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Abstract —  The design of effective neighborhood structures is fundamental to the 
performance of local search and metaheuristic algorithms for combinatorial 
optimization. Significant efforts have been made in the creation of larger and more 
powerful neighborhoods that are able to explore the solution space more extensively 
and effectively while keeping computation complexity within acceptable levels. The most 
important advances in this domain derive from dynamic and adaptive neighborhood 
constructions originating in ejection chain methods and a special form of a candidate 
list design that constitutes the core of the filter-and-fan method. The objective of this 
paper is to lay out the general framework of the ejection chain and filter-and-fan 
methods and present applications to a number of important combinatorial optimization 
problems. The features of the methods that make them effective in these applications is 
expected to provide insights into solving challenging problems in other settings.    
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1.  Introduction  
 
The metaheuristic area has been the focus of extensive research in the last several 
years, resulting in methods for solving optimization problems that have had a wide 
range of successful applications in business, engineering and science. Some of the most 
significant advances have been the design of sophisticated compound neighborhoods 
coupled with candidate list strategies. The goal is to provide a framework for exploring 
the solution space effectively with a modest investment of computational effort. 
 
The definition of an efficient neighborhood structure is important for the performance of 
any algorithm that iteratively explores the solution space of highly complex and 
constrained problems that typically arise in practice. Recent studies have shown that 
compound neighborhood structures, based on effective mechanisms for combining 
moves, have advantages over simple neighborhoods where a single move is used for the 
transition from one solution to another.  
 
Important advances have been provided by ejection chain methods (Glover 1991, 1992) 
and a general class of multi-stream neighborhood search constructions, notably 
represented by the filter-and-fan method (Glover, 1998; Rego and Glover, 2002). An 
integral part of exploiting such methods stems from joining them with candidate list 
strategies to isolate restricted yet effective subsets of moves for consideration at each 
iteration. Designed properly, such strategies particularly reinforce the intensification 
and diversification themes of tabu search, and provide fertile ground for the application 
of learning procedures. 
 
In contrast with other more traditional types of neighborhood constructions, ejection 
chains and filter-and-fan methods are characterized by properties that make them 
prototypical examples of what we call dynamic and adaptive search approaches. 
Characteristically, these methods generate compound neighborhood structures, which 
encompass successions of interdependent (component) moves, rather than simple 
moves or sequences of independent moves. These methods are dynamic because the 
number of component moves used to compose a compound move is not determined in 
advance, but rather depends on the depth (or level) of the neighborhood where the best 
trial solution is found, which usually varies from one iteration to another. They are 
adaptive because the type of the neighborhood and the move itself are chosen according 
to the current state of the search. 
 
We begin by presenting in Sections 2 and 3 the fundamental principles underlying 
ejection chains and filter-and-fan methods, respectively. In Sections 4 and 5, we review 
a number of prominent ejection chain and filter-and-fan algorithms to illustrate the 
application of these methods to different classes of problems and to identify the features 
responsible for their performance. Practical aspects of these methods are highlighted by 
examining the applications shown in Table 1.  
 

Ejection Chains Filter and Fan 
Traveling Salesman 
Vehicle Routing 
Crew Scheduling 
Quadratic Assignment 

Facility Location 
Protein Folding 
Job Shop Scheduling 
Capacitated Minimum Spanning Tree 

 
Table 1 - Featured applications of ejection chain and filter-and-fan methods 
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These applications were specially selected to embrace a representative variety of models 
within each method and to expand on their application to problems of different natures 
and complexities. Our examination of these areas may be regarded as a focused survey, 
in that we devote attention primarily to models and applications we have encountered 
through direct experience, though we undertake to point out related work and studies 
that provide important contributions to the areas examined.  
 
2. Ejection Chains 
 
Ejection Chains are variable depth methods that generate a sequence of interrelated 
simple (component) moves to create a more complex compound move. There are several 
types of ejection chains, some structured to induce successive changes in problem 
variables and others structured to induce changes in particular types of model 
components (such as nodes and edges of a graph). For the original proposals of the 
ejection chain framework and foundations we refer the reader to Glover (1991, 1992). 
 
Generally speaking, an ejection chain of L levels consists of a succession of operations 
performed on a given set of elements, where the k-th operation changes the state of one 
or more elements which are said to be ejected in the k+1th operation. This ejection 
thereby changes the state of other elements, which then lead to further ejections, until 
no more operations can be made according to some pre-defined conditions. State-
change steps and ejection steps typically alternate, and the options for each depend on 
the cumulative effect of previous steps (usually, but not necessarily, being influenced by 
the step immediately preceding). The conditions coordinating the ejection chain process 
are called legitimacy conditions, which are guaranteed by associated legitimacy 
restrictions.  
 
In the ejection chain terminology, the order in which an element appears in the chain 
determines its level. The number of levels L is the depth of the ejection chain. The 
particular level chosen (from among the L levels generated to provide a move executed 
by a local search method) usually varies from one iteration to the next. The total 
number of levels L can likewise vary, and hence ejection chains fall within the class of 
variable depth methods. In an ejection chain framework, the solution obtained at each 
level k of the chain may not represent a feasible solution but may be transformed into a 
feasible solution by using a complementary operation called a trial move. The objective 
is to create mechanisms, namely neighborhood structures, allowing one solution to be 
successfully transformed into another.  
 
More formally, let  be the current solution at iteration i of the local search method, 
and let  be the ejection move and the trial move, respectively, at a level k of the 
chain. A neighborhood search ejection chain process consists of generating a sequence 
of moves on  such that the transition from solution  to 

iS
,ke kt

1 1, , , , , , ,k k L Le t e t e tK K iS iS 1iS +  is 
given by performing a compound move  where k* represents the level 
associated with the highest quality trial solution visited during the ejection chain 
construction. (There is no need to save trial solutions at other levels.) In the ejection 
chain context we use the terms compound move and transition move interchangeably, to 
specify the move leading from one solution to another in an iteration of the local search 
procedure. 

1 2 * *, , , , ,k ke e e tK

 
The effectiveness of such a procedure depends on the criterion for selecting component 
moves. More specifically, neighboring solutions obtained by an ejection chain process 
are created by a succession of embedded neighborhoods that lead to intermediate trial 
solutions at each level of the chain. However, the evaluation of ejection moves can be 
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made independently from the evaluation of the trial moves, in which case possible trial 
moves are only evaluated after performing the ejection move at the same level of the 
chain. In this variant of the approach, the evaluation of an ejection move  only 
depends on the cumulative effect of the previous ejection moves,  and is kept 
separate from the evaluations of trial solutions encountered along the way. The trial 
moves are therefore restricted to the function of finding the best trial solution that can 
be obtained after performing the associated ejection move. 

ke

1, , ,ke e −K 1

}n

 
In general, an ejection chain of L levels can be recursively evaluated by computing the 
ejection values for these levels and summing them to give the trial value for each level. 
Consider  the set of problem elements and denote a legitimate 
neighborhood for an element 

{= K1, ,N
∈p N  by  thereby identifying a subset of elements 

of N that do not violate the legitimacy restrictions. Also, let 
( ),LN p

( )ϕ ,kp p  and ( )δ ,kp q  be 
respectively the values of an ejection move and trial move at a level k of the ejection 
chain. For the sake of simplification, we assume that the min function over each of the 
ejection and trial move evaluation functions brings in its parameter p and q the best 
elements and associated with the best ejection and best trial values found, 
respectively. A general ejection chain procedure for a minimization objective can be 
sketched as in Figure 1. 

*p *q

 

Step 0. Initialization 
(a) Initialize legitimate neighborhood ( )LN p for all problem elements   ∈ .p N
(b) Consider S be the starting solution. 
(c) Set k=0. 

Step 1. Create the first level of the ejection chain 
(a) Determine a set of two initial elements  by computing the ejection 

value  

*, *p q

( ){ }ϕ= ∈ ∈min , : , ; ( ) .kE p q p q N q LN p

k(b) Set  += = =1*, *, { }.k k kp p p q e p
Step 2. Grow the chain to further levels 

(a) Set k=k+1 and set e e  −= ∪1 { }.k k kp
(b) Evaluate the solution cost change for the current level by computing the 

corresponding trial value ( ){ }δ∆ =  where 
q denotes a reference element associated with other elements that may 
change state as per the application of the trial move of level k. 

+ ∈ ∈min , : , ; ( ) ,k k k k kE p q p q N q LN p

p

(c) Keep track of the best level k* and associated trial move t that produced the 
best trial solution. 

*k

(d) Determine the new element  by computing: *p

( ){ }ϕ−= + ∈ ∈1 min , : , ; ( ) .k k k k kE E p p p p N p LN p  

(e) Set  + =1 * .kp p
(f) Update the legitimate neighborhood for each element involved in the chain of 

level k.  
(g) If k<L and LN  return Step 2. Otherwise go to Step 3. ( ) ≠ ∅,k

Step 3. Perform the compound move 
(a) Apply to S the sequence of ejection moves up to the level k*, i.e. e  *.k

(b) Perform the trial move on S for the level k*, i.e. t  *.k

Figure 1 - An iteration of a general ejection chain procedure 
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We stress that our preceding description of ejection chain processes simply constitutes 
a taxonomic device for grouping methods that share certain useful features. The value 
of the taxonomy, however, is evidenced by the role it has played in methods of 
considerable power for discrete optimization problems across a broad range of 
applications.  As will be seen in the applications selected for this discussion, the 
ejection chain framework provides a foundation for methods that embrace a variety of 
compound neighborhood structures with special properties for combining moves, while 
entailing a relatively modest computational effort.  
 
 
3. Filter and Fan 
 
The filter-and-fan (F&F) method was initially proposed in Glover (1998) as a method for 
refining solutions obtained by scatter search, and was further extended in Rego and 
Glover (2002). In the latter, the method is proposed as an alternative to ejection chain 
methods and as a means for creating combined neighborhood search strategies. 
Conceptually, it integrates the filtration and the sequential fan candidate list strategies 
used in tabu search (Glover and Laguna 1997), and can be viewed as a restrictive form 
of tabu search that generates multiple paths in a breadth search strategy.  From a 
neighborhood search perspective, the method generates compound moves as a 
sequence of more elementary component moves (or submoves).   
 
