
Inequalities and Target Objectives for
Metaheuristic Search – Part I: Mixed Binary
Optimization

Fred Glover

University of Colorado, Boulder, CO 80309-0419, USA Fred.Glover@Colorado.EDU

Summary. Recent adaptive memory and evolutionary metaheuristics for mixed in-
teger programming have included proposals for introducing inequalities and target
objectives to guide the search. These guidance approaches are useful in intensifica-
tion and diversification strategies related to fixing subsets of variables at particular
values, and in strategies that use linear programming to generate trial solutions
whose variables are induced to receive integer values. We show how to improve such
approaches by new inequalities that dominate those previously proposed and by
associated target objectives that underlie the creation of both inequalities and trial
solutions.

We also propose supplementary linear programming models that exploit the new
inequalities for intensification and diversification, and introduce additional inequal-
ities from sets of elite solutions that enlarge the scope of these models. Part I (the
present paper) focuses on 0-1 mixed integer programming, and Part II covers the
extension to more general mixed integer programming problems. Our methods can
also be used for problems that lack convenient mixed integer programming formu-
lations, by generating associated linear programs that encode part of the solution
space in mixed binary or general integer variables

Key words: Zero-one Mixed Integer Programming, Adaptive Search, Valid
Inequalities, Parametric Tabu Search

1 Notation and Problem Formulation

We represent the mixed integer programming problem in the form

(MIP) Minimize x0 = fx + gy
subject to

(x, y) ∈ Z = {(x, y) : Ax + Dy ≥ b}
x integer

We assume that Ax + Dy ≥ b includes the inequalities Uj ≥ xj ≥ 0,
j ∈ N = {1, . . ., n}, where some components of Uj may be infinite. The

2 Fred Glover

linear programming relaxation of (MIP) that results by dropping the integer
requirement on x is denoted by (LP). We further assume Ax+Dy ≥ b includes
an objective function constraint x0 ≤ U0, where the bound U0 is manipulated
as part of a search strategy for solving (MIP), subject to maintaining U0 < x∗0,
where x∗0 is the x0 value for the currently best known solution x∗ to (MIP).

The current paper focuses on the zero-one version of (MIP) denoted by
(MIP:0-1), in which Uj = 1 for all j ∈ N . We refer to the LP relaxation of
(MIP:0-1) likewise as (LP), since the identity of (LP) will be clear from the
context.

Several recent papers have appeared that evidence a sudden rekindling of
interest in metaheuristic methods for pure and mixed integer programming
problems, and especially to problems in zero-one variables. The issue of iden-
tifying feasible integer solutions is addressed in Fischetti, Glover and Lodi [4]
and Patel and Chinneck [18], and the challenge of solving Boolean optimiza-
tion problems, which embrace a broad range of classical zero-one problems, is
addressed in Davoine, Hammer and Vizvári [3], and Hvattum, Løkketangen
and Glover [15]. Metaheuristics for general zero-one problems are examined
in Pedroso [19] and in Nediak and Eckstein [16]. The current paper focuses on
metaheuristic approaches from a perspective that complements (and contrasts
with) the one introduced in Glover [9].

In the following we make reference to two types of search strategies: those
that fix subsets of variables to particular values within approaches for exploit-
ing strongly determined and consistent variables, and those that make use of
solution targeting procedures. As developed here, the latter solve a linear
programming problem LP(x′, c′)1 that includes the constraints of (LP) (and
additional bounding constraints in the general (MIP) case) while replacing
the objective function x0 by a linear function v0 = c′x. The vector x′ is called
a target solution, and the vector c′ consists of integer coefficients c′j that seek
to induce assignments xj = x′j for different variables with varying degrees of
emphasis.

We adopt the convention that each instance of LP(x′, c′) implicitly includes
the (LP) objective of minimizing the function x0 = fx + gy as a secondary
objective, dominated by the objective of minimizing v0 = c′x, so that the
true objective function consists of minimizing ω0 = Mv0 + x0, where M is
a large positive number. As an alternative to working with ω0 in the form
specified, it can be advantageous to solve LP(x′, c′) in two stages. The first
stage minimizes v0 = c′x to yield an optimal solution x = x′′ (with objective
function value v′′0 = c′x′′), and the second stage enforces v0 = v′′0 to solve the
residual problem of minimizing x0 = fx + gy.2

1 The vector c′ depends on x′. As will be seen, we define several different linear
programs that are treated as described here in reference to the problem LP(x′, c′).

2 An effective way to enforce v0 = v′′0 is to fix all non-basic variables having non-
zero reduced costs to compel these variables to receive their optimal first stage
values throughout the second stage. This can be implemented by masking the
columns for these variables in the optimal first stage basis, and then to continue

Mixed Binary Optimization 3

A second convention involves an interpretation of the problem constraints.
Selected instances of inequalities generated by approaches of the following
sections will be understood to be included among the constraints Ax+Dy ≥ b
of (LP). In our definition of LP(x′, c′) and other linear programs related to
(LP), we take the liberty of representing the currently updated form of the
constraints Ax+Dy ≥ b by the compact representation x ∈ X = {x : (x, y) ∈
Z}, recognizing that this involves a slight distortion in view of the fact that
we implicitly minimize a function of y as well as x in these linear programs.3

To launch our investigation of the problem (MIP:0-1) we first review pre-
vious ideas for generating guiding inequalities for this problem in Section 2
and associated target objective strategies Section 3. We then present new in-
equalities in Section 4 that improve on those previously proposed. Section 5
describes models that can take advantage of these new inequalities to achieve
intensification and diversification of the search process. The fundamental issue
of creating the target objectives that can be used to generate the new inequal-
ities and that lead to trial solutions for (MIP: 0-1) is addressed in Section 6.
Section 7 shows how to generate additional inequalities by “mining” refer-
ence sets of elite solutions to extract characteristics these solutions exhibit
in common. Supplemental strategic considerations are identified in Section 8
and concluding remarks are given in Section 9.

2 Inequalities and Sub-Optimization for Guiding
Intensification and Diversification Phases for (MIP:0-1)

Let x′ denote an arbitrary binary solution, and define the two associated index
sets N ′(0) = {j ∈ N : x′j = 0} and N ′(1) = {j ∈ N : x′j = 1}. Then it is
evident that the inequality∑

j∈N ′(0)

xj +
∑

j∈N ′(1)

(1− xj) ≥ 1 (1)

or equivalently ∑
j∈N ′(0)

xj −
∑

j∈N ′(1)

xj ≥ 1− |N ′(1)| (2)

the second stage from this starting basis while ignoring the masked variables and
their columns. (The masked non-basic variables may incorporate components of
both x and y, and will generally include slack variables for some of the inequalities
embodied in Ax + Dy ≥ b.) The resulting residual problem for the second stage
can be significantly smaller than the first stage problem, allowing the problem for
the second stage to be solved very efficiently.

