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Abstract

We present a linearization strategy for mixed 0-1 quadratic programs that produces small formulations with tight relaxations.
It combines constructs from a classical method of Glover and a more recent reformulation-linearization technique (RLT). By
using binary identities to rewrite the objective, a variant of the first method results in a concise formulation with the level-1 RLT
strength. This variant is achieved as a modified surrogate dual of a Lagrangian subproblem to the RLT. Special structures can be
exploited to obtain reductions in problem size, without forfeiting strength. Preliminary computational experience demonstrates
the potential of the new representations.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A standard practice in optimizing a mixed 0-1 quadratic program is to employ an initial linearization step that transforms the
nonlinear problem into an equivalent linear form. For our purposes, two problems are said to be equivalent if they permit the
same set of solutions in the original variable space and the objective function values equal at the corresponding solutions. The
problem then becomes to optimize the resulting mixed 0-1 linear program. The motivation is to be able to solve the continuous
relaxation of the linear form as a linear program so that a computationally inexpensive bound on the optimal objective function
value to the nonlinear problem is available.

In order to achieve linearity, auxiliary variables and constraints are employed, with the newly defined variables replacing
predesignated nonlinear expressions, and with the additional constraints enforcing that the new variables equal their nonlinear
counterparts atall binary realizations of the 0-1 variables. The continuous relaxations of these representations tend to be repeatedly
solved within enumerative frameworks as a means of fathoming nonoptimal or infeasible solutions. Of marked importance is
that, although two different mixed 0-1 linear formulations may equivalently depict the same nonlinear problem, their sizes and
continuous relaxations can drastically differ depending on the manner in which the auxiliary variables and constraints are defined.
This leads to two key considerations of reformulation size and strength.
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From a computational point of view, there are tradeoffs between these considerations. The smaller formulations tend to
promote inexpensive, though relatively weaker bounds. Certain larger representations are known to provide tighter bounds,
though more effort is required to compute them. Generally speaking, formulations whose continuous relaxations provide tight
approximations of the convex hull of solutions to the original nonlinear problem outperform the weaker representations. The
“trick” is to obtain representations that balance the tradeoffs between size and strength so that effective bounds can be cheaply
computed.

A classical linearization strategy that promotes very concise mixed 0-1 linear representations of mixed 0-1 quadratic programs
is due to Glovef11]. Given such a problem havingbinary variables, this method achieves linearity through the introduction
of n unrestricted continuous variables and lthear inequalities. As shown ifl], a straightforward variant requires orty
new nonnegative continuous variables antew constraints. The problem conciseness results from the way in which each new
continuous variable replaces the product of a binary variable and a linear function.

A more recent reformulation—linearization technique (RLT) of Sherali and Ada&24]is dedicated to obtaining formula-
tions that promote tight approximations of discrete programs, with limited regard to problem size. The RLT provides for mixed
0-1 linear programs im binary variables, ain + 1)-level hierarchy of progressively tighter polyhedral outer-approximations
of the convex hull of solutions. These relaxations span the spectrum from the usual continuous relaxation at level O to the
convex hull at leveh. The RLT is identically applicable to quadratic programs, again providing a hierarchy of formulations.

We focus in this paper on the level-1 formulation, which was originally applied to mixed 0-1 quadratic programs in the ear-
lier works of [3,4], with computational experience reported[8]. The strength of the RLT is due to the strategic manner

in which the products of variables and constraints are computed, and in the substitution of a continuous variable for each
product term.

A linearization of Lovasz and Schrijv§20], when applied to pure 0-1 quadratic programs, produces the same representation
as the level-1 RLT. Thus, certain relationships we will establish bet{#&dhand[11] encompasf0] as well.

Returning to the method of Glov§t1], depending on the manner in which the objective function to the original quadratic
program is expressed, the strength of the continuous relaxation can vary. We show by first rewriting the objective function using
simple binary identities, and then applying the idea of Glover to replace select nonlinear expressions with continuous variables,
that concise formulations having the relaxation value of the level-1 RLT can be obtained. Thus we effectively combine the
advantages of conciseness and strength within a single program.

Our analysis expresses a varianfbf] as a type of surrogate dual on a Lagrangian subproblem of the level-1 RLT represen-
tation; we first solve the level-1 RLT formulation as a linear program, and then use a subset of the optimal dual values to place
specially designed equality restrictions into the objective function in such a manner that the subproblem has a block diagonal
structure. These dualized constraints are the binary identities that define the rewritten objective function. The constraints in each
subproblem block are then surrogated to obtain a variafitidfwith the strength of the level-1 RLT program. Two surrogate
constraints per block ensure an equivalent linear representation. We further show how special structures in the constraints can be
exploited to obtain reductions in problem size. These structures include set partitioning, variable upper bounding, and generalized
upper bounding. Our computational experience indicates the overall promise of such an approach and, in particular, the utility
of computing surrogates of the RLT constraints.

2. Mathematical background

We provide in this section limited mathematical background and notation that is needed to explain the research. In particular,
we describe the linearization ff1] and the RLT 0f23,24]
To establish notation, we present the general form of a mixed 0-1 quadratic program, referred to as Problem QP, below.

n
QP: minimize I(x,y) + Z g (X, Y)x;
j=1
subject to (X,y) € X = {(X,y) € S: X binary}

Here,S denotes a polyhedral set in theliscrete variableg andm continuous variableg, and/(x, y) andg; (x, y) for all j are
linear functions in these same variables. We assume without loss of generality fgrteath; (x, y) is not a function of the

variablex ; sincesz =x; and that it does not contain a term of degree 0. Throughout, all indices run fromuhtess otherwise

stated, the seX® is used to denote any relaxationXin the variablegx, y), and the se§ implies0< x< 1.
The methods of11] and[23,24] are examined relative to Problem QP in Sections 2.1 and 2.2 respectively.
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2.1. Glover’'s method
The procedure if11] derives an equivalent mixed 0-1 linear representation of Problem QP by defining a new continuous

variablez; for each of then productsg; (x, y)x; found in the objective function. It further introduces, for egctour new
inequalities to enforce that; equalsg; (x, y)x; at all binary realizations of. When applied to QP, Problem G results.

n
G : minimize I(X,y) + Z Zj

j=1
subjectto L;x;<z;<Ujx; Vj (1)
gy —Ujl—x)<zj<gjxy) —L;jL—x;) Vj @)
X, y) € X

Asin[11], for eachj, L; andU; are lower and upper bounds, respectively, on the linear functipps y) over(x, y) € X. Such
bounds can be calculated as

L;=min{g;(x.y): (x,y) € Xk} and
Uj =maxig;(x.y) : (x.y) € XK) 3)

where these problems are assumed bounded.

Inequalities (1) and (2) enforce the following equivalence between Problems QP and G: &ppjiig feasible to Problem
QP if and only if the pointx, y, 2) with z; = g ; (X, y)x; for all j is feasible to Problem G with the same objective value. Given
any(x,y) € X, if somex; =0, then (1) ensures; = 0 with (2) redundant. If some; = 1, then (2) ensures; = g; (x, y) with
(1) redundant. In either casg; = g (X, y)x; for eachj.

Two simple observations lead to straightforward modifications of Problem G that reduce the problem size. First, since the
intent is to use Problem G to compute an optimal solution to QP, the equivalence between these two problems need only hold at
optimality. Consequently, we can eliminate the righthand inequalities of (1) and (2), and yet preserve the following equivalence:
a point(x, y) is optimalto Problem QP if and only if the poirik, y, ) with z; = g; (X, y)x; for all j is optimalto Problem G
with the same objective value. This observation was pointed ofif]jrwhere it was also noted, provid&lic XX, that the
optimal objective function value to the continuous relaxation of Problem G (obtained by removixdithery restrictions) is
unaffected by this removal of constraints. Second, using G[@&rthe number of structural constraints can be further reduced
via either the substitution of variableg=z; — Ljx; ors; =z; — g;(X,y) + U;(1 — x;) for eachj. Such a substitution will
replacen structural inequalities with the same number of nonnegativity restrictions, so that the overall procedure requires only
n new nonnegative variables anghew structural constraints.

Before proceeding to Section 2.2 and reviewing the RLT procedure, we present below two enhancefiéhthab can
tighten the continuous relaxation. The first demonstrates how to strengthen the iquamnist; computed in (3) and used in
(1) and (2). The second introduces a rewrite of the objective function to QP using binary identities.

2.1.1. Enhancement 1: strengthenibg and U ;

The boundd. ; andU; computed in (3) can directly impact the optimal objective function value to the continuous relaxation
of Problem G. We desire to increase the values of the lower bolindsnd decrease the values of the upper bowigso
potentially tighten the continuous relaxation. To do so, we employ a conditional logic argument introd[&&jcird expanded
in [19].

Letus begin with the lefthand inequalities of (1). For any gi¢ine associated inequality is essentially enforcing nonnegativity
of the product of the nonnegative expressionandg; (X, y) — L; as

xjlgj(x,y) = Lj1=0

whereL ; is as defined in (3). The variabtg in (1) replaces the quadratic termg ; (x, y) above. The concept of conditional
logic applied to this quadratic inequality is that, since equality must hold under the condition thd regardless of the value
of g;(X,y), we only need ensure that the second term in the expression is nonnegative yhen Using this logic, we can

replace the bound ; with L} =min{g; (X, y) : (X,y) € xR, xj = 1}. Anidentical argument holds for the righthand inequalities
of (1) since for eaclpthe associated inequality can be viewed as

x;[U; — g (. Y)]=>0.

Here, the strengthened upper boundsgx, y), saijl, can be computed as in (3) with the additional restriction that 1.



