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Conventional statistical analysis includes the capacity to 
systematically assign individuals to groups. We suggest alterna- 
tive assignment procedures, utilizing a set of interrelated goal 
programming formulations. We further demonstrate via 
simple illustration the potential of these procedures to play 
a significant part in addressing the discriminant problem, and 
indicate fundamental ideas that lay the foundation for  o ther  

more sophisticated approaches. 

1. Overview 

Included in the role of conventional statistical 
procedures is the capacity to systematically assign 
individuals to groups. Such a capability is assured 
widespread application: assigning patients to a disease, 
loan applica:lts to a risk category, potential product 
purchasers ~:o a market segment, and the like (see 
[3,10,16 and 20]). Yet while considerable effort has 
been made to generate appropriate classification tech- 
niques grounded firmly in the principles of dassical 
and Bayesian statistics, little has been done to explore 
the potential of alternative management science 
approaches to the problems of group discrimination. 

This paper represents an effort to suggest ways by 
which the discriminant problem might reasonably be 
addressed via straightforward linear goal programming 
formulations. Simple and direct, such formulations 
may ultimately compete with conventional approaches 
- free of the classical assumptions and possessing a 
stronger intuitive appeal. Importantly, they enable 
the user to play an active part in the analysis, encour- 
aging user participation in the selection of appropriate 
discriminant criteria and allowing flexibility in setting 
relative penalties for misclassification. 
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2 .  C l u s t e r  vs .  d i s c r i m i n a n t  analysis 

While the task and importance of assigning indi- 
viduals to groups is easily understood, it should be 
noted that two sets of assignment-related procedures 
- those classed as clustering techniques and those 
identified with standard statistical discrimination - 
are often confused (a situation further complicated 
by varying tetmino|ogy among authors). Accordingly, 
the following descriptions are offered for clarifica- 
tion: 

Cluster analysis encompasses those procedures 
which promote the formation of readily identifiable 
groupings of 'similar' objects. Thus, for example, a 
clustering procedure might be used to group human 
diseases, product lines, archeological artifacts, or 
religi~txs customs. The process begins with a standard 
data structure in which a number of cases (objects, 
individuals, items) have been measured on a number 
of dimensions (properties, characteristics, traits). 
Cases, initially ungrouped, are ultimately clustered 
(grouped) according to some criterion of proximity 
(and hence, similarity). 

Discriminant analysis also addresses the need to 
distinguish groups of cases, but here appropriate 
groupings are defined prior to application of the 
technique. That is, a sample of members (cases) from 
each of a number of known groups is given. For each 
case, measurements are taken on a set of dimensions 
(variables). A diseriminant procedure is used to 
mathematically combine variables into a single dimen- 
sion that will 'best' differentiate the groups. That 
combination of variables can then be used to (1) 
establish the relative importance of the original 
dimensions in separating group members, and (2) 
assign new cases with unknown group membership to 
an appropriate group. 

Issues generally associated with the discriminant 
task, as described above, serve as the principal focus 
of this paper. However, a number of the ideas 
advanced have application to the clustering problem 
as well. 

2.1. Purpose 

Our goal is to provide a simpler alternative to con- 
ventional diseriminant procedures where by 'simpler' 
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we mean easier to understand and manipulate (due to 
increased flexibility). It should be stressed that we 
are not undertaking a thoroughgoing critique of clas- 
sical methods, nor suggesting that they are not useful. 
Rather, emphasis is placed on disclosing the positive 
aspects of proposed options. 

Efforts to cast discriminant-type problems in 
linear goal programming form derive from a recogni- 
tion that such problems are inherently problems in 
constrained optimization: that is, problems in which 
some well-def'med objective (goal) is to be maximized 
(minimized), subject to a set of constraining condi- 
tions. Given this perception, the ta~k is to identify 
effective goats and appropriate constraints. While non- 
linear formulations are clearly possible, linearity 
serves to promote conceptual simplicity and ensures 
a fair degree of computational efficiency. More com- 
plex extensions of the essential theme are left to 
another place. 

