured nonlinear programs can be devised. As an example, formulation[11] tends not
to work well on the quadratic assignment problem (QAP) due to the weak relaxation strength[16]. The level-1 RLT, however,
has promoted state-of-the-art exact solution algorithms[14], even though the larger linear representations must be repeatedly
solved. The linear formulation found herein for the QAP, which is a special case of the structured quadratic set partitioning
problem, realizes the strength of the level-1 representation with greatly reduced size. Our ongoing research includes designing
an exact algorithm for the QAP that uses these concise representations while exploiting the assignment structure in the branching
process.

Acknowledgements

The first two authors would like to thank the Office of Naval Research for partially supporting this research under grant
numbers N00014-97-1-0784 and N00014-00-1-0816 under their Affordability Program.



22 W.P. Adams et al. /Discrete Optimization ( ) –

ARTICLE IN PRESS

References

[1] W. Adams, R. Forrester, A simple recipe for mixed 0-1 linearizations, Operations Research Letters, to appear.
[2] W. Adams, T. Johnson, Improved linear programming-based lower bounds for the quadratic assignment problem, DIMACS Ser. Discrete

Math. Theoret. Comput. Sci. 16 (1994) 43–76.
[3] W. Adams, H. Sherali, A tight linearization and an algorithm for zero–one quadratic programming problems, Management Sci. 32 (1986)

1274–1290.
[4] W. Adams, H. Sherali, Linearization strategies for a class of zero–one mixed integer programming problems, Oper. Res. 38 (1990) 217–

226.
[5] W. Adams, H. Sherali, Mixed-integer bilinear programming problems, Math. Programming 59 (1993) 279–305.
[6] J. Benders, Partitioning procedures for solving mixed-variables programming problems, Numer. Math. 4 (1962) 238–252.
[7] A. Billionnet, F. Calmels, Linear programming for the 0-1 quadratic knapsack problem, European J. Oper. Res. 92 (1996) 310–325.
[8] R. Burkard, T. Bönniger,A heuristic for quadratic Boolean programswith applications to quadratic assignment problems, European J. Oper.

Res. 13 (1983) 374–386.
[9] R. Burkard, U. Derigs,Assignment and matching problems: solution methods with FORTRAN-programs, Lecture Notes in Economics and

Mathematical Systems, Vol. 184, Springer, Berlin, 1980, pp. 99–148.
[10] A. Caprara, D. Pisinger, P. Toth, Exact solution of the quadratic knapsack problem, INFORMS J. Comput. 11 (1999) 125–137.
[11] F. Glover, Improved linear integer programming formulations of nonlinear integer programs, Management Sci. 22 (1975) 455–460.
[12] F. Glover, An improved MIP formulation for products of discrete and continuous variables, J. Inform. Optim. Sci. 5 (1984) 469–471.
[13] P. Hahn, T. Grant, Lower bounds for the quadratic assignment problem based upon a dual formulation, Oper. Res. 46 (1998) 912–922.
[14] P. Hahn, W. Hightower, T. Johnson, M. Guignard-Spielberg, Tree elaboration strategies in branch and bound algorithms for solving the

quadratic assignment problem,Yugoslav J. Oper. Res. 11 (2001) 41–60.
[15] T. Johnson, New linear programming-based solution procedures for the quadratic assignment problem, Ph.D. Dissertation, Department of

Mathematical Sciences, Clemson University, 1992.
[16] L. Kaufman, F. Broeckx, An algorithm for the quadratic assignment problem using Benders’ decomposition, European J. Oper. Res. 2

(1978) 207–211.
[18] J. Krarup, P. Pruzan, Computer aided-layout design, Mathematical Programming Study, Vol. 9, North-Holland Publishing Company,

Amsterdam, 1978, pp. 75–94.
[19] R. Lougee-Heimer, W. Adams, A conditional logic approach for strengthening mixed 0–1 linear programs, Ann. Oper. Res., to appear.
[20] L. Lovász, S. Schrijver, Cones of matrices and set-functions and 0–1 optimization, SIAM J. Optim. 1 (1991) 166–190.
[21] P. Michelon, L. Veilleux, Lagrangean methods for the 0-1 quadratic knapsack problem, European J. Oper. Res. 92 (1996) 326–341.
[22] C. Nugent, T. Vollmann, J. Ruml, An experimental comparison of techniques for the assignment of facilities to locations, Oper. Res. 16

(1968) 150–173.
[23] H. Sherali, W. Adams, A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming

problems, SIAM J. Discrete Math. 3 (1990) 411–430.
[24] H. Sherali, W. Adams, A hierarchy of relaxations and convex hull characterizations for mixed-integer zero-one programming problems,

Discrete Appl. Math. 52 (1994) 83–106.
[25] H. Sherali, W. Adams, A Reformulation–Linearization Technique for Solving Discrete and Continuous Nonconvex Problems, Kluwer

Academic Publishers, Norwell, MA, 1999.
[26] H. Sherali, W. Adams, P. Driscoll, Exploiting special structures in constructing a hierarchy of relaxations for 0–1 mixed integer problems,

Oper. Res. 46 (1998) 396–405.


	Comparisons and enhancement strategies for linearizing mixed 0-1 quadratic programs
	Introduction
	Mathematical background
	Glover's method
	Enhancement 1: strengthening Lj and Uj
	Enhancement 2: rewriting the objective function

	The RLT

	Combining conciseness and strength
	Exploiting special structure
	Pure 0-1 programs with equality restrictions
	Structured binary functions
	Glover's method
	Special-structure RLT
	Enhancing Glover's method with the RLT


	Computational experience
	Conclusions
	Acknowledgements
	References