4 W.P. Adams et al./Discrete Optimizatitid (11a1) Ini—ii

Similarly, by observing for eagftthat the righthand and lefthand inequalities in (2) can be obtained by enforcing nonnegativity
of the products of the nonnegative expressionsxy; with each ofg ; (x, y) — L; andU; — g (x, y) respectively, we obtain that
the corresponding bounds; andU; can be analogously tightened, this time under the conditional logic restriction;thad.
We use the notation(j? andUJ(.J to represent these new bounds. The net result is to reformulate Problem G as G2 below.

n
G2: minimize [(X,Y) + Z Zj

j=1

subject to Lix;<zj<Ulx; Vj (@)
gy — U —x)<zj<giy —LYL—x)) Vj ()
x,y) e X

Here,

L} =min{g;(x.y) : (x,y) € Xk, x; =1} and

Uj1 =maxXg;(X,y) : (X,y) € XR’xj =1 ©
and

L9 =min{g;(x,y) : (x,y) € XR, x; =0} and
U9 =maxg;(x.y) : (x,y) € XK, x; =0}. (@)

By definition we have thaLl; Lj, L0.> Lj, Ulg Uj, andU(.)g Uj for eachj. Of course, if for som¢the problems in either
(6) or (7) have no solution then the variablgcan be fixed to a binary value in QP, with QP infeasible if both (6) and (7) have
no solution.

Since Problem G2 affords a potentially tighter relaxation than G without additional effort, the remainder of this paper will focus
on comparisons to G2. We note that although the righthand inequalities of (1) and (2) of Problem G can be eliminated without
altering the optimal objective function value to G or its continuous relaxation, proBded<®, the analogous argument for
G2 does not hold. While binary equivalence between Problems QP and G2 will continue to hold when the righthand inequalities
of (4) and (5) of G2 are eliminated, the continuous relaxation of G2 could be weakened.

The example below demonstrates that the relaxation of Problem G2 can give a tighter bound than that of G, and that the removal
of the righthand inequalities of (4) and (5) can weaken the continuous relaxation of G2 (though never beyond the relaxation
value of G).

Example 2.1. Consider the following instance of Problem QP having 2 binary variablex and no continuous variablgso
that the functiong(x, y), g1(X, y), andga(x, y) reduce td(x), g1(x), andgo(x), respectively.

minimize 3¢ — 3x2 + (—1x)x1 + (Ox1)x2
subjectto x € X = {x € S={(x1,x2) : 2x1 — 2x2> — 1, —x1 + x2>0,x1>0,
— x> — 1} : x1, xp binary}

Thus](xX)=3x1—3x2, g1(X)=—1x2, andga(x)=0x1 in QP. We firstcompute the bounds;, L2)=(—1, 0) and(U1, U2)=(0, 0)

as prescribed in (3) withK ® =S, and then construct Problem G. The optimal objective value to the continuous relaxation of G is
—2. Next form Problem G2 by computing the bourtd$, L)=(~1. 0) and(U}, U3)=(~1. 0)asin (6),andL?, L) =(~3.0)
and(Uf, Ug) = (0, 0) as in (7), again usin® = S. The optimal objective value to the continuous relaxation of G21s5,

which exceeds the value2 obtained using G. However, if we eliminate the righthand inequalities of (4) and (5) in G2, the
optimal objective value to the continuous relaxation of G2 is weakene@to

2.1.2. Enhancement 2: rewriting the objective function

The manner in which the objective function to Problem QP is expressed can affect the relaxation value of Problem G2.
Indeed, even a minor adjustment such as the recording of a quadratie;ter@sx ; x; can alter the value. The below example
demonstrates such an alteration.
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Example 2.2. Consider the following instance of Problem QP having 4 binary variablex and no continuous variablgs

minimize — 4x1 + x2 + x4 + (5x2 — x3 — 2x4)x1 + (—2x3)x2 + (x4)x3 + (0)x4

subject to x € X = {x € S= {x: 0< x< 1} : x binary}
The functions/(x) andg; (x) for j = 1,..., 4 are accordinglyl/(x) = —4x1 + x2 + x4, g1(X) = 5x2 — x3 — 2x4, g2(X) =
—2x3, g3(X) = x4, andga(x) = 0. Programs (6) and (7) give.}, L1, L1, LY = 9. L9. L9, LY = (-3, -2,0,0) and(U1,
Ur U3 U =W, 02,09, U) = (5,0,1,0) sothat Problem G2 (and also Problem G for this instance) becomes the below.

minimize —4x1+x2+x4+z1+z22+23+24
subject to — 3x1<z1<5x1
— 2xp< 2p< Oxp
Ox3<z3< Ixg
0x4< 24< Oxg
5xp —x3 —2x4 — 5(1 — x1)<z1< 5 —x3 — 2x4 + 3(1 — x7)
—2x3—0(1 — x2)<z2< — 203+ 2(1 — x2)
x4 — 11— x3)<z3<xq — 0(1 — x3)
0—0(1—x4)<z24<0—-0(1 — x4)
0< x< 1, x binary

(Observe that4 = 0 at all feasible solutions so that this variable could have been eliminated from the problem.) The op-
timal objective function value to the continuous relaxation—i%l, with an optimal solution(x1, x2, x3, x4, 21, 22, 23, 24)
=(3.0,1,0,-3.0,0,0.

If we add the quantityg (x1x2 — x2x1) to the objective function so that the coefficient.onin g1(x) decreases té and
the coefficient ofx1 in go(x) increases ta3, we getUi = UY = U3 = U9 = 3, with all other lower and upper bounds
unchanged. The continuous relaxation to the resulting linearization has the optimal objective functionSalith optimal
solutions(x1, x2, x3, x4, 21, 22, 23, 24) =(1,0,1,0,-1,0,0,0), (1,0,0,1,-2,0,0,0), and(1,0,1,1, —3,0, 1, 0). As they
are integral, these points are also optimal to Problem QP.

In light of the above example, the question arises as to how best express the objective function to QP before applying the
method off11]. In fact, we can also consider quadratic terms that involve complentgrdéthe binary variables ;, where
xj =1- x;. Specifically, suppose we add multiples of the binary identities

xpxj=xjx; Y, j)i<] (8)
XiXj=x; —xjx; NG, j)i#] 9)
yiXj=yi—yixj Y@ j,i=L....m (10)

to the objective function using suitably dimensioned vecidrs2, anda? , respectively, to obtain an equivalent problem to QP
of the below form:

n n
QP(a) : minimize 1*(x,y) + Z g;‘(x, y)xj + Z hj?(x, V)X
j=1 j=1
subject to (x,y) € X

where
n n m
POy =106+ 3 | Y i+ adi | 1)
j=1\ = i=1
i#j
j—1 n n m
XY =gy = Yy + Y ahxi =Y el =y ol V) 12)
i=1 i=j+1 i=1 i=1

i#]
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and

n m

WGy ==Y afx =y ady V). (13)
%;1. i=1
=]

The basic premise ¢§11] can be applied to each quadratic expresg;fm, Y)x andhj?(x, y)x ;. Ofcourse, in order to linearize
the newly introduced expressioh$(x, y)x ;, an additionah continuous variables ana4nequalities beyond the method[dfl]
are employed. As we will see in Section 3, however, the resulting formulations afford very tight linear programming bounds that
relate to the level-1 RLT relaxation value, and certain of thesdqualities can be removed from consideration. Interestingly,
Section 4.1 identifies special structures for which these additional variables and constraints are not needed to achieve the level-1
relaxation strength. For now, let us replace the quadratic expre%?@ng/)xj, andhj?(x, y)X; with continuous variablesjl.

andz?, respectively, and definex8inear inequalities to ensure that each of these variazt;iemdzi equals their respective
guadratic expression at all binary realizationxofhe problem below emerges.

n n
G2(a) : minimize 1*(x,y) + Z z]l + Z Z?

j=1 j=1
subject to L¥x;<zf< UMy V) (14)
g2, y) — U1 - x)<f<gliny — LPA—xj) V) (15)
LPA-x)<B<0PA-x)) V) (16)
h3y) — U < B<no0y) — Lot Vj 17)
x,y) e X

Here, for eacly, the valuesLjF1 andU]?‘1 are computed as in (6) as

L2t =min{g%xy) : (¢, y) € XR, x; =1} and

U}‘-’l =max(ghx.y) : 06 y) € XK, xj =1) (18)
while the vaIuesL?O and U]?‘O are computed as in (7) as

L?O =min{g%(x,y) : (x,y) € X, x; =0} and

U;‘o =maxgf(x.y) : (x,Y) € XR x; =0} (19)
Similarly, for eachj, the valuei;F1 and[/fl are computed as

D;?l = min{hj?(x, y) (X, y) € xR, xj=1} and

071 =max(h%(x,y) : (. y) € XX, x; =1 (20)
with the valuesij?o andl_/;‘.‘O computed as

Z‘;O = min{hj?(x, y) : (x,y) e XK, x; =0} and

U;‘O =maxth%(x,y) : (x,y) € XK, x; =0}, (21)

The notation QRx) and G2«), and the superscriptused throughout these problems as well as in (18)—(21), are to denote their
dependence on the valuesoof (o2, «2, «3). We elected to substituf = 1 — x; for all j so that the variables; do not appear
in (16), (17), (20), or (21).

Regardless of the chosen valuespthe mixed 0-1 linear program &® is equivalent to the quadratic program QP, with the
optimal objective value to the continuous relaxation ofé&2sayv(«), providing a lower bound on the optimal objective value
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to QP. The task is to determine arthat provides the maximum possible lower bound. That is, we wish to solve the nonlinear
program

n n
NP : v* = max v(@) = min § 1*(x, y) + Yo+ Y 5 (1917, (x.y) €Sy (22)
j=1 j=1

In Section 3, we solve Problem NP by comparing it to the level-1 RLT formulati¢®324], reviewed in the following section.
2.2. The RLT

The RLT produces, for mixed 0-1 linear and polynomial programs, a hierarchy of successively tighter linear programming
approximations. At each level of the hierarchy, the linear problem is equivalent to the nonlinear program whémtrg
restrictions are enforced, but yields a relaxation when the binary restrictions are weak@sed<d. At the highest level
n, wheren represents the number of binary variables, the linear program is exact in that the feasible region gives an explicit
description of the convex hull of solutions to the nonlinear program, with the linear objective function equalling the original
nonlinear objective at each extreme point solution. Consequently, at this highest lexd&lirthey restrictions can be equivalently
replaced byd< x< 1.