2.3. Producing a single linear discriminator for the 
multi-group discriminant problem 

The basic problem initially to be addressed may 
be briefly described as follows. Group membership 
for a set of p-dimensional points is known. A simple 
weighting scheme is sought to 'score' each p-dimen- 
sional point by weighting its components. The scores 
will be divided into intervals designed to insure, 
insofar as possible, proper group assignment. By 
extension, the scoring (weighting) scheme may then 
be applied to additional points in the space in order 
to determine likely group membership and, signifi- 
cantly, should provide insight into the relative impor- 

Table 1 
Responses 

Credit Quest 1 Quest 2 

customer (a I) (a 2) 

2.2. Related research 

To date, efforts to promote the application of 
LP-based techniques to typically statistical problems 
have been largely restricted to L, norm and con- 
strained regression procedures in which variants of 
the goal programming formulation first outlined by 
Charnes, Cooper and Ferguson [4] have been advanced 
[l 1,13,19] as attractive alternatives to the conven- 
tional least squares approach. In such procedures, the 
standard goal of producing a set of squared deviations 
is replaced by the task of producing coefficients 
which minimize a sum of absolute deviations. 

Beyond these regression-related applications, the 
extension of basic LP techniques to common prob- 
lems has been quite modest. Kendall [12], for exam- 
ple, suggests a convex hull method for discriminating 
group membership, which he ultimately rejects as too 
cumbersome, insufficiently general and lacking the 
capability to measure the relative importance of dis- 
eriminant variables. Rao [14] offers an interesting 
set of linear and non-linear integer programming for- 
mulations for a class of clustering problems, but ob- 
serves that such formulations appear extremely diffi- 
cult to solve with existing computational procedures. 

While not wholly successful, such efforts do sug- 
gest the potential of alternative perspectives on prob- 
lem types generally conceded to conventional sta- 
tistics. 

GROUP I 
(Poor Risk) 

1 1 3 

2 2 5 

3 3 4 

4 4 6 

GROUP II 
{Fair Risk) 

5 5 7 

6 6 9 

7 7 8 

8 7 7 

9 9 9 

GROUP III 
(Good Risk) 

I0 6 2 

ii 6 4 

12 8 3 

a 2 

I0 

l I I I I t , i i I I 

5 i0 a I 

Fig. 1. 
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tance of dimensions in segregating groups. 
Let the task of assigning credit applicants to risk 

classifications serve as a simple example. An applicant 
is to be classified as a 'poor', 'fair', or 'good' credit 
risk based on his]her responses to two questions 
appearing on a standard credit application. ~evious 
experience with 12 customers produced the data 
shown in Table 1 and displayed graphically in Fig. 1. 
A simple weighting scheme (linear transformation) 
will be produced to score the 12 customer-points so 
that they can be appropriately classified upon sub- 
dividing the scores into intervals. 

The problem can now be recast more formally: 
Given points Al and sets G/, find the linear transfor- 
mation X, and the appropriate boundaries (interval 
subdivisions) b :  and by, to 'properly' categorize each 
Ai. (Bounds b~ and by represent respectively the 
lower and upper boundaries for points assigned to 
group ].) Thus the task is to determine a linear pre- 
dictor or weighting scheme X and breakpoints b~ 
and by, such that 

bL <~A~X <~b~ ¢, Ak  E G/ , (1) 

and 

b, L < < < <. . .  < (2) 

The points Ai may of course be distributed in a 
way that makes complete group differentiation impos- 
sible (e.g., when the attributes of some credit appli- 
cants defy ready classification by risk category). 
Therefore, "it becomes important to endow the weight- 
ing scheme with the power to establish the foregoing 
group differentiation with minimum exception. Two 
useful and direct LP formulations to accomplish such 
a goal are suggested below. The basic themes inherent 
in these forms will subsequently be extended to more 
complex applications. 

