

Ejection Chain and Filter-and-Fan Methods in
Combinatorial Optimization

Fred Glovera∗ and César Regob

a University of Colorado, Boulder, CO 80309-0419, USA. fred.glover@colorado.edu

b School of Business Administration, University of Mississippi, University, MS 38677, USA.

crego@bus.olemiss.edu

Latest Revision: October 31, 2006

Abstract — The design of effective neighborhood structures is fundamental to the
performance of local search and metaheuristic algorithms for combinatorial
optimization. Significant efforts have been made in the creation of larger and more
powerful neighborhoods that are able to explore the solution space more extensively
and effectively while keeping computation complexity within acceptable levels. The most
important advances in this domain derive from dynamic and adaptive neighborhood
constructions originating in ejection chain methods and a special form of a candidate
list design that constitutes the core of the filter-and-fan method. The objective of this
paper is to lay out the general framework of the ejection chain and filter-and-fan
methods and present applications to a number of important combinatorial optimization
problems. The features of the methods that make them effective in these applications is
expected to provide insights into solving challenging problems in other settings.

Keywords: combinatorial optimization, metaheuristics, tabu search, local search,
neighborhood structures, ejection chains, filter-and-fan.

∗ Corresponding author.

mailto:fred.glover@colorado.edu
mailto:crego@bus.olemiss.edu

1. Introduction

The metaheuristic area has been the focus of extensive research in the last several
years, resulting in methods for solving optimization problems that have had a wide
range of successful applications in business, engineering and science. Some of the most
significant advances have been the design of sophisticated compound neighborhoods
coupled with candidate list strategies. The goal is to provide a framework for exploring
the solution space effectively with a modest investment of computational effort.

The definition of an efficient neighborhood structure is important for the performance of
any algorithm that iteratively explores the solution space of highly complex and
constrained problems that typically arise in practice. Recent studies have shown that
compound neighborhood structures, based on effective mechanisms for combining
moves, have advantages over simple neighborhoods where a single move is used for the
transition from one solution to another.

Important advances have been provided by ejection chain methods (Glover 1991, 1992)
and a general class of multi-stream neighborhood search constructions, notably
represented by the filter-and-fan method (Glover, 1998; Rego and Glover, 2002). An
integral part of exploiting such methods stems from joining them with candidate list
strategies to isolate restricted yet effective subsets of moves for consideration at each
iteration. Designed properly, such strategies particularly reinforce the intensification
and diversification themes of tabu search, and provide fertile ground for the application
of learning procedures.

In contrast with other more traditional types of neighborhood constructions, ejection
chains and filter-and-fan methods are characterized by properties that make them
prototypical examples of what we call dynamic and adaptive search approaches.
Characteristically, these methods generate compound neighborhood structures, which
encompass successions of interdependent (component) moves, rather than simple
moves or sequences of independent moves. These methods are dynamic because the
number of component moves used to compose a compound move is not determined in
advance, but rather depends on the depth (or level) of the neighborhood where the best
trial solution is found, which usually varies from one iteration to another. They are
adaptive because the type of the neighborhood and the move itself are chosen according
to the current state of the search.

We begin by presenting in Sections 2 and 3 the fundamental principles underlying
ejection chains and filter-and-fan methods, respectively. In Sections 4 and 5, we review
a number of prominent ejection chain and filter-and-fan algorithms to illustrate the
application of these methods to different classes of problems and to identify the features
responsible for their performance. Practical aspects of these methods are highlighted by
examining the applications shown in Table 1.

Ejection Chains Filter and Fan
Traveling Salesman
Vehicle Routing
Crew Scheduling
Quadratic Assignment

Facility Location
Protein Folding
Job Shop Scheduling
Capacitated Minimum Spanning Tree

Table 1 - Featured applications of ejection chain and filter-and-fan methods

 2

These applications were specially selected to embrace a representative variety of models
within each method and to expand on their application to problems of different natures
and complexities. Our examination of these areas may be regarded as a focused survey,
in that we devote attention primarily to models and applications we have encountered
through direct experience, though we undertake to point out related work and studies
that provide important contributions to the areas examined.

2. Ejection Chains

Ejection Chains are variable depth methods that generate a sequence of interrelated
simple (component) moves to create a more complex compound move. There are several
types of ejection chains, some structured to induce successive changes in problem
variables and others structured to induce changes in particular types of model
components (such as nodes and edges of a graph). For the original proposals of the
ejection chain framework and foundations we refer the reader to Glover (1991, 1992).

Generally speaking, an ejection chain of L levels consists of a succession of operations
performed on a given set of elements, where the k-th operation changes the state of one
or more elements which are said to be ejected in the k+1th operation. This ejection
thereby changes the state of other elements, which then lead to further ejections, until
no more operations can be made according to some pre-defined conditions. State-
change steps and ejection steps typically alternate, and the options for each depend on
the cumulative effect of previous steps (usually, but not necessarily, being influenced by
the step immediately preceding). The conditions coordinating the ejection chain process
are called legitimacy conditions, which are guaranteed by associated legitimacy
restrictions.

In the ejection chain terminology, the order in which an element appears in the chain
determines its level. The number of levels L is the depth of the ejection chain. The
particular level chosen (from among the L levels generated to provide a move executed
by a local search method) usually varies from one iteration to the next. The total
number of levels L can likewise vary, and hence ejection chains fall within the class of
variable depth methods. In an ejection chain framework, the solution obtained at each
level k of the chain may not represent a feasible solution but may be transformed into a
feasible solution by using a complementary operation called a trial move. The objective
is to create mechanisms, namely neighborhood structures, allowing one solution to be
successfully transformed into another.

More formally, let be the current solution at iteration i of the local search method,
and let be the ejection move and the trial move, respectively, at a level k of the
chain. A neighborhood search ejection chain process consists of generating a sequence
of moves on such that the transition from solution to

iS
,ke kt

1 1, , , , , , ,k k L Le t e t e tK K iS iS 1iS + is
given by performing a compound move where k* represents the level
associated with the highest quality trial solution visited during the ejection chain
construction. (There is no need to save trial solutions at other levels.) In the ejection
chain context we use the terms compound move and transition move interchangeably, to
specify the move leading from one solution to another in an iteration of the local search
procedure.

1 2 * *, , , , ,k ke e e tK

The effectiveness of such a procedure depends on the criterion for selecting component
moves. More specifically, neighboring solutions obtained by an ejection chain process
are created by a succession of embedded neighborhoods that lead to intermediate trial
solutions at each level of the chain. However, the evaluation of ejection moves can be

 3

made independently from the evaluation of the trial moves, in which case possible trial
moves are only evaluated after performing the ejection move at the same level of the
chain. In this variant of the approach, the evaluation of an ejection move only
depends on the cumulative effect of the previous ejection moves, and is kept
separate from the evaluations of trial solutions encountered along the way. The trial
moves are therefore restricted to the function of finding the best trial solution that can
be obtained after performing the associated ejection move.

ke

1, , ,ke e −K 1

}n

In general, an ejection chain of L levels can be recursively evaluated by computing the
ejection values for these levels and summing them to give the trial value for each level.
Consider the set of problem elements and denote a legitimate
neighborhood for an element

{= K1, ,N
∈p N by thereby identifying a subset of elements

of N that do not violate the legitimacy restrictions. Also, let
(),LN p

()ϕ ,kp p and ()δ ,kp q be
respectively the values of an ejection move and trial move at a level k of the ejection
chain. For the sake of simplification, we assume that the min function over each of the
ejection and trial move evaluation functions brings in its parameter p and q the best
elements and associated with the best ejection and best trial values found,
respectively. A general ejection chain procedure for a minimization objective can be
sketched as in Figure 1.

*p *q

Step 0. Initialization
(a) Initialize legitimate neighborhood ()LN p for all problem elements ∈ .p N
(b) Consider S be the starting solution.
(c) Set k=0.

Step 1. Create the first level of the ejection chain
(a) Determine a set of two initial elements by computing the ejection

value

*, *p q

(){ }ϕ= ∈ ∈min , : , ; () .kE p q p q N q LN p

k(b) Set += = =1*, *, { }.k k kp p p q e p
Step 2. Grow the chain to further levels

(a) Set k=k+1 and set e e −= ∪1 { }.k k kp
(b) Evaluate the solution cost change for the current level by computing the

corresponding trial value (){ }δ∆ = where
q denotes a reference element associated with other elements that may
change state as per the application of the trial move of level k.

+ ∈ ∈min , : , ; () ,k k k k kE p q p q N q LN p

p

(c) Keep track of the best level k* and associated trial move t that produced the
best trial solution.

*k

(d) Determine the new element by computing: *p

(){ }ϕ−= + ∈ ∈1 min , : , ; () .k k k k kE E p p p p N p LN p

(e) Set + =1 * .kp p
(f) Update the legitimate neighborhood for each element involved in the chain of

level k.
(g) If k<L and LN return Step 2. Otherwise go to Step 3. () ≠ ∅,k

Step 3. Perform the compound move
(a) Apply to S the sequence of ejection moves up to the level k*, i.e. e *.k

(b) Perform the trial move on S for the level k*, i.e. t *.k

Figure 1 - An iteration of a general ejection chain procedure

 4

We stress that our preceding description of ejection chain processes simply constitutes
a taxonomic device for grouping methods that share certain useful features. The value
of the taxonomy, however, is evidenced by the role it has played in methods of
considerable power for discrete optimization problems across a broad range of
applications. As will be seen in the applications selected for this discussion, the
ejection chain framework provides a foundation for methods that embrace a variety of
compound neighborhood structures with special properties for combining moves, while
entailing a relatively modest computational effort.

3. Filter and Fan

The filter-and-fan (F&F) method was initially proposed in Glover (1998) as a method for
refining solutions obtained by scatter search, and was further extended in Rego and
Glover (2002). In the latter, the method is proposed as an alternative to ejection chain
methods and as a means for creating combined neighborhood search strategies.
Conceptually, it integrates the filtration and the sequential fan candidate list strategies
used in tabu search (Glover and Laguna 1997), and can be viewed as a restrictive form
of tabu search that generates multiple paths in a breadth search strategy. From a
neighborhood search perspective, the method generates compound moves as a
sequence of more elementary component moves (or submoves).

Graphically, the F&F model can be illustrated by means of a neighborhood tree where
branches represent submoves and nodes identify solutions produced by these moves.
An exception is made for the root node, which represents the starting solution to which
compound moves are to be applied. The maximum number of levels L permitted in a
single sequence of moves defines the depth of the tree. The neighborhood tree is
explored breadth first, level by level. Each level is governed by the filter candidate list
strategy that selects a subset of moves induced by the fan candidate list strategy. The
process of selecting moves has to obey a set a legitimacy conditions defining associated
legitimacy restrictions specific to the type of move utilized. The method incorporates two
fundamental components: a local search to identify a local optimum and a filter and fan
search to explore larger neighborhoods in order to overcome local optimality. Any time a
new local optimum is found in one search strategy the method switches to the other
strategy and keeps alternating this way until the filter and fan search fails to improve
the current best solution.