The RLT consists of the two basic stepsreformulationand linearization The reformulation step generates redundant,
nonlinear inequalities by multiplying the problem constraints by product factors of the binary variables and their complements,
recognizing and enforcing that = x; for each binary variable ;. The linearization step recasts the problem into a higher
variable space by replacing each distinct product with a continuous variable. The hierarchical levels are defined in terms of the
product factors employed, with the individual levels dependent on the degrees of these factors. We concern ourselves in this
paper with the (weakest) level-1 formulations, originally appeariri§,#]. For a thorough description of the basic RLT theory,
the reader is referred {@3,24] with a detailed overview of the various applications and extensiofb5in

Let us construct the level-1 RLT representation of Problem QP. Suppose, without loss of generality, that the polyt&dral set
is given by

n m
S=1(YV: Y arxi+ Y dyyi=b Vr=1....R (23)
i=1 i=1

and that the linear functions; (x, y) for all j are expressed as follows:

n m

gy =Y Cijxi+y Dijyi Vji=1...,n. (24)
i=1 i=1
i

The reformulation step multiplies each inequality definigy each binary variable; and its complementl — x;) for all
Jj=1,...,n, substituting throughou»tjz =x; forall j. The linearization step then substitutes a continuous variable for each

product in the objective function and constraints, in this case Ieu‘dz'ﬂ;lg: xixjforalli=1,....,n,i #j, andyl.l/. =y;x; forall
i=1,...,m. We choose here to implement additional substitutions found wjg8(24] In particular, we Ietul.zj =Xx; — wl.lj

foralli=1,...,n,i #j, andyizj =y; — “/ilj foralli=1, ..., m throughout each constraint which was multiplied kL& x ;)

factor, and then explicitly enforce these substitutions as constraints. Clearly, we haw%jthawjl.i forall (i, j),i < j, and so
these restrictions are also enforced, resulting in the following program:

n n m
QPRLT: minimize 10,y)+ Y | Y Cijwl+ Y Dijv};

j=1 [IZL i=1
n m
subject to Zariw}j + Z dr,-yl:-l'j2 (br —apj)xj Y@, j), r=1...,R (25)
EE
n m
Yo aniwi + Y divZ b (I—x) V@, j), r=1....R (26)
i=1 i=1

i#]
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wilj :w}i Y, j), i<j 27
wl?j =x; — w}j VG, ), i #j (28)
WG =vi—vy Y6, i=1...m (29)
x,y) €S (30)
X binary

Inequalities (25) result from multiplying the constraints3iby x ; for eachj while inequalities (26) result from multiplying
these same constraints by edth- x ;) and making the substitutions of (28) and (29).

The RLT theory enforces at all feasible solutions to QPRLT tbf.;lt: XiXj andwl.zj =x;(1—x;) forall G, j),i # j, and
thatyilj = Vix; andyfj =y;(1—x;)forall G, j),i=1,...,m.As alluded to above, the level-1 RLT formulati{28,24] does
not need to explicitly include constraints (27) through (29), nor the variabl]}eéor all @@, j),i>j, wl.zj forall (i, j),i # J,

andyizj forall (i, j),i =1, ..., m. Instead, the substitutions suggested by these constraints can be performed to eliminate the
corresponding variables, making the restrictions themselves unnecessary. In addition, inequalities (30) are unnecessary as they
are implied by (25), (26), (28), and (29). We choose here to consider the larger form given by QPRLT, as the additional variables
and constraints facilitate our arguments in the upcoming section.

3. Combining conciseness and strength

The main result of this section is that the optimal objective function values to Problem NP and the continuous relaxation of
Problem QPRLT equal, and that an optimal value &r NP can be obtained from any optimal dual solution to QPRLT, using
the multipliers corresponding to constraints (27)—(29). This will hold true provided that th&®saesed to compute bounds
(18)—(21), and found in (14)—(17), is defined as theSsethich we henceforth assume. We also assume for gael, ..., n
that min(x; : x € S} =0 and maxx; : x € S} = 1 since otherwise variables can be accordingly fixed to binary values. The
significance of this result is that the strength of the level-1 RLT formulation can be captured in a program having the concise
size of G2a).

Certain notation is adopted for convenience. Consistent with the construction of Problem QPRLT, let the expressions
Lg} X ¥)x;l andLh“(x y)x ;] denote, for each the linearized forms of the produq;%(x Y)x; andh“(x y)x j, respectively,

obtained by substltutlng;lj =x;x; foralli # j, andyl] =y;xjforalli=1,...,msothat

|_g (X, y)x]JL = Z C1]w +Z DUVU

i=1
t#J
n
_Za”w”—i— Z oc w Z,{ w ZJU,” j (31)
i=j+1
i#/'
by (12) and (24), and
n m
2.1 3.1 .
Lh?(X,Y)ijL:*Z “l’jwij*Z;L“ij/ij vj (32)
i=1 i=
i#]

by (13). Consequently, since the linearization operation gives

L85 Wxj 1L =85 (% y) — LefX. (AL —x)] Vi, (33)
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we have by substituting (28) and (29) into (31) that

n m

L3 NA—xplL =Y Cijwd + Y Dij»d
i=1 i=1
i#j

j-1 m
—Z o —I— Z oc w Zoclzjwlzj _Z“?j"i’izj Vj. (34)
i=1 i=1

Similarly, since
A% Y)xjl L = h3y) = oA —x) L Vi, (35)

we have by substituting (28) and (29) into (32) that

A% YA = X)) == Zo« Za,,y,, (36)
l#/

For eachj, the notatiori_g;'(ﬁ, $x;1, and Lh;‘(k, §)%;]1 is used to denote the valueg;‘(x, y)x;]r and Lh;?(x, y)x;| atthe
point (X, §, W, ) as prescribed by (31) and (32), respectively.

We use this notation in the proof of the below theorem. This theorem formally states the dominance of the level-1 RLT
representation relative to Problem G2

Theorem 1. The optimal objective function value to the continuous relaxation of Problem QPRLT is an upper bound on the
optimal objective value to the relaxation G2(«), regardless of the chosen

Proof. Arbitrarily select a vectoe. It is sufficient to show, using obvious vector notation, that given any feasible solution
(X, ¥, W, 9) to the continuous relaxation of QPRLT, the paikty, 2) havmgz = Lg (X, 9x;1, forallj andz = Lh“(x NH(L—

%)], for all j is feasible to the relaxation of &® with the same objectlve functlon value. Toward this end for gatkice
surrogate inequalities (25), once each with an optimal set of dual multipliers to the minimization and maximization problems in
(18), to verify by (31) thatX, ¥, 2) satisfies the lefthand and righthand inequalities, respectively, of (14). Similarly, foy, éaate
surrogate inequalities (26), once each with an optimal set of dual multipliers to the minimization and maximization problems
in (21), to verify by (36) thatX, ¥, 2) satisfies the lefthand and righthand inequalities, respectively, of (16). In an analogous
manner, again twice surrogate the inequalities (25), once each with optimal dual multipliers to the optimization problems in (20)
to verify by (32) and (35) that (17) is satisfied, and twice surrogate inequalities (26), once each using optimal dual multipliers to
(21) to verify by (34) and (33) that (15) is satisfied. Hel®Rgy, 2) is feasible to G2x).The objective function value to G&) at
this pointis/*(X, §) + > 1(Lg (X, y)ijL + Lh“(x NH(L— xJ)JL) which equals the objective value to QPRLT&tY, W, )
since the former is by cfeﬂnmon obtained by addlng constraints (27), (28), and (29) to the objective function of QPRLT using
multipliersa®, «2, anda3, respectively. This completes the proot]

In order to establish our desired result equating the optimal objective function values to Problems NP and the continuous
relaxation of QPRLT, with an optimalto NP consisting of a partial optimal dual vector to QPRLT, we construct a Lagrangian dual
tothis latter problem. In particular, we place constraints (27)—(29) into the objective function using the mu&thpﬁe}saz, «3).
Incorporating the notation of (11), (31), and (36), Problem LD results.

LD : maximized(a)
where
0(@) =min {1 1%, y) + ) L3O y)xjlL + ) W5 y)(L—x))]L : (25),(26), and(30) (37)
Jj=1 Jj=1

Our argument is based on a special block-diagonal structure that the Lagrangian subgfablenssesses. This structure was
our reason for explicitly including constraints (27), (28), and (29) in QPRLT, as opposed to substituting out the vazl;f'i]ables

for all (i, j),i > j, wl.zj for all (i, j).i # j, andyizj for all (i, j), and then removing these restrictions. Inde&@) has %
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separate blocks: one block over each of constraints (25) and (26) foj,emclpled by the restriction, y) € Sfound in (30).
The theorem below shows that this structure can be exploited to efficiently coithjitey solving a linear program whose
objective function is expressed in terms of the paramdt?’rsandi?o of (18) and (21), and whose constraints are the coupling
restrictions(x, y) € S.

Theorem 2. Given any vectog, the valuef(a) in (37)is equal to the optimal objective function value of the linear program

n n
LP():  minimize{ 1%, y) + Y L%+ Y L1 —x)): (x.y) € St (39)
j=1 j=1

where for each,ijF1 and IZ?O are computed as iil8) and (21), respectively.