Alternative 1. Determine a predictor X such that: 

a,X>>-b L , <b? (3) 

for all A~ E G i 

and, to ensure that (2) is achieved as nearly as possi- 
ble, impose as goal constrants t : 

by -<. bL+l + o i for ] = 1 .... , g -- 1 , (4) 

where g = number of designated groups setting as the 

1 To maintain a strict inequality, the effective constraints 
here are: b~ + • ~ b#+ 1 + a], where e > 0. For the examples 
that follow, e = 1. 

objective 

Minimize ~ c/cq. (5) 

Importantly, the boundary constraints in (4) 
designate a specific ordering of discriminant scores, 
requiring, for example, that Group 1 scores be gen- 
erally lower than Group 2 scores, Group 2 scores be 
generally lower than Group 3 scores, and so on. This 
particular sequencing may prove too restrictive to 
produce the most effective discriminant solution. 
Consequently, it may be necessary to examine the 
procedure for other sequencing possibilities. (The 
solution values of the cz/variables can suggest which 
alternative sequencings are worth exploring, or all 
possible sequencings may be implicitly explored by 
integer programming. Such embellishments, however, 
are obviated by a subsequent discussion.) 

The objective function cfs  are weights which may 
reflect the relative importance of 'correct' assignment 
to a particular group, i.e., these weights should repre- 
sent, proportionately, misclassification costs. Such 
an objective will serve to segregate the sets if possible, 
and otherwise narrow the range of overlap. 

Accordingly, the task of assigning credit applicants 
to risk classifications is here cast as a linear goal pro- 
gramming (GP) problem. Removing non-negativity 
constraints from the interval bounds, b # and by, this 
formulation yields the basic constraint set: 

Group 1 

IX  l + 3X2 >I b L , 

2X1 + 5)(2 >>- b L , 

3Xt + 4X2 > b{ ,  

4Xt + 6X2 ;~ b L , 

1Xt +3X2 ~<b~, 

2Xt + 5X2 ~<b~, 

3Xt + 4X2 < b~, 

4Xt + 6X2 < b~, 

Group 2 

5X1 + 7x2 >>- b~ , 

6)(1 + 9X2 ~ b L , 

7Xt + 8X2 ~ b2 z , 

7XI + 7X2 >/b L , 

9Xt + 9X2 ~ b~, 

5Xt + 7X2 < b~, 

6Xt + 9)(2 < b~, 

7X1 + 8X2 < b~, 

7Xt + 7)(2 < b~, 

9Xt + 9X2 ~< b~, 

Group 3 

+ 2x2 , 

6XI + 4X2 ~ b~,  

8X1 + 3X2 ~ b L , 

6Xt + 2,I"2 < b~, 

6Xt + 4)(2 < b~, 

8Xl + 3X2 < by.  
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Table 2 

GROUP I 
(Poor Risk) 

GROUP II 
(Fair Risk) 

Responses 

Credit Quest 1 Quest 2 

Customer (a I) (a2) 

i 1 3 

2 2 5 

3 3 4 

4 4 6 

5 5 7 

6 6 9 

7 7 8 

8 7 7 

9 9 9 

i0 6 2 
GROUP III 

11 6 4 
(Good Risk) 

12 8 3 

Transformed Scores 

using a I_!l 

-11 
L 

-18 b I = -20 

-13 u -11 b I = 
-20 

-23 

-30 L 
b 2 = -21 

-25 

-21 u 
b 2 = -30 

-27 

-2 
L 

-10 b3 = -I0 
u 0 -4 b 3 = 

a2 l ~ II I III 

| I I [ | I I i I i I 

5 I0 a I 

x oI- I 

Fig, 2. 

Adding the boundary sequencing constraints 

b~+ 1 < b [  + ~ i  , 

b~ + 1 < b~ + ~2 

and, to preclude the trivial null solution, X = O, the 
normalization XI ~ 1 completes the set. 