3 In some problem settings, the inclusion of the secondary objective x0 in v00 =
Mv0 + x0 is unimportant, and in these cases our notation is accurate in referring
to the explicit minimization of v0 = c′x.

4 Fred Glover

eliminates the assignment x = x′ as a feasible solution, but admits all other
binary x vectors. The inequality (2) has been used, for example, to produce
0-1 “short hot starts” for branch and bound by Spielberg and Guignard [22]
and Guignard and Spielberg [13].

Remark 1. Let x denote an arbitrary binary solution, and define the norm L1
of x as

||x|| = ex, where e = (1, . . . , 1)

Note that the Hamming distance from the binary vectors x and x′ can be
expressed as

d(x, x′) = ||x− x′|| = (e− x′)x + (e− x)x′

Hence the constraint (2) can be written in the following form:

d(x, x′) = (e− x′)x + (e− x)x′ ≥ 1.

Remark 2. The constraint (2) is called canonical cut on the unit hypercube
by Balas and Jeroslow [1]. The constraint (2) has been used also by Soyster,
Lev and Slivka [21], Hanafi and Wilbaut [14] and Wilbaut and Hanafi [24].

To simplify the notation, we find it convenient to give (2) an alternative
representation. Let e′ denote the vector given by

e′j = 1− 2x′j , j ∈ N

or equivalently
e′ = 1− 2x′,

hence
e′j = 1 if x′j = 0 and e′j = −1 if x′j = 1.

Then, letting n′(1) = |N ′(1)|, we can also write (2) in the form

e′x ≥ 1− n′(1) (3)

More generally, for any positive integer e′0 satisfying n ≥ e′0 ≥ 1, the binary
vectors x that lie at least a Hamming distance e′0 from x′ are precisely those
that satisfy the inequality

e′x ≥ e′0 − n′(1) (4)

The inequality (4) has been introduced within the context of adaptive mem-
ory search strategies (Glover [6] to compel new solutions x to be separated
from a given solution x′ by a desired distance. In particular, upon identifying
a reference set R = {xr, r ∈ R}, which consists of elite and diverse solutions
generated during prior search, the approach consists of launching a diversifi-
cation strategy that requires new solutions x to satisfy the associated set of
inequalities

erx ≥ er
0 − nr(1), r ∈ R. (5)

Mixed Binary Optimization 5

This system also gives a mechanism for implementing a proposal of Shylo [20]4

to separate new binary solutions by a minimum specified Hamming distance
from a set of solutions previously encountered.

The inequalities of (5) constitute a form of model embedded memory for
adaptive memory search methods where they are introduced for two purposes:
(a) to generate new starting solutions and (b) to restrict a search process to
visiting solutions that remain at specified distances from previous solutions.
A diversification phase that employs the strategy (b) operates by eventually
reducing the er

0 values to 1, in order to transition from diversification to inten-
sification. One approach for doing this is to use tabu penalties to discourage
moves that lead to solutions violating (5). We discuss another approach in the
next section.

A more limiting variant of (5) arises in the context of exploiting strongly
determined and consistent variables, and in associated adaptive memory pro-
jection strategies that iteratively select various subsets of variable to hold
fixed at specific values, or to be constrained to lie within specific bounds
(Glover [6]). This variant occurs by identifying sub-vectors xr1 , xr2 , . . . , of the
solutions xr (thus giving rise to associated sub-vectors er1 , er2 , . . . , of er) to
produce the inequalities

erh ≥ erh
0 − nrh(1), r ∈ R, h = 1, 2, . . . (6)

The inequalities of (6) are evidently more restrictive than those of (5), if the
values erh

0 are chosen to have the same size as the values er
0 (i.e., if erh

0 ≥ er
0

for each r and h).
The inequalities (6) find application within two main contexts. The first

occurs within a diversification segment of alternating intensification and di-
versification phases, where each intensification phase holds certain variables
fixed and the ensuing diversification divides each xr into two sub-vectors xr1

and xr2 that respectively contain the components of xr held fixed and the
components permitted to be free during the preceding intensification phase.

The second area of application occurs in conjunction with frequency mem-
ory by choosing three sub-vectors xr1 , xr2 and xr3 (for example) to consist
of components of solution xr that have received particular values with high,
middle and low frequencies, relative to a specified set of previously visited so-
lutions. (The same frequency vector, and hence the same way of sub-dividing
the xr vectors, may be relevant for all xr solutions generated during a given
phase of search.)5 Our following ideas can be implemented to enhance these
adaptive memory projection strategies as well as the other strategies previ-
ously described.

4 See also Pardalos and Shylo [17] and Ursulenko [23].
5 The formulas of Glover [6] apply more generally to arbitrary integer solution

vectors.

6 Fred Glover

3 Exploiting Inequalities in Target Solution Strategies

We begin by returning to the simple inequality (3) given by

e′x ≥ 1− n′(1)

and show how to exploit it in a somewhat different manner. The resulting
framework also makes it possible to exploit the inequalities of (5) and (6)
more effectively.

We make use of solutions such as x′ by assigning them the role of target
solutions. In this approach, instead of imposing the inequality (3) we adopt
the strategy of first seeing how close we can get to satisfying x = x′ by solving
the LP problem6

LP (x′) : min
x∈X

u0 = e′x

where as earlier, X = {x : (x, y) ∈ Z}. We call x′ the target solution for this
problem. Let x′′ denote an optimal solution to LP(x′), and let u′′0 denote the
corresponding value of u0, i.e., u′′0 = e′x′′. If the target solution x′ is feasible for
LP(x′) then it is also uniquely optimal for LP(x′) and hence x′′ = x′, yielding
u′′0 = −n′(1). In such a case, upon testing x′ for feasibility in (MIP:0-1) we
can impose the inequality (3) as indicated earlier in order to avoid examining
the solution again. However, in the case where x′ is not feasible for LP(x′),
an optimal solution x′′ will yield u′′0 > −n′(1) and we may impose the valid
inequality7

e′x ≥ du′′0e (7)

The fact that u′′0 > −n′(1) discloses that (7) is at least as strong as (3). In
addition, if the solution x′′ is a binary vector that differs from x′, we can also
test x′′ for feasibility in (MIP:0-1) and then redefine x′ = x′′, to additionally
append the constraint (3) for this new x′. Consequently, regardless of whether
x′′ is binary, we eliminate x′′ from the collection of feasible solutions as well
as obtaining an inequality (7) that dominates the original inequality (3).