Graphically, the F&F model can be illustrated by means of a neighborhood tree where 
branches represent submoves and nodes identify solutions produced by these moves. 
An exception is made for the root node, which represents the starting solution to which 
compound moves are to be applied. The maximum number of levels L permitted in a 
single sequence of moves defines the depth of the tree. The neighborhood tree is 
explored breadth first, level by level. Each level is governed by the filter candidate list 
strategy that selects a subset of moves induced by the fan candidate list strategy. The 
process of selecting moves has to obey a set a legitimacy conditions defining associated 
legitimacy restrictions specific to the type of move utilized. The method incorporates two 
fundamental components: a local search to identify a local optimum and a filter and fan 
search to explore larger neighborhoods in order to overcome local optimality. Any time a 
new local optimum is found in one search strategy the method switches to the other 
strategy and keeps alternating this way until the filter and fan search fails to improve 
the current best solution.   
 
 
The Filter and Fan Search 
 
The general F&F search procedure can be sketched as follows. Once a locally optimal 
solution Xo is found (in the local search phase) the best η1 currently available moves 
(among the moves evaluated to establish local optimality) are used to create the level 1 
of the F&F neighborhood tree. As a basis for creating the next levels, for a given level 
indexed by k,  η1 denotes the number of solutions that are chosen from all solutions 
available at level k, as a foundation for generating solutions at level k+1. (For k=1, there 
are just η1 solutions available, so all are chosen.) For each of these η1 solutions, denoted 

η= K 1( )( 1, , ),iX k i  apply η2 moves to generate η2 descendant solutions, thereby generating 
a total of η=η1.η2 trial solutions for level k+1. At this stage, η1 of the resulting η 
solutions are chosen to launch the process for the next level. The values η1 and η2 are 
input parameters, e.g. η1=2η2. If an improved solution (better than the local optimum 
Xo) is found among the trial solutions, then the method stops branching and switches 
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back to the local search phase, taking this newly improved solution as a starting point. 
Otherwise, another selection takes place over the set of moves available.  
 
The process of selecting η2 moves has to obey a set of legitimacy restrictions that assure 
compatibility of the component moves used for the construction of a valid compound 
move. The fan candidate list strategy is embedded in the generation of the η trial 
solutions, whereas the selection of the η1 solutions from this collection constitutes the 
filter candidate list strategy. 
 
The basic skeleton of a general F&F procedure is as in Figure 2. Denote X* the best 
solution found so far. Let M(k) be the candidate list of moves identified at level k of the 
F&F tree. Input F&F parameters η0, η1, η2 and let L be an upper limit for the maximum 
number of levels of the F&F tree. Build an initial solution X to initiate the method. 
 

 

Step 0. Generate a candidate list of component moves 
(a) Change X by performing 1-moves using a local search until a local optimum 

X* is found. Let M be the set of all moves evaluated in the last iteration of the 
local search procedure.  

(b) Create a candidate list M(0) with the η0 highest evaluation moves of M.  
(c) Set X*=X, and let X be the new starting solution, i.e. the root node of the 

search tree. Apply the best η1 moves in M(0) to X to create the first level of the 
F&F tree with solutions η= K 1(1)( 1, , ).iX i  Set k=1. 

Step 1. Generate the filter and fan tree 
(a) Identify the best η2 legitimate moves derived from M(0) for each solution 

η= K 1( )( 1, , )iX k i  by computing the value of the corresponding trial solution.  
(b) If the best evaluation found is better than the one of X*, perform the 

associated move from X k  to X, the new and improved current solution. Set 
X*=X and go to Step 0. 

( )i

(c) Otherwise, select the best η1 legitimate trial moves to become the members of 
M(k). 

(d) Apply the M(k) moves to the corresponding solutions X k  to create ( )i +( 1)iX k .  
(e) If k=L stop. Otherwise set k=k+1 and repeat Step 1. 

Figure 2 - The general filter-and-fan procedure  
 
In more general versions of the approach, tree width and branch width can vary 
adaptively throughout the search in the case where the values for η1 and η2 are changed 
from level to level. In additional variants of the procedure, as when making use of 
constructive or destructive neighborhoods, a solution can refer to a partial solution, 
having some components undetermined. Local optimality is then defined in a special 
sense relative to the determined components, or by employing a default trial completion 
that fills in the values of the undetermined components.  
 
More advanced versions allow for the combination of different types of neighborhood 
structures and the use of adaptive memory programming as introduced in tabu search.  
 
Refinements for higher levels of adaptive memory constructions 
 
To some extent the F&F method can be interpreted as performing multiple threads of 
tabu searches from the root node of the F&F tree using a limited short-term memory 
component derived from the legitimacy restrictions. From this perspective a 
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straightforward enhancement could result by creating a more general algorithm 
managed by two basic types of short-term memory components: e.g. a branch-memory 
that is local to each branch of the F&F tree or a tree-memory that is global to the F&F 
tree. A limited form of branch-memory is implicitly defined in the legitimacy restrictions 
of the tree search process. However, the inclusion of more explicit forms of memory 
would allow different levels of flexibility by using either one of the two indicated types of 
memory or both memories combined. In that sense a branch-memory could serve to 
forbid move reversals while tree-memory could be conceived to produce a higher level of 
diversification of the search among the different branches of the tree.  
 
Higher levels of intensification and diversification can be achieved by incorporating 
more advanced memory structures as prescribed in tabu search. We conjecture that an 
effective integration of memories organized at different layers provides a useful means 
for the creation of the M(k) candidate lists as well as a vehicle to drive the search in an 
iterative process that performs the F&F procedure for a number of iterations until a 
given stopping criterion is met as in general tabu search implementations. Elaborated 
constructions of the underlying look-ahead process may also be provided by the use of 
ejection chain processes (performed from nodes at the current level) as a foundation to 
determine promising component moves to dynamically update the candidate list. 
Moreover, high evaluation trial solutions found throughout the ejection chain can be re-
corded for further consideration. All these modifications make recourse to associated 
elements of tabu search and can directly turn a F&F approach, itself based on the 
foundations of tabu search, to a higher level tabu search procedure. 
 
 
4.  Ejection Chain Applications 
 
4.1 Traveling Salesman 
 
The Traveling Salesman Problem (TSP) consists in finding a minimum distance tour of n 
cities, starting and ending at the same city and visiting each other city exactly once. In 
spite of the simplicity of its problem statement, the TSP is remarkably challenging and 
is the most studied problem in combinatorial optimization, having inspired well over a 
thousand publications. 
 
In graph theory, the problem can be defined on a graph ( , )G V A= , where  
is a set of n  vertices (nodes) and 

1{ ,..., }nV v v=
{( , ) | , , }i j i jA v v v v V i j= ∈ ≠  is a set of arcs,  together 

with a non-negative cost (or distance) matrix ( )ijC c=  associated with A. The problem is 

considered to be symmetric (STSP) if ij jic c=  for all ( , ) ,i jv v A∈  and asymmetric (ATSP) 
otherwise. Elements of A are often called edges (rather than arcs) in the symmetric case. 
The version of STSP in which distances satisfy the triangle inequality ( )ij jk ikc c c+ ≥  is 
the most studied special case of the problem. The STSP (ATSP) consists in determining 
the Hamiltonian cycle (circuit), often simply called a tour, of minimum cost. 
 
The importance of identifying effective heuristics to solve large-scale TSP problems 
prompted the “8th DIMACS Implementation Challenge”, organized by Johnson, 
McGeogh, Glover, and Rego (2000) and solely dedicated to TSP algorithms.  
 
Ejection chain methods lead the state-of-the-art in local search heuristics for the 
traveling salesman problem (TSP) and likewise have successfully been applied to a 
cardinality-constrained variant of the problem (Cao and Glover, 1997). The most 
effective local search approaches for the classical TSP primarily originate from the 
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Stem-and-Cycle (S&C) ejection chain method (Glover, 1992) and the widely acclaimed 
Lin-Kernighan (LK) procedure (Lin and Kernighan, 1973), which can be viewed as an 
instance of an ejection chain method. These two types of TSP ejection chain approaches 
typically proceed by disconnecting a subpath and reconnecting it with different 
components at each level of the chain, and as a consequence are generally called 
subpath ejection chain methods.  
 
Subpath ejection chains for the TSP 
 
Subpath ejection chain methods for the TSP start from an initial tour and iteratively 
attempt to improve the current solution, generating moves coordinated by a reference 
structure. The LK approach uses a Hamiltonian path as the reference structure to 
generate moves throughout the neighborhood construction. By contrast, the S&C 
ejection chain method is based on the stem-and-cycle reference structure. The S&C 
reference structure is a spanning subgraph of G  consisting of a path called a stem 
connected to a cycle by a single node called the root node. The two nodes adjacent to the 
root in the cycle are called subroots and the node on the other end of the stem is called 
the tip of the stem. In a subpath ejection chain, once a reference structure is created 
from the initial TSP tour, ejection moves consist of transforming the reference structure 
into another of the same type and appropriate trial moves are used to generate feasible 
tours at each level of the chain.   
 
The LK method starts by generating a low order k-opt move (with  and then 
creates a Hamiltonian path by deleting an edge adjacent to the last one added. This 
completes the first level of the LK process. In succeeding levels each ejection move 
consists of linking a new edge to the unique degree 1 node that was adjacent to the last 
edge added, followed by deleting the sole edge whose removal will generate another 
Hamiltonian path. A trial move consists of linking the two endpoints of the current 
Hamiltonian path, thus creating a feasible tour.  

4)k ≤

 
The S&C method starts by creating the initial S&C reference structure from a TSP tour, 
by linking two nodes of the tour and removing one of the edges adjacent to one of those 
nodes. Each ejection move links the tip node to any other node on the graph, except for 
the one adjacent to the tip and removes one of the edges adjacent to that node. Two 
different ejection moves are possible depending where in the graph the node to be 
linked to the tip is placed (in the stem or in the cycle). If such node is in the stem there 
is only one possibility to eject a subpath, which results from deleting the only possible 
adjacent edge that creates a feasible structure; otherwise two possible subpaths may be 
ejected by deleting either adjacent edge.  
 
