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ABSTRACT
Discriminant analysis is an important tool for practical problem solving. Classical statistical appli-

cations have been joined recently by applications in the fields of management science and artificial intel-
ligence. In a departure from the methodology of statistics, a series of proposals have appeared for
capturing the goals of discriminant analysis in a collection of linear programming formulations. The
evolution of these formulations has brought advances that have removed a number of initial shortcom-
ings and deepened our understanding of how these models differ in essential ways from other familiar
classes of LP formulations. We will demonstrate, however, that the full power of the LP discriminant
analysis models has not been achieved, due to a previously undetected distortion that inhibits the quality
of solutions generated. The purpose of this paper is to show how to eliminate this distortion and thereby
increase the scope and flexibility of these models. We additionally show how these outcomes open the
door to special model manipulations and simplifications, including the use of a successi~ goal method
for establishing a series of conditional objectives to achieve improved discrimination..
Subject Areas: Linear Programming and Statistical Techniques.

INTRODUCTION

There is growing recognition that a variety of classical statistical problems can
be approached advantageously by tools from the field of optimization. Reexami-
nation of these problems and their underlying model assumptions can sometimes
lead to refreshing new perspectives and alternative lines of attack. Discriminant
analysis is high on the list of problems of this type, and is drawing increased atten-
tion because it straddles the areas of management science and artificial in-
telligence as well as statistics. Management science applications of discriminant
analysis include decisions to make or buy, lend or invest, hire or reject [3] [10]
[13]. Artificial intelligence applications involve the challenging realm of pattern
recognition, including problems of differentiating signals, diagnostic classifica-
tions, code signatures and data types [2] [9] [14] [15].

An effort to wed statistical discrimination with optimization has come about
by proposals to capture the goals of discriminant analysis in a collection of linear
programming formulations [4] [5] [8]. Initial forms of these models included the
objectives of minimizing the maximum deviation and the sum of deviations of
misclassified points from a reference hyperplane, together with weighted variants
of these objectives. Although the more advanced earlier variants and their recent
derivatives have gone largely unexplored (a condition that deserves to be reme-
died), empirical testing of the simpler variants have disclosed the "minimum sum
of deviations" model to be competitive in effectiveness with the classical approach
of Fisher [9] [12]. This comparative testing was applied in contexts determined by
the limited goals and assumptions of classical discriminant analysis, and did not
examine settings that could be advantageously exploited by the more flexible objec-
tives of the LP discriminant approaches. Moreover, no use was made of LP post-
optimization to reweight borderline misclassified points to obtain refined solutions,
one of the strategic options of the LP approaches proposed with their earliest
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formulations. Consequently, the effective performance of the LP discriminant anal-
ysis models under these circumstances gave encouraging evidence of their potential
value in wider applications.

At the same time, however, empirical tests also disclosed that the LP formu-
lations sometimes gave counterintuitive and even anomalous results. Follow-up
examination of specially constructed examples demonstrated that these formulations
were attended by certain subtleties not found in other areas to which linear
programming is commonly applied [1] [5] [12].

Analysis has indicated that the anomalous behavior of the LP formulations
stems from the implicit use of normalizations in order to avoid null solutions that
assign zero weights to all data elements. Several normalizations have been identi-
fied [5] [8] in an attempt to overcome this difficulty. The most recent of these has
been demonstrated to exhibit desirable invariance properties lacking in its prede-
cessors, and has produced encouraging experimental outcomes, yielding solutions
generally better than those obtained by earlier studies [8].

In spite of these advances, however, the full power of the LP models for
discriminant analysis has not been achieved, because the best normalization
proposed to date distorts the solutions in a manner not previously anticipated. The
consequences of this distortion not only inhibit the quality of first-pass solutions
obtained by the LP formulations, but also can confound the logical basis of
obtaining more refined solutions by differential weighting of deviations in the objec-
tive function and LP postoptimization.

The purpose of this paper is to remedy these defects and to demonstrate some
of the consequences for improved modeling capabilities that result. We introduce
a new normalization that eliminates the previous distortions in the LP models and
has attractive properties enabling it to obtain demonstrably superior solutions. The
outcomes of these properties additionally include the ability to place an)' desired
relative emphasis on classifying particular points correctly, and to create a condi-
tionally staged application of the model, called the Successive Goal Method, for
achieving progressively more refined discrimination both for two-group and multi-

group analysis.