Upon generating the inequality (7) (and an associated new form of (3) if x′′

is binary), we continue to follow the policy of incorporating newly generated
inequalities among the constraints defining X, and hence those defining Z of
(MIP:0-1). Consequently, we assure that X excludes both the original x′ and
the solution x′′. This allows the problem LP(x′) to be re-solved, either for x′

as initially defined or for a new target vector (which can also be x′′ if the
latter is binary), to obtain another solution x′′ and a new (7).

It is worthwhile to use simple forms of tabu search memory based on
recency and frequency in such processes to decide when to drop previously
introduced inequalities, in order to prevent the collection of constraints from
6 This strategy is utilized in the parametric branch and bound approach of

Glover [5] and in the feasibility pump approach of Fischetti, Glover and Lodi [4].
7 For any real number z, dze and bzc respectively identify the least integer ≥ z and

the greatest integer ≤ z.

Mixed Binary Optimization 7

becoming unduly large. Such approaches can be organized in a natural fashion
to encourage the removal of older constraints and to discourage the removal of
constraints that more recently or frequently have been binding in the solutions
to the LP(x′) problems produced (see, e.g., Glover and Laguna [11]). Older
constraints can also be replaced by one or several surrogate constraints.

The strategy for generating a succession of target vectors x′ plays a critical
role in exploiting such a process. The feasibility pump approach of Fischetti,
Glover and Lodi [4] applies a randomized variant of nearest neighbor rounding
to each non-binary solution x′′ to generate the next x′, but does not make use
of associated inequalities such as (3) and (7). In subsequent sections we show
how to identify more effective inequalities and associated target objectives to
help drive such processes.

3.1 Generalization to Include Partial Vectors and More General
Target Objectives

We extend the preceding ideas in two ways, drawing on ideas of parametric
branch and bound and parametric tabu search (Glover [5, 7]). First we con-
sider partial x vectors that may not have all components xj determined, in
the sense of being fixed by assignment or by the imposition of bounds. Such
vectors are relevant in approaches where some variables are compelled or in-
duced to receive particular values, while others remain free or are subject to
imposed bounds that are not binding.

Relative to a given vector x′ that may contain both assigned and unas-
signed (free) components, define N ′(0) = {j ∈ N : x′j = 0}, N ′(1) = {j ∈
N : x′j = 1} and N ′(Φ) = {j ∈ N : x′j = Φ}, where x′j = Φ signifies that x′j
is not assigned a value (i.e., is not subject to a binding constraint or target
affecting its value). Accompanying the vector x′ we introduce an associated
target objective c′x where c′ is an integer vector satisfying the condition

c′j > 0 if j ∈ N ′(0),
c′j < 0 if j ∈ N ′(1),
c′j = 0 if j ∈ N ′(Φ).

The vector e′, given by e′j = 1 for j ∈ N ′(0) and e′j = −1 for j ∈ N ′(1),
evidently constitutes a special case. We couple the target solution x′ with the
associated vector c′ to yield the problem

LP(x′, c′) : min
x∈X

v0 = c′x.

An optimal solution to LP(x′, c′), as a generalization of LP(x′), will likewise
be denoted by x′′, and we denote the corresponding optimum v0 value by v′′0
(= c′x′′). Finally, we define c′0 = dv′′0 e to obtain the inequality

c′x ≥ c′0. (8)

8 Fred Glover

By an analysis similar to the derivation of (7), we observe that (8) is a valid
inequality, i.e., it is satisfied by all binary vectors that are feasible for (MIP:0-
1) (and more specifically by all such vectors that are feasible for LP(x′, c′)),
with the exception of those ruled out by previous examination. We address
the crucial issue of how to generate the target objectives and associated target
solutions x′ to produce such inequalities that aid in guiding the search after
first showing how to strengthen the inequalities of (8).

4 Stronger Inequalities and Additional Valid Inequalities
from Basic Feasible LP Solutions

Our approach to generate inequalities that dominate those of (8) is also able
to produce additional valid inequalities from related basic feasible solution
to the LP problem LP(x′, c′), expanding the range of solution strategies for
exploiting the use of target solutions. We refer specifically to the class of
basic feasible solutions that may be called y-optimal solutions, which are dual
feasible in the continuous variables y (including in y any continuous slack
variables that may be added to the formulation), disregarding dual feasibility
relative to the x variables. Such y-optimal solutions can be easily generated
in the vicinity of an optimal LP solution by pivoting to bring one or more
non-basic x variables into the basis, and then applying a restricted version
of the primal simplex method that re-optimizes (if necessary) to establish
dual feasibility relative only to the continuous variables, ignoring pivots that
would bring x variables into the basis. By this means, instead of generating
a single valid inequality from a given LP formulation such as LP(x′, c′), we
can generate a collection of such inequalities from a series of basic feasible
y-optimal solutions produced by a series of pivots to visit some number of
such solutions in the vicinity of an optimal solution.

As a foundation for these results, we assume x′′ (or more precisely, (x′′, y′′))
has been obtained as a y-optimal basic feasible solution to LP(x′, c′) by the
bounded variable simplex method (see, e.g., Dantzig [2]). By reference to the
linear programming basis that produces x′′, which we will call the x′′ basis,
define B = {j ∈ N : xj is basic} and NB = {j ∈ N : xj is non-basic}.
We subdivide NB to identify the two subsets NB(0) = {j ∈ NB : x′′j = 0},
NB(1) = {j ∈ NB : x′′j = 1}. These sets have no necessary relation to the sets
N ′(0) and N ′(1), though in the case where x′′ is an optimal basic solution8

to LP(x′, c′), we would normally expect from the definition of c′ in relation
to the target vector x′ that there would be some overlap between NB(0) and
N ′(0) and similarly between NB(1) and N ′(1).

The new inequality that dominates (8) results by taking account of the
reduced costs derived from the x′′ basis. Letting rcj denote the reduced cost

8 We continue to apply the convention of referring to just the x-component x′′ of
a solution (x′′, y′′), understanding the y component to be implicit.

Mixed Binary Optimization 9

for the variable xj , the rcj values for the basic variables satisfy

rcj for j ∈ B

and the rcj values for the non-basic variables assure optimality for x′′ under
the condition that they satisfy

rcj ≥ 0 for j ∈ NB(0)
rcj ≤ 0 for j ∈ NB(1).

Associated with NB(0) and NB(1), define

∆j(0) = brcjc for j ∈ NB(0)
∆j(0) = b−rcjc for j ∈ NB(1).