The S&C structure and the nature of its ejection moves are illustrated in Figure 3. In 
the figure, the S&C structure is represented by dark edges with nodes  r,  and  
denoting the tip, root and the two subroots of the structure, respectively. Dotted lines 
denote edges to be added by each type of ejection move and the associated possible 
edges to be deleted by the move are market by the small parallel lines crossing them.  

,t 1s 2s

 8



s2

s1

rt

 
 

Figure 3 - The S&C reference structure and associated ejection moves 
 
Trial solutions are obtained by adding an edge from the tip to one of the subroots and 
deleting the edge between this subroot to the root.  
 
Both theoretical and experimental studies have demonstrated that the S&C ejection 
chain method is more general and powerful than the LK approach. Notably, the 
reference structure in the LK approach is very close to being a valid TSP solution (it only 
requires adding a single edge to close the gap between the two nodes of degree 1 and 
thus obtain a tour). As a result, the structure implicitly limits the different types of 
moves it can generate and consequently makes only one trial solution available from a 
given Hamiltonian path. The S&C reference structure, on the other hand, yields two 
trial solutions (except in the case of a degenerate structure when the tip and root nodes 
coincide, in which case the structure corresponds to a tour). Another fundamental 
difference is that the S&C procedure is conceived to generate dynamic alternating paths 
while the classical LK approach generates static alternating paths. A theoretical analysis 
of the differences between the types of paths generated by S&C and LK procedures is 
provided in Funke, Grünert and Irnich (2005), which includes a demonstration that the 
LK neighborhood is strictly contained in the S&C neighborhood. The authors also show 
that even a generalization of the LK approach that incorporates generalized alternating 
paths cannot reach solutions accessible to the S&C neighborhood. 
 
The Symmetric TSP 
 
An effective algorithm design and implementation of the S&C ejection chain method was 
first proposed by Rego (1998a) for the STSP and subsequently enhanced in Gamboa, 
Rego and Glover (2005, 2006). In the latter, the authors have adopted the two-level tree 
data structure described in Fredman et al. (1995) that is used to support the most 
efficient LK implementations reported in the DIMACS Challenge (e.g. those of Johnson 
and McGeoch, 1997; and Helsgaun, 2000; Applegate, Cook, and Rohe, 2003). The 
upgraded S&C algorithm also incorporates a variety of neighbor lists, thus providing the 
algorithm with additional options not available in the previous version.  
 
The generation of moves throughout the ejection chain process is based on the 
definition of a set of rules and legitimacy restrictions on the set of edges that are 
allowed to be used in subsequent steps of an ejection chain. The algorithm is 
implemented as a local search improvement method in the sense that no meta-strategy 
is used to guide the search beyond local optimality. Also, the method always stops after 
n iterations of the re-routing strategy fail to improve the best solution found so far. (Re-
routing consists of starting an S&C ejection chain from a different route node.) This 
makes our implementation of the S&C algorithm simpler than LK implementations that 
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make use of additional supplementary techniques such as caching distances, and other 
implementation tricks.  
 
Maintaining the fundamental rules of the original algorithm (described in Rego, 1998a) 
unchanged, improvements on the data structures and the use of appropriate candidate 
list strategies made the modified version of the S&C algorithm more efficient and 
effective for solving very large-scale problems.  
 
In Gamboa, Rego and Glover (2006) and Gamboa et al. (2006) the authors report the 
outcomes of an extensive series of tests on problems ranging from 1000 to 3,000,000 
nodes, showing that by intelligently exploiting elements of data structures and 
candidate lists routinely included in state-of-the-art TSP solution software, the S&C 
algorithm clearly outperforms all implementations of the LK procedure. Specifically, it is 
shown that S&C approach finds better solutions than all of the leading LK variants for 
about 70% of the problems tested. Conspicuously, the 70% advantage of the S&C 
approach refers to a comparison with the most effective variant of the LK procedure. 
The second best variant of this approach is dominated by the S&C approach in 
approximately 97% of the problems. Some other variants failed to find even a single 
solution better than the S&C approach over all 59 problems tested.  
 
 
The Asymmetric TSP 
 
The S&C is a fundamental structure in a number of other reference structures used in 
the creation of ejection chain methods. A direct generalization of the S&C reference 
structure that has special advantages for the ATSP is called the Doubly-Rooted (DR) 
S&C (Glover 1996), which considers two root nodes instead of one. The doubly rooted 
structure has two forms: a bicycle in which the roots are connected by a single path, 
joining two cycles, and a tricycle in which the two roots are connected by three paths, 
thereby generating three cycles. In the DR structure the definition of subroot is 
extended to any node adjacent to a root node, regardless of whether it is in the cycle or 
in the stem.  
 
Ejection moves consist of adding a new edge linking one of the subroots to an arbitrary 
node on the graph and deleting the edge between this subroot and the associated root, 
resulting in the selected arbitrary node as the new root. 
 
The trial solutions available to the doubly-rooted structure are those generated by the 
union of the trial solutions available to the single-rooted S&C structure obtained by 
deleting any edge linking a root node to a cycle subroot.  Such a subroot becomes the 
tip of the S&C, while the (root) node that remains with three incident edges becomes the 
S&C root. 
 
Rego et al. (2006) provide a comparative study of the DR neighborhood structure and 
the generalized LK neighborhood for the ATSP proposed in Kanellakis and 
Papadimitriou (1980) and recently used in the current state-of-the-art local search 
algorithm for the ATSP by Cirasella et al. (2001).  Computational experiments on a 
standard testbed exhibits superior performance for the DR neighborhood over its LK 
counterpart, revealing that a straightforward implementation of a DR ejection chain 
algorithm outperforms the best local search algorithms and obtains solutions 
comparable to those obtained by the current most advanced iterative local search 
algorithms specially designed for the ATSP, while requiring dramatically smaller 
computation time.  
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Out of 28 instances for which results are available for KP, in only 4 instances did the 
KP algorithm manage to find tours that are slightly better than those found by the DR 
algorithm. For the remaining 24 instances, the DR algorithm found 3 tours of similar 
quality and 21 of superior quality compared to those produced by the KP algorithm. In 
some cases the quality of solutions found by the DR algorithm exceeded that of the KP 
algorithm by as much as 5.5%. Even more impressive is the performance of the DR 
algorithm compared to the sophisticated iterative local search variant (iKP) of the basic 
KP algorithm (Cirasella et al., 2001). Considering the whole set of 47 benchmark 
instances both iKP and DR algorithms find an equal number of best solutions (28). 
Among these, a 0.00% gap from optimality is achieved on 9 instances by the iKP 
algorithm and on 17 instances by the DR algorithm. Also, it appears that the iKP 
algorithm requires significantly more computational time on average than the DR 
algorithm. In some cases differences in speed translate in about 2 hours for the iKP 
compared to less than 50 seconds for the DR algorithm (which finds tours of better 
quality). 
 
 
Advances on data structures for large STSPs 
 
The problem of data representation is fundamental to the efficiency of search algorithms 
for the TSP and particularly important for large STSP instances. The nature of these 
algorithms necessitates the performance of certain basic tour operations involving 
subpath reversal and traversal. The computational effort that must be devoted to these 
operations becomes increasingly pronounced with larger problem instances. 
 
The 2-level tree (Chrobak et al., 1990) has for many years been considered the 
preeminent choice for representing the tour, retaining that reputation until the recent 
emergence of the k-level satellite tree proposed by Osterman and Rego (2003). The 2-
level tree divides the tour into approximately 1 2n segments each containing as many 
nodes as grouped under a parent node, where a doubly linked list is used to connect 
both segments and client nodes within the segments.  A worst case cost of 1 2(O n )  for 
tour operations may be achieved with the 2-level tree representation.  
 
The theory of 2-level tree contributes much to the latest developments on TSP data 
structures. Its effectiveness has been demonstrated by independent implementations 
due to Fredman et al. (1995), Gamboa, Rego and Glover (2005, 2006) and numerous 
participants in the DIMACS TSP Challenge (Johnson et al., 2000).  
 
The k-level satellite tree expands upon the 2-level tree to allow k levels instead of two. 
This is accomplished by dividing the tour into segments containing roughly 1 kn  nodes 
each, and the resulting segments are grouped into parent segments containing about 

1 kn  segments each. A fundamental feature of this k-level satellite tree is the satellite list 
structure, also proposed by Osterman and Rego (2003) as symmetric counterpart of the 
classical doubly-linked list structure. The satellite list represents a tour without 
implying a fixed orientation, making it useful for representing symmetric paths or 
cycles. It can operate in the same capacity as the doubly-linked list and is equally 
efficient in terms of both memory and computation of previous and next queries. 
Because the satellite list avoids a fixed orientation, the subpath reversal operation can 
be performed in constant time, whereas for the linked list, every pointer associated with 
nodes in the reversed path in a linked list must be changed to reflect the appropriate 
orientation. A satellite design for the k-level tree is important, not only because of 
subpath reversal, but also because next and previous queries do not need to access 
parent nodes. The implications of this benefit are tremendous, considering the 
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frequency of the need for these operations and the fact that the cost of accessing a 
parent node varies with the problem size when the data structure is designed optimally. 
See the reference for a detailed description of the k-level tree and its properties. 
 
It can be shown that with an adequate choice of k, a path between two client nodes in 
the tree can be traversed with a complexity of  rather than (log )O n 1 2( )O n .  This result 
indicates that an optimally designed k-level tree is the most efficient structure proposed 
to date.  
 
 
4.2 Vehicle Routing 
 
The Vehicle Routing Problem (VRP) is a generic name given to a class of problems in 
which a set of routes for a fleet of vehicles, based on one or several depots, must be 
determined for a number of geographically dispersed cities or customers, subject to side 
constraints. The problem is central in the fields of transportation, distribution and 
logistics and provides a general model for a wide range of practical applications.   
 