The Filter and Fan Search

The general F&F search procedure can be sketched as follows. Once a locally optimal
solution Xo is found (in the local search phase) the best η1 currently available moves
(among the moves evaluated to establish local optimality) are used to create the level 1
of the F&F neighborhood tree. As a basis for creating the next levels, for a given level
indexed by k, η1 denotes the number of solutions that are chosen from all solutions
available at level k, as a foundation for generating solutions at level k+1. (For k=1, there
are just η1 solutions available, so all are chosen.) For each of these η1 solutions, denoted

η= K 1()(1, ,),iX k i apply η2 moves to generate η2 descendant solutions, thereby generating
a total of η=η1.η2 trial solutions for level k+1. At this stage, η1 of the resulting η
solutions are chosen to launch the process for the next level. The values η1 and η2 are
input parameters, e.g. η1=2η2. If an improved solution (better than the local optimum
Xo) is found among the trial solutions, then the method stops branching and switches

 5

back to the local search phase, taking this newly improved solution as a starting point.
Otherwise, another selection takes place over the set of moves available.

The process of selecting η2 moves has to obey a set of legitimacy restrictions that assure
compatibility of the component moves used for the construction of a valid compound
move. The fan candidate list strategy is embedded in the generation of the η trial
solutions, whereas the selection of the η1 solutions from this collection constitutes the
filter candidate list strategy.

The basic skeleton of a general F&F procedure is as in Figure 2. Denote X* the best
solution found so far. Let M(k) be the candidate list of moves identified at level k of the
F&F tree. Input F&F parameters η0, η1, η2 and let L be an upper limit for the maximum
number of levels of the F&F tree. Build an initial solution X to initiate the method.

Step 0. Generate a candidate list of component moves
(a) Change X by performing 1-moves using a local search until a local optimum

X* is found. Let M be the set of all moves evaluated in the last iteration of the
local search procedure.

(b) Create a candidate list M(0) with the η0 highest evaluation moves of M.
(c) Set X*=X, and let X be the new starting solution, i.e. the root node of the

search tree. Apply the best η1 moves in M(0) to X to create the first level of the
F&F tree with solutions η= K 1(1)(1, ,).iX i Set k=1.

Step 1. Generate the filter and fan tree
(a) Identify the best η2 legitimate moves derived from M(0) for each solution

η= K 1()(1, ,)iX k i by computing the value of the corresponding trial solution.
(b) If the best evaluation found is better than the one of X*, perform the

associated move from X k to X, the new and improved current solution. Set
X*=X and go to Step 0.

()i

(c) Otherwise, select the best η1 legitimate trial moves to become the members of
M(k).

(d) Apply the M(k) moves to the corresponding solutions X k to create ()i +(1)iX k .
(e) If k=L stop. Otherwise set k=k+1 and repeat Step 1.

Figure 2 - The general filter-and-fan procedure

In more general versions of the approach, tree width and branch width can vary
adaptively throughout the search in the case where the values for η1 and η2 are changed
from level to level. In additional variants of the procedure, as when making use of
constructive or destructive neighborhoods, a solution can refer to a partial solution,
having some components undetermined. Local optimality is then defined in a special
sense relative to the determined components, or by employing a default trial completion
that fills in the values of the undetermined components.

More advanced versions allow for the combination of different types of neighborhood
structures and the use of adaptive memory programming as introduced in tabu search.

Refinements for higher levels of adaptive memory constructions

To some extent the F&F method can be interpreted as performing multiple threads of
tabu searches from the root node of the F&F tree using a limited short-term memory
component derived from the legitimacy restrictions. From this perspective a

 6

straightforward enhancement could result by creating a more general algorithm
managed by two basic types of short-term memory components: e.g. a branch-memory
that is local to each branch of the F&F tree or a tree-memory that is global to the F&F
tree. A limited form of branch-memory is implicitly defined in the legitimacy restrictions
of the tree search process. However, the inclusion of more explicit forms of memory
would allow different levels of flexibility by using either one of the two indicated types of
memory or both memories combined. In that sense a branch-memory could serve to
forbid move reversals while tree-memory could be conceived to produce a higher level of
diversification of the search among the different branches of the tree.

Higher levels of intensification and diversification can be achieved by incorporating
more advanced memory structures as prescribed in tabu search. We conjecture that an
effective integration of memories organized at different layers provides a useful means
for the creation of the M(k) candidate lists as well as a vehicle to drive the search in an
iterative process that performs the F&F procedure for a number of iterations until a
given stopping criterion is met as in general tabu search implementations. Elaborated
constructions of the underlying look-ahead process may also be provided by the use of
ejection chain processes (performed from nodes at the current level) as a foundation to
determine promising component moves to dynamically update the candidate list.
Moreover, high evaluation trial solutions found throughout the ejection chain can be re-
corded for further consideration. All these modifications make recourse to associated
elements of tabu search and can directly turn a F&F approach, itself based on the
foundations of tabu search, to a higher level tabu search procedure.

4. Ejection Chain Applications

4.1 Traveling Salesman

The Traveling Salesman Problem (TSP) consists in finding a minimum distance tour of n
cities, starting and ending at the same city and visiting each other city exactly once. In
spite of the simplicity of its problem statement, the TSP is remarkably challenging and
is the most studied problem in combinatorial optimization, having inspired well over a
thousand publications.

In graph theory, the problem can be defined on a graph (,)G V A= , where
is a set of n vertices (nodes) and

1{ ,..., }nV v v=
{(,) | , , }i j i jA v v v v V i j= ∈ ≠ is a set of arcs, together

with a non-negative cost (or distance) matrix ()ijC c= associated with A. The problem is

considered to be symmetric (STSP) if ij jic c= for all (,) ,i jv v A∈ and asymmetric (ATSP)
otherwise. Elements of A are often called edges (rather than arcs) in the symmetric case.
The version of STSP in which distances satisfy the triangle inequality ()ij jk ikc c c+ ≥ is
the most studied special case of the problem. The STSP (ATSP) consists in determining
the Hamiltonian cycle (circuit), often simply called a tour, of minimum cost.

The importance of identifying effective heuristics to solve large-scale TSP problems
prompted the “8th DIMACS Implementation Challenge”, organized by Johnson,
McGeogh, Glover, and Rego (2000) and solely dedicated to TSP algorithms.

Ejection chain methods lead the state-of-the-art in local search heuristics for the
traveling salesman problem (TSP) and likewise have successfully been applied to a
cardinality-constrained variant of the problem (Cao and Glover, 1997). The most
effective local search approaches for the classical TSP primarily originate from the

 7

Stem-and-Cycle (S&C) ejection chain method (Glover, 1992) and the widely acclaimed
Lin-Kernighan (LK) procedure (Lin and Kernighan, 1973), which can be viewed as an
instance of an ejection chain method. These two types of TSP ejection chain approaches
typically proceed by disconnecting a subpath and reconnecting it with different
components at each level of the chain, and as a consequence are generally called
subpath ejection chain methods.

Subpath ejection chains for the TSP

Subpath ejection chain methods for the TSP start from an initial tour and iteratively
attempt to improve the current solution, generating moves coordinated by a reference
structure. The LK approach uses a Hamiltonian path as the reference structure to
generate moves throughout the neighborhood construction. By contrast, the S&C
ejection chain method is based on the stem-and-cycle reference structure. The S&C
reference structure is a spanning subgraph of G consisting of a path called a stem
connected to a cycle by a single node called the root node. The two nodes adjacent to the
root in the cycle are called subroots and the node on the other end of the stem is called
the tip of the stem. In a subpath ejection chain, once a reference structure is created
from the initial TSP tour, ejection moves consist of transforming the reference structure
into another of the same type and appropriate trial moves are used to generate feasible
tours at each level of the chain.

The LK method starts by generating a low order k-opt move (with and then
creates a Hamiltonian path by deleting an edge adjacent to the last one added. This
completes the first level of the LK process. In succeeding levels each ejection move
consists of linking a new edge to the unique degree 1 node that was adjacent to the last
edge added, followed by deleting the sole edge whose removal will generate another
Hamiltonian path. A trial move consists of linking the two endpoints of the current
Hamiltonian path, thus creating a feasible tour.

4)k ≤

The S&C method starts by creating the initial S&C reference structure from a TSP tour,
by linking two nodes of the tour and removing one of the edges adjacent to one of those
nodes. Each ejection move links the tip node to any other node on the graph, except for
the one adjacent to the tip and removes one of the edges adjacent to that node. Two
different ejection moves are possible depending where in the graph the node to be
linked to the tip is placed (in the stem or in the cycle). If such node is in the stem there
is only one possibility to eject a subpath, which results from deleting the only possible
adjacent edge that creates a feasible structure; otherwise two possible subpaths may be
ejected by deleting either adjacent edge.

The S&C structure and the nature of its ejection moves are illustrated in Figure 3. In
the figure, the S&C structure is represented by dark edges with nodes r, and
denoting the tip, root and the two subroots of the structure, respectively. Dotted lines
denote edges to be added by each type of ejection move and the associated possible
edges to be deleted by the move are market by the small parallel lines crossing them.

,t 1s 2s

 8

s2

s1

rt

Figure 3 - The S&C reference structure and associated ejection moves

Trial solutions are obtained by adding an edge from the tip to one of the subroots and
deleting the edge between this subroot to the root.

Both theoretical and experimental studies have demonstrated that the S&C ejection
chain method is more general and powerful than the LK approach. Notably, the
reference structure in the LK approach is very close to being a valid TSP solution (it only
requires adding a single edge to close the gap between the two nodes of degree 1 and
thus obtain a tour). As a result, the structure implicitly limits the different types of
moves it can generate and consequently makes only one trial solution available from a
given Hamiltonian path. The S&C reference structure, on the other hand, yields two
trial solutions (except in the case of a degenerate structure when the tip and root nodes
coincide, in which case the structure corresponds to a tour). Another fundamental
difference is that the S&C procedure is conceived to generate dynamic alternating paths
while the classical LK approach generates static alternating paths. A theoretical analysis
of the differences between the types of paths generated by S&C and LK procedures is
provided in Funke, Grünert and Irnich (2005), which includes a demonstration that the
LK neighborhood is strictly contained in the S&C neighborhood. The authors also show
that even a generalization of the LK approach that incorporates generalized alternating
paths cannot reach solutions accessible to the S&C neighborhood.

The Symmetric TSP

An effective algorithm design and implementation of the S&C ejection chain method was
first proposed by Rego (1998a) for the STSP and subsequently enhanced in Gamboa,
Rego and Glover (2005, 2006). In the latter, the authors have adopted the two-level tree
data structure described in Fredman et al. (1995) that is used to support the most
efficient LK implementations reported in the DIMACS Challenge (e.g. those of Johnson
and McGeoch, 1997; and Helsgaun, 2000; Applegate, Cook, and Rohe, 2003). The
upgraded S&C algorithm also incorporates a variety of neighbor lists, thus providing the
algorithm with additional options not available in the previous version.

The generation of moves throughout the ejection chain process is based on the
definition of a set of rules and legitimacy restrictions on the set of edges that are
allowed to be used in subsequent steps of an ejection chain. The algorithm is
implemented as a local search improvement method in the sense that no meta-strategy
is used to guide the search beyond local optimality. Also, the method always stops after
n iterations of the re-routing strategy fail to improve the best solution found so far. (Re-
routing consists of starting an S&C ejection chain from a different route node.) This
makes our implementation of the S&C algorithm simpler than LK implementations that

 9

make use of additional supplementary techniques such as caching distances, and other
implementation tricks.