Finally, to identify the coefficients of the new inequality, define the vector d′

and the scalar d′0 by

d′j = c′j if j ∈ B
d′j = c′j −∆j(1) if j ∈ NB(1)
d′j = c′j + ∆j(1) if j ∈ NB(1)
d′0 = c′0 +

∑
j∈NB(1)

∆j(1).

We then express the inequality as

d′ ≥ d′0 (9)

We first show that (9) is valid when generated from an arbitrary y-optimal
basic feasible solution, and then demonstrate in addition that it dominates
(8) in the case where (8) is a valid inequality (i.e., where (8) is derived from
an optimal basic feasible solution). By our previously stated convention, it is
understand that X (and (MIP:0-1)) may be modified by incorporating pre-
viously generated inequalities that exclude some binary solutions originally
admitted as feasible.

Our results concerning (9) are based on identifying properties of basic
solutions in reference to the problem

LP (x′, d′) : min
x∈X

z0 = d′x

Proposition 1. The inequality (9) derived from an arbitrary y-optimal basic
feasible solution x′′ for LP(x′, c′) is satisfied by all binary vectors x ∈ X, and
excludes the solution x = x′′ when v′′0 is fractional.

Proof. We first show that the basic solution x′′ for LP(x′, c′) is an optimal
solution to LP(x′, d′). Let rdj denote the reduced cost for xj when the ob-
jective function z0 = d′x for LP(x′, d′) is priced out relative to the x′′ basis,
thus yielding rdj = 0 for j ∈ B. From the definitions of the coefficients d′j ,

10 Fred Glover

and in particular from d′j = c′j for j ∈ B, it follows that the relation between
the reduced costs rd′j and rc′j for the non-basic variables is the same as that
between the coefficients d′j and c′j ; i.e.,

rd′j = rc′j −∆j(0) if j ∈ NB(0)
rd′j = rc′j + ∆j(1) if j ∈ NB(1)

The definitions ∆j(0) = brcjc for j ∈ NB(0) and ∆j(1) = b−rcjc for j ∈
NB(1) thus imply

rdj ≥ 0 if j ∈ NB(0)
rdj ≤ 0 if j ∈ NB(1).

This establishes the optimality of x′′ for LP(x′, d′). Since the d′j coefficients
are all integers, we therefore obtain the valid inequality

d′x ≥ dz′′0 e.

The definition of d′ yields

d′x′′ = c′x′′ +
∑

j∈NB(1)

∆j(1)

and hence
z′′0 = v′′0 +

∑
j∈NB(1)

∆j(1).

Since the ∆j(1) values are integers, z′′0 is fractional if and only if v′′0 is frac-
tional, and we also have

dz′′0 e = dv′′0 e+
∑

j∈NB(1)

∆j(1).

The proposition then follows from the definitions of c′0 and d′0. �

Proposition 1 has the following novel consequence.

Corollary 1. The inequality (9) is independent of the c′j values for the non-
basic x variables. In particular, for any y-feasible basic solution and specified
values c′j for j ∈ B, the coefficients d′0 and d′j of d′ are identical for every
choice of the integer coefficients c′j , j ∈ NB.

Proof. The Corollary follows from the fact that any change in the value of c′j
for a non-basic variable xj (which must be an integer change) produces an
identical change in the value of the reduced cost rcj and hence also in the
values ∆j(0) and −∆j(1). The argument of the Proof of Proposition 1 thus
shows that these changes cancel out, to produce the same final d′0 and d′ after
implementing the changes that existed before the changes. �

Mixed Binary Optimization 11

In effect, since Corollary 1 applies to the situation where c′j = 0 for j ∈
NB, it also allows each d′j coefficient for j ∈ NB to be identified by reference
to the quantity that results by multiplying the vector of optimal dual values
by the corresponding column Aj of the matrix A defining the constraints of
(MIP), excluding rows of A corresponding to the inequalities 1 ≥ xj ≥ 0.
(We continue to assume this matrix is enlarged by reference to additional
inequalities such as (8) or (9) that may currently be included in defining
x ∈ X.)

Now we establish the result that (9) is at least as strong as (8).

Proposition 2. If the basic solution x′′ for LP(x′, c′) is optimal, and thus
yields a valid inequality (8), then the inequality (9) dominates (8).

Proof. We use the fact that x′′ is optimal for LP(x′, d′) as established by
Proposition 1. When x′′ is also optimal for LP(x′, c′), i.e., the x′′ is dual
feasible for the x variables as well as being y-optimal, the reduced costs rcj

satisfy rcj ≥ 0 for j ∈ NB(0) and rcj ≤ 0 for j ∈ NB(1). The definitions
of ∆j(0) and ∆j(1) thereby imply that these two quantities are both non-
negative. From the definitions of d′j and d′0 we can write the inequality d′x ≥ d′0
as∑
j∈B

c′jxj +
∑

j∈NB(0)

(c′j−∆j(0))xj +
∑

j∈NB(1)

(c′j +∆j(1))xj ≥ c′0 +
∑

j∈NB(1)

∆j(1)

(10)
From ∆j(0),∆j(1) ≥ 0, and from 1 ≥ xj ≥ 0, we obtain the inequalities
∆j(0)xj ≥ 0 and −∆j(1)xj ≥ −∆j(1). Hence∑

j∈NB(0)

∆j(0)xj +
∑

j∈NB(1)

−∆j(1)xj ≥
∑

j∈NB(1)

−∆j(1) (11)

Adding the left and right sides of (11) to the corresponding sides of (10) and
clearing terms gives ∑

j∈N

c′jxj ≥ c′0

Consequently, this establishes that (9) implies (8). �

As in the use of the inequality (7), if a basic solution x′′ that generates (9) is
a binary vector that differs from x′, then we can also test x′′ for feasibility in
(MIP:0-1) and then redefine x′ = x′′, to additionally append the constraint
(3) for this new x′.

The combined arguments of the proofs of Propositions 1 and 2 lead to a
still stronger conclusion. Consider a linear program LP(x′, h′) given by

LP(x′, h′) : min
x∈X

h0 = h′,

where the coefficients h′j = d′j (and hence = c′j) for j ∈ B and, as before,
B is defined relative to a given y-optimal basic feasible solution x′′. Subject

12 Fred Glover

to this condition, the only restriction on the h′j coefficients for j ∈ NB is that
they be integers. Then we can state the following result.

Corollary 2. The x′′ basis is an optimal LP basis for LP(x′, h′) if and only
if

h′j ≥ d′j for j ∈ NB(0)
h′j ≤ d′j for j ∈ NB(1)

and the inequality (9) dominates the corresponding inequality derived by ref-
erence to LP(x′, h′).