A HYBRID LP DISCRIMINANT MODEL

We take as our starting point the hybrid LP model of [8] which integrates
features of previous LP discriminant formulations [4] [5]. Attention will initially
be restricted to the two-group discriminant problem, which constitutes the main
focus of our development.

We represent each data point by a row vector Ai' where membership in
Group I or Group 2 is indicated by iEGI' or iEG2' respectively. (Different
points can have the same coordinates, and efficient adaptations for this are indi-
cated in a later section.)

To discriminate the points of the two groups, we seek a weighting vector x
and a scalar b, which may be interpreted as providing a hyperplane of the form
Ax=b, where A takes the role of representing Ai for each i. The goal is to assure
as nearly as possible that the points of Group I lie on one side of the hyperplane
and the points of Group 2 lie on the other, which translates into the conditions that
Aix<b for iEG1 and Aix>b for iEG2'

Refining this goal as in [8], we introduce external and internal deviation vari-
ables, represented by the symbols (Xi and fJi' which refer to the magnitudes by
which the points lie outside or inside (hence violate or satisfy) their targeted half
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spaces. Upon introducing objective function coefficients hj to discourage external
deviations and kj to encourage internal deviations, and defining 0=°1 UOz, we
may express the LP model as follows:

Minimize ho<Xo+ E hj<Xj-kofJo- E k;fJj.
iEG iEG

(1)

subject to

A;x- cxo- cx;+ fJo + fJ;=b, iEGl' (2)

AjX+ CXo +cx;- .8o-.8;=b, iEG2. (3)

aD, (3o~O, (4)

ai' .8i~O, iEG, (5)

x, b unrestricted in sign. (6)

Many variations of this model framework are possible. For example, in the "f
version" of the model the variable b that constitutes the boundary term for the
hyperplane can be replaced by b -f for Group 1 and by b + f for Group 2, where
f is a sected positive constant, to pursue the goal of compelling elements of Group
1 and Group 2 to lie strictly inside the half spaces whose boundary is demarked
by b. (Different values of f may be chosen for different points. However, under
the choice of a uniform value, the f version is also equivalent to a "one-sided f
model" that replaces b by b+ f for Group 2 only, where the f value in this case
is twice as large as in the two-sided case.)

The objective function coefficients will generally be assumed to be nonneg-
ative, although it is possible to allow the coefficients of the {J variables to be nega-
tive. In this latter variation the hybrid model represents a generalized form of a
standard goal programming model. We also stipulate that the objective function
coefficients should satisfy hj~ kj for i=O and iE G. Otherwise, it would be
possible to take any feasible solution and increase the value of <Xj and {Jj (for
hj<kj) an indefinite amount to obtain an unbounded optimum. More complete
conditions for avoiding unbounded optimality, both necessary and sufficient, are
identified subsequently.

From an interpretive standpoint, the <Xo variable provides a component to
weight the maximum external deviation, while the {Jo variable provides a compo'-
nent to weight the minimum internal deviation. This interpretation is suggestive
rather than exact, however, due to the incorporation of the individual point devi-
ation variables, <Xj and {Jj' in the same equations as <Xo and {Jo' The effects of
these variables can be segregated more fully by introducing separate constraints of
the form Ajx-<Xo+{Josb for iEG1, and A;x+<Xo-{Jo~b for iEG2' at the
expense of enlarging the model form. By deleting the <Xo and {Jo variables in (1)
through (6), or alternatively, by deleting the <Xj variables and setting the kj coef-
ficients to zero, the foregoing model corresponds to one of the models first
proposed in [4].

THE NORMALIZATION ISSUE

To understand the potential difficulties that underly the preceding discriminant
analysis formulation, it is useful to review in greater detail the history of its
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development and attempted application. In the form given, the model is incom-
plete, for it must be amended in some fashion to avoid an optimal solution that
yields the null weighting x=O. If the two groups can be separated by a hyperplane
(or nearly so) and the kj coefficients are positive, the null weighting will be auto-
matically ruled out, but in this case the model must be amended to assure that
it is bounded for optimality. Broadly speaking, the more challenging applications
of discriminant analysis arise where the two groups significantly overlap, and in
these cases a solution yielding the null weighting x =0 typically will be optimal
if it is not somehow rendered infeasible.