Maintaining the fundamental rules of the original algorithm (described in Rego, 1998a)
unchanged, improvements on the data structures and the use of appropriate candidate
list strategies made the modified version of the S&C algorithm more efficient and
effective for solving very large-scale problems.

In Gamboa, Rego and Glover (2006) and Gamboa et al. (2006) the authors report the
outcomes of an extensive series of tests on problems ranging from 1000 to 3,000,000
nodes, showing that by intelligently exploiting elements of data structures and
candidate lists routinely included in state-of-the-art TSP solution software, the S&C
algorithm clearly outperforms all implementations of the LK procedure. Specifically, it is
shown that S&C approach finds better solutions than all of the leading LK variants for
about 70% of the problems tested. Conspicuously, the 70% advantage of the S&C
approach refers to a comparison with the most effective variant of the LK procedure.
The second best variant of this approach is dominated by the S&C approach in
approximately 97% of the problems. Some other variants failed to find even a single
solution better than the S&C approach over all 59 problems tested.

The Asymmetric TSP

The S&C is a fundamental structure in a number of other reference structures used in
the creation of ejection chain methods. A direct generalization of the S&C reference
structure that has special advantages for the ATSP is called the Doubly-Rooted (DR)
S&C (Glover 1996), which considers two root nodes instead of one. The doubly rooted
structure has two forms: a bicycle in which the roots are connected by a single path,
joining two cycles, and a tricycle in which the two roots are connected by three paths,
thereby generating three cycles. In the DR structure the definition of subroot is
extended to any node adjacent to a root node, regardless of whether it is in the cycle or
in the stem.

Ejection moves consist of adding a new edge linking one of the subroots to an arbitrary
node on the graph and deleting the edge between this subroot and the associated root,
resulting in the selected arbitrary node as the new root.

The trial solutions available to the doubly-rooted structure are those generated by the
union of the trial solutions available to the single-rooted S&C structure obtained by
deleting any edge linking a root node to a cycle subroot. Such a subroot becomes the
tip of the S&C, while the (root) node that remains with three incident edges becomes the
S&C root.

Rego et al. (2006) provide a comparative study of the DR neighborhood structure and
the generalized LK neighborhood for the ATSP proposed in Kanellakis and
Papadimitriou (1980) and recently used in the current state-of-the-art local search
algorithm for the ATSP by Cirasella et al. (2001). Computational experiments on a
standard testbed exhibits superior performance for the DR neighborhood over its LK
counterpart, revealing that a straightforward implementation of a DR ejection chain
algorithm outperforms the best local search algorithms and obtains solutions
comparable to those obtained by the current most advanced iterative local search
algorithms specially designed for the ATSP, while requiring dramatically smaller
computation time.

 10

Out of 28 instances for which results are available for KP, in only 4 instances did the
KP algorithm manage to find tours that are slightly better than those found by the DR
algorithm. For the remaining 24 instances, the DR algorithm found 3 tours of similar
quality and 21 of superior quality compared to those produced by the KP algorithm. In
some cases the quality of solutions found by the DR algorithm exceeded that of the KP
algorithm by as much as 5.5%. Even more impressive is the performance of the DR
algorithm compared to the sophisticated iterative local search variant (iKP) of the basic
KP algorithm (Cirasella et al., 2001). Considering the whole set of 47 benchmark
instances both iKP and DR algorithms find an equal number of best solutions (28).
Among these, a 0.00% gap from optimality is achieved on 9 instances by the iKP
algorithm and on 17 instances by the DR algorithm. Also, it appears that the iKP
algorithm requires significantly more computational time on average than the DR
algorithm. In some cases differences in speed translate in about 2 hours for the iKP
compared to less than 50 seconds for the DR algorithm (which finds tours of better
quality).

Advances on data structures for large STSPs

The problem of data representation is fundamental to the efficiency of search algorithms
for the TSP and particularly important for large STSP instances. The nature of these
algorithms necessitates the performance of certain basic tour operations involving
subpath reversal and traversal. The computational effort that must be devoted to these
operations becomes increasingly pronounced with larger problem instances.

The 2-level tree (Chrobak et al., 1990) has for many years been considered the
preeminent choice for representing the tour, retaining that reputation until the recent
emergence of the k-level satellite tree proposed by Osterman and Rego (2003). The 2-
level tree divides the tour into approximately 1 2n segments each containing as many
nodes as grouped under a parent node, where a doubly linked list is used to connect
both segments and client nodes within the segments. A worst case cost of 1 2(O n) for
tour operations may be achieved with the 2-level tree representation.

The theory of 2-level tree contributes much to the latest developments on TSP data
structures. Its effectiveness has been demonstrated by independent implementations
due to Fredman et al. (1995), Gamboa, Rego and Glover (2005, 2006) and numerous
participants in the DIMACS TSP Challenge (Johnson et al., 2000).

The k-level satellite tree expands upon the 2-level tree to allow k levels instead of two.
This is accomplished by dividing the tour into segments containing roughly 1 kn nodes
each, and the resulting segments are grouped into parent segments containing about

1 kn segments each. A fundamental feature of this k-level satellite tree is the satellite list
structure, also proposed by Osterman and Rego (2003) as symmetric counterpart of the
classical doubly-linked list structure. The satellite list represents a tour without
implying a fixed orientation, making it useful for representing symmetric paths or
cycles. It can operate in the same capacity as the doubly-linked list and is equally
efficient in terms of both memory and computation of previous and next queries.
Because the satellite list avoids a fixed orientation, the subpath reversal operation can
be performed in constant time, whereas for the linked list, every pointer associated with
nodes in the reversed path in a linked list must be changed to reflect the appropriate
orientation. A satellite design for the k-level tree is important, not only because of
subpath reversal, but also because next and previous queries do not need to access
parent nodes. The implications of this benefit are tremendous, considering the

 11

frequency of the need for these operations and the fact that the cost of accessing a
parent node varies with the problem size when the data structure is designed optimally.
See the reference for a detailed description of the k-level tree and its properties.

It can be shown that with an adequate choice of k, a path between two client nodes in
the tree can be traversed with a complexity of rather than (log)O n 1 2()O n . This result
indicates that an optimally designed k-level tree is the most efficient structure proposed
to date.

4.2 Vehicle Routing

The Vehicle Routing Problem (VRP) is a generic name given to a class of problems in
which a set of routes for a fleet of vehicles, based on one or several depots, must be
determined for a number of geographically dispersed cities or customers, subject to side
constraints. The problem is central in the fields of transportation, distribution and
logistics and provides a general model for a wide range of practical applications.

Let be a graph where (,)G V A= 0 1{ , ,..., }nV v v v= is a vertex (or node) set, and

{(,) | , , }i j i jA v v v v V i j= ∈ ≠

}

 is an arc (or edge) set. Consider a depot to be located at

 and let denote a set of n cities (or client locations). A non-negative cost
or distance matrix

0v 0' \ {V V v=
()ijC c= is associated with every arc of A. It is assumed that m

identical vehicles are used, each with capacity Q, and their number is a decision
variable (or can be fixed depending on the application). Vehicles make pickups or
deliveries but not both. With each vertex is associated a quantity of some
goods to be delivered by a vehicle and a service time

iv iq 0(0=q)

iδ 0(0)δ = required by a vehicle to
unload the quantity at The VRP consists of determining a set of m vehicle routes
of minimal total cost, starting and ending at a depot , such that every vertex

iq .iv

0v 'iv V∈
is visited only once by precisely one vehicle, where the total quantity assigned to each
route does not exceed the capacity Q and the total duration (travel plus service times) of
any vehicle route does not surpass a given bound D. Hence in this context the cost is
taken to be the travel time between the two associated cities.

ijc

As discussed earlier, ejection chain methods have been proved very efficient for solving
large scale traveling salesman problems. Generalizations of some of these methods have
likewise been extended to deal with multiple routes as required in general vehicle
routing problems.

Node-based ejection chains for the VRP

Node-based ejection chain methods derive from extensions of customary single node
insertion and exchange neighborhoods that have been found useful in several classes of
graph problems including: machine scheduling, clustering, graph-coloring, vertex
covering, maximum clique or independent set problems, vehicle routing problems,
generalized and quadratic assignment problems, and the traveling salesman problem,
just to cite a few.

Typical node insertion (or shift) neighborhoods involve removing a node from one route
and inserting it into another, while typical node exchange (or swap) neighborhoods
involve interchanging nodes between routes. In neighborhood search, these insertion

 12

and swapping operations are also performed within a given route (instead of across
routes) as a way to re-optimize the associated TSP defined over the nodes of this route.
Since the worst case complexity of evaluating a single node insertion and node
exchange neighborhood is 2(),O n creating compound neighborhoods by combinations of
these moves requires an effort that grows exponentially with the number of moves
considered in combination. More precisely, the best compound neighborhood of k moves
can be generated and evaluated with ()kO n effort. Embedding these simple
neighborhoods in an ejection chain framework can notably reduce this effort (Glover
1991).

Rego (2001) develops an ejection chain neighborhood for the VRP that implements a
multi-node insertion move and a multi-node exchange move to yield an important form of
combinatorial leverage. Specifically, the number of moves represented by a level k
neighborhood is multiplicatively greater than the number of moves in a level k-1
neighborhood, but the best move from the neighborhoods at each successive level can
be determined by repeating only the effort required to determine a best first level move.

The ejection chain starts by identifying a node pair ,iv jv that yields the best (highest

evaluation) ejection move that disconnects node from its current position and inserts
it into the position currently occupied by node

iv
.jv For subsequent levels, ejection moves

consist of selecting a new candidate node to be ejected by the previously ejected node,
and then repeating until no other legitimate node exists for ejection. Such an ejection
process creates an intermediate structure at each level of the chain where the
associated ejected node, say (kkv j= for the first level), is temporarily disconnected
from the tour. However a trial solution can be obtained by: (1) inserting node
between two nodes and and adding an arc linking the original predecessor and
successor of to close the route – a multi-node insertion move; or (2) simply by
relocating the last ejected node to occupy the vacant position left by the node that
initiates the chain – a multi-node exchange move.

kv

pv qv

iv

kv iv

This composite ejection chain neighborhood has been embedded in a tabu search
algorithm, named TabuChain, which is designed to use frequency-based adaptive
memory and strategic oscillation to allow for temporary violation of the capacity or
maximal route duration constraints. Both sequential and parallel versions of the
algorithm have been implemented. The parallel version is based on a synchronous
model of parallel searches that allows for a more extensive exploration of the solution
space than the basic sequential version. Also, different levels of parallelization are used
in order to accelerate the search process. One takes advantage of an ejection chain
property that permits ejection and trial moves to be evaluated separately by different
processors, potentially reducing the time per iteration by half. Another level of
parallelization consists of launching separate processes to re-optimize each individual
route. The sequential and parallel methods, each in its own category, remain among the
most effective algorithms available for the VRP, producing solutions that are on average
0.77% and 0.55% above the best known solutions for the classical fourteen-instance
testbed of Christofides, Mingozzi and Toth (1979).