Let  be a graph where ( , )G V A= 0 1{ , ,..., }nV v v v=  is a vertex (or node) set, and 

{( , ) | , , }i j i jA v v v v V i j= ∈ ≠

}

 is an arc (or edge) set. Consider a depot to be located at 

 and let  denote a set of n cities (or client locations). A non-negative cost 
or distance matrix  

0v 0' \ {V V v=
( )ijC c=  is associated with every arc of A. It is assumed that m 

identical vehicles are used, each with capacity Q, and their number is a decision 
variable (or can be fixed depending on the application). Vehicles make pickups or 
deliveries but not both. With each vertex is associated a quantity   of some 
goods to be delivered by a vehicle and a service time 

iv iq 0( 0=q )

iδ 0( 0)δ =   required by a vehicle to 
unload the quantity  at  The VRP consists of determining a set of m vehicle routes 
of minimal total cost, starting and ending at a depot , such that every vertex 

iq .iv

0v 'iv V∈  
is visited only once by precisely one vehicle, where the total quantity assigned to each 
route does not exceed the capacity Q and the total duration (travel plus service times) of 
any vehicle route does not surpass a given bound D. Hence in this context the cost is 
taken to be the travel time between the two associated cities.   

ijc

 
As discussed earlier, ejection chain methods have been proved very efficient for solving 
large scale traveling salesman problems. Generalizations of some of these methods have 
likewise been extended to deal with multiple routes as required in general vehicle 
routing problems.   
 
 
Node-based ejection chains for the VRP 
 
Node-based ejection chain methods derive from extensions of customary single node 
insertion and exchange neighborhoods that have been found useful in several classes of 
graph problems including: machine scheduling, clustering, graph-coloring, vertex 
covering, maximum clique or independent set problems, vehicle routing problems, 
generalized and quadratic assignment problems, and the traveling salesman problem, 
just to cite a few.  
 
Typical node insertion (or shift) neighborhoods involve removing a node from one route 
and inserting it into another, while typical node exchange (or swap) neighborhoods 
involve interchanging nodes between routes. In neighborhood search, these insertion 

 12



and swapping operations are also performed within a given route (instead of across 
routes) as a way to re-optimize the associated TSP defined over the nodes of this route.  
Since the worst case complexity of evaluating a single node insertion and node 
exchange neighborhood is 2( ),O n  creating compound neighborhoods by combinations of 
these moves requires an effort that grows exponentially with the number of moves 
considered in combination. More precisely, the best compound neighborhood of k moves 
can be generated and evaluated with ( )kO n effort. Embedding these simple 
neighborhoods in an ejection chain framework can notably reduce this effort (Glover 
1991). 
 
Rego (2001) develops an ejection chain neighborhood for the VRP that implements a 
multi-node insertion move and a multi-node exchange move to yield an important form of 
combinatorial leverage. Specifically, the number of moves represented by a level k 
neighborhood is multiplicatively greater than the number of moves in a level k-1 
neighborhood, but the best move from the neighborhoods at each successive level can 
be determined by repeating only the effort required to determine a best first level move. 
 
The ejection chain starts by identifying a node pair  ,iv jv  that yields the best (highest 

evaluation) ejection move that disconnects node  from its current position and inserts 
it into the position currently occupied by node 

iv
.jv  For subsequent levels, ejection moves 

consist of selecting a new candidate node to be ejected by the previously ejected node, 
and then repeating until no other legitimate node exists for ejection. Such an ejection 
process creates an intermediate structure at each level of the chain where the 
associated ejected node, say  (kkv j= for the first level), is temporarily disconnected 
from the tour. However a trial solution can be obtained by: (1) inserting node  
between two nodes  and  and adding an arc linking the original predecessor and 
successor of  to close the route – a multi-node insertion move; or (2) simply by 
relocating the last ejected node to occupy the vacant position left by the node  that 
initiates the chain – a multi-node exchange move. 

kv

pv qv

iv

kv iv

 
This composite ejection chain neighborhood has been embedded in a tabu search 
algorithm, named TabuChain, which is designed to use frequency-based adaptive 
memory and strategic oscillation to allow for temporary violation of the capacity or 
maximal route duration constraints. Both sequential and parallel versions of the 
algorithm have been implemented. The parallel version is based on a synchronous 
model of parallel searches that allows for a more extensive exploration of the solution 
space than the basic sequential version. Also, different levels of parallelization are used 
in order to accelerate the search process. One takes advantage of an ejection chain 
property that permits ejection and trial moves to be evaluated separately by different 
processors, potentially reducing the time per iteration by half. Another level of 
parallelization consists of launching separate processes to re-optimize each individual 
route. The sequential and parallel methods, each in its own category, remain among the 
most effective algorithms available for the VRP, producing solutions that are on average 
0.77% and 0.55% above the best known solutions for the classical fourteen-instance 
testbed of Christofides, Mingozzi and Toth (1979).  
 
Node-based ejection chain approaches have also been successfully applied to clustering 
problems by Dorndorf and Pesch (1994). Principles similar to those underlying the 
node-based ejection chain method discussed for the VRP are developed and explored in 
Yagiura, Ibaraki and Glover (2004) to provide an effective algorithm for the generalized 
assignment problem.  
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Subpath ejection chains for the VRP 
 
Another type of ejection chain approach for the VRP concerns a subpath ejection chain 
method proposed in Rego (1998b).  A fundamental feature of this method is the flower 
reference structure that generalizes the stem-and-cycle (S&C) reference structure 
(discussed in Section 4.1) to a multiple routing context. The flower structure is defined 
as a spanning subgraph of G, which consists of a path called stem attached to multiple 
cycles representing routes. In the original paper several components of the flower 
structure are termed differently than their equivalents in the S&C structure; however to 
facilitate the discussion in this paper we stick with the terms already introduced for the 
S&C. Therefore, the node that lies on the intersection of a stem and a cycle will be 
called a root and the nodes adjacent to a root will be called subroots. Likewise, the node 
at the opposite end of the stem from the root will be referred to as the tip of the stem. In 
the flower structure the root node always identifies the depot and hence these two terms 
may be used interchangeably.  
 
The consideration of multiple cycles in the flower reference structure extends the 
ejection and trial moves of the stem-and-cycle to encompass a number of other 
possibilities. Starting from a given VRP solution, the ejection move to create a flower 
structure may simply delete one of the edges incident to the root (depot), thus 
transforming a cycle into a stem, which is also a basic move to deal with routes 
containing a single city. Such a move that only deletes one edge without adding another 
may be referred here to as a drop move to differentiate it from the moves that replace 
one edge with a new one and so may be called add-drop moves.  Similarly, a trial move 
that transforms a flower structure into a VRP solution may simply link the tip directly 
to the depot to close the route.  Such a trial move may be called a route-creation move. 
By contrast, the type of S&C trial move that links the tip node to one of the subroots 
and deletes the associated edge incident to the root may be called route-extension move, 
since it extends a route to include the clients currently in the stem that is made to join 
that route. Depending on the type of ejection and trial moves considered for an ejection 
chain, the number of vehicle routes can vary: the number decreases if the chain starts 
with an ejection move that deletes an edge incident to the root and then applies a route-
extension trial move, whereas the number increases if the chain starts by applying an 
add-drop move to one of the routes and a route-creation move is used to obtain a new 
trial solution.  
 
An important feature of the algorithm concerns the choice of the chain starting rules. 
Since it is possible to create a flower structure from a given VRP solution by deleting 
one edge without adding another, such a step always results in a cost reduction in 
relation to the current solution. Moreover, as the longest edges are usually selected to 
be deleted, this leads to the outcome that the proper add-drop S&C move will rarely be 
chosen to start the chain. To avoid this situation, the algorithm considers a penalty 
factor to provide a more appropriate evaluation of the two types of ejection moves. 
Experimental tests carried out on problems with different characteristics disclosed that 
randomly varying this penalty within specific intervals (of real values) was highly 
advantageous. Different tradeoffs can be obtained in evaluating the two types of moves 
that initiate an ejection chain depending on three ranges of values as follows. For 
negative values the drop move is highly penalized, hence an add-drop initiating move is 
performed. If these values are positive and less than 1, initiating drop moves are again 
penalized in relation to add-drop moves, but not so strongly. Finally, values greater 
than 1 yield greater penalties for the add-drop initiating moves and hence favor drop 
moves to be performed. 
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Although the Flower reference structure preserves the same properties as the S&C 
structure and so succeeds in generating dynamic alternating paths and cycles, the 
violation of the alternating path construction that is caused by an ejection chain 
process in the VRP setting is less restrictive than in the TSP setting. This increases the 
move options for the VRP, yielding a heuristic advantage. In this setting, periodically 
limiting the moves to generate an ordinary alternating path rather than a dynamic 
alternating path turned out to be useful to avoid modifying adjacent edges at the same 
step of the algorithm. Nevertheless, such a modification was not completely forbidden in 
order to allow the most promising changes to be carried out.  In sum, on one hand it is 
sometimes desirable not to simultaneously modify two adjacent edges as a means of 
inducing some degree of diversification; on the other hand it can also sometimes be 
desirable to allow such a modification to provide some intensification of the search and 
possibly reach deeper local optima where new best solutions may be found.  
 
The implementation of this subpath ejection chain method relies on a tabu search 
guidance to prevent the method from generating flower structures already considered at 
previous levels of the chain. Guidance by tabu search is also used to govern the 
creation of alternating paths within the context of the legitimacy conditions used in the 
algorithm, which as in the case of the TSP problem assure that a given solution can be 
transformed into any other.  
 
To gauge its performance, the Flower algorithm was tested on an extended set of 30 
problems from the literature, which include the classical fourteen-instance set of 
Christofides, Mingozzi, and Toth (1979), three real-world problems taken from Fisher 
(1994) and twelve instances considered in Taillard (1993) and Rochat and Taillard 
(1995).  The original goal in creating the Flower algorithm was to produce high-quality 
solutions rapidly rather than striving to find (new) best solutions, and hence no 
recourse was made to sophisticated forms of TS  guidance ― in contrast to TabuChain 
(previously described) and a number of other algorithms in the literature. Comparisons 
with algorithms sharing a similar goal of rapid convergence reveal that the Flower 
algorithm is clearly superior to all of them, producing better solutions and also 
requiring less running time. When compared with other classes of algorithms that make 
advanced use of metaheuristic guidance, the Flower algorithm compares quite favorably 
to these as well, especially when good solutions must be found quickly. In particular, 
the algorithm is very fast in finding solutions that are within the range of 1% of the best 
known solution.  
 