Proof. The proof is to show for eagtthat an optimal set of dual multipliers to the corresponding inequalities in (25) of LD can
be computed using any optimal dual solution to the minimization problem in (18) and that an optimal set of dual multipliers to
the corresponding inequalities in (26) of LD can be computed using any optimal dual solution to the minimization problem in
(21). The result must then hold since the dual to Probler@xl (38) is the dual to the minimization problem of (37), where
the multipliers to constraints (25) and (26) of LD have been fixed in the former at an optimal set of values.

Suppose for a givejthat we solve the minimization problem in (18) to obtain a primal optimal solution, and denoté;f} by

foralli # j and?ilj for all i to represent the; andy; variables, respectively. Further suppose that we fix the dual multipliers
to the associated constraints in (25) equal to the computed optimal duals to (18). Similarly, suppose we solve the minimization
problem in (21) to obtain a primal optimal solution, and denote iﬂ)ll??/for alli #j andi)izj for all i to represent the; andy;

variables, respectively. Further suppose that we fix the dual multipliers to the associated constraints in (26) equal to the computed
optimal duals to (21). Repeating for eactve obtain dual multipliers for all the constraints (25) and (26). Solve the dual to

Problem LD with these fixed dual values, which necessarily satisfy dual feasibility relativeug}jthﬂizj, Vllj andyizj variables,

to obtain anX, ) € Sand multipliersf. The fixed duals for (25) and (26) together wi'tkiefine a dual feasible solution to LD
since dual feasibility relative to the variablesandy; are ensured by solving the reduced dual to Problem LD. Moreover, for
the same reasoi, ¥) and?¢ satisfy complementary slackness relative to (30) since they are optimal primal and dual solutions,
respectively, to this same problem. Finally, §, W, §) with ti)llj = ﬁ)iljij andli)l.zj = lI)izj(l — &) foralli, j),i # j, and with

;llj = “71'11')?] andfyl-zj = i)izj(l — x;) forall (i, j) satisfies primal feasibility and complementary slackness to (25) and (26) by (18)

and (21) since the inequalities are simply scaled by either the nonnegativetyalué — X ;. This completes the proof.(]
The main result now follows.

Theorem 3. The optimal objective function values to Problems NP and the continuous relaxation of QPRLT areadital

any optimal set of dual values', a2, and &3 to constraints(27), (28),and (29) of QPRLT respectivelysolving NP where
1,2 .3

a=(a, a%, a°).

Proof. Since Problem LD is the Lagrangian dual to QPRLT obtained by placing constraints (27), (28), and (29) into the
objective function using multipliers = (a1, o2, «3), it follows directly thatf(«) equals the optimal objective function value to

the continuous relaxation of QPRLT at amycomprising part of an optimal dual solution to this latter problem. By Theorem

2, this value in turn equals the optimal objective function value texh.Bf (38). Now, suppose we delete the ihequalities

(15) and (17), and ther2righthand inequalities of (14) and (16) from G2. An optimal solution to the continuous relaxation

of the resulting program must then hawje: L?lxj andz§ = Z“/.‘O(l — x;) for eachj, providing the same objective value in

the continuous relaxation of this reduced version ofé32s LR«). Theorem 1 thus ensures that the optimal objective function
value to the continuous relaxation of (&2 must equal that of L&) at every such optimal. This completes the proof.]

The above theorems and proofs collectively explain how to construct instancegftG&t provide the greatest possible
relaxation value. Such constructions are based on optimal dual solutions to the continuous relaxation of QPRLT, permitting the
optimal objective function values to the relaxations of(§2and QPRLT to equal. Given any such optimal dual solution, the
a-vector used to compute G® are the multipliers to (27), (28), and (29), respectively, as stated in Theorem 3. The decomposition
argument in the proof of Theorem 2 essentially establishes the lefthand inequalities of (14) and (16) as surrogates of inequalities
(25) and (26) using the prescribed optimal dual solutions. The proof of Theorem 1 demonstrates that all inequalities (14)—(17) are
surrogates of inequalities (25)—(29). Hence, Problenu@an be considered as a surrogate dual to a Lagrangian subproblem
of QPRLT, where the equality restrictions (27), (28), and (29) are both dualized and treated as constraints.
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Three remarks relative to G2 are warranted. First, and as used in the proof of Theorem 3, Theorems 1 and 2 combine to show
that for any dual-optimail to (27)—(29) of QPRLT, only ther2lefthand inequalities of (14) and (16), together with they) € S
restrictions, are needed to have@?and QPRLT provide the same relaxation value. The additiona¢§trictions enforce that,
foreachj =1, ..., n, z]l- = g;‘(x, Y)x; andz? = h?(x, Y)(1—x;)atall(x,y) € X. Thisis in contrast to our discussion in Section
2.1.1 and Example 2.1 explaining that the omission of the righthand inequalities in (4) and (5) can alter the optimal relaxation
value of G2. For general, the righthand inequalities of (14)—(17) cannot be omitted i ithout potentially sacrificing
relaxation strength, but such omissions can be performed for any dual-opti®@tond, and as pointed out in Section 2.1 for
Problem G, the 4 righthand inequalities in (14)—(17)are unnecessary in Proble(a)&ihce the desired equivalence between
G2(x) and QP is needed only at optimality. Finally, and again as noted in Section 2.1 for Problem G, a substitution of variables
in terms of the slack variables for either (14) or (15), and in terms of the slack variables for either (16) or (17), will reduce the
number of structural inequalities by: 2The net effect of the constraint eliminations and variable substitutions from the prior
two remarks is to obtain an equivalent mixed 0-1 linear representation of QP that has @ulyilary structural constraints in
2n additional nonnegative variables, and has the relaxation strength of the level-1 RLT form[28{4].

4. Exploiting special structure

Special structure in the constraints defining theSset Problem QP can lead to more efficient implementationd df that
give the level-1 RLT relaxation value. We consider two general structures. The first deals with instances where restrictions (28)
and (29) in the relaxation of QPRLT all have multipliers of 0 in an optimal dual solution. Included within these instances is the
family of quadratic set partitioning problems. The second arises when special subsets of the restrictions, feweirtipn 2
the bounding restriction8< x< 1 so that a specially structured RIZZ6] can be employed. For this second case, the relaxation
strength of the specially structured RLT can exceed that of QPRLT.

4.1. Pure 0-1 programs with equality restrictions

Consider the implications of Theorem 3 when the relaxation of QPRLT is known to have an optimal dual solution with
multipliers «?=0anda® =0 corresponding to (28) and (29), respectively. The Theorem maintains that the optimal objective
function values to Problems NP and the continuous relaxation of QPRLT equal, and asseris tht0, 0) solves NP, where
ol is any optimal set of dual values to (27). This is significant since, when such conditions are met, a linearization of QP
having onlyn additional inequalities im additional nonnegative variables with the strength of the level-1 RLT relaxation is
possible. This is a savings ofinequality restrictions and variables over the formulation of the previous section. The reason
is that Problem G) will reduce in size. For such vectors,h‘;(x, y) = 0 for all j by (13) so that programs (20) and (21)

give if;l = U;'l = ij?o = U;'O =0 for all j. By (16) and (17), we then have th@ =0 for all j in G2(«). The formulation

G2(a) thus simplifies to G2a) below, where we have recognized the righthand inequalities of (14) and (15) as redundant at
optimality.

G2 (2) : minimize [*(x,y) + Z z}

j=1
subject to L?lxjg zjl- vj (39)
g1 y) —UPA—xj)<z} V) (40)

x,y) € X

As with Problems G2 and G2), a substitution in terms of the slack variables to either set of constraints (39) or (40) can be
made to obtain the desired formulation.

We now invoke the RLT theory to identify an important class of problems that éfave0 anda3 = 0 in an optimal dual
solution to the relaxation of QPRLT. Consider the special cases of QP where there are no continuousyaridifesconstraints
defining the se§ are all equality, except for restrictions of the forxn 0. Here, as before§ is assumed to imply< 1, though
in this case such an assumption forfeits generality. Using obvious notation, Problem QP can be rewritfen as QP

n
QP : minimize [(x) + Z gj(X)x;j
j=1
subject to x € X = {x € S: x binary}
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The setSand the linear functiong; (x) for all j simplify from their respective descriptions in (23) and (24) to the below.

n
S=1x>0:> ayxi=b Vr=1,...,R (41)
i=1
n
gj(X)ZZ Cijxi Vj=1,....n (42)
i=1
i#]

The RLT theory[23-25]does not require multiplying the equality restrictionsSdfy the factorg1 — x;) for all j provided
that these equations &are preserved in the level-1 representation. Nor does it require multiplyingtideinequalities by
these samel — x ;) factors. For both sets of multiplications, the resulting linearized inequalities would be implied by the other
restrictions. The’ Iatter implication is due x0e S enforcingx< 1, so that the se§, together with the multiplication of the
restrictions ofS by the factors:;, will imply such expressions. In other words, restrictions of the type (26) are redundant in the
relaxation of QPRLT, making (28) and (29) also redundant soathat 0 anda3 = 0 at an optimal dual solution as desired.
(Each equation in (41) can be expressed as two inequalities to fit the form of (25).)