Proof. Immediate from the proofs on Propositions 1 and 2. �

The importance of Corollary 2 is the demonstration that (9) is the
strongest possible valid inequality from those that can be generated by ref-
erence to a given y-optimal basic solution x′′ and an objective function that
shares the same coefficients for the basic variables.

It is to be noted that if (MIP:0-1) contains an integer valued slack variable
si upon converting the associated inequality Aix+Diy ≥ bi of the system Ax+
Dy ≥ b into an equation – hence if Ai and bi consist only of integers and Di is
the 0 vector – then si may be treated as one of the components of the vector
x in deriving (9), and this inclusion serves to sharpen the resulting inequality.
In the special case where all slack variables have this form, i.e., where (MIP:0-
1) is a pure integer problem having no continuous variables and all data are
integers, then it can be shown that the inclusion of the slack variables within
x yields an instance of (9) that is equivalent to a fractional Gomory cut, and
a stronger inequality can be derived by means of the foundation-penalty cuts
of Glover and Sherali [12]. Consequently, the primary relevance of (9) comes
from the fact that it applies to mixed integer as well as pure integer problems,
and more particularly provides a useful means for enhancing target objective
strategies for these problems. As an instance of this, we now examine methods
that take advantage of (9) in additional ways by extension of ideas proposed
with parametric tabu search.

5 Intensification and Diversification Based on Strategic
Inequalities

5.1 An Intensification Procedure

Consider an indexed collection of inequalities of the form of (9) given by

dpx ≥ dp
0, p ∈ P. (12)

We introduce an intensification procedure that makes use of (12) by bas-
ing the inequalities indexed by P on a collection of high quality binary target
solutions x′. Such solutions can be obtained from past search history or from

Mixed Binary Optimization 13

approaches for rounding an optimal solution to a linear programming relax-
ation (LP) of (MIP:0-1), using penalties to account for infeasibility in ranking
the quality of such solutions. The solutions x′ do not have to be feasible to
be used as target solutions or to generate inequalities. In Section 6 we give
specific approaches for creating such target solutions and the associated tar-
get objectives c′x that serve as a foundation for producing the underlying
inequalities.

Our goal from an intensification perspective is to find a new solution that
is close to those in the collection of high quality solutions that give rise to
(12). We introduce slack variables sp, p ∈ P , to permit the system (12) to be
expressed equivalently as

dpx− sp = dp
0, sp ≥ 0, p ∈ P (13)

Then, assuming the set X includes reference to the constraints (13), we
create an Intensified LP Relaxation

min
x∈X

s0 =
∑
p∈P

wpsp

where the weights wp for the variables sp are selected to be positive integers.
An important variation is to seek a solution that minimizes the maximum

deviation of x from solutions giving rise to (12). This can be accomplished by
introducing the inequalities

s0 ≥ dp
0 − dpx, p ∈ P. (14)

Assuming these inequalities are likewise incorporated into X, 9 the Min(Max)
goal is achieved by solving the problem

min
x∈X

s0

An optimal solution to either of these two indicated objectives can then be
used as a starting point for an intensified solution pass, performing all-at-once
or successive rounding to replace its fractional components by integers. 10

5.2 A Diversification Analog

To create a diversification procedure for generating new starting solutions, we
seek an objective function to drive the search to lie as far as possible from

9 The inclusion of (13) and (14) is solely for the purpose of solving the associated
linear programs, and these temporarily accessed constraints do not have to be
incorporated among those defining Z.

10 Successive rounding normally updates the LP solution after rounding each vari-
able in order to determine the effects on other variables and thereby take advan-
tage of modified rounding options.

14 Fred Glover

solutions in the region defined by (12). For this purpose we introduce the
variables sp as in (13), but utilize a maximization objective rather than a
minimization objective to produce the problem

max
x∈X

s0 =
∑
p∈P

wpsp.

The weights wp are once again chosen to be positive.
A principal alternative in this case consists of maximizing the minimum

deviation of x from solutions giving rise to (12). For this, we additionally
include the inequalities

s0 ≤ dp
0 − dpx, p ∈ P (15)

giving rise to the problem
max
x∈X

s0.

The variable s0 introduced in (15) differs from its counterpart in (14).
In the case where the degree of diversification provided by this approach is
excessive, by driving solutions too far away from solutions expected to be
good, control can be exerted through bounding X with other constraints, and
in particular by manipulating the bound U0 identified in Section 1.

6 Generating Target Objectives and Solutions

We now examine the issue of creating the target solution x′ and associated
target objective c′x that underlies the inequalities of the preceding sections.
This is a key determinant of the effectiveness of targeting strategies, since it
determines how quickly and effectively such a strategy can lead to new integer
feasible solutions.

Our approach consists of two phases for generating the vector c′ of the
target objective. The first phase is relatively simple and the second phase is
more advanced.

6.1 Phase 1 – Exploiting Proximity

The Phase 1 procedure for generating target solutions x′ and associated tar-
get objectives c′x begins by solving the initial problem (LP), and then solves
a succession of problems LP(x′, c′) by progressively modifying x′ and c′. Be-
ginning from the linear programming solution x′′ to (LP) (and subsequently
to LP(x′, c′)), the new target solution x′ is derived from x′′ simply by setting
x′j = 〈x′′j 〉, j ∈ N , where 〈v〉 denotes the nearest integer neighbor of v. (The
value 〈.5〉 can be either 0 or 1, by employing an arbitrary tie-breaking rule.)

Since the resulting vector x′ of nearest integer neighbors is unlikely to be
feasible for (MIP:0-1), the critical element is to generate the target objective

Mixed Binary Optimization 15

c′x so that the solutions x′′ to successively generated problems LP(x′, c′) will
become progressively closer to satisfying integer feasibility. If one or more
integer feasible solutions is obtained during this Phase 1 approach, each such
solution qualifies as a new best solution x∗, due to the incorporation of the
objective function constraint x0 = U0 < x∗0.

The criterion of Phase 1 that selects the target solution x′ as a nearest
integer neighbor of x′′ is evidently myopic. Consequently, the Phase 1 pro-
cedure is intended to be executed for only a limited number of iterations.
However, the possibility exists that for some problems the target objectives
of Phase 1 may quickly lead to new integer solutions without invoking more
advanced rules. To accommodate this eventuality, we include the option of
allowing Phase 1 to continue its execution as long as it finds progressively
improved solutions.

Phase 1 is based on the principle that some variables xj should be more
strongly induced to receive their nearest neighbors target values x′j than other
variables. In the absence of other information, we may tentatively suppose
that a variable whose LP solution value x′′j is already an integer or is close
to being an integer is more likely to receive that integer value in a feasible
integer solution. Consequently, we are motivated to choose a target objective
c′x that will more strongly encourage such a variable to receive its associated
value x′j . However, the relevance of being close to an integer value needs to
be considered from more than one perspective.