Weighting equally the ot/'s (which measure group 
overlap) produces a predictor, X = [_I ], Fig. 2 
clearly demonstrates the ability of this transforma. 
tion to segregate members of the three risk classes. 

Each of the 12 sample customers has been classified 
correctly. Table 2 summarizes the results of our 
exercise. 

Some additional observations appear in order. The 
formulation described here provides a significant 
degree of flexibility. It is possible, for example, to 
exploit the capacity of the procedure to specify the 
ordering of transformed group scores. Here it may be 
useful to ensure that 'poor' credit risks are generally 
assigned lower scores by the transformation vector 
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Table 3 

GROUP I 
(Poor Risk} 

GROUP II 
(Fair Risk) 

GROUP III 
(Good Risk) 

Credit 
Customer 

1 

2 

3 

4 

Responses 
Transformed Scores 

Quest 1 Quest 2 

(a 1) (a 21 using x - 1 . : [  

1 3 -1  

L - 1  2 5 -1 b I = 

3 4 2 u 2 
b I = 

4 6 2 

5 5 7 3 

6 6 9 3 
L = 3 

7 7 8 6 b2 

8 7 7 7 u 

9~ 9 9 9 b2 
9 

10' 6 2 10 L 8 
h 3 = 

ii 6 4 8 

u 13 12 8 3 13 b3 = 

a 2 

10 

5 

Fil~. 3. 

I l I  ~ I 1 I 
- 1  2 

I i 

x. x--1.211 

I I  I I 1  

I -r'7" l , 
3 8 . 9 1.3 

overlap 

than scores computed for 'fair' or 'good' risks. Such a 
requirement in our example produces an 'optimal' 
transformation, X " [ 21], resulting in a slight overlap 
between Group [[ anii~l[ (Fig. 3). 

Further, the formulation can effectively accommo- 
date the need to assign differential costs for misclassi. 
fication. [t may be determined, for instance, that the 
penalty for confusing 'fair' and 'good' credit risks 
(i.e., Group II and Group Ill members) is significantly 
greater than that associated with confusing 'poor' 

and 'fair' risks. To impose such a condition on the 
problem, differing weights are assigned to the overlap 
variables (~,'s) in the objective function. Maintaining 
the ordering specification outlined above, and arbi- 
trarily assigning a weight of 5 to Group [l-Group Ill 
overlap a~.d ~ we i~ t  of one to I - I I  overlap creates a 
transformation vector, X = [ .s2], which forces the 
overlap back to Groups I ancl'il (Fig. 4). Added con. 
straints or modified objectives may be readily intro. 
duced. 
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Table 4 

GROUP I 
(Poor Risk) 

GROUP II 
(Fair Risk) 

GROUP III 
(Good Risk) 

Credit 
Customer 

I 

2 

3 

4 

Responses 
Transformed Scores Quest I Quest 2 

(a z) (a 2) usin. x = I_~1 
I 3 -3 

L 
2 5 -4 b I = -4 

3 4 1 u 
4 6 0 blffil 

5 5 7 1 

6 6 9 0 L 
7 7 8 5 b2ffiO 

u 
8 7 7 7 b2=9 

9 9 9 9 

10 6 2 14 
L 

11 6 4 I0 b3 10 

u 
12 8 3 18 b 3 = 18 

a 2 

10 

5 

Fig. 4. 

I IT 1~11 

- 4  0 . I 9 ,I 

~ III al ~overlap 

, I  , ~ - / , 7 , ~ ,  / ,  1 , , , , , 

As indicated above, the capacity of the linear dis- 
criminator to effectively determine group member. 
ship can be readily evaluated. A simple count of mis. 
classified points should provide an important empiri. 
ca] basis for judging the discriminant power of any 
candidate vector. (Computation of a chi.square sta- 
tistic can be useful in providing added insight into 
the 'goodness of separation' produced by a given 
weighting scheme,) Such an indicator may be effec. 

tively supplemented by considering the magnitude of 
group overlap, a/, as a proportion of overall interval 
width (i.e., ¢(// (b ~ L - b/)) for each of the groups 
involved. 