Observe that the family of quadratic set partitioning problems are encompassed agd}Rerefore can be reformulated in
terms of G2(a). Since G2(«) is a function of only the vectar! in such problems, a direct consequence of Theorem 3 is that the
level-1 RLT relaxation value can be achieved by strategically “splitting” the objective coefficients on the quadratic; igrms
andx;x; in such a manner that, for each j) with i < j, the coefficient on the term; x; is decreased by the same quantity
that the coefficient on the termy x; is increased. The vectar dictates such a split by placing identities (8) into the objective
function so that for eacty, j) withi < j, x;x; is decreased and; x; is increased by the valux%

Interestingly, as the celebrated quadratic assignment problem (QAP) is a quadratic set partitioning problem, it can be formulated
in terms of G2(«). In fact, Kaufman and Broecki.6] (see alsd8,9] for related implementations) incorporated Problem G,
less the redundant righthand inequalities (1) and (2), in both a mixed-integer solver and Benders’ decomposition algorithm
[6], but reported “disappointing” computational results. Hahn efld], on the other hand, obtained superior results in an
enumerative strategy that computes bounds obtainable from the level-1 RLT formulatigh3pe&hese authors solved the
Nugent et al[22] size 25 test problem and the Krarup and Prudaj size 30a problem to optimality. Our contention is that
the performance difference betwddd] and[16] is primarily due to the linearization strength. Adams and Joh{&joshowed
the theoretical superiority of the level-1 RLT relaxation to the majority of published bounding strategies for the QAP. It appears
promising, therefore, to combine the strength of the level-1 formulation with the conciseness of the linearizgtidrbin
suitably constructing G2x). Of course, one must solve the level-1 relaxation to obtain the vettbut the structure of QPRLT
lends itself to efficient methods, as notedi8,15] Even so, an optimad1 is not required, a near-optimal dual solution suffices.

We conclude this section with an example to demonstrate the utility of splitting the objective coefficients for a quadratic set
partitioning problem, and how the level-1 RLT relaxation provides such an optimal split.

Example 4.1. Consider an instance of Problem Qfavingn = 7 binary variables, where the functior(x) is defined as
[(X) = 6x1 + 4x2 + 5x3 + 10x4 + 6x5 — 4xg + 3x7,

where the coefficients;; of g;(x) found in (42) for eaclii, j) are given by théi, j)th entry of the matrix

* 0 0 0 0 O
—-10 =« 0 0 0 0 O
8 —6 x 0 0 0 O
C=| -4 -8 -6 =« 0O 0 0],
0 -8 10 -10 = O O
1 -10 -3 0 -8 % O
-10 0 -6 -10 -6 -8 =«

and where the s&in (41) is defined as
S={x=20:x1+x2+x3=Lx3+x4+x5=1x5+x5+x7=1}.

The formulation of11] with the bounds of Section 2.1.1, which is‘@), is obtained by computing.3t, £41, £4L, £3L, 2L,
L3, 131 =(-14,-18 -6, -10,0,0,0) and(U°, UZ°, U, U, U, U, UF%) = (9, -6, 10,0, -6, o, 0) as prescnbed
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in the minimization problems of (18) and the maximization problems of (19), respectively, to generate (39) and (40). The optimal
objective value to the continuous relaxation of @2is —10.50.

Next construct QPRLT. Following the discussion of this section, inequalities (26), (28), and (29) are not necessary. Furthermore,
constraints (25) are equality, and the coefficiehtsandd,; are all 0 as there are no continuous variables. The optimal objective
value to the continuous relaxation of QPRLTHS, which is the integer optimum objective.

Upon solving this relaxation of QPRLT, we obtain an optimal set of dual variadiés constraints 27) Withiilj for each
(i, j),i < j, given by the(i, j)th entry of the matrix.

* 0 0 4 16 -5 6
* * 0 7 6 9 6
* % % 0 O 3 6
al=|% % %= x 0 0 10
* ok ok *x % 0 0
% %k % % % * 0
* ok ok ok ok ok ok

We then “split” the quadratic objective coefficients by settdﬁg =Cjj — &ilj andC}l. =Cj; + &llj for all i < j to obtain the
following new quadratic cost matri@’:

* 0 0 -4 -16 5 -6
-0 = O -7 -6 -9 -6
8 —6 =« 0 0 -3 -6
cC=| 0 -1 -6 =x 0 0 -10
16 -2 10 —-10 = 0 0
-4 -1 0 0 -8 =« 0
-4 6 0 0 -6 -8 x

Problem GA&) with & = (31,0, 0) is the formulation off11] with strengthened bounds and cost maix This formula-
tion is obtained by computing.3t, L4, 131, 131, L2t L&t 131y = (-4, -2,0,-7, 16, -9, —16) and(U°, UFC, UZO,
U0, uP, U, U0 = (6,5,10,0, -6, 5, —6). The continuous relaxation has an optimal objective function valueofvith
an optimal (binary) solution given b1, x2, x3, x4, x5, x6, x7) = (0,1, 0, 1, 0, 1, 0). Consistent with the result of Theorem 3
and the discussion of this section, this is the bound yielded by the level-1 RLT.

4.2. Structured binary functions

We consider in this section a special case of Problem QP where the restrictions definingtseise top linear functions
fr), k=1,..., p, of the binary variableg that satisfy the following two conditions:

1. each linear functiorf;, (x) for k =1, ..., p realizes either the value 0 or 1 at evéryy) € X, and
2. the (valid) linear inequalitieg, (x)> 0 fork =1, ..., p imply that:

(@) 0<x< 1, and
(b) frx<lfork=1,...,p.

We assume without loss of generality that the inequalifig®)> 0 do not imply for anyj that eitherx; > 0 or x; <1 since
otherwise the variable; can be fixed to a binary value and removed from the problem. We also henceforth assume for each
k=1,..., pthat min f;(X) : x € S} =0 and max/;(X) : X € S} = 1 since otherwisg} (x) can be fixed to a binary value.

Such functionsfy (x) may be explicitly found in QP, or can result from substitutions and/or scalings. For example, given an
equation)_?_qa,;x; = by in Swherea,, is nonzero, the expressigh, — Z;’;lla,ixi)/ar,l equals the binary variablsg,, so
that this expression can serve as such a funcfigr). In order to exploit these functions to obtain more concise representations
than QPRLT, however, we negd< 2n. As we will later discuss, such a collection pk 2n restrictions satisfying conditions 1
and 2 arise from various special structures, including variable upper bounding and generalized upper bounding. For convenience,
we represent the functiong (x) as

fe) = Pro + Prax1 + Broxo + - + Prpxn Vk=1,....p (43)

wherefy; forall (k, j),k=1,...,p,j=0,...,n, are scalars.
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We consider a special application of the method of Gl¢¥&} that exploits such functiong, (x) in the following section.
4.2.1. Glover's method

Given fr(x), k=1, ..., p, satisfying conditions 1 and 2, suppose we rewrite the objective function to Problem QP in terms
of these functions ang + 1 additional functiona‘{/,’:(x, Y),k=0,...,p, sothat

n p
D gy =Y YR A0 —YFxy)  forall (x,y), x binary. (44
j=1 k=1
Here, foreaclt =1, ..., p, the expressioﬂ/,’(t (X, y) is a linear function of the variablesandy whose coefficients are defined

in terms of the vectot = (z1, #2) as

n m
YR Y =Y mhxi + Y 7 (45)
i=1 i=1

The functiony§ (x, y) is also linear in the variablesandy, and must be defined in terms of the veetas

n P m P
ZICSIED [Z oy (Bro + ﬁki):| X+ (Z ﬂ,-zk/fko) Vi (46)

i=1| k=1 i=1 \k=1

for (44) to hold true. Recall that we had earlier assumed without loss of generality that fof, ¢aetexpression ; (x, y) is

not a function of the variable; and that it does not contain a term of degree 0. Hence, the lefthand sum in (44) has no linear
terms. The functiord/g(x, y) compensates for the linear terms within the produ,k,ft&, y) fx (X) of the righthand sum in (44),
including thex; variables arising from the substitutiap = xl.z.

Functions7 (x, y) for k =0, ..., p satisfying (44) must exist, and they are not necessarily unique. Observe for teath
since the linear inequalitieg, (x)>0 for k = 1,..., p imply x;> 0 by condition 2a, there must exist a nonnegative linear
combination of the functiong; (x) with multipliers, saywy, yieldingx ;: that is,Zf:lwkfk () =x;. Consequentlyg; (X, y)x;
can be expressed Ele[gj (X, V)]l fr(X) so thatyF (x, y) = g (X, y)wy forall k=1, ..., p andy{(x, y) =0 for this special
case. We can therefore sequentially progress throughjeaahadijust the functiong? (x, y) accordingly to satisfy (44).

Now, given a vector: for which (44) holds true, the idea is to linearize Problem QP by substituting forkeach ..., p, a
continuous variabley, for the product) 7 (x. y) fx (x) in the objective function. In the same spirit as (39) and (40), we will then
devise linear restrictions that ensuge= /7 (x, y) fx (x) for eachk =1, ..., p at optimality to the linear problem. Toward this
end, compute for each=1, ..., p, valueszl’: and%g as

LT=minyTx,y) : (xy) e XR, fro=1) and
AT =maxyf(x,y) : (x.y) € XB, fr(x) =0} (47)

where, as with (3), these programs are assumed bounded. Consistent with the definition in Section}2®tieeesstrelaxation
of X in the variablegx, y). Then form the following program.

P
G3(n) : minimize [(x,y) —yF (X, y) + Z Zk
k=1
subject to £7 fir(¥)<zk Vk=1,...,p (48)
YEOGY) —UF (L= fr()<zk Vk=1,....p (49)

X, y) € X

Problem G3r) is our equivalent mixed 0-1 linear reformulation of QP. As desired, inequalities (48) and (49) enforce for each
k=1,...,pthatz = n//Z(x, y) fr (X) at optimality. To see this, consider aky=1, ..., p, and any(x,y) € X. Condition 1
stipulates thatf; (x) equals either 0 or 1. If;.(X) = O, inequalities (48) enforce; = 0 at optimality with (49) redundant. If
fr() =1, inequalities (49) enforce, = 7 (x, y) at optimality with (48) redundant. Hencg, = /7 (X, y) f (X).

Observe that the construction of &3 requires only that the functiong (x) satisfy condition 1 and the> O restrictions of
2a. Condition 1 ensures thgt =7 (X, y) fr () forallk =1, ..., p at optimality to G3=) while the nonnegativity restrictions
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onx of condition 2a establish the existence of functiqhﬁ:{x, y),k=0, ..., p, satisfying (44). Thex< 1 restrictions of 2a and
condition 2b are not used here, but are needed in the construction of the special-structure RLT in the upcoming section.