The early implementations of LP fonnulations for discriminant analysis under-
took to avoid the null weighting by the logical expedient of setting b to a nonzero
constant. It was tacitly assumed that different choices of b would serve only to
scale the solution (provided at least the proper sign was chosen), and the approx-
imation to optimality in the special case where b ideally should be zero still would

be reasonably good.
However, experimental tests of different LP model variants soon disclosed that

assigning b a constant value still permitted the null weighting to occur for certain
data configurations. More generally the models responded with nonequivalent, and
sometimes poor, solutions to different translations of the same underlying data,
where each point Aj is replaced by the point Aj+t for a common vector t [1] [12].

These unexpected outcomes prompted the observation that setting b to a
constant value could be viewed as a model normalization, and it was soon discov-
ered that other nonnalizations could be identified that affected the model behavior
in different ways [5]. Let N denote the index set for components of the x vector.
Then the first two proposals for alternative nonnalizations to remedy the problems
of setting b to a constant can be written in the form:

b+ E xj=a constant;
jEN

E xj=a constant.
jEN

Of these alternatives, the latter was proved in [5] to yield solutions that were
equivalent for different translations of the data, a property not shared by the other
normalizations. This advantage was not enough to rescue the latter normalization
from defects, however. First, to use the normalization, the LP formulation had to
be solved for both signs of the constant term to assure the right sign was selected.
Second, the variables either directly or indirectly had to be bounded (in a sense,
yielding an auxiliary normalization) to assure bounded optimality. Third, the
normalization continued to produce nonequivalent solutions for different rotations
(in contrast to translations) of the problem data, where each point Ai is replaced
by the point AiR, and R is a rotation matrix.

The most recent attempt to settle the normalization issue occurred in [81 with

the "fJ normalization"

fJo+ E fJi=l
iEG

The need to allow for different signs of the constant term was eliminated with this
normalization. More significantly, it was proved that the normalization succeeded
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in yielding equivalent solutions both for translations and rotations of the problem
data. Experimentation further showed that the normalization provided solutions
uniformly as good or better than solutions obtained with previous normalizations
for the problems examined. In spite of these advances, however, this latest normal-
ization also suffers undesirable limitations which continue to distort the solutions
obtained by the LP formulations.

In the following sections we illustrate the nature of the distortion inherent in
the fJ normalization, and then show that it is compounded by a related defect that
limits the generality and flexibility of the LP model when this normalization is
used. We then provide a new normalization that is free of these limitations, while
exhibiting the appropriate invariance properties for transformations of data. The
attributes of this normalization are explored in results that establish additional
features of the LP formulations not shared by alternative approaches. Finally, we
amplify the implications of these results for obtaining discrimination approaches of
increased power.

LIMITATIONS TO BE OVERCOME

The limitations of the .8 normalization will be illustrated in an example appli-
cable to the standard discriminant analysis context, as a means of clarifying the
properties that need to be exhibited by an improved normalization. Consider the
simple case where each point Ai has a single coordinate, and hence the weight
vector x may be treated as a scalar variable. For illustrative purposes we will use
the form of the hybrid model in which ao and .80 are deleted. In addition, for
further simplicity, we suppose all the ki coefficients are zero.

The relevant data for the example are given in Table 1, indicating the coor-
dinates and the penalties for being classified in the wrong group. A graph of the
points is shown in Figure 1, where Group 1 points are indicated by circles and
Group 2 points are indicated by squares. The rnisclassification penalties are shown
above each point.

The values from -2 to + 2 on the line segment correspond to values of b. It
is easy to show that the best way to separate the Group 1 and Group 2 points on
the line segment is to choose the value b=O, where Group 1 points are counted
as misclassified if they fall to the right of the selected value and Group 2 points
are counted as misclassified if they fall to the left. Then, only A2 and A4 are
misclassified, each with a deviation of 1 unit from the value b=O, hence giving
a total penalty cost of 1 x25 + 1 x25 =50.

Without a normalization constraint, the LP model falls into the trap of finding
a meaningless optimal solution, x=O and b=O, which makes all external deviations
zero and hence also makes the total penalty cost zero. Consider the result of using
the .8 normalization to overcome this limitation. We can choose any positive
constant term for the right-hand side of this normalization, and specify the normal-
ization to be I;.8i=4, since 4 is the sum of the internal deviations <13;), in the case
identified to be best by graphical analysis. Indeed, we th~n obtain x=1, b=O (with
a4=a2=1, .83=.86=2, all other ai and ai=O) as a feasible solution for the LP
model, yielding a total penalty cost of 50, as before.