 
4.3 Crew Scheduling  
 
The general crew scheduling problem (CSP) can be formulated as seeking the minimum 
number of crews necessary to cover a set of trips with duties that have to satisfy a 
number of regulations and operational constraints.  
 
Cavique, Rego and Themido (1999) address a CSP arising in train transportation and 
develop a subgraph ejection chain method embedded in a tabu search algorithm for the 
solution of the problem. The algorithm relies on the definition of a number of terms 
generally used in crew scheduling, which can be introduced in the context of the 
problem at hand.  
 
The set of trips to be performed by each train defines a timetable.  A trip is a one way 
movement of a train between two terminal points, the smallest period (or elementary 
crew activity) into which the timetable can be divided. A trip has five attributes: train 
number, starting place and time, finishing place and time. A block is a set of all trips 
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produced by the same train, and the set of consecutive trips in a block, covered by the 
same crew, is called a piece of work (or piece).  A block partition is a set of non-
overlapping pieces of work that exactly covers a block. In this application, a complete 
duty may be formed by one or two pieces or work, a meal break, the report and clear 
time and a possible reserve period. The set of contractual and operational constraints 
include specific relief points, bounds on the durations of pieces of work, report and 
clear times, duty duration, and possible intervals for meal breaks.  A duty that satisfies 
all problem constraints is called a feasible duty and a set of feasible duties covering all 
trips makes up a feasible schedule. The objective of the CSP is to find a feasible 
schedule with a minimum number of crews (duties) needed to operate the train line. 
 
We now undertake the description of the subgraph ejection chain method and 
associated tabu search procedure. In contrast with the node based and subpath 
ejection chain methods that concerned the ejection of nodes or subpaths of a graph 
structure modeling the problem, the present method considers a subgraph as the 
elementary component to be ejected at each level of the ejection chain process. The 
method explores a specialized block partition technique that underlies the formulation of 
the maximum cardinality matching problem (MCMP) of a non-bipartite graph  
The method is divided into three fundamental procedures: block partition, graph 
generation, and duty achievement. The block partition procedure, in the first step, 
divides the blocks into k feasible pieces of work, creating the node set  In 
the second step, the matching graph G is built by linking pairs of pieces for all possible 
duties, creating the edge set 

( , ).G P D=

1( , , ).kP p p= K

{( , )| , }.i jp p p Pi jD p= ∈

i

 Finally, in the third step, a MCMP 
algorithm is applied to find a maximal matching of pieces to create a schedule. In the 
solution of the MCMP, the matched nodes represent duties with two pieces and the free 
(or unmatched) nodes are duties with only one piece of work. Under this model the CSP 
reduces to the problem of finding the block partition that produces a schedule with a 
minimum number of duties over all possible partitions.  
 
The enormous number of alternatives to partition the set of blocks for a given timetable 
entails a very large and complex solution space for which effective search algorithms 
must be designed. The algorithm considers a tabu search approach based on an 
embedded neighborhood structure that gives rise to a subgraph ejection chain method 
defined as follows. A neighborhood structure  is decomposed in two substructures  
and  which separates the neighborhood space into two subsets.  is an 
intermediate structure responsible for generating a set of new pieces of work that will 
replace pieces of the current graph 

N 1N

2,N 1N

( , )i iG P D=  transforming it into another graph 
  is a structure defining the set of edges in  associated with 

feasible duties. The complete neighborhood structure N  is be defined by any possible 
sequence of moves  such that 

1 1 1( , ).i i iG P D+ + += 2N 1iG +

1 1, , , , , ,k k L Le t e t e tK K 1ke N∈  and 2,kt N∈  representing an 
ejection chain of L levels. Accordingly, the transition from a solution (schedule)  to a 
solution  can be obtained by a sequence of moves  with  and  
denoting the ejection move and trial move, respectively, at level k* where the best trial 
solution was found.  

iS

1iS + 1 2 * *, , ,k ke e e tK *ke *kt

 
In the algorithm, ejection moves are defined by three types of elementary operations (1) 
shift operation, which shifts the extreme of a piece to the right or to the left, transferring 
one or more trips between adjacent pieces, (2) cut operation, which splits one piece into 
two pieces, and (3) merge operation, which combines two pieces into a single piece. Each 
of these operations that modify the configuration of certain nodes require deleting (or 
ejecting) a subgraph involving the modified nodes and certain edges adjacent to them, 
which thereby entails the creation of another subgraph associated with the new 
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configuration of the nodes that have been modified by the ejection move. Under this 
conception, an ejection move at level k deletes (ejects) a subgraph of k

iG − k
iG 1( )i iG G=  

and adds another subgraph k
iG +  to the current graph transforming  into 

 The associated trial move for the current level may be given by 

solving the MCMP on graph 

k
iG

1 \k k k k
i i i iG G G G+ −= ∪ .+

1,k
iG +  thus yielding a new feasible schedule. Due to the 

inherent time complexity of determining an exact solution for the MCMP at each level of 
the chain, the algorithm considers a trial function that implicitly reflects the potential 
quality of the trial solution that could be reached. Once the chain ends, the explicit 
evaluation of  is carried out by solving the MCMP on the graph  where k* 
represents the level of the chain where the best value of the trial function was found.  

2N *
1 ,k

i iG G+ =

 
A set of six real time tables involving over 700 trips and up to 26 trains (number of 
blocks) is used in order to test the performance of the algorithm. The quality of the 
solutions is evaluated on the basis of three correlated performance measures: the 
percent improvements to the number of duties obtained by alternative schedulers, the 
matching ratio (i.e. percentage of duties with two pieces of work), and the average 
number of driving hours per duty. The results disclose that the ejection chain algorithm 
performs extremely well across the three evaluation criteria. The algorithm finds better 
schedules than previous methods for all problems tested, reducing the number of 
duties, improving the distribution of the crew’s workload and finding higher matching 
ratios. 
 
 
4.4 Quadratic Assignment 
 
The quadratic assignment problem (QAP) is a classical combinatorial optimization 
problem that has garnered much attention due to both its large number of applications 
and its solution complexity.  Originally used to model a location problem in the 1950’s, 
the QAP is computationally very difficult to solve which makes it an ideal candidate for 
testing new algorithmic approaches. While facility location problems remain the most 
popular application area for the quadratic assignment problem, many other 
applications for this problem exist including scheduling problems, statistical data 
analysis, information retrieval, as well as problems in transportation. The attractiveness 
of the QAP is also due to the fact that many other combinatorial optimization problems 
can be formulated as a QAP, including: the traveling salesman problem, the maximum 
clique problem and the graph partitioning problem. (See Cela (1998) for a survey of both 
classical and practical applications.)  
 
In the context of facility location problems, the QAP can be stated as follows. Given a set  

 of n facilities to be placed in exactly n locations represented by the set 
 Let  be a matrix of distances between pairs of locations 

1{ , , }nF f f= K

1{ , , }.nL l l= K ( ikA a= ) ,il ,kl L∈  
and an associated matrix ( )jlB b=  of flows to be transmitted (or shipped) between pairs 

of facilities ,jf .lf F∈  The objective is to find a minimum cost assignment of facilities to 
locations considering both the flow of materials between facilities and the distance 
between locations.   
 
In mathematical terms, each assignment can be defined as a permutation p of the 
underlying index set  Hence, if facility {1, , }.N = K n j  is assigned to location i  and 
facility  is assigned to location  the cost of the flow between facilities l ,k ( )j p i=  and 

 is  The QAP is the problem to find a permutation vector  that ( )l p k= ( ) ( ).ik p i p ka b np P∈
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minimizes the total assignment cost, where  is the set of all possible permutations of 
N. Such a formulation can be generically described as 

nP

 

( ) ( )
1 1

.
n

n n

ij p i p jp P
i j

Minimize a b
∈

= =
∑∑  

 
Heuristic approaches for the QAP abound in the literature wherein local search is 
commonly used as a basic component to explore the solution space. Local search 
methods rely on the exploration of a defined neighborhood.  In the case of the QAP, this 
neighborhood is typically a 2-exchange neighborhood that swaps the location of two 
facilities at each step of the local search process. The exploration of larger 
neighborhoods where the simultaneous movement of k nodes of the permutation can be 
examined is attractive though computationally very demanding.  
 
Ahuja et al. (2002) introduce a very large scale neighborhood search (VLSN) for the QAP, 
which constitutes an important advance in the creation of more complex neighborhoods 
for the problem.  This algorithm iteratively examines all paths (or exchanges of nodes) of 
increasing depth, where the maximum depth is a specified parameter.  The VLSN 
algorithm considers all moves (or a defined subset of moves) of a given depth before 
proceeding to the next depth.  Due to the computational complexity of the full path 
enumeration scheme presented, a maximum path length of 4 was settled upon in their 
study.   
 
More recently, Rego, James and Glover (2006) developed a specialized ejection chain 
algorithm for the QAP, drawing on a proposal sketched in Glover (1991), that affords 
additional advances. The approach utilizes the ejection chain structure to build 
successively larger exchanges based upon the elements chosen in the proceeding chain.  
In this manner, all possible chains at each depth may not be considered for a given 
permutation.  However, this process allows the method to quickly probe larger 
neighborhoods, with no constraints on the depths examined, by constructing these 
chains of moves based upon previously promising structures. 
 