G3(n) compares favorably to G&) in terms of problem size whep < 2n. Recall from the concluding paragraph of Section
3 that a reduced version of G2 requires 2 auxiliary variables and/2additional structural constraints, since the righthand
restrictions in (14)—(17) are not necessary to ensure equivalence between Problemsr@2QP at optimality, and since
substitutions in terms of slack variables can be madér§58n the other hand, involvgsadditional variables and2additional
constraints. As with G@&), the size of G8r) can be reduced by performing a substitution of variables in terms of the slacks for
either (48) or (49), resulting in only auxiliary constraints i additional nonnegative variableg. This is a savings of2— p
variables and 2 — p constraints realized by the special-structure formulation over the standard model.

Depending on the vectar, the continuous relaxation of @) obtained by relaxing théx, y) € X restrictions tax,y) € S
can have different optimal objective function values. It is desired to obtain a vethat satisfies (44) and yields the maximum
such objective value. Notationally, we wish to solve the nonlinear (special-structure) problem:

)4

NSP: " = =mi -3 . (48), (4 .
SP:n nsatrirs]f?xes(44) n(m) =min §1(X,y) Wo(X,y)-l-kX:;Zk (48), (49), (X,y) € S (50)

We consider in the following section an application of the RLT using functifig) that satisfy the prescribed conditions 1
and 2.

4.2.2. Special-structure RLT

Givenplinear functionsfy (x), k=1, ..., p, satisfying conditions 1 and 2, the special-structure RLT theof2&ifmotivates
a linear reformulation of QP that has a relaxation strength at least that of QPRLT. The key ingredient is that the nonnegative
functionsf; (x) fork=1, ..., p are used as the product factors in lieu of the standard facjasd(1—x;) forall j=1,..., n.

The idea is that, since the nonnegativity of these spefi@l) factors implies the nonnegativity of the standard factors as set
forth in condition 2a, the linearization resulting from these special factors will also imply the standard linearization.

The derivation of the special-structure level-1 RLT linearization proceeds in a similar manner to the construction of QPRLT. The
reformulation step multiplies every constraintin (23) defining th&&gteachy;, (x), and appends theRpnew restrictions to QP,
substituting throughout the binary identity th%t:xj forallj. Here, we choose in the linearization step to substitute a continuous
variablew;; for every occurrence ofither productx;x; or x;x; for all (i, j),i < j, and a continuous variable; for every
occurrence of the produety; (equivalentlyy;x;) for all (i, j), i =1, ..., m, within the objective function and constraints. We
let the notation x; fr (X1, Ly; fx X1, andlg; (X, y)x; ]z denote the linearized versionsxffy (x), y; fi(x), andg; (X, y)x,
respectively, under such substitutions. We then introduce continuous variéible:fex,' )] V@, k), k=1,...,p, and
/1{.‘ =lyi i) ¥V G, k), i=1,...,m, k=1,..., p. These variables are substituted throughouRpaew inequalities, with
p(n+ m) constraints used to explicitly equate these variables to their substituted expressions. Finally, since condition 1 ensures
for eachk that f;, (X) i (X) = fr (X) for all (x,y) € X, we explicitly enforce that f; (X) fr (X)) = fr(X) forallk=1,..., p.

Problem SQPRLT, the version of QPRLT resulting from this application of the special-structure RLT, is as follows.

n
SQPRLT: minimize [(X,y) + Z Lgj X, ¥)x;lL

j=1

n m

subject to Y apivf + > dpidE b 0 VoK), r=1... . R k=1....p (51)
i=1 i=1
n
3 Bvf =1 - Bro) e Vk=1,....p (52)
i=1
1% fr)] —vF =0 VG, k), k=1,...,p (53)
i filp — =0 VG, k), i=1...,m, k=1....p (54)
x,y) €S (55)
X binary

Problems QPRLT and SQPRLT are similar in structure. Inequalities (51) are of the same type as (25) and (26), while (53) and
(54) are of the form (27)—(29). Thﬁilj andwizj variables of QPRLT are absorbed in thfevariables of SQPRLT, as are tI;u%
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andyl?. variables absorbed in twé. The variableswl.l. and«,vil. of QPRLT essentially play the role ef;; andy;;, respectively,
in the objective function and restrictions (53) and (54) of SQPRLT. Egs. (52) are the restricfigrsf; (X)) 1 = fr(x) for all
k=1,..., p, upon noting from (43) thatf; (X) fx )| 1, = Brofx O + D1 Bri vf‘ foreachk =1, ..., p. Observe that, in fact,
SQPRLT reduces to QPRLT when tifg(x) factors default to; and(1 — x;) for all j. Similar to (30) of QPRLT, restrictions
(55) enforcing(x, y) € Sare not necessary in SQPRLT as they are implied by (51), but we maintain them for convenience.

A final comment relative to the construction of SQPRLT will be used in the next section. We do not multiply the constraints
in (23) by each of th@ nonnegative expressions-1f; (x) to create thd&kpadditional restrictions

n m
D arii v+ di(yi =)= b (1— fr0) Yk r=1....R k=1 p. (56)
i=1 i=1

Condition 2b has that the inequalitigg(x)>0 for all k = 1, ..., p collectively imply 1— f;(x)> 0 for eachk, so that the
RLT theory[26] assures inequalities (56) are implied by (51) in the continuous relaxation of SQPRLT. This was our reason for
originally introducing condition 2b.

4.2.3. Enhancing Glover’'s method with the RLT

The structure of Problem QPRLT that permitted its reformulation as a concise mixed 0-1 linear program having the strength
of the level-1 RLT relaxation is also found in SQPRLT, so that the arguments of Section 3 found in Theorems 1-3 carry over
directly to the special-structure instance. For such cases, this leads to a concise formulation of the sizete@®) the same
relaxation strength as SQPRLT. Similar to our arguments in Section 3, we assume thattfeaiset] to compute the bounds
(47), found in (48) and (49) of G&), hasXxR =S,

Considerfirstthe relationship between the optimal objective function values to the continuous relaxations of Problems SQPRLT
and G3n). The theorem and proof below show that the former value is at least as large as the latter.

Theorem 4. Given any vector satisfying(44), the optimal objective function value to the continuous relaxation of Problem
SQPRLT is an upper bound on the optimal objective value to the relaxaticB(@).

Proof. Consider any vectat satisfying (44). Using obvious vector notation, it suffices to show that, given any feasible solution
the relaxation of G@r) with the same objective function value. For edch 1, . .., p, surrogate inequalities (51) and Eq. (52)
with an optimal set of dual multipliers to thg, y) € Srestrictions and th¢; (x) = 1 constraint of the minimization problem in
(47), respectively, to verify by (53) and (54) th&t ¥, 2) satisfies (48). Now, recalling from condition 2b that inequalities (56)
are implied by (51), surrogate (56) and (52) with a computed optimal set of dual multipliers(tg the= Srestrictions and the
negative of the computed dual value to thgx) = 1 constraint of the maximization problem in (47), respectively, to verify by
(53) and (54) thatX, ¥, 2) satisfies (49). Hencg, ¥, 2) is feasible to the continuous relaxation of @R The objective function
value to G3n) at this point is/(X, §) — Y§(X. 9 + Z/lefk: which equals the objective value to the relaxation of SQPRLT at

The block diagonal structure of QPRLT demonstrated in the proof of Theorem 2 is present in SQPRLT. To see this, suppose
we form a Lagrangian dual to the continuous relaxation of SQPRLT by placing constraints (53) and (54) into the objective
function. Then the subproblem over (51), (52), and (55) can be solved-ia independent blocks. Specifically, consider such
a Lagrangian dual where we use the same vector notatierin?, n2) for the dual multipliers to (53) and (54) as was used in
equations (44)—(46) of Section 4.2.1.

SLD: maximizet(n)

where

7(m) = min il(x, Y+ LejoWxjlL
j=1

P n m
+3 [Z Ty (0 = Lxi fl00J L) + Y w5 Gf — D’ifk(X)JL):| : (51, (52, (55} (57)

k=1|i=1 i=1
We restrict attention to those instancestdghat permit a dual feasible completion to the relaxation of SQPRLT (so that dual

feasibility with respect to they;; andy; ; variables is satisfied). Otherwise, the Lagrangian subprobleis unbounded below
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since (51), (52), and (55) of (57) do not involve the variahlgs or y;;. Observe that this restriction is precisely the same as
enforcing that the vectat satisfies (44). Consequently, for such values.ahe calculation ot (x) simplifies to:

p n m
7(m) = min [l(x, y) =Ygy + Y {Z Tk + ) n,?sz.‘} . (51), (52), (55)] . (58)

k=1|i=1 i=1

The block diagonal structure of the Lagrangian dual problem (57), equivalently (58), is exposed in the proof of the following
theorem. This theorem and proof, designed for the special-structure linearization SQPRLT, parallels Theorem 2 and its proof.

Theorem 5. Given any vector satisfying(44), the valuer(n) in (58) is equal to the optimal objective function value of the
special-structure linear program

P
SLP (n) : minimize{ [(x,y) —yF.y) + Y LFfr(): (x,y) €St (59)
k=1

where for each k&7 is computed as if47).

Proof. Itis sufficient to show for eackthat an optimal set of dual multipliers to the corresponding constraints in (51) and (52)
of (58) can be computed using any optimal dual solution to the minimization problem in (47). The reason for this is that the dual
to SLRA(r) must then be the dual tar) of (58), where the multipliers to (51) and (52) ) in (58) have been fixed in SKR)
at an optimal set of values.
Given anyk =1, ..., p, solve the minimization problem in (47) to obtain a primal optimal soluﬁbrior ali=1...,n

and;lf foralli=1, ..., m, torepresentthe; andy; variables, respectively. Fix the dual multipliers to the associated inequality
restrictions in (51) of (58) to the computed optimal duals to the constrai@sq#7), and fix the dual to the associated equation

in (52) of (58) to the computed dual to thi(x) = 1 restriction. Progress through edck-1, ..., p, to obtain multipliers for

all restrictions in (51) and (52). Solve the dual to (58) with these dual values fixed to obt&niane S and multipliersé.