However, this solution turns out not to be optimal. Rather, the.8 normalization
causes the inferior solution based on x=1 and b=-1 to appear even better. From
a graphical standpoint, the deviation variables with positive values for this solution
are al =1, a2=2, .83=1, .85=1, .86=3 which yield a total penalty cost of 65.
However, the sum of the .8i variables equals 5, and to rescale the solution to
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Table 1: Coordinates and penalities for being classified in the wrong group.

satisfy the .8 normalization with right-hand side 4 the value of each variable must
be multiplied by 4/5. The result is to multiply the total penalty cost of 65 by 4/5,
yielding a penalty cost for the LP model of 42. This is better than the best case
penalty cost of 50, causing the model to favor a less desirable solution.

This outcome is made more remarkable by noting that an earlier normaliza-
tion, Exj=a constant (choosing in this case the constant to be 1), will result in
correctly identifying the best solution as optimal. Yet for multidimensional
problems this earlier normalization suffers from distortions not encountered by the
.8 normalization, and empirical testing has found it generally to provide solutions
that are not as good as those produced by the .8 normalization. Consequently, we
are motivated to seek a new type of normalization that is more broadly effective
and reliable.

THE NEW NORMALIZATION

The normalization we propose is

(7)(-n2 E Aj+nl E Aj)x=l
iEG) iEG2

where nl and n2 are, respectively, the number of elements in O} and °2' and the
right-hand side of I is an arbitrary scaling choice for a positive constant. (An alter-
native scaling that tends to yield x j values closer to an average absolute value of
1 is to choose this constant to be 2nln2.) An equivalent form of this normaliza-
tion occurs by adding n2 times each equation of (1) and subtracting n} times each
equation of (2) to yield the constraint

(8)2nln2<13o-ao)+n2 E <l3j-a;)+nl E <l3j-a;)=l

iEGI iEG2

Expressing the normalization in the form (7) has certain advantages for analysis
while expressing it in the form (8) is convenient for incorporation into the LP
formulation (since the coefficients of the variables do not require calculation as in
(7». It may be noted that the weights hj and kj in the objective function should
not be chosen in proportion to the coefficients of corresponding variables in (8),
or else the normalization effectively constrains the objective function to equal a
constant, and the minimization goal becomes superfluous. (If the kj coefficients
are proportional to corresponding coefficients of (8), then a similar effect occurs
in the case where it is possible to completely separate Group 1 and Group 2
points, i.e., where aU aj become zero.)

To understand the properties of the normalization given by (7) and (8), let dj
denote the net internal deviation of the point Aj from the hyperplane generated by
the discriminant model; that is

i
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d.- b-A.x,- , for iEGl'

dj=A;x:-b for iEG2"

Hence di is positive (or zero) if Ai lies within its targeted half space and negative
otherwise. (The E version of the model for seeking strict separation replaces the
quantity b by b-E, for a positive constant E, in the definition of di" This results
in increasing the constant term of the normalization (7) by the quantity
E(nl +n2>, while leaving the constant term of the normalization (8) unchanged.)

Note that if Group 1 and Group 2 have the same number of points, and are
separable to any meaningful extent by a hyperplane, then the internal deviations
should sum to a larger value than the external deviations; hence the sum of all
the dj values should be positive. More broadly, if Group 1 and Group 2 have a
different number of points, then upon weighting the dj values to give equal repre-
sentations to the groups relative to their sizes (i.e., multiplying each di in Group
1 by n2 and each dj in Group 2 by nJ, then a meaningful separation should yield
a positive value for this weighted sum. We embody this observation in the
following definition.

Definition. A hyperplane creates a meaningful separation of Group 1 and
Group 2 if

n2 E dj+ni E dj>O.

iEGl iEG2

On this basis of this definition we may at once state the following result.
Theorem 1. The normalization (7) is equivalent (under scaling) to requiring a

meaningful separation, and eliminates the null weighting x = 0 as a feasible solution.
The proof of the foregoing theorem and all other results of this paper appear

in the Appendix. A direct consequence of the theorem is the following.
Corollary. A meaningful separation exists if and only if there exists a hyper-

plane such that

n2 E dj+n} E dj*O.

iEG} iEG2

It also exists if and only if there exists some component AU of each point Ai'
iEG, such that

n2 1; Aij*nl 1; Air

iEGl iEG2
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Useful additional insights into the nature of (7) and its consequences for the
hybrid LP discriminant formulation are provided by examining the linear program-
ming dual of (1) through (6) with (7) attached. To create this dual, it is convenient
first to rewrite the constraint equation (2) by multiplying it through by -1. Then,
associating a variable vi with the equations (2) and (3) for each iEG, and a vari-
able v 0 with (7), we obtain the following result.