The targeting of xj = x′j for variables whose values x′′j already equal or
almost equal x′j does not exert a great deal of influence on the solution of
the new LP(x′, c′), in the sense that such a targeting does not drive this
solution to differ substantially from the solution to the previous LP(x′, c′).
A more influential targeting occurs by emphasizing the variables xj whose
x′′j values are more “highly fractional”, and hence which differ from their
integer neighbors x′j by a greater amount. There are evidently trade-offs to
be considered in the pursuit of influence, since a variable whose x′′j value lies
close to .5, and hence whose integer target may be more influential, has the
deficiency that the likelihood of this integer target being the “right” target
is less certain. A compromise targeting criterion is therefore to give greater
emphasis to driving xj to an integer value if x′′j lies “moderately” (but not
exceedingly) close to an integer value. Such a criterion affords an improved
chance that the targeted value will be appropriate, without abandoning the
quest to identify targets that exert a useful degree of influence. Consequently,
we select values λ0 and λ1 = 1−λ0 that lie moderately (but not exceedingly)
close to 0 and 1, such as λ0 = 1/5 and λ1 = 4/5, or λ0 = 1/4 and λ1 = 3/4,
and generate c′j coefficients that give greater emphasis to driving variables to
0 and 1 whose x′′j values lie close to λ0 and λ1.

The following rule creates a target objective c′x based on this compromise
criterion, arbitrarily choosing a range of 1 to 21 for the coefficient c′j . (From
the standpoint of solving the problem LP(x′, c′), this range is equivalent to

16 Fred Glover

any other range over positive values from v to 21v, except for the necessity to
round the c′j coefficients to integers.)

Procedure 1 – Phase 1 Rule for Generating c′j
Choose λ0 from the range .1 ≤ λ0 ≤ .4, and let λ1 = 1− λ0.
if x′j = 0 (hence x′′j ≤ .5) then

if x′′j ≤ λ0 then
c′j = 1 + 20x′′j /λ0

else if x′′j > λ0 then
c′j = 1 + 20(.5− x′′j)/(.5− λ0)

end if
else if x′j = 1 (hence x′′j ≥ .5) then

if x′′j ≤ λ1 then
c′j = −(1 + 20(x′′j − .5)/(λ1 − .5))

else if x′′j > λ1 then
c′j = −(1 + 20(1− x′′j)/(1− λ1))

end if
end if

Finally, replace the specified value of c′j by its nearest integer neighbor
〈c′j〉.

The absolute values of c′j coefficients produced by the preceding rule de-
scribe what may be called a batwing function – a piecewise linear function
resembling the wings of a bat, with shoulders at x′′j = .5, wing tips at x′′j = 0
and x′′j = 1, and the angular joints of the wings at x′′j = λ0 and x′′j = λ1.
Over the x′′j domain from the left wing tip at 0 to the first joint at λ0, the
function ranges from 1 to 21, and then from this joint to the left shoulder at
.5 the function ranges from 21 back to 1. Similarly, from right shoulder, also
at .5, to the second joint at λ1, the function ranges from 1 to 21, and then
from this joint to the right wing tip at 1 the function ranges likewise from 21
to 1. (The coefficient c′j takes the negative of these absolute values from the
right shoulder to the right wing tip.).

In general, if we let Tip, Joint and Shoulder denote the |c′j | values to be
assigned at these junctures (where typically Joint > Tip, Shoulder), then the
generic form of a batwing function results by replacing the four successive c′j
values in the preceding method by

c′j = Tip + (Joint− Tip)x′′j /λ0,
c′j = Shoulder + (Joint− Shoulder)(.5− x′′j)/(.5− λ0),
c′j = −(Shoulder + (Joint− Shoulder)(x′′j − .5)/(λ1 − .5)),
c′j = −(Tip + (Joint− Tip)(1− x′′j)/(1− λ1)),

The image of such a function more nearly resembles a bat in flight as the
value of Tip is increased in relation to the value of Shoulder, and more nearly
resembles a bat at rest in the opposite case. The function can be turned into a

Mixed Binary Optimization 17

piecewise convex function that more strongly targets the values λ0 and λ1 by
raising the absolute value of c′j to a power p > 1 (affixing a negative sign to
yield c′j over the range from the right shoulder to the right wing tip). Such a
function (e.g., a quadratic function) more strongly resembles a bat wing than
the linear function.11

Design of the Phase 1 Procedure

We allow the Phase 1 procedure that incorporates the foregoing rule for gener-
ating c′j the option of choosing a single fixed λ0 value, or of choosing different
values from the specified interval to generate a greater variety of outcomes. A
subinterval for λ0 centered around .2 or .25 is anticipated to lead to the best
outcomes, but it can be useful to periodically choose values outside this range
for diversification purposes.

We employ a stopping criterion for Phase 1 that limits the total number
of iterations or the number of iterations since finding the last feasible integer
solution. In each instance where a feasible integer solution is obtained, the
method re-solves the problem (LP), which is updated to incorporate both
the objective function constraint x0 ≤ U0 < x∗0 and inequalities such as (9)
that are generated in the course of solving various problems LP(x′, c′). The
instruction “Update the Problem Inequalities” is included within Phase 1 to
refer to this process of adding inequalities to LP(x′, c′) and (LP), and to the
associated process of dropping inequalities by criteria indicated in Section 3.

Procedure 2 – Phase 1
1. Solve (LP). (If the solution x′′ to the first instance of (LP) is integer feasible,

the method stops with an optimal solution for (MIP:0-1).)
2. Apply the Rule for Generating c′j , to each j ∈ N , to produce a vector c′.
3. Solve LP(x′, c′), yielding the solution x′′. Update the Problem Inequalities.
4. If x′′ is integer feasible: update the best solution (x∗, y∗) = (x′′, y′′), update

U0 < x∗0, and return to Step 1. Otherwise, return to Step 2.

A preferred variant of Phase 1 does not change all the components of
c′ each time a new target objective is produced, but changes only a subset
consisting of k of these components, for a value k somewhat smaller than n.
For example, a reasonable default value for k is given by k = 5. Alternatively,
the procedure may begin with k = n and gradually reduce k to its default
value. Within Phase 2, as subsequently noted, it can be appropriate to reduce
k all the way to 1.

11 Calibration to determine a batwing structure, either piecewise linear or nonlinear,
that proves more effective than other alternatives within Phase 1 would provide
an interesting study.