Node-based ejection chain approaches have also been successfully applied to clustering
problems by Dorndorf and Pesch (1994). Principles similar to those underlying the
node-based ejection chain method discussed for the VRP are developed and explored in
Yagiura, Ibaraki and Glover (2004) to provide an effective algorithm for the generalized
assignment problem.

 13

Subpath ejection chains for the VRP

Another type of ejection chain approach for the VRP concerns a subpath ejection chain
method proposed in Rego (1998b). A fundamental feature of this method is the flower
reference structure that generalizes the stem-and-cycle (S&C) reference structure
(discussed in Section 4.1) to a multiple routing context. The flower structure is defined
as a spanning subgraph of G, which consists of a path called stem attached to multiple
cycles representing routes. In the original paper several components of the flower
structure are termed differently than their equivalents in the S&C structure; however to
facilitate the discussion in this paper we stick with the terms already introduced for the
S&C. Therefore, the node that lies on the intersection of a stem and a cycle will be
called a root and the nodes adjacent to a root will be called subroots. Likewise, the node
at the opposite end of the stem from the root will be referred to as the tip of the stem. In
the flower structure the root node always identifies the depot and hence these two terms
may be used interchangeably.

The consideration of multiple cycles in the flower reference structure extends the
ejection and trial moves of the stem-and-cycle to encompass a number of other
possibilities. Starting from a given VRP solution, the ejection move to create a flower
structure may simply delete one of the edges incident to the root (depot), thus
transforming a cycle into a stem, which is also a basic move to deal with routes
containing a single city. Such a move that only deletes one edge without adding another
may be referred here to as a drop move to differentiate it from the moves that replace
one edge with a new one and so may be called add-drop moves. Similarly, a trial move
that transforms a flower structure into a VRP solution may simply link the tip directly
to the depot to close the route. Such a trial move may be called a route-creation move.
By contrast, the type of S&C trial move that links the tip node to one of the subroots
and deletes the associated edge incident to the root may be called route-extension move,
since it extends a route to include the clients currently in the stem that is made to join
that route. Depending on the type of ejection and trial moves considered for an ejection
chain, the number of vehicle routes can vary: the number decreases if the chain starts
with an ejection move that deletes an edge incident to the root and then applies a route-
extension trial move, whereas the number increases if the chain starts by applying an
add-drop move to one of the routes and a route-creation move is used to obtain a new
trial solution.

An important feature of the algorithm concerns the choice of the chain starting rules.
Since it is possible to create a flower structure from a given VRP solution by deleting
one edge without adding another, such a step always results in a cost reduction in
relation to the current solution. Moreover, as the longest edges are usually selected to
be deleted, this leads to the outcome that the proper add-drop S&C move will rarely be
chosen to start the chain. To avoid this situation, the algorithm considers a penalty
factor to provide a more appropriate evaluation of the two types of ejection moves.
Experimental tests carried out on problems with different characteristics disclosed that
randomly varying this penalty within specific intervals (of real values) was highly
advantageous. Different tradeoffs can be obtained in evaluating the two types of moves
that initiate an ejection chain depending on three ranges of values as follows. For
negative values the drop move is highly penalized, hence an add-drop initiating move is
performed. If these values are positive and less than 1, initiating drop moves are again
penalized in relation to add-drop moves, but not so strongly. Finally, values greater
than 1 yield greater penalties for the add-drop initiating moves and hence favor drop
moves to be performed.

 14

Although the Flower reference structure preserves the same properties as the S&C
structure and so succeeds in generating dynamic alternating paths and cycles, the
violation of the alternating path construction that is caused by an ejection chain
process in the VRP setting is less restrictive than in the TSP setting. This increases the
move options for the VRP, yielding a heuristic advantage. In this setting, periodically
limiting the moves to generate an ordinary alternating path rather than a dynamic
alternating path turned out to be useful to avoid modifying adjacent edges at the same
step of the algorithm. Nevertheless, such a modification was not completely forbidden in
order to allow the most promising changes to be carried out. In sum, on one hand it is
sometimes desirable not to simultaneously modify two adjacent edges as a means of
inducing some degree of diversification; on the other hand it can also sometimes be
desirable to allow such a modification to provide some intensification of the search and
possibly reach deeper local optima where new best solutions may be found.

The implementation of this subpath ejection chain method relies on a tabu search
guidance to prevent the method from generating flower structures already considered at
previous levels of the chain. Guidance by tabu search is also used to govern the
creation of alternating paths within the context of the legitimacy conditions used in the
algorithm, which as in the case of the TSP problem assure that a given solution can be
transformed into any other.

To gauge its performance, the Flower algorithm was tested on an extended set of 30
problems from the literature, which include the classical fourteen-instance set of
Christofides, Mingozzi, and Toth (1979), three real-world problems taken from Fisher
(1994) and twelve instances considered in Taillard (1993) and Rochat and Taillard
(1995). The original goal in creating the Flower algorithm was to produce high-quality
solutions rapidly rather than striving to find (new) best solutions, and hence no
recourse was made to sophisticated forms of TS guidance ― in contrast to TabuChain
(previously described) and a number of other algorithms in the literature. Comparisons
with algorithms sharing a similar goal of rapid convergence reveal that the Flower
algorithm is clearly superior to all of them, producing better solutions and also
requiring less running time. When compared with other classes of algorithms that make
advanced use of metaheuristic guidance, the Flower algorithm compares quite favorably
to these as well, especially when good solutions must be found quickly. In particular,
the algorithm is very fast in finding solutions that are within the range of 1% of the best
known solution.

4.3 Crew Scheduling

The general crew scheduling problem (CSP) can be formulated as seeking the minimum
number of crews necessary to cover a set of trips with duties that have to satisfy a
number of regulations and operational constraints.

Cavique, Rego and Themido (1999) address a CSP arising in train transportation and
develop a subgraph ejection chain method embedded in a tabu search algorithm for the
solution of the problem. The algorithm relies on the definition of a number of terms
generally used in crew scheduling, which can be introduced in the context of the
problem at hand.

The set of trips to be performed by each train defines a timetable. A trip is a one way
movement of a train between two terminal points, the smallest period (or elementary
crew activity) into which the timetable can be divided. A trip has five attributes: train
number, starting place and time, finishing place and time. A block is a set of all trips

 15

produced by the same train, and the set of consecutive trips in a block, covered by the
same crew, is called a piece of work (or piece). A block partition is a set of non-
overlapping pieces of work that exactly covers a block. In this application, a complete
duty may be formed by one or two pieces or work, a meal break, the report and clear
time and a possible reserve period. The set of contractual and operational constraints
include specific relief points, bounds on the durations of pieces of work, report and
clear times, duty duration, and possible intervals for meal breaks. A duty that satisfies
all problem constraints is called a feasible duty and a set of feasible duties covering all
trips makes up a feasible schedule. The objective of the CSP is to find a feasible
schedule with a minimum number of crews (duties) needed to operate the train line.

We now undertake the description of the subgraph ejection chain method and
associated tabu search procedure. In contrast with the node based and subpath
ejection chain methods that concerned the ejection of nodes or subpaths of a graph
structure modeling the problem, the present method considers a subgraph as the
elementary component to be ejected at each level of the ejection chain process. The
method explores a specialized block partition technique that underlies the formulation of
the maximum cardinality matching problem (MCMP) of a non-bipartite graph
The method is divided into three fundamental procedures: block partition, graph
generation, and duty achievement. The block partition procedure, in the first step,
divides the blocks into k feasible pieces of work, creating the node set In
the second step, the matching graph G is built by linking pairs of pieces for all possible
duties, creating the edge set

(,).G P D=

1(, ,).kP p p= K

{(,)| , }.i jp p p Pi jD p= ∈

i

 Finally, in the third step, a MCMP
algorithm is applied to find a maximal matching of pieces to create a schedule. In the
solution of the MCMP, the matched nodes represent duties with two pieces and the free
(or unmatched) nodes are duties with only one piece of work. Under this model the CSP
reduces to the problem of finding the block partition that produces a schedule with a
minimum number of duties over all possible partitions.

The enormous number of alternatives to partition the set of blocks for a given timetable
entails a very large and complex solution space for which effective search algorithms
must be designed. The algorithm considers a tabu search approach based on an
embedded neighborhood structure that gives rise to a subgraph ejection chain method
defined as follows. A neighborhood structure is decomposed in two substructures
and which separates the neighborhood space into two subsets. is an
intermediate structure responsible for generating a set of new pieces of work that will
replace pieces of the current graph

N 1N

2,N 1N

(,)i iG P D= transforming it into another graph
 is a structure defining the set of edges in associated with

feasible duties. The complete neighborhood structure N is be defined by any possible
sequence of moves such that

1 1 1(,).i i iG P D+ + += 2N 1iG +

1 1, , , , , ,k k L Le t e t e tK K 1ke N∈ and 2,kt N∈ representing an
ejection chain of L levels. Accordingly, the transition from a solution (schedule) to a
solution can be obtained by a sequence of moves with and
denoting the ejection move and trial move, respectively, at level k* where the best trial
solution was found.

iS

1iS + 1 2 * *, , ,k ke e e tK *ke *kt

In the algorithm, ejection moves are defined by three types of elementary operations (1)
shift operation, which shifts the extreme of a piece to the right or to the left, transferring
one or more trips between adjacent pieces, (2) cut operation, which splits one piece into
two pieces, and (3) merge operation, which combines two pieces into a single piece. Each
of these operations that modify the configuration of certain nodes require deleting (or
ejecting) a subgraph involving the modified nodes and certain edges adjacent to them,
which thereby entails the creation of another subgraph associated with the new

 16

configuration of the nodes that have been modified by the ejection move. Under this
conception, an ejection move at level k deletes (ejects) a subgraph of k

iG − k
iG 1()i iG G=

and adds another subgraph k
iG + to the current graph transforming into

 The associated trial move for the current level may be given by

solving the MCMP on graph

k
iG

1 \k k k k
i i i iG G G G+ −= ∪ .+

1,k
iG + thus yielding a new feasible schedule. Due to the

inherent time complexity of determining an exact solution for the MCMP at each level of
the chain, the algorithm considers a trial function that implicitly reflects the potential
quality of the trial solution that could be reached. Once the chain ends, the explicit
evaluation of is carried out by solving the MCMP on the graph where k*
represents the level of the chain where the best value of the trial function was found.

2N *
1 ,k

i iG G+ =

A set of six real time tables involving over 700 trips and up to 26 trains (number of
blocks) is used in order to test the performance of the algorithm. The quality of the
solutions is evaluated on the basis of three correlated performance measures: the
percent improvements to the number of duties obtained by alternative schedulers, the
matching ratio (i.e. percentage of duties with two pieces of work), and the average
number of driving hours per duty. The results disclose that the ejection chain algorithm
performs extremely well across the three evaluation criteria. The algorithm finds better
schedules than previous methods for all problems tested, reducing the number of
duties, improving the distribution of the crew’s workload and finding higher matching
ratios.