Dual Model Formulation

Maximize v 0

subject to

Aovo- .E AiVi + E AiVi=O,
iEGl iEG2

ho~ E vi~ko'
iEG

h .> v .> k .,- ,- " iEG,

E Vi -E Vi=O,

iEGI iEG2
where

Ao=-n2 E Ai +n} E Ai"
iEG} iEG2

Our interest in analyzing this dual is to determine circumstances that provide a
feasible dual solution, and to assure that the LP discriminant formulation is
bounded for optimality.

Necessary conditions for bounded optirnality of the formulation (1) through ~:6)
are immediately evident from the Dual Formulation, as are necessary conditions
for certain variables of the LP discriminant formulation to be nonzero at opti-
mality. The following is established by reference to the duality theory of linear

programming.

Necessary Conditions for Bounded Optimality

hi~ki iEG and i=O,

E ki~ho
iEG

Necessary Conditions for Variables to be Nonzero

For fJo: ho< E hi
iEG

For .80: to> E kj
iEG

To avoid trivial solution values for dual variables, it is appropriate to stipulate
hi>ki for iEG. In general, interpretation of the inequalities for bounded optimality
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in the context of the LP discriminant formulation suggests that they re:asonably
may be required to be strict. It may be noted that hj>kj implies that, at most,
one of !Xj and fJj will be positive, an outcome that also holds when hj=:kj in the
case of extreme point solutions. (This is not true for the fJ normalization.)

We seek to go beyond the foregoing observations, however, by providing suffi-
cient as well as necessary conditions for bounded optimality.

Theorem 2. The LP discriminant model, (1) through (6), with the normaliza-
tion, (7), is bounded for optimality whenever

Min (ho/2, nlhi:iEGI, n2hi:iEG2)

is at least as large as

Max (ko/2, nlk;:iEG1, n2k;:iEG2)'

a

J)
IS

If

The sufficiency conditions of Theorem 2 are generally more restrictive than
required to assure bounded optimality. When the theorem is applied to tJle model
variant where ao or .80 is deleted, the corresponding term involving ho or ko is
deleted from its statement. When both ao and .80 are deleted, and the two groups
have the same number of elements, the conditions of the theorem simplify to
Min(hj:iE G) ~Max(kj:iE G).

Theorem 2 has an additional attractive feature. Suppose that hj and kj values
initially have been chosen subject only to the condition that all hj (inclulding ho)
are positive. If the inequality of Theorem 2 is not satisfied, let 11" be the: ratio of
the Max term to the Min term of the theorem. Then upon replacing eac:h 1I"hj by
phi in the objective (1), the condition of the theorem is satisfied. This modifica-
tion of the coefficients of (1) has the property that the relative magnitudes of the
hj coefficients, and also of the kj coefficients, are left unchanged. Thus, the
theorem shows it is possible to choose the coefficients of (1) to reflect any desired
relative emphasis on the correct classification of particular points, and ibounded
optimality can be assured by a simple adjustment of the objective function coef-
ficients that preserves this relative emphasis.

Our next goal is to provide the result which establishes that the norm;alization
(7) is stable across standard data transformations.

Theorem 3. The optimum objective function values and optimal valuc~ for the
a and .8 deviation variables in the LP discriminant formulation are unchanged for
all rotations and translations of the problem data.

Theorems 1 through 3 are likewise applicable to the case where strict group
separation is sought by replacing b with b -EO in the constraints applicable to Group
1 and with b + EO in the constraints applicable to Group 2.

We conclude this section by observing that the defect illustrated in Thble 1 and
Figure 1 for the .8 normalization is overcome by (7). In particular, the distortion
of the solution caused by the .8 normalization in this example occurred because a
shift of b (from its best value of zero) caused the sum of the .8j values to change,
hence requiring that the solution be rescaled to satisfy the .8 normalizatilon. As a
result, it was impossible to hold x constant to find the optimal b value, given x,
since moving b forced x to change as well. The normalization (7) is fre,e of this
defect for the important reason that it is entirely possible to hold x constant and
change b without any effect on the normalization constraint. Thus the normaliza-
tion (7) gives the same objective function values as the graphical analysis of the
example of Table 1 and Figure 1, and identifies the same solution as optimal.
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MODEL MANIPULATIONS AND SIMPLIFICATIONS

Our primary goal will be to identify how the model (1) through (6) can be
manipulated to achieve an "equal representation" of the points in Group 1 and
Group 2. This hinges on another more basic observation, which makes it possible
to reduce the size of the model in the case where some points may have the same
coordinates as others; that is, avoiding the necessity of including a separate
constraint equation (and corresponding ai and .8i variables) for each duplicate
point.