18 Fred Glover

This variant of Phase 1 results by the following modification. Let c0 identify
the form of c′ produced by the Rule for Generating c′j , as applied in Step 2 of
the Phase 1 Procedure. Re-index the xj variables so that |c0

1| ≥ |c0
2| ≥ . . . ≥

|c0
n|, and let N(k) = {1, . . . , k}, thus identifying the variables xj , j ∈ N(k),

as those having the k largest |c0
j | values. Then Phase 1 is amended by setting

c′ = 0 in Step 1 and then setting c′j = c0
j for j ∈ N(k) in Step 2, without

modifying the c′j values for j ∈ N −N(k). Relevant issues for research involve
the determination of whether it is better to better to begin with k restricted
or to gradually reduce it throughout the search, or to allow it to oscillate
around a preferred value. Different classes of problems will undoubtedly afford
different answers to such questions, and may be susceptible to exploitation by
different forms of the batwing function (allowing different magnitudes for the
Tip, Joint and Shoulder, and possibly allowing the location of the shoulders
to be different than the .5 midpoint, with the locations of the joints likewise
asymmetric).

6.2 Phase 2 – Exploiting Reaction and Resistance

Phase 2 is based on exploiting the mutually reinforcing notions of reaction and
resistance. The term “reaction” refers to the change in the value of a variable
as a result of creating a target objective c′x and solving the resulting problem
LP(x′, c′). The term “resistance” refers to the degree to which a variable fails
to react to a non-zero c′j coefficient by receiving a fractional value rather than
being driven to 0 or 1.

To develop the basic ideas, let NF identify the set of variables that receive
fractional values in the solution x′′ to the problem LP(x′, c′), given by NF =
{j ∈ N : 0 < x′′j < 1}, and let N ′(0, 1) identify the set of variables that
have been assigned target values x′j , given by N ′(0, 1) = N ′(0) ∪ N ′(1) (or
equivalently, N ′(0, 1) = N ′−N ′(Φ)). Corresponding to the partition of N ′ into
the sets N ′(Φ) and N ′(0, 1), the set NF of fractional variables is partitioned
into the sets NF (Φ) = NF ∩N ′(Φ) and NF (0, 1) = NF ∩N ′(0, 1).

We identify two different sets of circumstances that are relevant to defining
reaction, the first arising where none of the fractional variables xj is assigned
a target x′j , hence NF = NF ′(Φ), and the second arising in the comple-
mentary case where at least one fractional variable is assigned a target, hence
NF (0, 1) 6= ∅. We start by examining the meaning of reaction in the somewhat
simpler first case.

Reaction When No Fractional Variables Have Targets

Our initial goal is to create a measure of reaction for the situation where
NF = NF ′(Φ), i.e., where all of the fractional variables are unassigned (hence,
none of these variables have targets). In this context we define reaction to be

Mixed Binary Optimization 19

measured by the change in the value x′′j of a fractional variable xj relative to
the value x0

j received by xj in an optimal solution x0 to (LP), as given by 12

∆j = x0
j − x′′j .

We observe there is some ambiguity in this ∆j definition since (LP) changes
as a result of introducing new inequalities and updating the value U0 of the
inequality x0 ≤ U0. Consequently, we understand the definition of ∆j to refer
to the solution x0 obtained by the most recent effort to solve (LP), though
this (LP) may be to some extent out of date, since additional inequalities may
have been introduced since it was solved. For reasons that will become clear
in the context of resistance, we also allow the alternative of designating x0 to
be the solution to the most recent problem LP(x′, c′) preceding the current
one; i.e., the problem solved before creating the latest target vector c′.

The reaction measure ∆j is used to determine the new target objective by
re-indexing the variables xj , j ∈ NF = NF ′(Φ), so that the absolute values
|∆j | are in descending order, thus yielding |∆1| ≥ |∆2| ≥ We then identify
the k-element subset N(k) = {1, 2, . . . , k} of NF that references the k largest
|∆j | values, where k = min(|NF |, kmax). We suggest the parameter kmax be
chosen at most 5 and gradually decreased to 1 as the method progresses.

The c′j coefficients are then determined for the variables xj , j ∈ N(k), by
the following rule. (The constant 20 is the same one used to generate c′j values
in the Phase 1 procedure, and 〈v〉 again denotes the nearest integer neighbor
of v.)

NF ′(Φ) Rule for Generating c′j and x′j , j ∈ N(k) (for N(k) ⊂ NF = NF ′(Φ)):

If ∆j ≥ 0, set c′j = 1 + 〈20∆j/|∆1|〉 and x′j = 0
If ∆j ≤ 0, set c′j = −1 + 〈20∆j/|∆1|〉 and x′j = 1

When ∆j = 0, a tie-breaking rule can be used to determine which of the
two options should apply, and in the special case where ∆1 = 0 (hence all
∆j = 0), the c′j assignment is taken to be 1 or −1 for all j ∈ N(k).

To determine a measure of reaction for the complementary case NF (0, 1) 6=
∅, we first introduce the notion of resistance.

Resistance

A resisting variable (or resistor) xj is one that is assigned a target value x′j but
fails to satisfy xj = x′j in the solution x′′ to LP(x′, c′). Accordingly the index
set for resisting variables may be represented by NR = {j ∈ N ′(0, 1) : x′′j 6=
x′′j }. If x′′j is fractional and j ∈ N ′(0, 1) then clearly j ∈ NR (i.e., NF (0, 1) ⊂
NR). Consequently, the situation NF (0, 1) 6= ∅ that was previously identified
as complementary to NF = NF (Φ) corresponds to the presence of at least
one fractional resistor.
12 These ∆j values are not to be confused with the ∆j(0) and ∆j(1) of Section 4.

20 Fred Glover

If a resistor xj is not fractional, i.e., if the value x′′j is the integer 1 − x′j ,
we say that xj blatantly resists its targeted value x′j . Blatant resistors xj are
automatically removed from NR and placed in the unassigned set N ′(Φ),
setting c′ = 0. (Alternatively, a blatant resistor may be placed in N ′(1 − x′j)
by setting c′j = −c′j and x′j = 1 − x′j .) After executing this operation, we
are left with NR = NF (0, 1), and hence the condition NF (0, 1) 6= ∅ (which
complements the condition NF = NF ′(Φ)) becomes equivalent to NR 6= ∅.

Let Vj identify the amount by which the LP solution value xj = x′′j violates
the target assignment xj = x′j ; i.e, Vj = x′′j if x′j = 0 (hence if c′j > 0) and
Vj = 1 − x′′j if x′j = 1 (hence if c′j < 0). We use the quantity Vj to define a
resistance measure RMj for each resisting variable xj , j ∈ NR, that identifies
how strongly xj resists its targeted value x′j . Two simple measures are given
by RMj = Vj , and RMj = |cj |Vj .