Finally, the proposed GP formulation can accom- 
modate fairly large problems. Setting n = number of 
points to be classified, g = number of designated 
groups and d = number of dimensions, the number "~f 
constraints required is simply 2n + g; the number of 
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variables 2 is equal to 2d + 5g - 1. Thus, for example, 
a problem involving 3 groups of 200 observations 
each, in 10 dimensions, would produce a GP with 
1203 constraints and 34 variables - a problem of 
reasonably modest size. In an extension of this meth- 
odology, discussed fully in the next section, much 
larger discriminant problems can be cast as GPs of  
manageable dimension. 

An alternative formulation may now be considered. 
Alternative 2. This formulation would impose 

boundary separation as a common constraint, setting 
as a goal the inclusion of points within appropriate 
bounds. Thus, 

by ~< bL+l for ] = 1 .... ,g - 1, (6) 

where g = number of designated groups. 

AiX>b f -~], A,X<b~ +o i , (7) 

for an A i E G j  , 

with the objective 

Minimize ~ c/aj .  

Here again, weights cj are assigned to reflect relative 
costs of  misdassification 3 

2.4. The pair-wise discriminant problem 

Tab~ 5 

GROUP I 

A 1 3, 2 

A 2 1, 4 

A 3 3, 6 

A 4 6, 3 

GROUP II 

A 5 5, 6 

A 6 6, 9 

A 7 7, 5 

A 8 8, 6 

a 2 

10 

I i ,  i i .  I t J , 

5 

Fig. 5. 

GROUP III 

A 9 7, 

AI0 7, 

All 9, 

AI2 8, 

~III 

' I0 ' ' 
a I 

To see the power of these formulation ideas more 
dearly, consider now the 'following extension. Where. 
as the development thus far has undertaken to produce 
a single suitable weighting scheme by which data 
points can be transformed and aggregated, it is appar- 
ent that in many cases such a 'one-dimensional' 
approach may prove too restrictive to provide ade- 
quate group discrimination. 

Consider for example the data presented in Table 5 
and graphically displayed in the succeeding Fig. 5. 
Here a single transformation would appear incapable 
of satisfactorily segregating the preassigned members 
of each of  three distinct groups. (In fact, actual appli- 

2 Including the positive and negative components of un- 
restricted variables. 

3 Using (6-8) with the data for our credit appfication prob- 
lem yields a Uanfformation vector identical to that of the 
original exercise, producing perfect group separation with 
X = [14]. (Here the e/'s were each set equal to 1.) Note: 
it would also be possible in this formulation to use two 
different ot variables with each pair of inequalities of the 
form (7). 

cation of the formulations previously described shows 
this to be the case.) 

To accommodate such a problem, the general GP 
discriminant procedure can be effectively modified. 
By extending the basic approach, it is possible to 
create a discriminant capacity f~r exceeding that of  
the previous method. 

Here a pair-wise separating hyperplane formulation 
will identify the region designated to contain all 
points of the j th group as the intersection of half 
spaces determined by the 'best' hyperplanes separating 
group/points from each other group k 4. 

Simply stated, the task is to generate a set of  half 
spaces (here, three) that will serve to  partition the 
n-space of the problem into appropriate regions (see 

4 If the convex hulls of the groups involved are disjoint, a 
collection of separating hyperplanes can always he found 
which will create regions providing 'complete disedmina- 
tion'. In the non,convex case, sets ean be partitioned into 
convex sets. 
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a 2 

I0 

Fig. 6. 