The method may be described by analogy with the node-based ejection chain model 
previously discussed for the VRP. In such a model facilities are associated with nodes in 
a graph which are to be assigned to locations. In this context the method implements a 
type of multi-node exchange move, which can be seen as a series of swap moves for the 
QAP. The method begins by identifying the best local move for each facility j, which 
constitutes removing j from its current location and relocating it in the position 
occupied by a facility l, which is thereby ejected. (Alternatively, the method can start by 
looking at each l and finding the best j to replace it.) The initialization process is 
completed by simply selecting initial chains based on performing a series of best 2-
exchange moves. Notably, such a move corresponds to simultaneously determining the 
best initial node to be ejected and the best node to occupy the location of the ejected 
node. The chain grows by selecting a new node to be ejected by the previously ejected 
node. Under the natural and convenient restriction that prevents an element from being 
moved twice, the chain can continue to grow until all n nodes have been ejected. 
 
By embedding this ejection chain method within a tabu search framework, strategic 
control over the formation of the chains can be exerted.  However, the method is applied 
without the benefit of advanced memory strategies, except of the simplest form, in the 
role of “bookkeeping” operations instead of in the role of performing advanced guidance. 
The objective is to show that even this very basic and unenhanced approach is 
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competitive with the best strategies that instead rely extensively on metaheuristic 
guidance to achieve their results. 
 
Results obtained on a standard set of 22 benchmark problems from the QAPLIB 
demonstrate the capabilities of the raw ejection chain procedure and the average 
improvement obtained by exploring the larger neighborhoods over a traditional 2-
exchange and previous large neighborhood approaches. Tests over 10 runs for each 
procedure embedded in a very simple tabu search show that the ejection chain 
neighborhood improved the average solution quality for 19 out of the 22 problems over 
its 2-exchange counterpart. Two multi-start tabu search variants are also presented, 
which essentially differ by the solution from which the algorithm is restarted.  These 
enhanced variants improve the simple tabu search variant in all but 2 problem 
instances each, thus demonstrating the power of embedding the proposed ejection 
chain method within a more sophisticated local search or metaheuristic approach.  
 
Comparisons established with two variants of the VLSN that provide the best overall 
quality shown that the all variants of the ejection chain algorithms significantly 
outperform both VLSN approaches. Specifically, the average solution quality for VLSN 
approaches over the 10 runs is 2.7% and 3.3% across all problems for each of the 
approaches, while these averages are 0.73%, 0.42%, and 0.33% for the three ejection 
chain methods, respectively. With respect to averages to individual problems, the simple 
tabu search finds better solutions than both VLSN approaches for 17 out of the 22 
problems. Moreover, the best solutions obtained by the two multi-start ejection chain 
approaches are better than the best solutions found by the VLSN approaches in all 
cases.  
   
 
5.  Filter-and-Fan Applications 
 
A filter and fan algorithm requires the definition of component moves used to generate 
trial solutions throughout the search process. Component moves are characteristically 
simple moves serving as building blocks for the construction of an extended filter and 
fan neighborhood. As in customary local search methods, different applications require 
appropriate neighborhood structures to explore the solution space. The following 
sections illustrate how filter-and-fan has been successfully used to create effective 
neighborhoods for a number of applications.  
 
5.1 Facility Location  
 
The uncapacitated facility location problem arises in bank account location planning, 
location of collection centers or lock-boxes, clustering analysis, location of off-shore 
drilling platforms, machine scheduling and information retrieval, portfolio management, 
and design of communication networks. For a survey see Cornuéjols, Nemhauser and 
Wolsey (1990) and Gao and Robinson (1994). The basic form of the problem can be 
defined as follows. Given a set S = {1, ..., s} of warehouses or facility locations and a set 
D = {1, ..., d} of customers to be served. With each customer j D∈  is associated a 
demand jb  and  is the transportation cost of completely serving a customer ijc j  by 
facility . Also, there is a fixed cost  if facility i  is built (or opened). The objective 
is to find a set  of opened facilities that minimizes the total cost. Due to the 
absent of capacity constraints on the facilities, customer demands may be normalized 
to  and for any set of facilities there is at least one optimal assignment 
where all customers are served by the nearest open facility. Consequently, a UFLP 
solution can be fully defined by the set of open facilities. Therefore, especially in local 

i S∈ iF
⊆*W S

1jb = ⊆W S

 19



search, it is natural to use a vector representation 1( , , )sY y y= K  where  if the 
facility i is open and 0 otherwise.  

1iy =

 
Local search algorithms for the facility location problem typically use flip-based 
neighborhoods, namely, the switch-neighborhood that switches the status of one facility 
from open to close or vice versa by flipping a single variable at a time and the swap-
neighborhood that simultaneously closes one facility and opens another.  
 
Greistorfer and Rego (2006) have successfully enhanced the performance of these 
neighborhoods by generating sequences of flip moves within a filter-and-fan approach. 
Computational tests, whose outcomes are described below, disclose that this method 
provides a significant advance for solving facility location problems effectively. The 
method proceeds by performing moves that flip the value of one variable at each node of 
the F&F tree. A swap move implicitly results whenever in two successive nodes of a 
given branch of the tree, one variable flips from 0 to 1 and another variable flips from 1 
to 0. The legitimacy conditions on the selection of η2 moves are defined by tabu 
restrictions preventing reverse flips (that would lead to duplicated solutions) and a 
feasibility condition that keeps the method from closing the only open facility in the 
current solution. Two variants of the algorithm are developed to achieve different levels 
of sophistication.  
 
The general F&F algorithm undertakes two fundamental steps. The first step is a 
classical local search procedure that starts with all facilities open, then improves that 
solution by closing the facility that locally minimizes the objective function value and 
the process is repeated until no improvement is possible by closing a new facility. Let M 
be the set of all moves evaluated in the last iteration of this descent process, then the 
method keeps the η0 best moves of M to create the initial candidate list M(0) for the F&F 
tree used in the next step.  
 
Two variants of the algorithm are implemented to achieve different levels of 
sophistication and performance. In a more rudimentary design, memory structures are 
limited to the tabu restrictions implicitly defined in the legitimacy conditions specified 
above. In a more advanced design, the method is enhanced by exploring multilevel 
candidate lists, which extends the legitimacy conditions with a validity check, with 
respect to the current depth of the search, that has its counterpart in the notion of 
admissibility of tabu search memories. Accordingly, the evaluation of a move may not 
exclusively rely on the net change in the objective function value created by the move 
but may include a bias factor introduced by memory considerations used to guide the 
search at different layers. In the present algorithm, layers are associated with two 
consecutive levels of the F&F tree that are subsequently and alternatively checked with 
respect to the solution cost changes yielded by the corresponding moves. As a result of 
these effects, improving moves are always kept in the tree; however if in the previous 
level a non-improving move was performed and if none of the moves available improve 
the solution at the current level, a reverse flip move that transforms the current 
solution back to the one in the previous level is allowed, denoting a relaxation by cost of 
one of the legitimacy constraints. 
 
It is shown that the simple version is competitive with state-of-the-art algorithms, but 
fails to find 2 optimal solutions out of 45 classical benchmark problems. Overall this 
algorithm produces solutions that are on average exceedingly close to optimal, while 
consuming a very small amount of computation time – yielding solutions that are on 
average 0.04% above optimality in an average computation time of 2.78 seconds.  
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The more advanced version of the method was implemented with the goal of producing 
still better outcomes and specifically of tackling the new 60 instances currently known 
as the hardest UFLP data sets in literature. This version succeeded in finding all best 
know solutions for the previous 45 instances and achieved an average deviation of only 
0.03% above the optimal solutions for the hardest 60 instances. The total time required 
to solve these hard problems averaged less than 3.5 seconds (on a Pentium IV, 1.7GHz 
CPU desktop computer).  
 
The exceedingly high quality of these results discloses that the filter-and-fan approach 
provides a very effective framework to explore the solution space in facility location 
problems and suggests its use in other more complex variants of these problems. 
 
 
5.2 Protein Folding  
 
A protein’s function is closely related to its 3D structure, and therefore to determine 
how a protein functions one must know its 3D conformation. The Protein Folding 
Problem (PFP) is the problem of predicting the three-dimensional (3D) structure of a 
protein given only the protein’s sequence of amino acids. This is a fundamental yet open 
problem in the fields of biological chemistry and protein science, and has recently 
attracted attention in bioinformatics and computational biology.  The PFP is central in a 
number of practical applications including the designing of new proteins having 
desirable functions in pharmaceutical, food, and agriculture industry (Lengauer 1993). 
We refer to Richards (1991) and Chan and Dill (1993) for an overview of the PFP and its 
applications.  
 
The PFP is a notoriously difficult combinatorial problem due to the combinatorial 
explosion of valid conformations as the number of amino acids in the chain increases. 
Due to the complex nature of the PFP, the so-called HP lattice model proposed by Dill 
(1985) constitutes a well established simplification for algorithm assessment.  
 
Rego, Li and Glover (2006) consider the two-dimensional (2D) version of the HP lattice 
model and propose a F&F algorithm for the solution of the associated PFP. A sequence 
of H and P amino acids is configured as a path on a two-dimensional (2D) lattice to 
define a valid conformation. The path designation implies that the conformation is both 
connected and self-avoiding, i.e., no amino acids can collide in the same cell of the 
lattice. (In graph theory terminology, such a path is called node simple.) The energy 
function is defined by the number of pairs of H nodes that are adjacent in the lattice 
and not consecutive in the chain. Each of these pairs, generally called an H-H contact, 
decreases the energy value by one unit. The objective is to find a conformation that 
minimizes the total energy of the given amino acid sequence, which therefore 
corresponds to maximizing the number of H-H contacts.  
 
In this application, the F&F approach is used to seek an effective guidance strategy 
within a simpler neighborhood by extending the so-called pull-move neighborhood 
(Lesh, Mitzenmacher and Whitesides 2003).  To elaborate the algorithm we first describe 
the associated component moves defined by the pull-move neighborhood structure. 
 