Specifically, let S denote a collection of points all in G} or all in G2 such
that Ap = Aq for each p, q in S. If S is a subset of G}, then the equations of (2)
corresponding to i E S can be replaced by a single representative equation A,.x:-
ao-a,+.8o+.8,=b, where A, is the common vector Ai for all iES. If S is a
subset of G2' the equations of (3) corresponding to iE S can similarly be replaced
by the representative equation A,.x: + ao+ a, -.80 -.8, = b. In each case, assuming
the hi and ki values are chosen in accordance with the stipulations of the
preceding section, and the normalization (7) is employed, it follows that an
optimal solution before the replacement occurs must yield the same values of ai
and.8i for each iES, and hence we are at liberty to interpret the values received
by a, and .8, as representing these common values.

To assure that optimal solutions before and after replacement are the same
under this interpretation, it suffices to let h, and k,. respectively, equal the sums
of the hi and ki coefficients for iES. (It is reasonable in the original model to
give these coefficients the same two values, say h* and k*, for all iES, in which
case h,=h*ISI and k,=k*ISI.) The necessary and sufficient conditions for
bounded optimality identified in the previous section will hold after the replace-
ment if they held before the replacement.

The manner in which this model simplification can be used to achieve an
equal representation of Group 1 and Group 2 is as follows. If the two groups are
of different sizes, we make n2 copies of each point in G} and n} copies of each
point in G2' so that the two groups effectively are given the same number of
elements. The resulting representation does not enlarge the model formulation,
since by the foregoing observation we may replace each hi and ki by n2hi and n2ki
for iE G}, and by n}hi and n}ki for iE G2' without requiring the creation of addi-
tional variables or constraints in order to handle the implicitly generated copies of
the original points.

By analogy with the case where all hi (and all k;) begin with the same value
for the two groups, we may generally regard the objective function coefficients to
be unbiased with respect to the sizes of the sample groups G} and G2 if, after
the indicated adjustment

E hi

iEG2

set I

tati(
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A SUCCESSIVE GOAL APPROACH

Particularly significant is the potential to use hierarchically weighted deviation
terms in the successive application of the model, as proposed for its early special
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cases consisting of the MMD and MSD forms in [4] [5} and which can now be
implemented without distortion by reliance on (7). Such an approach is relevant
to settings where multiple groups are to be differentiated, or where two groups are
treated as multiple groups by redefining subsets of points improperly classified at
one stage of application as new groups to be differentiated at the next. For the
multiple group case, any subset of groups can be defined to be Group 1 and the
remaining subset defined to be Group 2, thus encompassing alternatives ranging
from a binary tree form of separation to a "one-at-a-time" form of separation.

By this approach, when the two currently defined groups are incompletely
separated at a given stage, the hyperplane dividing them may be shifted alternately
in each direction (increasing and decreasing b) by an amount sufficient to include
all points of each respective group. (The magnitude of the two shifts will be the
same for the MMD model, which minimizes both the maximum value and the sum
of these shifts.) Upon identifying the shift for a given group, all points of the alter-
nate group which lie strictly beyond the shifted hyperplane boundary become
perfectly differentiated by this means, and such perfectly differentiated points can
be segregated from remaining points before applying the next stage. The number
of stages devoted to creating perfect separation (before accepting the current hyper-
plane, without shifting) is a decision parameter of the process.

It is important in such a proce;s, if a superior set of differentiating hyper-
planes is sought, to retain points in the model that have been segregated as
perfectly differentiated, rather than dropping them from consideration during subse-
quent stages. To reflect the fact that these segregated points should not inhibit the
goal of differentiating among remaining points, their deviation terms are assigned
objective function weights that are hierarchically of a lower order than those
assigned to points not yet segregated. The relative magnitudes of these lower order
weights may reasonably be scaled to become progressively smaller for points segre-
gated earlier in time. (In addition, to reduce problem size, a subset of the points
most recently segregated may be discarded at each stage, where this subset is iden-
tified to consist of points lying beyond a chosen magnified shift of b. It is easy
to shift b, for example, to a depth that excludes any selected percentage of most
recently segregated points belonging to a specified group.)