! 
I 
I 

B12 ~ ~  B23 

\ 1;r\ 

/ \ 

i /l ,, I I , | I a l \, i 

5 i0 a I 

BI3 

Fig. 6.)The boundary for each half-space will separate, 
insofar as possible, paired (adjacent) groups. Thus, to 
illustrate, in Fig. 6, any point falling below boundary 
B12 (which is assumed to extend beyond the portion 
shown) couM be a r.~ember of Group I, but could not 
be a member of Group II. Conversely, any point 
above B12 could be a member of Group II, but could 
not be a Group I member. Similar statements apply 
to the roles of Bl3 and B23. We can conclude, then, 
that any point bounded by B12 and BI3 is a Group I 
member. Any point bounded by B12 and B23 is a 
Group II member, and any point falling within Bla 
and B23 is a Group III member. What remains is the 
determination of means by which appropriate boun. 
daries may be drawn. 

Importantly, the goal programming formulation 
proposed here decomposes into a collection of smaller 
two-group problems - one for each separating hyper- 
plane - thereby facilitating computation. And, since 
in practical application the total number of group 
classifications one seeks to distinguish is typically 
small (as in credit rating categories), the number of 
separatir~g hyperplanes is within reasonable limits - 
i.e., g(g - 1)/2, where g = number of designated 
groups. Accordingly, the three-group example of 
Fig. 5 readily converts to an equivalent set of three 
distinct 2.group problems. 

To exploit this capacity to decompose multi.group 
problems, a general two-group discriminant procedure 
is detailed below: 

Given two groups, Gl and G2, determine an appro. 
priate vector X and boundary value b such that, as 
nearly as possible, 

(I) AtX<~b, A i E G I ,  

AtX>~b, A i E G 2 .  

Introducing 0ti to measure the degree to which group 
members A i violate the two-group boundary, we thus 
seek to insure a solution in which: 

(2) AiX<<.b+~i, A i E G I ,  

A i X > ~ b - ~ i ,  A i E G 2 .  

and the sum of boundary violations ai (or some 
weighted sum of boundary violations h,~i) is mini- 
mized. 

Further, the separating hyperplane, A X  = b, will 
be selected ~o that points which lie within the boun- 
dary are asJar within the boundary as possible, 
thereby sharpening group differentiation. While it 
will generally not be possible to anticipate which 
points will lie within the 'true' boundary (i.e., those 
points which satisfy AiX < b for A i E GI; o r  AiX >1 b 
for A i E G2) , it is clear that all points will lie within 
the 'adjusted' boundaries. That is, all points will 
satisfy A iX <~ b + oti for A i E G I or A iX >~ b - ot i for 
Ai q G 2. Letting di denote the distance of point A i 
from its adjusted boundary, we can effectively com- 
bine the goal of minimizing boundary deviations with 
that of maximizing the (weighted) sum of these dis- 
tances (Z k,di). Setting the problem in a minimiza- 
tion context, where maximizing Z k,di corresponds 
to minimizing - Z  k,di, the combined objective will 
have the form s. 

Min ~ h i a i -  ~ k ~ d i ,  
(A) 

s.t. 4iX+di=b+¢t i ,  Ai@G l , 

- A i X + d  i = - b + a i ,  A i E G 2 .  

Note that the distances di are precisely the slack vari- 
ables which change the inequalities of (2) into equali- 
ties. 

Importantly, the procedure will yield a solution in 
which di = 0 whenever the weight for minimizing the 
boundary violation exceeds the weight for maxi. 
mizing the distance of Ai from the adjusted boundary 
and Ai violates the true bound; that is, if ai > 0, then 

S Fig. 7 is provided as a useful graphical reference. 
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AX ,* b 

d i 

d 

4~ 

d. 

I Perfect Separation 

(i.e. ~ ffi O) 

Fig. 7. 

AX=b 

I 
l 

I 
I 

l 

/, 

I 

I 

r 

I 

I 

AX = b-~ AX = b+~ 

II Overlapping Groups 

( i . e .  c, • O) 

ds = 0 for all hi > kt. Further, o~s will never be forced 
larger than necessary in order to let the slack di be 
positive. (The reverse is also true; for ht < ki, c~t will 
be pushed to its limit in order to increase the value of 
the slack di.) When e, t = 0, i.e., when As is within the 
'true' boundary, dt will take on its largest value for 
any positive ks. 