The fixed duals to (51) and (52), together wéthdefine a dual feasible solution to (58), &kdy) and¢& satisfy complementary
slackness to (55). Finallyg, §. ¥, 2) with 0¥ = 5% fi (%) forall (i, k), k=1...., p, andif-‘ =5f feforall G, k), i=1,...,m,

andk =1, ..., p, satisfies primal feasibility and complementary slackness to (51) and (52) by (47) since restrictions (51) and
(52) are scaled by the nonnegatiggX). This completes the proof.[]

The relationship between the objective function values to Problems SQPRLT gmil 8B vectorsr satisfying (44) is
considered in the following theorem. This theorem parallels Theorem 3 for Problems SQPRLT (@hd G2

Theorem 6. The optimal objective function values to Problems NSP and the continuous relaxation of SQPRLT aneidgual
any optimal set of dual values: andz? to constraintg53) and(54) of SQPRLTrespectivelysolving NSPwherer = (zl, n2).

Proof. Problem SLD is the Lagrangian dual of the continuous relaxation of SQPRLT obtained by placing equations (53) and
(54) into the objective function using multipliets= (z!, #2). Consequently;(r) given in (57) equals the optimal objective
value to the continuous relaxation of SQPRLT at any veet@onstituting part of an optimal dual solution. But since the
variablesw andy appear only in constraints (53) and (54) of SQPRLT, such an optinmalst satisfy (44), so that(r)
simplifies from (57) to (58). Theorem 5 states th@t) is equal to the optimal objective value to Sk (Now consider Problem

G3(r) without thep inequalities (49). An optimal solution to the continuous relaxation of this reduced problem must have
7 = LT fr(X) for eachk =1, ... p, yielding the same optimal objective value as StP(Theorem 4 then gives that the
optimal objective value to the continuous relaxation of ©3nust equal that of(z) at every such optimaid. This completes the

proof. [

The net effect of Theorems 4-6 is to establish, for instances of QP promoting fungtioosthat satisfy the prescribed
conditions 1 and 2, concise linear reformulations of the fornisp8hat have tight continuous relaxations. Not only are the
formulations G8r) more concise than G&) whenp < 2n, but they can also promote tighter continuous relaxations. Recalling
from the discussion at the beginning of Section 4.2.2 that the continuous relaxation of SQPRLT is at least as tight as that of
QPRLT, it follows from Theorems 4 and 6 thgt> v*, wheren* andv* are as defined in (50) and (22), respectively. Moreover,
the formulation SQPRLT will also have fewer variables and constraints than QPRLT pvhédn, which can affect the effort
required to optimally solve Problems NSP and NP.
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Functionsf; (x) fork =1, ..., p havingp < 2n and satisfying conditions 1 and 2 arise in practice. One instance is variable
upper bounding where certain constraints have the fgrq ;. In particular, consider an instance of Problem QP where there
exists a subset of thebinary variablex, sayx1, xp, ..., x,;, S0 that the restrictions iX imply 0< xg<xp< -+ - <xpy < 1.
Then, instead of using the:2 standard product factokg and 1-x; for j=1, ..., n1, we can employ the; + 1 functionsf; (x),
where f1(X) =x1, fy(X) =x; —x,—1fork=2,...,nq1,andf,; +1(X) =1 — x,, as specialized factors. Condition 1 is satisfied
since the restrictionsQux < x2< - - - <xpy < 1 are by assumption implied b Condition 2a is satisfied for eagh=1, ..., ny,
since for each such we havex; = Zizlfk(x) and 1—x; = Zzgﬁlfk(x). As each variabler; with j = 1,...,n; thus
satisfies & x;<1, we have that condition 2b must hold true because each funftiain has at most one positive term, and this
term is upper bounded by 1.

We provide below a small example to demonstrate the utility of exploiting variable upper bounding restrictions.

Example 4.2. Consider the following instance of Problem QP having 3 binary variablex and no continuous variablgs
so that the function&x, y), g1(X, ¥), g2(X, y), andgs(x, y) reduce td (x), g1(X), g2(X), andgz(x), respectively. (Similarly, the
upcoming functiong 1 (X, y), h2(X, y), andhz(X, y) reduce tadi1(x), h2(X), andhz(x), respectively, and the functiomé:(x, y)
reduce toj 7 (x) fork =0,...,5.)

minimize  — 5x1 + x2 + Ox3 + (Ox2 + Ox3)x1 + (4x1 + Ox3)x2 + (2x1 — 2x2)x3
subjectto x € X ={X e S={(x1,x2,x3) : 2x1 — 2x2 — 2x3> — 3,x1>0, —x1 + x2>0,
—x2> —1,x320, —x3> — 1} : x1, x2, x3 binary}

Thus,l/(X) = —5x1 + x2 4+ Ox3, g1(X) = Ox2 + Ox3, g2(X) = 4x1 + Ox3, andgz(X) = 2x1 — 2x2. Problem QPRLT has three
equations in (27)wl, = w3, wiz=wi , andwl, = wi,. Sixrestrictions are presentin (28)2, = x1 — wi,, wiy=x1 —wi,,

w3s = x — whay, wi = xp — wij, w3 = x3 — wl;, andw, = x3 — wi,, with no restrictions in (29) since no variabls
exist. The optimal objective function value to the continuous relaxation of QPRL—T%stith (x1, x2,x3) = (%, %, g). An
optimal dual solution for the three constraints of (27&15 = 276, ocig = % andoc%3 = —%, with the nonzero optimal duals to
the constraints in (28) beingg; = §, «3, = —8, ando3, = o3, = 2. Theorem 3 ensures that the optimal objective value to

Problem NP of (22) has* = — % and that this value is realized when these dual values to (27) and (28) d€fine associated
representation G2) is as follows, where the unnecessary righthand inequalities in (14)—(17) are not listed.

. 27 1 2
G2(a) : minimize ——x1+fxz+*x3+2%+2%+Z%+Z%+Z%+Z§

7 7 7
. 24
subject to 7x1< z%
24 24 1
7x2+0x3— 7(1—X1)<Zl
1 1
— ?ng ZZ
2 01— xp)< %
7x1 7x3 x2)< 25
2 1
- ?x3< 3
4 4
?xl— ?XZ—O(]-—X3)<Z%
3
~a-w<d
2 2 .2 2
7%= 7x3+ Znsg

01— xp)< 3
Ox1 4 Ox3 — Oxo< Z%
01— x9)< 3

8 18, 2
71T 72T 78N

xeX
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Here, by (11)—(13) we havé (x) = —2—7x1 +1 7x2+ 2 2 x3, &9 (x) xz + Ox3, g5(x) = 7 X1 — x3, g3 = %‘xl - ‘7‘x2,
) =-2 X2 - x3, Z(X) Oxq + Ox3, andh 200 = _8 gx1 +8 x2 Also, (18)—(21), withxR = S, give (L%l, L%l, Lgl) _
(& -3.-9, <U°‘° ug0, ug%) = (%.0,0), <L“° L%, L“O) = <—7, 0,0), and(U#, U3, %Y = (- 3.0, ).

Now consider the special product factghgx) = x1, fo(X) =x2 — x1, f3(X) =1 —x2, fa(X) =x3, andf5(X) =1 — x3, which
satisfy conditions 1 and 2. The optimal objective value to the continuous relaxation of SQPRLT is@4with) = (1, 1), an
integer optimal. Egs. (53) are of the fomm— vi =0, —x1 + w12 — v¥=0,x1 — w12 — v3 =0, w13— v§ =0,x1 — w1z — 15 =0,
w12—v%:O,x2—w12—v%:O, —vg:O,wzg—ngO,xz—w23—vg:0,w13—v%:0, —w13+w23—v§:O,
x3 — wpz — v3 =0, x3 — v§ = 0, and—v3 = 0, with no equations present in (54). An optimal dual solution has the nonzero
valuesn, = 2, 3, = —2, andn}, = —2. These computed values stgive by (45) and (46) thap%(x) = —2x1 — 2xp,
YT = Y50 = YZ(X) = YE(X) = Ox1 + Ox2 + Ox3, andy5(x) = 2x1 — 2x2 — 2x3. To form G3 =), solve the optimization
problemsin (47) fok=1-5to obtain <y}, 5, %, %, L) = (0, -3,0,0,0) and(wT, U5, U3, Uy, UE) = (0,0,0,0,0).

The following instance of G@) results, having an optimal objective value of 0 to the continuous relaxation sg*tka0 in
(50) as asserted in Theorem 6.

G3(n) : minimize —3x1+3x2+21+22+23+24+ 25
subjectto @1<z1
Ox1 + Ox2 +0x3 —0(1 — x1)< 21
—3(x2 —x1)< 22
2x1 — 2x2 —2x3 — O0(1 + x1 — x2)< 22
0(1—x2)<z3
Ox1 4 Ox2 + Ox3 — Ox2< z3
Ox3<za
Ox1 + Ox2 + 0x3 — 0(1 — x3)< z4
0(1-x3)<z5
Ox1 + Oxp + Ox3 — Ox3< z5
xeX

The chosen instance of QP permits further reductions itmzand G3r) (e.g.z% = 0 can be substituted from G2 and

71 = z3 = z4 = z5 = 0 can be substituted from @3)). Regardless of such substitutions, transformations of variables in terms
of the slacks can be used to reduce the numbers of structural constraints in both programs. In any(zagen®8e concise
than G2a«) and also provides a tighter relaxation.