4.4 Quadratic Assignment

The quadratic assignment problem (QAP) is a classical combinatorial optimization
problem that has garnered much attention due to both its large number of applications
and its solution complexity. Originally used to model a location problem in the 1950’s,
the QAP is computationally very difficult to solve which makes it an ideal candidate for
testing new algorithmic approaches. While facility location problems remain the most
popular application area for the quadratic assignment problem, many other
applications for this problem exist including scheduling problems, statistical data
analysis, information retrieval, as well as problems in transportation. The attractiveness
of the QAP is also due to the fact that many other combinatorial optimization problems
can be formulated as a QAP, including: the traveling salesman problem, the maximum
clique problem and the graph partitioning problem. (See Cela (1998) for a survey of both
classical and practical applications.)

In the context of facility location problems, the QAP can be stated as follows. Given a set

 of n facilities to be placed in exactly n locations represented by the set
 Let be a matrix of distances between pairs of locations

1{ , , }nF f f= K

1{ , , }.nL l l= K (ikA a=) ,il ,kl L∈
and an associated matrix ()jlB b= of flows to be transmitted (or shipped) between pairs

of facilities ,jf .lf F∈ The objective is to find a minimum cost assignment of facilities to
locations considering both the flow of materials between facilities and the distance
between locations.

In mathematical terms, each assignment can be defined as a permutation p of the
underlying index set Hence, if facility {1, , }.N = K n j is assigned to location i and
facility is assigned to location the cost of the flow between facilities l ,k ()j p i= and

 is The QAP is the problem to find a permutation vector that ()l p k= () ().ik p i p ka b np P∈

 17

minimizes the total assignment cost, where is the set of all possible permutations of
N. Such a formulation can be generically described as

nP

() ()
1 1

.
n

n n

ij p i p jp P
i j

Minimize a b
∈

= =
∑∑

Heuristic approaches for the QAP abound in the literature wherein local search is
commonly used as a basic component to explore the solution space. Local search
methods rely on the exploration of a defined neighborhood. In the case of the QAP, this
neighborhood is typically a 2-exchange neighborhood that swaps the location of two
facilities at each step of the local search process. The exploration of larger
neighborhoods where the simultaneous movement of k nodes of the permutation can be
examined is attractive though computationally very demanding.

Ahuja et al. (2002) introduce a very large scale neighborhood search (VLSN) for the QAP,
which constitutes an important advance in the creation of more complex neighborhoods
for the problem. This algorithm iteratively examines all paths (or exchanges of nodes) of
increasing depth, where the maximum depth is a specified parameter. The VLSN
algorithm considers all moves (or a defined subset of moves) of a given depth before
proceeding to the next depth. Due to the computational complexity of the full path
enumeration scheme presented, a maximum path length of 4 was settled upon in their
study.

More recently, Rego, James and Glover (2006) developed a specialized ejection chain
algorithm for the QAP, drawing on a proposal sketched in Glover (1991), that affords
additional advances. The approach utilizes the ejection chain structure to build
successively larger exchanges based upon the elements chosen in the proceeding chain.
In this manner, all possible chains at each depth may not be considered for a given
permutation. However, this process allows the method to quickly probe larger
neighborhoods, with no constraints on the depths examined, by constructing these
chains of moves based upon previously promising structures.

The method may be described by analogy with the node-based ejection chain model
previously discussed for the VRP. In such a model facilities are associated with nodes in
a graph which are to be assigned to locations. In this context the method implements a
type of multi-node exchange move, which can be seen as a series of swap moves for the
QAP. The method begins by identifying the best local move for each facility j, which
constitutes removing j from its current location and relocating it in the position
occupied by a facility l, which is thereby ejected. (Alternatively, the method can start by
looking at each l and finding the best j to replace it.) The initialization process is
completed by simply selecting initial chains based on performing a series of best 2-
exchange moves. Notably, such a move corresponds to simultaneously determining the
best initial node to be ejected and the best node to occupy the location of the ejected
node. The chain grows by selecting a new node to be ejected by the previously ejected
node. Under the natural and convenient restriction that prevents an element from being
moved twice, the chain can continue to grow until all n nodes have been ejected.

By embedding this ejection chain method within a tabu search framework, strategic
control over the formation of the chains can be exerted. However, the method is applied
without the benefit of advanced memory strategies, except of the simplest form, in the
role of “bookkeeping” operations instead of in the role of performing advanced guidance.
The objective is to show that even this very basic and unenhanced approach is

 18

competitive with the best strategies that instead rely extensively on metaheuristic
guidance to achieve their results.

Results obtained on a standard set of 22 benchmark problems from the QAPLIB
demonstrate the capabilities of the raw ejection chain procedure and the average
improvement obtained by exploring the larger neighborhoods over a traditional 2-
exchange and previous large neighborhood approaches. Tests over 10 runs for each
procedure embedded in a very simple tabu search show that the ejection chain
neighborhood improved the average solution quality for 19 out of the 22 problems over
its 2-exchange counterpart. Two multi-start tabu search variants are also presented,
which essentially differ by the solution from which the algorithm is restarted. These
enhanced variants improve the simple tabu search variant in all but 2 problem
instances each, thus demonstrating the power of embedding the proposed ejection
chain method within a more sophisticated local search or metaheuristic approach.

Comparisons established with two variants of the VLSN that provide the best overall
quality shown that the all variants of the ejection chain algorithms significantly
outperform both VLSN approaches. Specifically, the average solution quality for VLSN
approaches over the 10 runs is 2.7% and 3.3% across all problems for each of the
approaches, while these averages are 0.73%, 0.42%, and 0.33% for the three ejection
chain methods, respectively. With respect to averages to individual problems, the simple
tabu search finds better solutions than both VLSN approaches for 17 out of the 22
problems. Moreover, the best solutions obtained by the two multi-start ejection chain
approaches are better than the best solutions found by the VLSN approaches in all
cases.

5. Filter-and-Fan Applications

A filter and fan algorithm requires the definition of component moves used to generate
trial solutions throughout the search process. Component moves are characteristically
simple moves serving as building blocks for the construction of an extended filter and
fan neighborhood. As in customary local search methods, different applications require
appropriate neighborhood structures to explore the solution space. The following
sections illustrate how filter-and-fan has been successfully used to create effective
neighborhoods for a number of applications.

5.1 Facility Location

The uncapacitated facility location problem arises in bank account location planning,
location of collection centers or lock-boxes, clustering analysis, location of off-shore
drilling platforms, machine scheduling and information retrieval, portfolio management,
and design of communication networks. For a survey see Cornuéjols, Nemhauser and
Wolsey (1990) and Gao and Robinson (1994). The basic form of the problem can be
defined as follows. Given a set S = {1, ..., s} of warehouses or facility locations and a set
D = {1, ..., d} of customers to be served. With each customer j D∈ is associated a
demand jb and is the transportation cost of completely serving a customer ijc j by
facility . Also, there is a fixed cost if facility i is built (or opened). The objective
is to find a set of opened facilities that minimizes the total cost. Due to the
absent of capacity constraints on the facilities, customer demands may be normalized
to and for any set of facilities there is at least one optimal assignment
where all customers are served by the nearest open facility. Consequently, a UFLP
solution can be fully defined by the set of open facilities. Therefore, especially in local

i S∈ iF
⊆*W S

1jb = ⊆W S

 19

search, it is natural to use a vector representation 1(, ,)sY y y= K where if the
facility i is open and 0 otherwise.

1iy =

Local search algorithms for the facility location problem typically use flip-based
neighborhoods, namely, the switch-neighborhood that switches the status of one facility
from open to close or vice versa by flipping a single variable at a time and the swap-
neighborhood that simultaneously closes one facility and opens another.

Greistorfer and Rego (2006) have successfully enhanced the performance of these
neighborhoods by generating sequences of flip moves within a filter-and-fan approach.
Computational tests, whose outcomes are described below, disclose that this method
provides a significant advance for solving facility location problems effectively. The
method proceeds by performing moves that flip the value of one variable at each node of
the F&F tree. A swap move implicitly results whenever in two successive nodes of a
given branch of the tree, one variable flips from 0 to 1 and another variable flips from 1
to 0. The legitimacy conditions on the selection of η2 moves are defined by tabu
restrictions preventing reverse flips (that would lead to duplicated solutions) and a
feasibility condition that keeps the method from closing the only open facility in the
current solution. Two variants of the algorithm are developed to achieve different levels
of sophistication.

The general F&F algorithm undertakes two fundamental steps. The first step is a
classical local search procedure that starts with all facilities open, then improves that
solution by closing the facility that locally minimizes the objective function value and
the process is repeated until no improvement is possible by closing a new facility. Let M
be the set of all moves evaluated in the last iteration of this descent process, then the
method keeps the η0 best moves of M to create the initial candidate list M(0) for the F&F
tree used in the next step.

Two variants of the algorithm are implemented to achieve different levels of
sophistication and performance. In a more rudimentary design, memory structures are
limited to the tabu restrictions implicitly defined in the legitimacy conditions specified
above. In a more advanced design, the method is enhanced by exploring multilevel
candidate lists, which extends the legitimacy conditions with a validity check, with
respect to the current depth of the search, that has its counterpart in the notion of
admissibility of tabu search memories. Accordingly, the evaluation of a move may not
exclusively rely on the net change in the objective function value created by the move
but may include a bias factor introduced by memory considerations used to guide the
search at different layers. In the present algorithm, layers are associated with two
consecutive levels of the F&F tree that are subsequently and alternatively checked with
respect to the solution cost changes yielded by the corresponding moves. As a result of
these effects, improving moves are always kept in the tree; however if in the previous
level a non-improving move was performed and if none of the moves available improve
the solution at the current level, a reverse flip move that transforms the current
solution back to the one in the previous level is allowed, denoting a relaxation by cost of
one of the legitimacy constraints.

It is shown that the simple version is competitive with state-of-the-art algorithms, but
fails to find 2 optimal solutions out of 45 classical benchmark problems. Overall this
algorithm produces solutions that are on average exceedingly close to optimal, while
consuming a very small amount of computation time – yielding solutions that are on
average 0.04% above optimality in an average computation time of 2.78 seconds.

 20

The more advanced version of the method was implemented with the goal of producing
still better outcomes and specifically of tackling the new 60 instances currently known
as the hardest UFLP data sets in literature. This version succeeded in finding all best
know solutions for the previous 45 instances and achieved an average deviation of only
0.03% above the optimal solutions for the hardest 60 instances. The total time required
to solve these hard problems averaged less than 3.5 seconds (on a Pentium IV, 1.7GHz
CPU desktop computer).

The exceedingly high quality of these results discloses that the filter-and-fan approach
provides a very effective framework to explore the solution space in facility location
problems and suggests its use in other more complex variants of these problems.

5.2 Protein Folding

A protein’s function is closely related to its 3D structure, and therefore to determine
how a protein functions one must know its 3D conformation. The Protein Folding
Problem (PFP) is the problem of predicting the three-dimensional (3D) structure of a
protein given only the protein’s sequence of amino acids. This is a fundamental yet open
problem in the fields of biological chemistry and protein science, and has recently
attracted attention in bioinformatics and computational biology. The PFP is central in a
number of practical applications including the designing of new proteins having
desirable functions in pharmaceutical, food, and agriculture industry (Lengauer 1993).
We refer to Richards (1991) and Chan and Dill (1993) for an overview of the PFP and its
applications.