Such a formulation proves extremely flexible. 
Usefully, the identity of individual data points is 
maintained here, enabling the user to assign distinct 

misclassification penalties to each observation. For 
example, should it be judged that some subset of 
points, or even a single observation, need play a 
greater role in differentiating groups (i.e., be judged 
perhaps as most representative of 'typical' group 
members) increased weight can be readily assigned to 
the corresponding overlap variables, a t. Similarly, less 
important points may be given appropriately reduced 
weighting. (Post-optimality procedures for monitoring 
the impact of alternative objective function weighting 

schemes and for establishing relative variable impor- 
tance are discussed in a subsequent paper [8] .) 

Variants of the basic GP form which address 
related objectives can now be considered. 

A significant reduction in the number of variables 
required in (A) can be achieved by aggregating terms. 
For example, by replacing the set of at variables with 
a single a term 6, the model becomes: 

Min H a -  
(B) 

Min ~ hf ,  i - Kd , 

s.t. A t X + d = b + a i ,  A t E G t ,  

- A t X + d = - b + a t ,  A s ~ G 2 ,  

in which d measures the minimum distance of any 
group member from the boundary hyperplane A X  = b, 
when all a t = O. If at > 0 for some i and 2~ hs > K, 
then d = O. l~ ht < K assures that the o~'s will be 
pushed toward their upper bound. 

Complete aggregation, an extreme variant of the 
formulation in which the set of ai variables is replaced 

6 It should be noted that partial aglpegation is possible, i.e., 
we may wish only to replace a subset of the ¢IS variables 
with-,. 

(c) 

s.t. A t X + d l = b + a ,  A i E G I ,  

- A i X  + d i = - b  +a ,  A tEG2 . 

Here, a measures the maximum boundary violation 
associated with a candidate discriminant solution (i.e., 
ai < a fo~" all 0. The connection between c~ and dt is 
similar to that between ai and dt described in (A) 
above. If,~ > 0, H > ]~ kt assures that the smallest dt 
will always be O. (di is smallest for those points which 
violate the true boundary by the greatest amount.) 
On the other hand, H > Z ki assures that a will be 
forced to its upper limit. 

Aggregating dt's rather than at's produces the LP 
form: 
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a 2 

i I , I I I I 
5 

I I  

I i 

a I 

Fig. 8. Overlapping groups problem, 

a 2 

.2a I = 1 

I I 

i 
i I 
I I 
I I 

x 

I I 

I 
1 I 
I 

I , I J I I I , I 

L , 
I I 

I I  

I 

a I 

Fig. 9, Objective: Min 2a - d. 
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Fig. 10. Objective: Min X2c~i - d. 
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I 
1 I 
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10 a I 

a 2 

5 

Ii 
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with ,,, and the set of di variables with d, provides a 
simple GP form in which the task is to: 

Min H a -  K d  , 
(D) 

s.t. A i X + d = b + a ,  A I E G t ,  

- A i X + d = - b + a ,  A I E G 2 .  

H > K insures that the goal of minimizing maximum 
overlap (a) dominates the objective. For a > 0, d = 0. 
For a = 0, d is a measure of the minimum distance of 
any point from the separating hyperplane A X  " b. 
H ~ K assures that a is pushed to its upper bound. 

The overlapping groups problem of Fig. 8 illu- 
strates the connections between these GP forms and 
the essential nature of the discriminant capabilities 
which each posseses. 

Note- The Group I and Group II data used in 
Figs. 8-I  4 is given in Table 6. In Figs. 8 - I  9 • denotes 
Group I members, × Group II members. 