We call this approach the Successive Goal Method because the introduction of
hierarchical differences in deviation weights, with diminishing weights for points
segregated earlier, constitutes a natural partitioning of problem points into subsets
by reference to prioritized goals. Furthermore, the ability to manipulate weights
within a given goal level (or to split out additional hierarchies), makes it possible
to treat the two groups of points that remain unsegregated at a given stage in a
nonsymmetric manner.

This leads to an approach that characteristically is able to generate a stronger
set of hyperplanes, at the expense of approximately doubling the overall compu-
tational effort. The basis of this nonsymmetric approach rests on creating succes-
sive objectives to exclude a maximum segment of one group from a region that
contains all of the other, in a series of alternating hierarchies.

The alternating hierarchy method that results has the property of adapting
successive hyperplanes to more closely match the distributions of the groups, and
generally increases the frequency in which earlier hyperplanes are permitted to be
discarded as redundant. The procedure consists of solving two problems at each
stage. Each of the two groups of currently unsegregated points is chosen in turn
to be the one that lies completely within the region assigned to it by the current
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hyperplane, with the associated (subordinate) goal of excluding the maximum
portion of the other group from this region.

The structure of the goals for each problem gives rise to the' 'alternating hier-
archy" characterization of this procedure. Specifically, we adopt the convention
that the group to be completely contained in its assigned region is always desig-
nated to be Group 1. Then the problem goals are ordered as follows. At the
highest level, only the external deviations of unsegregated Group I points are incor-
porated into the objective (which is equivalent to imposing the condition A;x s b
for these points). At the next level, the external deviations of unsegregated Group
2 points are assigned corresponding lower order weights in the objective, thus
respecting the dominance of the level preceding. For the points of this second
level, the b term is replaced by b + EO to seek strict separation. (Alternatively, a
restricted (3o variable, which appears only in the equations for the second level
points, may be incorporated with a positive weight.) At the third and fourth levels,
respectively, external deviations of segregated Group 1 and Group 2 points receive
weights reflecting their associated position in the hierarchy (or a single third level
may treat these segregated points uniformly). Finally, two concluding levels incor-
porate internal deviations of both groups, first for unsegregated points and then for
segregated points. These last levels are relevant to enhancing the differentiation
between those groups which are in fact separable, and may be expected to have
diminished relevance after generating the first few hyperplanes.

The portion of unsegregated Group 2 points that are perfectly differentiated
from unsegregated Group 1 points at a given stage, and hence can join the set of
segregated points on the stage following, may vary substantially depending on
which group is chosen to be Group 1. In fact, one of the two choices for Group
1 may fail to differentiate any of the unsegregated Group 2 points (i.e., all such
points may lie in the half space required to include the unsegregated Group 1
points). When the sets of points differentiated by the two choices differ signifi-
cantly in size, the smaller set can be excluded from joining the segregated points
on the next stage-an exclusion that, in effect, will occur automatically if the
smaller set is empty. If both sets are empty, the process stops. Because of the alter-
nating dominance of the two groups in each of the problems solved, no shifting
of hyperplanes is needed in this approach. (For added refinement, after a forward
pass of generating a selected set of hyperplanes, a reverse pass can be applied to
improve the differentiation.)

From a practical standpoint, the hierarchical levels of this approach can be
handled with greater efficiency by dividing the solution process into stages. At the
first stage, attention is restricted to the objective function associated with the
highest level until that objective is optimized. Then, following a process analogous
to that employed by Phase I/Phase 2 LP methods, nonbasic variables with nonzero
reduced costs are fixed at their current values, and the objective appropriate to the
next level is introduced and optimized. The process repeats until all levels are
treated or all remaining nonbasic variables receive fIXed values (thus implicitly
determining solutions for levels not yet examined). This approach requires notably
less computational effort than an implementation which relies on large coefficient
differences to control the treatment of hierarchies. Independent of implementation
details, the approach provides an opportunity to achieve progressively improved
differentiation of the original group in both the two group and multiple group
cases, and opens up interesting research possibilities for determining the best
subsets of points to be segregated at each stage.
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CONCWSIONS

The LP discriminant analysis formulation (1) through (6) is susceptible to a
variety of uses as a result of the ability to handle different discriminant analysis
goals by varying the coefficients of the objective function. Such uses I~nge from
accommodating inherent differences in the need to classify specific points
correctly, to employing strategies for producing greater refinement in classification
(as by the Successive Goal Method).