Other functional formsfy (x) that satisfy conditions 1 and 2, and naturally arise in practice, result from generalized upper
bounding restrictions. Here, the séimplies that a subset of thevariablesx, sayx1, x2, . . ., x,,, satisfies " j=1%j <1 Then

we can use the1 + 1 functions fi (x), with fi(X) = x; for k =1,...,nq and with f,,, 1 1(X) =1 — ZJ 1*; as specialized

product factors. A similar situation arises with a special order set restriction of the)d Jrqx =1, since such an equation
reduces to a generalized upper bounding constraint upon treating any selected binary variable as a slack. Again, the special
structure promotes a more concise formulation with a potentially tighter continuous relaxation.

5. Computational experience

Our formulations are based on a rewrite of the objective of Problem QP, together with the generation of surrogates of the
constraints in QPRLT. The surrogates are motivated by idedd]rto maintain equivalent representations. But a question that
arises is the computational performance of(&2elative to the concise Problem G2 and to the larger Problem QPRLT. In
particular, we are interested in the CPU times needed for Problerfsg @&2d QPRLT within a branch-and-bound framework.
Although Theorem 3 tells us that G2 and QPRLT have the same relaxation value when all variables are free, strength in
the former can be forfeited when variables are fixed to binary values. In this section, we provide preliminary computational
experience to demonstrate the potential ofé&32nd the surrogates used in constructing this formulation.

We chose to conduct our test runs on the 0-1 quadratic knapsack problem. This problem has applications in capital budgeting,
and has historically attracted research interest. It is a special case of QP where there are no continuousy earitthie seS
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Table 1
Computational performance

Problem G2 Problem QPRLT Problem G2
n v(G2) Nodes CPU v(QPRLT) Nodes CPU V(G2()) Nodes CPU

Gap Gap Gap
10 23.21 0 0 8.88 0 0 8.88 8 0
20 28.05 45 0 6.27 7 0 6.27 44 0
30 30.70 421 0 3.69 24 1 3.69 102 0
40 31.19 3899 2 3.87 185 15 3.87 826 1
50 29.65 7043 4 3.13 132 24 3.13 771 1
60 31.58 146,430 119 2.47 470 129 2.47 2559 3
70 31.71 92,967 99 2.60 662 333 2.60 4465 5
80 32.57 1,232,794 1519 2.77 877 680 2.77 8676 9
90 * * * 3.34 2529 2673 3.34 57,730 73
100 * * * 2.93 1266 2059 2.93 59,001 94

in (23) consists of a single structural inequality together with the bounding restri€ors: 1. It takes the form

n
QKP: minimize 1(x)+ Y g;(X)x;
Jj=1
subject to x € X = {x € S: x binary}

with [(x) = Z'}:lcj'x]', gj(x) = Z?:lj;&jcijxivj =1...,n,andS={x: Z;f:lanjé b, O<x;<W¥j=1,...,n}

Three formulations of QKP were submitted to the mixed-integer solver of CPLEX 8.0. The first is Problem G2, where we
removed the righthand inequalities of (4) and (5), and made the substitution of vasiakies; — Ll.xj for all j in order to
have onlyn new structural restrictions. These modifications are consistent with the observations at the end of Section 2.1, and
are implemented for computational experience. The second is QPRLT, adjusted per the remarks in the closing paragraph of
Section 2.2. We substituted the variabvle% forall (i, j),i > J, andwizj forall (i, j),i # j, out of the problem, and removed
constraints (27), (28), and (30) to make this version as streamlined and competitive as possible. (The*,v?araimhﬂ s and the
constraints (29) are not present since there are no continuous variables in QKP.) Finally, we solved Probjemiti@®it the
righthand inequalities of (14)—(17), and upon making the substitution of varigbtes? — L*1x; ands? =z — L#0(1 — x )
for all j. Consistent with Theorem 3, the vectowas chosen as an optimal set of dual values to (276 and (28)]of the relaxation
of QPRLT.

The input for QKP is as follows. Motivated Hy,10,21] a; for all j are integers taken from a uniform distribution over the
interval[1, 50], andc; for all j andC;; for all (i, j) with i < j are integers taken from a uniform distribution over the interval
[1,100], with C;; settoC; for all i > j. We letb = %Z?’:laj to help ensure a consistent level of difficulty.

All tests were implemented in ANSI C++, compiled using Visual C++.Net, and executed on a Dell Workstation 340 equipped
with a 2.53 GHz Pentium 4 processor and 1.5G of PC800 ECC RDRAM running Windows XP Professional. The formulations
were modelled using ILOG Concert Technology 1.1.

Results are reported Fable 1in terms of averages of ten problems, so that a total of 300 test problems are summarized. The
first column records the numbers of binary varialsiésr 10—100 in increments of 10. The next three columns consider Problem
G2, and give the gaps between the optimal binary obje@R&to QKP and the optimal value$G?2) to the relaxations of G2 as
apercentage @PT, computed aéO PT —v(G2))/O PT x 100, the numbers of nodes enumerated, and the total CPU execution
times in seconds. The next three columns give the same information for QPRLT for the same test problems, with the gaps between
OPTand the optimal value§QPRLT) to the relaxations of QPRLT computed(@sPT — v(QPRLT))/O PT x 100. The final
three columns repeat this same information fo@32The CPU times represent all effort, including that required to compute
the bound<.1 and U9 via the minimization problems in (6) and the maximization problems in (7), respectively, for Problem
G2, and that for solving the relaxation of QPRLT (using CPLEX'’s Crossover Barrier Method with default settings) to obtain the
desiredx vector as well as to compule‘;?l, U;‘o, Z?O, and[]}‘.‘l via the associated programs in (18)—(21) for@2An asterisk
indicates the average solution time for the ten sample problems exceeded the 35,000 CPU second limit.

Three observations are obvious from the resulfEadifie 1 First, Problem QPRLT has a significantly tighter relaxation value
than Problem G2. Column two shows the gaps for Problem G2 ranging from 23.21% to 32.57% while columns five and eight give
the gaps for QPRLT ranging from 2.47% to 8.88%. (Columns five and eight are identical by Theorem 3.) Second, Problem G2
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takes less total CPU time than QPRLT for problems up toisiz&0, but requires more time far> 80. Though Problem QPRLT
examines considerably fewer nodes than G2 for all values>020, the extra effort required to solve the tighter relaxations
is not justified for the smaller-sized problems. Third, and most important to this study, Problemdsgerformed the other
two formulations, never requiring more CPU time than either of these alternatives. Some strength of the relaxation values for
G2(a) was lost beyond that of QPRLT as indicated by the numbers of nodes enumerated in columns six and nine, but the effort
to examine the extra nodes was more than offset by the simpler bound calculation&pfasds seen by comparing columns
seven and ten.

The results offable lindicate that G2x) is competitive with Problems G2 and QPRLT. Of course, the performance can
be influenced by various factors, including problem type, input data, and strength of the relaxations of QPRLT. But the ad-
vantages to computing surrogates of constraints of QPRLT is apparent, as a means of balancing problem size and relaxation
strength.

6. Conclusions

A general strategy is presented for linearizing mixed 0-1 quadratic programs so as to capture the desirable properties of
concise size and tight relaxation strength within a single model. To accomplish this, two well-known linearization methods
are reviewed and combined: the classical methodlLlaf and the level-1 representation of the reformulation-linearization
technique (RLT) found if23-25] The first such method generates concise programs while the second promotes tight lin-
ear programming relaxations. Our study begins by enhancing the formulatiga4]insing a conditional logic argument
of [19,26] to adjust certain constraint coefficients, and a rewrite that alters the form of the objective function using a vari-
able substitution based on binary identities. Both these enhancements are designed to strengthen the relaxation
value.

The key observation motivating our new formulations is that the progranfi$liy after applying the enhancements of
conditional logic and objective rewrite, can be expressed as a type of surrogate dual of a Lagrangian subproblem of the level-1
RLT representation. The dualized constraints define the objective function rewrite, and the subproblem possesses a block-diagonal
structure which inherently recognizes the strengthening due to conditional logic. Two surrogate constraints per subproblem block
ensure an equivalent linearization. The objective rewrite and the surrogate constraints that combine to yield the tightest possible
relaxation value are defined in terms of a computed optimal dual solution to the continuous relaxation of the level-1 RLT
formulation, giving the resulting formulation the relaxation strength of the level-1 program.

Special structures within the constraints are identified that promote smaller formulations than the standard approach. One such
structure arises in the general class of quadratic set partitioning problems. For this class, the level-1 RLT strength is available
within a formulation of the typg11] enhanced via conditional logic, upon making simple transformations that strategically
split, for each(i, j) pair withi < j, the objective coefficients on the product terms; andx ;x;. Here, the dualized constraints
define an “optimal” split. Other special structures include variable and generalized upper bounding. For these type restrictions,
the special-structure RLT theory [#6] leads to more concise, tighter level-1 RLT representations than the standard RLT, which
in turn motivates more concise and tighter versionfl &f.

The results in this paper are of theoretical interest because they tie together two different linearization methods, and because
they demonstrate how to combine the positive attributes of both methods within one formulation. But it is important to be able
to use these new programs to more effectively solve nonlinear mixed 0-1 problems. We presented preliminary computational
experience on the 0-1 quadratic knapsack problem to demonstrate the potential of such formulations, and believe that improved
algorithms for general and specially structured nonlinear programs can be devised. As an example, forfhl)agads not
to work well on the quadratic assignment problem (QAP) due to the weak relaxation stfedigffihe level-1 RLT, however,
has promoted state-of-the-art exact solution algoritfitd$, even though the larger linear representations must be repeatedly
solved. The linear formulation found herein for the QAP, which is a special case of the structured quadratic set partitioning
problem, realizes the strength of the level-1 representation with greatly reduced size. Our ongoing research includes designing
an exact algorithm for the QAP that uses these concise representations while exploiting the assignment structure in the branching
process.
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