A pull-move is initiated by moving one node of the current conformation to one of its 
empty diagonal adjacent positions in the square induced by the node and one of its 
adjacent neighbors in the sequence.  Depending on the structure of the conformation 
the displacement of the initiating node may require other nodes to change their current 
positions in order to preserve connectivity. In a pull-move, displaced nodes are only 
allowed to occupy vacant adjacent positions in the lattice. Consequently, the 
preservation of connectivity also results in a self-avoiding path. Rego et al. differentiate 
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only three types of pull-moves designated by filling, single-pull and multiple-pull, 
according to the number of nodes that are pulled by the first displaced node.  The filling 
move is the simplest pull-move, displacing a single node in the structure. A valid 
conformation is obtained by simply moving a node to its diagonal adjacent position. A 
single-pull, on the other hand, requires another node to change position after the 
initiating node takes a new position.  The multiple-pull move extends the pull-move to 
achieve connectivity in more complex structures that become disconnected upon 
performing a single-pull move. Figure 4 shows an example of the filter and fan 
neighborhood for a 2D HP model with 20 amino acids, where η1 = η2 = 2 and L = 3. The 
negative numbers denote the energy value of the corresponding conformation. 
 
 

 
 

 

Figure 4 - Filter-and-Fan neighborhood tree for the 2D HP model of the PFP 
 
 
A conformation of energy -6 (represented by the root node) denotes a local optimum 
determined by the local search phase. The first level of the filter and fan neighborhood 
is then generated by applying the η1=2 best moves to the root conformation. The next 
level is created by applying the η2=2 best pull-moves to each of the conformations in the 
current level, thus generating η1.η2=4 trial conformations from which a new set of η1=2 
best conformations is chosen to initiate the next level. If at one level more than η1   
solutions exist with the same objective value preference is given to solutions that derive 
from different parent conformations. In the figure, the η2 different conformations derived 
from the same parent conformation are contained within the rectangles delimited by 
solid lines whereas the η1 best conformations selected at each level are contained within 
“interior rectangles” delimited by dotted lines. The method continues expanding the 
neighborhood until the improved conformation of energy -7 is found in level 3 of the 
filter and fan tree. The compound move leading to the improved conformation is then 
identified by the path indicated by the dark arrows. Note that to continue the tree 
search after obtaining the new local optimum, the method will restrict attention to 
solutions in the left-hand side branches as a basis for extending the tree.  
 
Local search that utilizes memory of elite solutions and their attributes (either in direct 
or statistical form) and that strategically drives the search into new regions plays a 
critical role in the performance of the leading metaheuristic algorithms for the PFP. 
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Rego, Li and Glover (2006) explore mechanisms for achieving these aspects by 
proposing a filter-and-fan approach making use of a simple tabu search structure. The 
algorithm alternates between single-path and multiple-path tabu searches using 
component moves provided by the pull-move neighborhood, subject to short-term 
memory controls. 
 
Computational results for a standard set of benchmark problems showed that the F&F 
algorithm performs more robustly and efficiently than the current leading algorithms 
requiring only a single solution trial and approximately 10 seconds on average to obtain 
best known solutions to 9 out of 11 problems. By contrast, the best of the alternative 
methods require a hundred or more trials in the typical case to obtain best solutions to 
these 9 problems. On the remaining 2 problems, F&F obtains the best known solutions 
after five trials (i.e. re-starts) from diverse solutions generated in the course of the 
algorithm, which accounted for approximately 10 hours of computation time. 
Noticeably, only a single run of 15 minutes on average was necessary for the F&F 
algorithm to find a solution that is just one unit away from the best known solution 
obtained by the best alternative method within similar amount of time. By comparison, 
this best alternative algorithm required hundreds of runs and more than 3 days 
(approximately 78 hours) of wall clock time just to find the best solution for one of the 
initial 9 instances, though the filter-and-fan algorithm requires approximately 6 
seconds on an equivalent computer to find such a solution.  
 
The success of the algorithm in performing more efficiently and robustly than 
alternative state-of-the-art algorithms owes to two fundamental components: (i) the 
dynamic and adaptive feature of the search method in exploiting the pull-move 
neighborhood structure; and (ii) the interplay between the tabu search and the tree 
search phases that creates a strategic oscillation between intensification and 
diversification. Further improvements in efficiency are anticipated to result by 
incorporating longer-term tabu search memory components to achieve higher levels of 
intensification, and by means of vocabulary building strategies that incorporate ejection 
chain methods and path-relinking. 
 
 
5.3 Job Shop Scheduling 
 
The Job Shop Scheduling Problem (JSSP) is a notoriously difficult problem in 
combinatorial optimization. The problem finds its application in manufacturing 
industries and is central to many supply chains that integrate production planning and 
scheduling. In a supply chain environment, production planning and scheduling 
models are often incorporated into a unified framework, sharing information and 
interacting with one another in order to optimize the production of different products 
over multiple facilities. The output of the planning process serves as an input to the 
scheduling process, which is often analyzed as a job shop scheduling problem. Planning 
and scheduling models may also interact with other types of logistics models such as 
inventory models, facility location models and transportation models.  For an extensive 
coverage of planning and scheduling models and applications in various supply chains 
settings, see Pinedo (2006).  
 
The JSSP can be defined by a set of machines specialized to perform ordered operations 
unique for every job. No machine can perform more than one operation at a time, each 
operation has fixed time duration, and preemption is not allowed. The goal is to 
minimize the duration of the longest job in the schedule (i.e. the makespan).  
 
Beam Search is a classical tree search method typically used in the optimization of 
complex scheduling systems, including the JSSP (Sabuncuoglu and Bayiz, 1999); 
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however more advanced forms of tree search neighborhood approaches have been 
recently proposed and successfully applied to scheduling as well as to several other 
optimization problems.  
 
In particular, Balas and Vazacopoulus (1998) consider a specialized neighborhood tree 
for the JSSP that lead to one of the most effective algorithms for this problem. Making 
use of this neighborhood, Rego and Duarte (2006) developed a filter-and-fan (F&F), 
which can be viewed as a natural generalization of beam search and which includes the 
B&V neighborhood tree as a special case.  The basic structure of the algorithm can be 
described as follows.  
 
The most rudimentary version of the classical shifting bottleneck procedure (SBP) 
(Adams, Balas and Zawack, 1988) is used as a constructive method to generate an 
initial feasible solution. At each step the machine with longest processing time (i.e. the 
bottleneck machine) among the ones that have not been scheduled is selected for 
scheduling and the method stops when all machines are scheduled. It is well-known 
that this procedure does not produce high quality solutions by itself, but provides a 
convenient means to rapidly generate initial feasible solutions for more advance 
algorithms.  
 
The F&F algorithm starts from the solution generated by the SBP and iteratively 
improves this solution by alternating between the local search and the tree search 
phases.  The method considers two types of neighborhoods N1 (Aarts et al., 1994) and 
N2 (Nowichi and Smutnicki, 1996) based on classical moves that swap two adjacent 
operations in the critical path (i.e. the longest path in the problem graph that 
represents the solution). Typically, N1 swaps arcs that are internal to the blocks of 
operations in the same machine while N2 exploits interactions between adjacent blocks 
by swapping arcs linking operations in different blocks. Depending on the search 
strategy both types of moves can be used for the local search as well as to define 
elementary moves in the F&F tree.  
 
The search starts with the N1 neighborhood.  Any time a local optimum is found (in the 
local search phase) the best M(0) moves (among the M moves evaluated to establish 
local optimality) are used to create the first level of the F&F neighborhood tree.  The 
next levels are created using η1=16 and η2=8. The method stops branching as soon as 
an improved solution is found, the maximum number of levels L is reached, or if there 
is no more legitimate candidate moves to evaluate.  
  
In case a global improvement is found in the tree search the new best solution is made 
the starting solution for another run of the local search procedure. However, if the 
solution at the root node can not be improved, the method switches back to the local 
search starting with the best trial solution encountered in the tree search and using 
neighborhood N2. In this case, the list M determined in the last run of the local search 
procedure, and so made up of type N1 moves, is now extended with new candidates of 
type N2.  The new list M(0) is created using the best moves of each type in equal 
number. The objective is to allow the algorithm to combine both types of neighborhoods 
throughout the F&F tree. 
 
The performance of the algorithm was evaluated on a set of 58 benchmark problems 
belonging to four classical sets known as LA, FT, ABZ, and ORB.  
 
The analysis of the computational results shows that the F&F algorithm produces 
solutions that are on average at 0.80% above the optimum (or best known) solutions for 
over all problem instances. The algorithm is also very fast, finding its best solutions in 
relatively short time (on a 1.7 GHz Pentium IV 256MB): less than 40 seconds on average 
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for ABZ problems and no more than 8 seconds on average for classes FT, LA and ORB. 
Also, only 1 second of running time was enough for the algorithm to find the optimal 
solution for 30 out of the 38 instances that the method successfully solved to 
optimality.  
 
We have also compared our approach to two leading methods found to be the best 
among thirteen methods tested in a recent study by Gonçalves, Mendes and Resende 
(2005): a hybrid genetic algorithm/local search (GA/LS) method developed as part of 
the study, and a tabu search (TS) approach by Nowichi and Smutnicki (1996), which 
emerged the clear winner of all methods examined. The performance of the present F&F 
approach with regard to solution quality places it next after the TS approach, with an 
average relative deviation from the best known solutions of 0.33%, as compared to  
0.05% for the TS approach and 0.39% for the hybrid GA/LS approach. The F&F 
approach also falls between these two other methods in solution speed, running about 
an order of magnitude slower than the TS approach, but about 2 orders of magnitude 
faster than the GA/LS approach (after adjusting for differences in computers). However, 
the F&F procedure emerges as significantly more robust than the other two methods in 
the time required to find best solutions. F&F times range from 1 to 44 seconds with a 
standard deviation of 9.7, while the TS times range from less than 1 second to 623 
seconds with a standard deviation of 147.6, and the GS/LS times range from 13 to 
3745 seconds with a standard deviation of 1183.0. However, another TS algorithm for 
the JSSP has recently emerged that appears to be substantially better yet in relation to 
both speed and robustness. The tabu search approach due to Grabowski and Wodecki 
(2005), finds solutions for the same testbed discussed having an average relative 
deviation from the best known of 0.08% in about 1.09 seconds (on a 333 MHz CPU), a 
time that would be insignificant if runs were performed on a faster computer like the 
ones used by the F&F and the GA/LS algorithms. 
 