The PFP is a notoriously difficult combinatorial problem due to the combinatorial
explosion of valid conformations as the number of amino acids in the chain increases.
Due to the complex nature of the PFP, the so-called HP lattice model proposed by Dill
(1985) constitutes a well established simplification for algorithm assessment.

Rego, Li and Glover (2006) consider the two-dimensional (2D) version of the HP lattice
model and propose a F&F algorithm for the solution of the associated PFP. A sequence
of H and P amino acids is configured as a path on a two-dimensional (2D) lattice to
define a valid conformation. The path designation implies that the conformation is both
connected and self-avoiding, i.e., no amino acids can collide in the same cell of the
lattice. (In graph theory terminology, such a path is called node simple.) The energy
function is defined by the number of pairs of H nodes that are adjacent in the lattice
and not consecutive in the chain. Each of these pairs, generally called an H-H contact,
decreases the energy value by one unit. The objective is to find a conformation that
minimizes the total energy of the given amino acid sequence, which therefore
corresponds to maximizing the number of H-H contacts.

In this application, the F&F approach is used to seek an effective guidance strategy
within a simpler neighborhood by extending the so-called pull-move neighborhood
(Lesh, Mitzenmacher and Whitesides 2003). To elaborate the algorithm we first describe
the associated component moves defined by the pull-move neighborhood structure.

A pull-move is initiated by moving one node of the current conformation to one of its
empty diagonal adjacent positions in the square induced by the node and one of its
adjacent neighbors in the sequence. Depending on the structure of the conformation
the displacement of the initiating node may require other nodes to change their current
positions in order to preserve connectivity. In a pull-move, displaced nodes are only
allowed to occupy vacant adjacent positions in the lattice. Consequently, the
preservation of connectivity also results in a self-avoiding path. Rego et al. differentiate

 21

only three types of pull-moves designated by filling, single-pull and multiple-pull,
according to the number of nodes that are pulled by the first displaced node. The filling
move is the simplest pull-move, displacing a single node in the structure. A valid
conformation is obtained by simply moving a node to its diagonal adjacent position. A
single-pull, on the other hand, requires another node to change position after the
initiating node takes a new position. The multiple-pull move extends the pull-move to
achieve connectivity in more complex structures that become disconnected upon
performing a single-pull move. Figure 4 shows an example of the filter and fan
neighborhood for a 2D HP model with 20 amino acids, where η1 = η2 = 2 and L = 3. The
negative numbers denote the energy value of the corresponding conformation.

Figure 4 - Filter-and-Fan neighborhood tree for the 2D HP model of the PFP

A conformation of energy -6 (represented by the root node) denotes a local optimum
determined by the local search phase. The first level of the filter and fan neighborhood
is then generated by applying the η1=2 best moves to the root conformation. The next
level is created by applying the η2=2 best pull-moves to each of the conformations in the
current level, thus generating η1.η2=4 trial conformations from which a new set of η1=2
best conformations is chosen to initiate the next level. If at one level more than η1
solutions exist with the same objective value preference is given to solutions that derive
from different parent conformations. In the figure, the η2 different conformations derived
from the same parent conformation are contained within the rectangles delimited by
solid lines whereas the η1 best conformations selected at each level are contained within
“interior rectangles” delimited by dotted lines. The method continues expanding the
neighborhood until the improved conformation of energy -7 is found in level 3 of the
filter and fan tree. The compound move leading to the improved conformation is then
identified by the path indicated by the dark arrows. Note that to continue the tree
search after obtaining the new local optimum, the method will restrict attention to
solutions in the left-hand side branches as a basis for extending the tree.

Local search that utilizes memory of elite solutions and their attributes (either in direct
or statistical form) and that strategically drives the search into new regions plays a
critical role in the performance of the leading metaheuristic algorithms for the PFP.

 22

Rego, Li and Glover (2006) explore mechanisms for achieving these aspects by
proposing a filter-and-fan approach making use of a simple tabu search structure. The
algorithm alternates between single-path and multiple-path tabu searches using
component moves provided by the pull-move neighborhood, subject to short-term
memory controls.

Computational results for a standard set of benchmark problems showed that the F&F
algorithm performs more robustly and efficiently than the current leading algorithms
requiring only a single solution trial and approximately 10 seconds on average to obtain
best known solutions to 9 out of 11 problems. By contrast, the best of the alternative
methods require a hundred or more trials in the typical case to obtain best solutions to
these 9 problems. On the remaining 2 problems, F&F obtains the best known solutions
after five trials (i.e. re-starts) from diverse solutions generated in the course of the
algorithm, which accounted for approximately 10 hours of computation time.
Noticeably, only a single run of 15 minutes on average was necessary for the F&F
algorithm to find a solution that is just one unit away from the best known solution
obtained by the best alternative method within similar amount of time. By comparison,
this best alternative algorithm required hundreds of runs and more than 3 days
(approximately 78 hours) of wall clock time just to find the best solution for one of the
initial 9 instances, though the filter-and-fan algorithm requires approximately 6
seconds on an equivalent computer to find such a solution.

The success of the algorithm in performing more efficiently and robustly than
alternative state-of-the-art algorithms owes to two fundamental components: (i) the
dynamic and adaptive feature of the search method in exploiting the pull-move
neighborhood structure; and (ii) the interplay between the tabu search and the tree
search phases that creates a strategic oscillation between intensification and
diversification. Further improvements in efficiency are anticipated to result by
incorporating longer-term tabu search memory components to achieve higher levels of
intensification, and by means of vocabulary building strategies that incorporate ejection
chain methods and path-relinking.

5.3 Job Shop Scheduling

The Job Shop Scheduling Problem (JSSP) is a notoriously difficult problem in
combinatorial optimization. The problem finds its application in manufacturing
industries and is central to many supply chains that integrate production planning and
scheduling. In a supply chain environment, production planning and scheduling
models are often incorporated into a unified framework, sharing information and
interacting with one another in order to optimize the production of different products
over multiple facilities. The output of the planning process serves as an input to the
scheduling process, which is often analyzed as a job shop scheduling problem. Planning
and scheduling models may also interact with other types of logistics models such as
inventory models, facility location models and transportation models. For an extensive
coverage of planning and scheduling models and applications in various supply chains
settings, see Pinedo (2006).

The JSSP can be defined by a set of machines specialized to perform ordered operations
unique for every job. No machine can perform more than one operation at a time, each
operation has fixed time duration, and preemption is not allowed. The goal is to
minimize the duration of the longest job in the schedule (i.e. the makespan).

Beam Search is a classical tree search method typically used in the optimization of
complex scheduling systems, including the JSSP (Sabuncuoglu and Bayiz, 1999);

 23

however more advanced forms of tree search neighborhood approaches have been
recently proposed and successfully applied to scheduling as well as to several other
optimization problems.

In particular, Balas and Vazacopoulus (1998) consider a specialized neighborhood tree
for the JSSP that lead to one of the most effective algorithms for this problem. Making
use of this neighborhood, Rego and Duarte (2006) developed a filter-and-fan (F&F),
which can be viewed as a natural generalization of beam search and which includes the
B&V neighborhood tree as a special case. The basic structure of the algorithm can be
described as follows.

The most rudimentary version of the classical shifting bottleneck procedure (SBP)
(Adams, Balas and Zawack, 1988) is used as a constructive method to generate an
initial feasible solution. At each step the machine with longest processing time (i.e. the
bottleneck machine) among the ones that have not been scheduled is selected for
scheduling and the method stops when all machines are scheduled. It is well-known
that this procedure does not produce high quality solutions by itself, but provides a
convenient means to rapidly generate initial feasible solutions for more advance
algorithms.

The F&F algorithm starts from the solution generated by the SBP and iteratively
improves this solution by alternating between the local search and the tree search
phases. The method considers two types of neighborhoods N1 (Aarts et al., 1994) and
N2 (Nowichi and Smutnicki, 1996) based on classical moves that swap two adjacent
operations in the critical path (i.e. the longest path in the problem graph that
represents the solution). Typically, N1 swaps arcs that are internal to the blocks of
operations in the same machine while N2 exploits interactions between adjacent blocks
by swapping arcs linking operations in different blocks. Depending on the search
strategy both types of moves can be used for the local search as well as to define
elementary moves in the F&F tree.

The search starts with the N1 neighborhood. Any time a local optimum is found (in the
local search phase) the best M(0) moves (among the M moves evaluated to establish
local optimality) are used to create the first level of the F&F neighborhood tree. The
next levels are created using η1=16 and η2=8. The method stops branching as soon as
an improved solution is found, the maximum number of levels L is reached, or if there
is no more legitimate candidate moves to evaluate.

In case a global improvement is found in the tree search the new best solution is made
the starting solution for another run of the local search procedure. However, if the
solution at the root node can not be improved, the method switches back to the local
search starting with the best trial solution encountered in the tree search and using
neighborhood N2. In this case, the list M determined in the last run of the local search
procedure, and so made up of type N1 moves, is now extended with new candidates of
type N2. The new list M(0) is created using the best moves of each type in equal
number. The objective is to allow the algorithm to combine both types of neighborhoods
throughout the F&F tree.

The performance of the algorithm was evaluated on a set of 58 benchmark problems
belonging to four classical sets known as LA, FT, ABZ, and ORB.

The analysis of the computational results shows that the F&F algorithm produces
solutions that are on average at 0.80% above the optimum (or best known) solutions for
over all problem instances. The algorithm is also very fast, finding its best solutions in
relatively short time (on a 1.7 GHz Pentium IV 256MB): less than 40 seconds on average

 24

for ABZ problems and no more than 8 seconds on average for classes FT, LA and ORB.
Also, only 1 second of running time was enough for the algorithm to find the optimal
solution for 30 out of the 38 instances that the method successfully solved to
optimality.

We have also compared our approach to two leading methods found to be the best
among thirteen methods tested in a recent study by Gonçalves, Mendes and Resende
(2005): a hybrid genetic algorithm/local search (GA/LS) method developed as part of
the study, and a tabu search (TS) approach by Nowichi and Smutnicki (1996), which
emerged the clear winner of all methods examined. The performance of the present F&F
approach with regard to solution quality places it next after the TS approach, with an
average relative deviation from the best known solutions of 0.33%, as compared to
0.05% for the TS approach and 0.39% for the hybrid GA/LS approach. The F&F
approach also falls between these two other methods in solution speed, running about
an order of magnitude slower than the TS approach, but about 2 orders of magnitude
faster than the GA/LS approach (after adjusting for differences in computers). However,
the F&F procedure emerges as significantly more robust than the other two methods in
the time required to find best solutions. F&F times range from 1 to 44 seconds with a
standard deviation of 9.7, while the TS times range from less than 1 second to 623
seconds with a standard deviation of 147.6, and the GS/LS times range from 13 to
3745 seconds with a standard deviation of 1183.0. However, another TS algorithm for
the JSSP has recently emerged that appears to be substantially better yet in relation to
both speed and robustness. The tabu search approach due to Grabowski and Wodecki
(2005), finds solutions for the same testbed discussed having an average relative
deviation from the best known of 0.08% in about 1.09 seconds (on a 333 MHz CPU), a
time that would be insignificant if runs were performed on a faster computer like the
ones used by the F&F and the GA/LS algorithms.