Among the settings of practical relevance, situations in which there are real
dollar costs for misclassifications can be modeled in a natural and highly appro-
priate manner by such a model. Many applications gain additional realism by an
integer programming interpretation, and it can be shown [6] that the LP formu-
lation employing the normalization (7) is a direct relaxation of a corresponding IP
problem for minimizing the number of misclassified points (or a weighted variant
of this objective), a result that does not hold for the (3 normaliza1ion. More
broadly, the use of (7) makes it possible to employ postoptimization stl~tegies for
closing potential gaps between LP and IP solutions, and for achieving other goals
such as diminishing the effects of outliers (whose identities are disclclsed by the
initial solution) without the risk of being driven to wrong solutions when objective
function coefficients are thereby modified.

Postoptimization is also useful in the E version of the model to identify values
of E that yield different separation effects. In particular, this model version is equi-
valent to introducing a translation of the (30 variable by the lo,wer bound
(3o~E. Thus, standard sensitivity analysis on the LP solution with (:30 included
in the model can precisely determine the outcome of increasing (30' hence E, up
to the point where a new optimal basis results, and a postoptimization step can
then move to this new basis, allowing .the analysis to repeat for larger E values.
Such a mapping of the effects of different E values provides an interesting area for
optimization, and is studied in the context of international loan portfolios in [7].

From another perspective, the ability to weight the internal and external devi-
ations differently for different points, and to encompass tradeoffs between such
deviations and minmax and rnaxmin objectives, provides a direct way to handle
issues that are often troubling in classical discriminant analysis. A prominent
example is the type of problem in which Type I and lYPe II errors deserve
different emphasis. As pointed out in [11], in the context of identifyin~: firms that
succumb to bankruptcy, it may be more important to be assured that a firm classed
as financially strong will in fact escape bankruptcy than to be assured that a firm
classed as financially weak will become insolvent.

Indeed, by the capacity to give higher weights to firms that are dramatically
successful and unsuccessful, the LP formulation will tend to position the "sure
bets" more deeply inside their associated half spaces. The advantage of this is to
provide increased predictive accuracy; instead of investing in a business based
simply on whether discriminant analysis classifies it financially strong or finan-
cially weak, greater confidence may be gained by investing in a firm tllat lies well
within the financially strong region. The Successive Goal Method provides an
opportunity to additionally improve the discrimination in such cases. B:'f the ability
to remove distortion with the normalization (7), the use of differing objective func-
tion coefficients that underlies these approaches can be applied consiistently and
effectively. [Received: March 10, 1989. Accepted: August 22, 1989.]
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APPENDIX

Proof of Theorem 1. First, (7) reduces to an inconsistent equation whenx=O, and hence
renders the null solution infeasible. To see that (7) is equivalent to requiring a meaningful
separation, expand the inequality that defines a meaningful separation by substituting the
appropriate values for di' according to membership of i in at or 02' thereby obtaining

n2 I: (b-A;x:)+nl I: (A;x:-b»O,

iEGl iEG2 I

Algebraic manipulation and reduction permits this inequality to be reexpressed in the fonn

-n2 E AjX+n} E AjX>O

iEGl iEG2

whose left-hand side corresponds to the left-hand side of (7). Given any feasible solutiol1l
to the LP formulation that satisfies this inequality, upon dividing the values of all variables
in the solution by the positive left-hand side quantity, the result is again feasible for tht:
LP problem and satisfies (7). Hence, allowing for scaling, the solutions are equivalent. Simi..
larly, any feasible solution that satisfies (7) automatically satisfies the definition of a mean..
ingful separation. This completes the proof.

Proof of the Corollary. The corollary is a direct consequence of Theorem 1 and thc:

form of (7).
Proof of Theorem 2. Replace (7) by (8) in the primal formulation, whereon the Dual

Problem becomes
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Maximize v 0

subject to

-1:: 

A.y.+ 1:: A.y.=OI I I I '

iEGl iEG2

ho~-2nln2vo+ E vi~ko'
iEG

hj2:-n2Vo + vj2:kj

1t
hi2:-nIVo + Vi2:ki

0
Here Vo is the same variable as in the preceding dual formulation but the vi variables,
iEG, are different. In this new dual formulation, we set vi=O for all iEG. The resulting
partial solution: satisfies the first problem constraint and leaves the remaining inequalities in
the form of bounds on va' Expressing these as bounds on -nln2vo in each case, and then
comparing terms, yields the inequalities stated in the theorem. This completes the proof.

Proof of Theorem 3. We omit this proof, noting that the result can be established by
reference to the Stabilty Theorem of [8], using the (8) form of the normalization.c
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