 
5.4 Capacitated Minimum Spanning Tree 
 
The capacitated minimum spanning tree problem (CMST) has been addressed 
extensively in the literature for its importance in modeling and practical applications. It 
is fundamental to the design of communication networks and encounters its application 
in a variety of other settings chiefly in the areas of distribution, transportation and 
logistics.  For background on applications we refer the reader to Gavish (1982, 1991). 
From the modeling standpoint, the problem appears as a relaxation of the classical 
capacitated vehicle routing problem, which in turn is central in many other more 
complex problems. See Amberg, Domschke and Voß (1996) and Mathew and Rego 
(2006) for a comprehensive review of methods and solution approaches.  
 
The CMST problem can be stated as follows. Given a complete undirected graph 

, where  is a vertex (node) set and 

is an arc set. Let  denote a special central node (root), 

and let  be a set of terminal nodes requiring a specified demand  
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CMST problem consists of finding a minimum cost tree T spanning all nodes of G, so 
that the sum of the demands in each sub-tree incident to the root node does not exceed 
a fixed arc capacity Q.  When all the nodes 

ijc

∈iv V  have the same demand the problem is 
referred to as the homogenous demand CMST problem.  
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Successful approaches to the CMST problem involve high complexity multi-exchange 
neighborhoods that take advantage of the basic tree-based and node-based 
neighborhoods used in tabu search algorithms to address the problem. Node-based 
neighborhoods generate moves that transfer a node from one sub-tree to another or 
exchange nodes between sub-trees, while tree-based neighborhoods transfer sub-trees 
between different sub-trees. 
 
The evaluation of node-based or tree-based neighborhood in dense graphs requires 
O(n2) effort, and the effort to evaluate a combination of L of these moves is O(nL), and 
hence grows exponentially with L. A potentially best combination of L moves can be 
evaluated with significantly less effort if the combination is thought of as a compound 
move consisting of individual moves evaluated progressively using the filter-and-fan 
strategy.  
 
The effectiveness of the filter-and-fan method for implementing complex compound 
moves that improve the local optima with only a modest increase in computational 
effort is examined in Mathew, Rego and Glover (2006). This algorithm uses a design of 
the F&F approach wherein the descent phase is replaced with a tabu search phase and 
the tree search is continued after a local optimum is found, allowing for local optimally 
to be overcome in any level of the tree except for leaf nodes.  In addition the method 
employs a neighborhood structure that brings about two types of strategic oscillation: 
(1) cycling between feasibility and infeasibility and (2) cycling between node-based shift 
moves and tree-based shift moves.  Strategic oscillation is a specialized tabu search 
technique that operates by orienting the search with respect to some boundary. In a 
one-sided oscillation, which is appropriate for the present setting, whenever such a 
boundary is reached the algorithm changes direction according to a specified search 
mechanism. In this algorithm changing direction involves switching to the alternate 
neighborhood structure.  The memory structures used include short term memory 
defined by the classical tabu restrictions and aspiration criteria together with critical 
event memory to bring about strategic oscillation. A brief description of the algorithm 
follows. 
 
A complete evaluation of both the node-based and tree-based neighborhood is 
performed incorporating penalty costs for moves that lead to infeasible solutions on the 
initial solution Xo and a set of η0 best moves that lead to solutions with the lowest 
objective function values is selected. From among these moves a subset of the η1 best 
moves (which can be either node-based or tree-based) are executed to form η1 different 
solutions. For each of these solutions, η2 highest evaluating moves from the original η0 

are selected. From the union of the η2 moves for all η1 solutions, the best η1 moves are 
executed to produce η1 new solutions. This process extends for L levels of the F&F tree 
(in a diversification phase) or until the best solution is improved upon (in an 
intensification phase), in which case the process is repeated from the beginning using 
the best solution encountered throughout the tree to re-initiate the tabu search phase. 
In this manner the filter-and-fan approach brings about simple tree-based and node-
based shift moves that consist of at most L moves. The resulting compound move avoids 
the computational overhead required for the complete neighborhood evaluation 
necessary to determine the exact best L-compound move. Additionally, to prevent 
cycling in the solution space, the most recent moves executed are maintained as tabu 
active for a stipulated number of iterations.  

 
Computational tests performed using standard benchmark problems revealed that this 
algorithm produced results that compared favorably to a number of prior metaheuristic 
algorithms and rivals the best. Tests were carried on a total of 125 instances comprising 
45 heterogeneous demand problems and 80 homogenous demand problems. The 
algorithm managed to find the best known solutions in 70 of these 125 instances with 
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an overall deviation of 0.65% on average. In addition, the average execution time for the 
F&F approach proved to be significantly lower than that of the state-of-the art 
competitors on comparable platforms.   
 
For an appropriate comparative analysis, runs were performed in a similar manner and 
on the same groups of instances considered by the alternative algorithms. Amberg, 
Domschke and Voß (1996) tested a simulated annealing algorithm and six variants of a 
tabu search algorithm on 70 homogeneous-demand instances. The various algorithms 
differ by the type of neighborhood and the method used to manage the tabu restrictions 
in the tabu search algorithms. Results obtained for 12 independent runs of each 
algorithm disclosed that a run of the F&F algorithm is better than any of the runs of 
these algorithms. In particular, it is shown that even if all seven variants of these 
algorithms are taken together and the best overall run for each individual problem is 
chosen, the average quality of the solutions produced by the F&F algorithm across all 
problems improves the quality of such best solutions by 0.43%, indicating a clear 
dominance of the F&F algorithm over these alternative strategies for the CMST. Similar 
analysis reveals a significant advantage of the F&F algorithm over the tabu search 
implementation of Shariaha et al. (1997) and the adaptive reasoning technique (ART) of 
Patterson, Pirkul and Rolland (1999) across all problem categories.  More competitive 
approaches are due to Ahuja, Orlin and Sharma (2001) who propose two very large- 
scale neighborhood search (VLSN) approaches based on multi-exchanges of node-based 
and tree-based neighborhoods, respectively. These neighborhoods are used to create 
two different variants of a tabu search and a GRASP algorithm. Tests on 2 groups of 
problems of different sizes and characteristics indicate that the F&F algorithm performs 
better than one of the GRASP variants for the first group and better than the other 
GRASP variant for the other group. Similarly, the F&F algorithm performs better than 
one of the TS variants for a group of problems and is very competitive with the other 
variant for the other group. As an overall assessment, the F&F approach outperforms a 
GRASP and a TS variant. A considerable advantage of the F&F algorithm concerns the 
significantly reduced amount of solution time required by this method relative to the 
solution times required by each of the 4 variants of the competing algorithms.  
 
These results clearly indicate the impact of the neighborhood structure in the 
performance of metaheuristic strategies. In particular, node-based neighborhoods prove 
more appropriate for solving homogeneous-demand problems while tree-based 
neighborhoods have particular advantages for solving heterogeneous-demand problems. 
To take advantage of the complementary features of the two types of neighborhoods, a 
strategy that unifies node-based and tree-based into a composite multi-exchange 
neighborhood has been proposed in Ahuja, Orlin and Sharma (2003) to produce an 
enhanced GRASP implementation. The neighborhood search is powered by an exact 
dynamic programming solution method aimed at finding the best move in the composite 
neighborhood. This enhanced variant finds all best known solutions for the 75 problems 
tested (out of the 125 considered by the F&F algorithm), and so proves relatively more 
effective, although to achieve this result the method requires more than four times as 
much effort as the F&F method (on a similar computer) to find solutions of the same or 
exceedingly similar quality.   
 
6. Conclusion 
 
Important advances in local search have resulted from the development of larger 
neighborhoods, organized in structurally exploitable ways that are capable of exploring 
the solution space more extensively at each iteration. Such neighborhoods allow for a 
broader examination of the solution landscape and yield more choices to perform moves 
that offer the potential to find regions of high quality solutions. Advances in this domain 
have particularly arisen from compound neighborhood structures, which combine 
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simple neighborhoods to create more complex neighborhoods that can be explored to 
variable depths. To take advantage of the potential to find better solutions, however, 
careful attention must be given to managing the computational overhead involved in 
generating and searching compound neighborhoods, due to the greater number of 
operations required to process them by comparison to the simpler neighborhoods of 
which they are composed. Accordingly, a number of studies have investigated strategies 
to combine neighborhoods efficiently, and thereby reduce the computational effort of 
generating solution trajectories that they make available. 
 
In this paper, we focus on ejection chains and filter-and-fan methods, which have 
become the source of significant advances in the construction of very large 
neighborhood structures. In addition to presenting the general framework of these 
methods, we elucidate the key considerations underlying their design and successful 
implementation. We further identify specific ejection chain and filter-and-fan algorithms 
that have proved effective in the solution of problems spanning the domains of facility 
location, routing and distribution, production scheduling, network design, resource 
allocation, manpower planning, and computational biology. By this means, we 
undertake to provide insights that may prove useful for developing more effective 
algorithms in a variety of additional settings.   
 
Finally, we briefly comment on issues that are relevant for determining whether a filter-
and-fan approach may be preferable to an ejection chain approach, or vice versa.  
Evidently, the merit of applying one method or the other depends on the application, 
the complexity of the problem and ultimately on the search strategy embodied in the 
adaptive memory process. As a rule of thumb, in settings where simple neighborhoods 
have proved relatively effective (or very effective for instances of size relatively smaller 
than the ones at hand), methods that rely on these simple neighborhoods can very 
likely be enhanced for more challenging applications by a filter-and-fan approach. 
Conversely, in complex applications where classical neighborhoods are rather limited in 
their ability to explore the solution space, particularly in the case of very large problem 
instances, a method based on an ejection chain design is likely to prove of greater 
value. While ejection chain approaches are characteristically more powerful than filter-
and-fan approaches, they are usually more difficult to implement and less flexible for 
being modified to handle changed problem specifications. Since advanced ejection chain 
methods typically involve relatively complex reference structures, they are usually more 
difficult to adapt to handle new requirements and constraints. In those applications 
where requirements are likely to change over time, the question of the preferred method 
to use thus depends on the tradeoff between the value of obtaining the best possible 
solution and the value of being able to adapt the method to meet new conditions with a 
modest outlay of effort. 
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