5.4 Capacitated Minimum Spanning Tree

The capacitated minimum spanning tree problem (CMST) has been addressed
extensively in the literature for its importance in modeling and practical applications. It
is fundamental to the design of communication networks and encounters its application
in a variety of other settings chiefly in the areas of distribution, transportation and
logistics. For background on applications we refer the reader to Gavish (1982, 1991).
From the modeling standpoint, the problem appears as a relaxation of the classical
capacitated vehicle routing problem, which in turn is central in many other more
complex problems. See Amberg, Domschke and Voß (1996) and Mathew and Rego
(2006) for a comprehensive review of methods and solution approaches.

The CMST problem can be stated as follows. Given a complete undirected graph

, where is a vertex (node) set and

is an arc set. Let denote a special central node (root),

and let be a set of terminal nodes requiring a specified demand

= 0(,)G V A {= K0 0 1, , , nV v v v }
}≠{= ∈ ≠(,)| , ; ; 0i j i jA v v v v V i j j 0v

{ }= 0 0\V V v .id ()ijC c=
is an matrix associated with A, where is a non-negative weight (distance or
cost) on arc

×n n ijc
(,)i jv v if there is an arc between and iv .jv Otherwise is infinity. The

CMST problem consists of finding a minimum cost tree T spanning all nodes of G, so
that the sum of the demands in each sub-tree incident to the root node does not exceed
a fixed arc capacity Q. When all the nodes

ijc

∈iv V have the same demand the problem is
referred to as the homogenous demand CMST problem.

 25

Successful approaches to the CMST problem involve high complexity multi-exchange
neighborhoods that take advantage of the basic tree-based and node-based
neighborhoods used in tabu search algorithms to address the problem. Node-based
neighborhoods generate moves that transfer a node from one sub-tree to another or
exchange nodes between sub-trees, while tree-based neighborhoods transfer sub-trees
between different sub-trees.

The evaluation of node-based or tree-based neighborhood in dense graphs requires
O(n2) effort, and the effort to evaluate a combination of L of these moves is O(nL), and
hence grows exponentially with L. A potentially best combination of L moves can be
evaluated with significantly less effort if the combination is thought of as a compound
move consisting of individual moves evaluated progressively using the filter-and-fan
strategy.

The effectiveness of the filter-and-fan method for implementing complex compound
moves that improve the local optima with only a modest increase in computational
effort is examined in Mathew, Rego and Glover (2006). This algorithm uses a design of
the F&F approach wherein the descent phase is replaced with a tabu search phase and
the tree search is continued after a local optimum is found, allowing for local optimally
to be overcome in any level of the tree except for leaf nodes. In addition the method
employs a neighborhood structure that brings about two types of strategic oscillation:
(1) cycling between feasibility and infeasibility and (2) cycling between node-based shift
moves and tree-based shift moves. Strategic oscillation is a specialized tabu search
technique that operates by orienting the search with respect to some boundary. In a
one-sided oscillation, which is appropriate for the present setting, whenever such a
boundary is reached the algorithm changes direction according to a specified search
mechanism. In this algorithm changing direction involves switching to the alternate
neighborhood structure. The memory structures used include short term memory
defined by the classical tabu restrictions and aspiration criteria together with critical
event memory to bring about strategic oscillation. A brief description of the algorithm
follows.

A complete evaluation of both the node-based and tree-based neighborhood is
performed incorporating penalty costs for moves that lead to infeasible solutions on the
initial solution Xo and a set of η0 best moves that lead to solutions with the lowest
objective function values is selected. From among these moves a subset of the η1 best
moves (which can be either node-based or tree-based) are executed to form η1 different
solutions. For each of these solutions, η2 highest evaluating moves from the original η0

are selected. From the union of the η2 moves for all η1 solutions, the best η1 moves are
executed to produce η1 new solutions. This process extends for L levels of the F&F tree
(in a diversification phase) or until the best solution is improved upon (in an
intensification phase), in which case the process is repeated from the beginning using
the best solution encountered throughout the tree to re-initiate the tabu search phase.
In this manner the filter-and-fan approach brings about simple tree-based and node-
based shift moves that consist of at most L moves. The resulting compound move avoids
the computational overhead required for the complete neighborhood evaluation
necessary to determine the exact best L-compound move. Additionally, to prevent
cycling in the solution space, the most recent moves executed are maintained as tabu
active for a stipulated number of iterations.

Computational tests performed using standard benchmark problems revealed that this
algorithm produced results that compared favorably to a number of prior metaheuristic
algorithms and rivals the best. Tests were carried on a total of 125 instances comprising
45 heterogeneous demand problems and 80 homogenous demand problems. The
algorithm managed to find the best known solutions in 70 of these 125 instances with

 26

an overall deviation of 0.65% on average. In addition, the average execution time for the
F&F approach proved to be significantly lower than that of the state-of-the art
competitors on comparable platforms.

For an appropriate comparative analysis, runs were performed in a similar manner and
on the same groups of instances considered by the alternative algorithms. Amberg,
Domschke and Voß (1996) tested a simulated annealing algorithm and six variants of a
tabu search algorithm on 70 homogeneous-demand instances. The various algorithms
differ by the type of neighborhood and the method used to manage the tabu restrictions
in the tabu search algorithms. Results obtained for 12 independent runs of each
algorithm disclosed that a run of the F&F algorithm is better than any of the runs of
these algorithms. In particular, it is shown that even if all seven variants of these
algorithms are taken together and the best overall run for each individual problem is
chosen, the average quality of the solutions produced by the F&F algorithm across all
problems improves the quality of such best solutions by 0.43%, indicating a clear
dominance of the F&F algorithm over these alternative strategies for the CMST. Similar
analysis reveals a significant advantage of the F&F algorithm over the tabu search
implementation of Shariaha et al. (1997) and the adaptive reasoning technique (ART) of
Patterson, Pirkul and Rolland (1999) across all problem categories. More competitive
approaches are due to Ahuja, Orlin and Sharma (2001) who propose two very large-
scale neighborhood search (VLSN) approaches based on multi-exchanges of node-based
and tree-based neighborhoods, respectively. These neighborhoods are used to create
two different variants of a tabu search and a GRASP algorithm. Tests on 2 groups of
problems of different sizes and characteristics indicate that the F&F algorithm performs
better than one of the GRASP variants for the first group and better than the other
GRASP variant for the other group. Similarly, the F&F algorithm performs better than
one of the TS variants for a group of problems and is very competitive with the other
variant for the other group. As an overall assessment, the F&F approach outperforms a
GRASP and a TS variant. A considerable advantage of the F&F algorithm concerns the
significantly reduced amount of solution time required by this method relative to the
solution times required by each of the 4 variants of the competing algorithms.

These results clearly indicate the impact of the neighborhood structure in the
performance of metaheuristic strategies. In particular, node-based neighborhoods prove
more appropriate for solving homogeneous-demand problems while tree-based
neighborhoods have particular advantages for solving heterogeneous-demand problems.
To take advantage of the complementary features of the two types of neighborhoods, a
strategy that unifies node-based and tree-based into a composite multi-exchange
neighborhood has been proposed in Ahuja, Orlin and Sharma (2003) to produce an
enhanced GRASP implementation. The neighborhood search is powered by an exact
dynamic programming solution method aimed at finding the best move in the composite
neighborhood. This enhanced variant finds all best known solutions for the 75 problems
tested (out of the 125 considered by the F&F algorithm), and so proves relatively more
effective, although to achieve this result the method requires more than four times as
much effort as the F&F method (on a similar computer) to find solutions of the same or
exceedingly similar quality.

6. Conclusion

Important advances in local search have resulted from the development of larger
neighborhoods, organized in structurally exploitable ways that are capable of exploring
the solution space more extensively at each iteration. Such neighborhoods allow for a
broader examination of the solution landscape and yield more choices to perform moves
that offer the potential to find regions of high quality solutions. Advances in this domain
have particularly arisen from compound neighborhood structures, which combine

 27

simple neighborhoods to create more complex neighborhoods that can be explored to
variable depths. To take advantage of the potential to find better solutions, however,
careful attention must be given to managing the computational overhead involved in
generating and searching compound neighborhoods, due to the greater number of
operations required to process them by comparison to the simpler neighborhoods of
which they are composed. Accordingly, a number of studies have investigated strategies
to combine neighborhoods efficiently, and thereby reduce the computational effort of
generating solution trajectories that they make available.

In this paper, we focus on ejection chains and filter-and-fan methods, which have
become the source of significant advances in the construction of very large
neighborhood structures. In addition to presenting the general framework of these
methods, we elucidate the key considerations underlying their design and successful
implementation. We further identify specific ejection chain and filter-and-fan algorithms
that have proved effective in the solution of problems spanning the domains of facility
location, routing and distribution, production scheduling, network design, resource
allocation, manpower planning, and computational biology. By this means, we
undertake to provide insights that may prove useful for developing more effective
algorithms in a variety of additional settings.

Finally, we briefly comment on issues that are relevant for determining whether a filter-
and-fan approach may be preferable to an ejection chain approach, or vice versa.
Evidently, the merit of applying one method or the other depends on the application,
the complexity of the problem and ultimately on the search strategy embodied in the
adaptive memory process. As a rule of thumb, in settings where simple neighborhoods
have proved relatively effective (or very effective for instances of size relatively smaller
than the ones at hand), methods that rely on these simple neighborhoods can very
likely be enhanced for more challenging applications by a filter-and-fan approach.
Conversely, in complex applications where classical neighborhoods are rather limited in
their ability to explore the solution space, particularly in the case of very large problem
instances, a method based on an ejection chain design is likely to prove of greater
value. While ejection chain approaches are characteristically more powerful than filter-
and-fan approaches, they are usually more difficult to implement and less flexible for
being modified to handle changed problem specifications. Since advanced ejection chain
methods typically involve relatively complex reference structures, they are usually more
difficult to adapt to handle new requirements and constraints. In those applications
where requirements are likely to change over time, the question of the preferred method
to use thus depends on the tradeoff between the value of obtaining the best possible
solution and the value of being able to adapt the method to meet new conditions with a
modest outlay of effort.

References

Aarts, E.H.L., P.J.M. Van Laarhoven, J.K. Lenstra and N.L.J. Ulder (1994) “A
Computational Study of Local Search Algorithms for Job Shop Scheduling,” ORSA
Journal on Computing, 6(2), 118-125.

Adams, J., E. Balas and D. Zawack (1988) “The Shifting Bottleneck Procedure for Job
Shop Scheduling,” Management Science, 34 (3), 391-401.

Ahuja, R.K., J.B. Orlin and D. Sharma (2002) “Very Large-Scale Neighborhood Search
for the Quadratic Assignment Problem,” submitted to INFORMS Journal on Computing.

 28

Ahuja, R.K., J.B. Orlin and D. Sharma (2001) “Multi-Exchange Neighborhood Search
Structures for the Capacitated Minimum Spanning Tree Problem,” Mathematical
Programming, 91, 71-97.

Ahuja, R.K., J.B. Orlin and D. Sharma (2003) “A Composite Very Large-Scale
Neighborhood Structure for the Capacitated Minimum Spanning Tree Problem,”
Operations Research Letters, 31, 185-194.