Fig. 9 shows the simple model solution produced 
by the aggregated objective (D) above. Notable here 
is the dominant role of the maximum group overlap 
variable a. Although the procedure has effectively 
produced an a-minimizing solution, the ability of 
this solution to appropriately classify group members 
is not wholly satisfactory (e.g., five of ten sample 
points are improperly assigned), Importantly, mini- 
mizing maximum overlap directs full attention to 
only those points which most seriously violate the 
between-groups boundary - i.e., those points from 

each group which reach most deeply into the 'terri. 
tory' of the other. All other points are ignored. Thus, 
for example, Group II points A 7 and Ag, although 
misclsssified by the solution hyperplane 0.2al = I, 
play no role in the procedure. 

Disaggregation of variables encourages the fuller 
participation of additional group members. Fig. I 0 
shows the solution produced with the partially dis. 
aggregated objective in (C). Here total group overlap 
is minimized by the separating hyperplane 0.2a I = I. 
Only the extreme (and possibly 'atypical') Group I 
member A s is misclassified. 

The disaggregation of (13) allows every point a 
role in establishing an optimal bound. While only the 
most serious boundary violators directly influence 
the goal of a-minimization, each dt serves to register 

counterbalanci~,.g influence on the overall objective. 
As previously described, the goal of maximizing some 
total dt represents an attempt to force the bulk (mass) 
of each group back from the boundary hyperplane. 
Fig. 11 shows the result. By assigning a sufficiently 
large value to H (i.e., by weighting quite heavily the 
goal of minimizing overlap), this procedure can be 
expected to produce a solution equivalent to that of 
(D) above (see Fig. 12). 

The fully disaggregated objective of (A) provides 
for maximum flexibility. Figs. 13 and 14 present 
some of the solution possibilities. 

The capacity of these alternative forms to address 
the problem of differentiating members of disjoint 
groups bears mention. Using the two.group problem 
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Table 6 
Data used in Figs .  8-14 

Table 7 
Data used in Figs. 1 5 - 1 9  

Grou p I 

A 1 I,I 

A 2 2,2 

A 3 3,1 

A 4 3,3 

A 5 6,3 

Grou 

A 6 

A 7 

A 8 

A 9 

AI0 

p II 

4,1 

4.5,2 

4,3 

4.5,4 

7,5 

Group I 

A 1 I,I 

A 2 2,2 

A 3 3, I 

A 4 3,3 

A 5 6,3 

Grou 

A 6 

A 7 

A 8 

A 9 

A10 

II 

4,1 

5,2 

7,2 

8,4 

9,1 

a 2 

5 

.25a I ffi 1 

I 
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i 
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Fig. 15. Disjoint groups problem. 
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a 2 

• 75a I - 1.25a 2 ffi 1 
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Fig. 19. Objective: Min E20t~i - Ed i. 

of Fig. 15 (the data used in Figs. 15-19 is given in 
Table 7) to illustrate, it is clear that each form is 
capable of producing a discriminant solution which 
assures perfect separation. However, parameters of 
the 'optimal' hyperplane vary with the formulation 
(and weights) applied. For example, the boundary 
produced by those simpler forms in which the d{s 
have been aggregated (i.e., (C) and (D)), is effectively 
'centered' in the gap between groups (see Figs. 16 
and 17). By contrast, the solution hyperplane for 
those forms in which the di's are wholly disaggregated 
(i.e., (A) and (B)) touches the ht,!l of  each group (see 
Figs. 18 and 19). (Here an additional adjustment in 
the weights assigned to the di, particularly in those 
weights corresponding to points A 3 and A 9, is nec- 
essary to produce an equivalent 'centered' solution.) 
Thus, a case has been identified in which the simplest 
model - requiring far fewer variables - compares 
favorably with a more complex, albeit more flexible, 
formulation. 

3. Summary 

The assumption-free GP procedure offers a simple 
and direct approach to the discriminant problem. 
Although a full evaluation of the proposed goal pro- 
gramming formulations must await detailed testing, 
the technique holds significant promise. The flexi- 
bility of these forms and their ability to handle side 

conditions make them a potentially desirable alterna- 
tive to standard statistical methods. 
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