Amberg, A., W. Domschke and S. Voß (1996) “Capacitated Minimum Spanning Trees:
Algorithms using Intelligent Search,” Combinatorial Optimization: Theory and Practice
1, 9–39.

Applegate, D., W. Cook and A. Rohe (2003) “Chained Lin-Kernighan for Large Traveling
Salesman Problems,” INFORMS Journal on Computing, 15, 82-92.

Balas, E. and A. Vazacopoulos (1998) “Guided Local Search with Shifting Bottleneck for
Job Shop Scheduling,” Management Science, 44 (2), 262-275.

Cavique, L., C. Rego and I. Themido (1999) “Subgraph Ejection Chains and Tabu
Search for the Crew Scheduling Problem,” Journal of Operational Research Society, 50,
608–616.

Cao, B. and F. Glover (1997) “Tabu Search and Ejection Chains: Application to a Node
Weighted Version of the Cardinality-Constrained TSP,” Management Science, 43(7), 908-
921.

Cela, E. (1998) “The Quadratic Assignment Problem: Theory and Algorithms,” Kluwer
Academic Publishers, Boston.

Cirasella, J., D.S. Johnson, L.A. McGeoch and W. Zhang (2001) “The Asymmetric
Traveling Salesman Problem: Algorithms, Instance Generators and Tests,” in
Proceedings of the Algorithm Engineering and Experimentation, Third International
Workshop, ALENEX 2001, 32-59.

Chan, H.S. and K.A. Dill (1993) “The Protein Folding Problem,” Physics Today 46(2): 24-
32.

Chrobak, M., T. Szymacha and A. Krawczyk (1990) “A Data Structure Useful for Finding
Hamiltonian Cycles,” Theoretical Computer Science, 71, 419-424.

Cirasella, J., D.S. Johnson, L.A. McGeoch and W. Zhang (2001) “The Asymmetric
Traveling Salesman Problem: Algorithms, Instance Generators and Tests,” in
Proceedings of the Algorithm Engineering and Experimentation, Third International
Workshop, ALENEX 2001, 32-59.

Cornuéjols, G., G.H. Nemhauser and L. Wolsey (1990) “The Uncapacitated Facility
Location Problem,” In P. Mirchandani and R. Francis (editors), Discrete Location Theory,
119–171, John Wiley and Sons, Inc., New York.

Christofides, N., A. Mingozzi and P. Toth (1979) “The Vehicle Routing Problem,” In A.
Mingozzi, P. Toth, C. Sandi (editors), Combinatorial Optimisation, 315-338, Wiley
Chichester.

Dill, K.A. (1985) “Theory for the Folding and Stability of Globular Proteins,”
Biochemistry 24(6): 1501-1509.

 29

Dorndorf, U. and E. Pesch (1994) “Fast Clustering Algorithms,” ORSA Journal on
Computing, 6, 141-153.

Fisher, M.L. (1994) “Optimal Solution of Vehicle Routing Problems using Minimum k-
Trees”, Operations Research, 42, 4, 626–642.

Fredman, M.L., D.S. Johnson, L.A. McGeoch and G. Ostheimer (1995) “Data Structures
for Traveling Salesmen,” Journal of Algorithms, 18, 432-479.

Funke, B., T. Grünert, S. Irnich (2005) “A Note on Single Alternating Cycle
Neighborhoods for the TSP,” Journal of Heuristics, 11, 135-146.

Gamboa, D., C. Rego and F. Glover (2005) “Data Structures and Ejection Chains for
Solving Large-Scale Traveling Salesman Problems,” European Journal of Operational
Research, 160, 154-171.

Gamboa, D., C. Rego and F. Glover (2006) “Implementation Analysis of Efficient
Heuristic Algorithms for the Traveling Salesman Problem,” Computers and Operations
Research, 33, 1161-1179.

Gamboa, D., C. Rego, F. Glover and C. Osterman (2006) “An Experimental Evaluation of
Ejection Chain Algorithms for the Traveling Salesman Problem,” School of Business
Administration, University of Mississippi, MS.

Gao, L.L. and E.P. Robinson (1994) “Uncapacitated Facility Location: General Solution
Procedures and Computational Experience,” European Journal of Operational Research,
76, 410–427.

Gavish, B. (1982) “Topological Design of Centralized Computer Networks: Formulations
and Algorithms,” Networks 12, 355-377.

Gavish, B. (1991) “Topological Design Telecommunications Networks – Local Access
Design Methods,” Annals of Operations Research, 33, 17–71.

Glover, F. (1992) “New Ejection Chain and Alternating Path Methods for Traveling
Salesman Problems,” Computer Science and Operations Research, 449-509.

Glover, F. (1991) “Multilevel Tabu Search and Embedded Search Neighborhoods for the
Traveling Salesman Problem,” Leeds School of Business, University of Colorado,
Boulder, CO.

Glover, F. (1996) “Ejection Chains, Reference Structures and Alternating Path Methods
for Traveling Salesman Problems,” Discrete Applied Mathematics, 65, 223-253.

Glover, F. (1998) “A Template for Scatter Search and Path Relinking,” In J.-K. Hao, E.
Lutton, E. Ronald, M. Schoenauer, and D. Snyers (editors), Artificial Evolution. Lecture
Notes in Computer Science, 1363, 3–51. Springer, Heidelberg.

Glover, F. and M. Laguna (1997) “Tabu Search,” Kluwer Academic Publishers, Boston.

Gonçalves, J.F., J.J.M. Mendes and M.G.C. Resende (2005) “A Hybrid Genetic Algorithm
for the Job Shop Scheduling Problem,” European Journal of Operational Research, 167,
77-95.

 30

Grabowski, J. and M. Wodecki (2005) “A Very Fast Tabu Search Algorithm for Job Shop
Problem,” In C. Rego and B. Alidaee (editors), Metaheuristic Optimization via Memory
and Evolution: Tabu Search and Scatter Search, 191-211, Kluwer Academic Publishers,
Boston.

Greistorfer, P. and C. Rego (2006) “A Simple Filter-and-Fan Approach to the Facility
Location Problem,” Computers and Operations Research, 33 (9), 2590–2601.

Helsgaun, K. (2000) "An Effective Implementation of the Lin-Kernighan Traveling
Salesman Heuristic", European Journal of Operational Research, 126, 106-130.

Johnson, D.S. and L.A. McGeoch (1997) "The Traveling Salesman Problem: A Case
Study in Local Optimization", In Local Search in Combinatorial Optimization, E.H.L.
Aarts and J.K. Lenstra (editors), John Wiley and Sons, Ltd., 215-310.

Johnson, D.S., L.A. McGeoch, F. Glover and C. Rego (2000) “8th DIMACS
Implementation Challenge: The Traveling Salesman Problem,” http://www.research.
att.com/~dsj/chtsp/.

Kanellakis, P.C. and C.H. Papadimitriou (1980) “Local Search for the Asymmetric
Traveling Salesman Problem,” Operations Research, 28, 1086–1099.

Lengauer, T. (1993) “Algorithmic research problems in molecular bioinformatics,”
Proceedings of the Second Israel Symposium on Theory of Computing Systems, ISTCS
1993, Natanya, Israel, 177-192.

Lesh, N., M. Mitzenmacher and S. Whitesides (2003) “A Complete and Effective Move
Set for Simple Protein Folding,” In Proceedings of the 7th Annual International
Conference on Research in Computational Molecular Biology (RECOMB), ACM Press, NY,
188-195.

Lin, S. and B. Kernighan (1973) “An Effective Heuristic Algorithm for the Traveling
Salesman Problem,” Operations Research, 21, 498-516.

Mathew, F. and C. Rego (2006) “Recent Advances in Heuristic Algorithms for the
Capacitated Minimum Spanning Tree Problem,” In Proceedings of the 37th Annual
Meeting of Decision Sciences Institute (DSI), 31021-31026.

Mathew, F., C. Rego and F. Glover (2006) “A Filter-and-Fan Algorithm for the
Capacitated Minimum Spanning Tree,” School of Business Administration, University of
Mississippi, MS.

Nowichi, E. and C. Smutnicki (1996) “A Fast Taboo Search Algorithm for the Job Shop
Problem,” Management Science, 42(6), 797-813.

Osterman, C. and C. Rego (2003) “The Satellite List and New Data Structures for
Symmetric Traveling Salesman Problems,” School of Business Administration,
University of Mississippi, MS.

Patterson, R., H. Pirkul and E. Rolland (1999) “Memory Adaptive Reasoning for Solving
the Capacitated Minimum Spanning Tree Problem,” Journal of Heuristics, 5, 159-180.

Pinedo, M.L. (2006) “Planning and Scheduling in Manufacturing and Services,” Series in
Operations Research and Financial Engineering, Springer-Verlag.

 31

Rego, C. (1998a) “Relaxed Tours and Path Ejections for the Traveling Salesman
Problem,” European Journal of Operational Research, 106, 522-538.

Rego, C. (1998b) A Subpath Ejection Method for the Vehicle Routing Problem.
Management Science, 44:10, 1447-1459.

Rego, C. (2001) “Node Ejection Chains for the Vehicle Routing Problem: Sequential and
Parallel Algorithms”, Parallel Computing, 27, 201-222.

Rego, C. and R. Duarte (2006) “A Filter and Fan Approach for the Job Shop Scheduling
Problem,” School of Business Administration, University of Mississippi, MS.

Rego, C. and F. Glover (2002). “Local search and metaheuristics for the traveling
salesman problem,” In G. Gutin and A. Punnen (editors), The Traveling Salesman
Problem and its Variations, 309–368. Kluwer Academic Publishers, Boston.

Rego, C., F. Glover, D. Gamboa and C. Osterman (2006) “A Doubly-Rooted Stem-and-
Cycle Ejection Chain Algorithm for Asymmetric Traveling Salesman Problems”, School
of Business Administration, University of Mississippi, MS.

Rego, C., T. James and F. Glover (2006) “An Ejection Chain Algorithm for the Quadratic
Assignment Problem,” School of Business Administration, University of Mississippi, MS.

Rego, C., H. Li and F. Glover (2006) “A Filter-and-Fan Approach to the 2D HP Model of
the Protein Folding Problem,” School of Business Administration, University of
Mississippi, MS.

Richards, F.M. (1991). "The Protein Folding Problem," Scientific American 264(1): 54-7,
60-3.

Rochat, Y. and E. Taillard (1995) “Probabilistic Intensification and Diversification in
Local Search for Vehicle Routing”, Journal of Heuristics, 1, 147–167.

Sabuncuoglu, I. and M. Bayiz (1999) “Job Shop Scheduling with Beam Search,”
European Journal of Operational Research, 118, 390-412.

Sharaiha, Y.M., M. Gendreau, G. Laporte and I.H. Osman (1997) “A Tabu Search
Algorithm for the Capacitated Shortest Spanning Tree Problem,” Networks, 29, 161–
171.

Taillard, E. (1993) “Parallel Iterative Search Methods for Vehicle Routing Problems,”
Networks, 23, 661-673.

Yagiura, M., T. Ibaraki and F. Glover (2004) “An Ejection Chain Approach for the
Generalized Assignment Problem,” INFORMS Journal on Computing, 16, 133-151.

 32