The resistance measure RMj is used in two ways: (a) to select specific
variables xj that will receive new x′j and c′j values in creating the next tar-
get objective; (b) to determine the relative magnitudes of the resulting c′j
values. For this purpose, it is necessary to extend the notion of resistance
by making reference to potentially resisting variables (or potential resistors)
xj , j ∈ N ′(0, 1) − NR, i.e., the variables that have been assigned target val-
ues x′j and hence non-zero objective function coefficients c′j , but which yield
x′′j = x′j in the solution x′′ to LP(x′, c′). We identify a resistance measure
RM0

j for potential resistors by reference to their reduced cost values rcj (as
identified in Section 4):

RM0
j = −rcj for j ∈ N ′(0)−NR and RM0

j = rcj for j ∈ N ′(1)−NR.

We note that this definition implies RM0
j ≤ 0 for potentially resisting

variables. (Otherwise, xj would be a non-basic variable yielding x′′j = 1 in the
case where j ∈ N ′(0), or yielding x′′j = 0 in the case where j ∈ N ′(1), thus
qualifying as a blatant resistor and hence implying j ∈ NR.) The closer that
RM0

j is to 0, the closer xj is to qualifying to enter the basis and potentially to
escape the influence of the coefficient c′j that seeks to drive it to the value 0 or
1. Thus larger values of RM0

j indicate greater potential resistance. Since the
resistance measures RMj are positive for resisting variables xj , we see that
there is an automatic ordering whereby RMp > RM0

q for a resisting variable
xp and a potentially resisting variable xq.

Combining Measures of Resistance and Reaction

The notion of reaction is relevant for variables xj assigned target values
xj (j ∈ N ′(0, 1)) as well as for those not assigned such values (j ∈ N ′(Φ)). In
the case of variables having explicit targets (hence that qualify either as re-
sistors or potential resistors) we combine measures of resistance and reaction
to determine which of these variables should receive new targets x′j and new
coefficients c′j .

Mixed Binary Optimization 21

Let x0 refer to the solution x′′ to the instance of the problem LP(x′, c′)
that was solved immediately before the current instance;13 hence the difference
between x0

j and x′′j identifies the reaction of xj to the most recent assignment
of c′j values. In particular, we define this reaction for resistors and potential
resistors by

δj = x′′j − x0
j if x′j = 0 (j ∈ N ′(0))

δj = x0
j − x′′j if x′j = 1 (j ∈ N ′(1)).

If we use the measure of resistance RMj = Vj , which identifies how far xj

lies from its target value, a positive δj implies that the resistance of xj has
decreased as a result of this assignment. Just as the resistance measure RMj

is defined to be either Vj or Vj |c′j |, the corresponding reaction measure Rδj

can be defined by either Rδj = δj or Rδj = δj |c′j |. Based on this we define a
composite resistance-reaction measure RRj for resisting variables as a convex
combination of RMj and Rδj ; i.e., for a chosen value of λ ∈ [0, 1]:

RRj = λRMj + (1− λ)Rδj , j ∈ NR.

Similarly, for implicitly resisting variables, we define a corresponding com-
posite measure RR0

j by

RR0
j = λRM0

j + (1− λ)Rδj , j ∈ N ′(0, 1)−NR.

In order to make the interpretation of λ more consistent, it is appropriate
first to scale the values of RMj , RM0

j and Rδj . If vj takes the role of each of
these three values in turn, then vj may be replaced by the scaled value vj =
vj/|Mean(vj)| (bypassing the scaling in the situation where |Mean(vj)| = 0).

To give an effective rule for determining RRj and RR0
j , a few simple tests

can be performed to determine a working value for λ, as by limiting λ to a
small number of default values (e.g., the three values 0, 1 and .5, or the five
values that include .25 and .75). More advanced methods for handling these is-
sues are described in Section 8, where a linear programming post-optimization
process for generating stronger evaluations is given in Section 8.4, and a target
analysis approach for calibrating parameters and combining choice rules more
effectively is given in Section 8.5.

Including Reference to a Tabu List

A key feature in using both RRj and RR0
j to determine new target objectives

is to make use of a simple tabu list T to avoid cycling and insure a useful
degree of variation in the process. We specify in the next section a procedure
for creating and updating T , which we treat both as an ordered list and as
a set. (We sometimes speak of a variable xj as belonging to T , with the
evident interpretation that j ∈ T .) It suffices at present to stipulate that we

13 This is the “alternative definition” of x0 indicated earlier.

22 Fred Glover

always refer to non-tabu elements of N ′(0, 1), and hence we restrict attention
to values RRj and RR0

j for which j ∈ N ′(0, 1) − T . The rules for generating
new target objectives make use of these values in the following manner.

Because RRj and RR0
j in general are not assured to be either positive or

negative, we treat their ordering for the purpose of generating c′j coefficients
as a rank ordering. We want each RRj value (for a resistor) to be assigned a
higher rank than that assigned to any RR0

j value (for a potential resistor). An
easy way to do this is to define a value RRj for each potential resistor given
by

RRj = RR0
j −RR0

1 + 1− min
j∈NR

RRj , j ∈ N ′(0, 1)−NR.

The set of RRj values over j ∈ N ′(0, 1) then satisfies the desired ordering
for both resistors (j ∈ NR) and potential resistors (j ∈ N ′(0, 1)−NR). (Recall
that NR = NF (0, 1) by having previously disposed of blatant resistors.)

For the subset N(k) of k non-tabu elements of N ′(0, 1) (hence of N ′(0, 1)−
T) that we seek to generate, the ordering over the subset NR−T thus comes
ahead of the ordering over the subset (N ′(0, 1)−NR)− T , This allows both
resistors and potential resistors to be included among those elements to be
assigned new coefficients c′j and new target values x′j , where the new c′j coef-
ficients for resistors always have larger absolute values than the c′j coefficients
for potential resistors. If the set of non-tabu resistors NR−T already contains
at least k elements, then no potential resistors will be assigned new c′j or x′j
values.

Overview of Phase 2 Procedure

The rule for generating the target objective c′x that lies at the heart of Phase
2 is based on carrying out the following preliminary steps, where the value
kmax is determined as previously indicated: (a) re-index the variables xj ,
j ∈ N ′(0, 1)−T , so that the values RRj are in descending order, thus yielding
RR1 ≥ RR2 ≥ . . .; (b) identify the subset N(k) = {1, 2, . . . , k} of NR that
references the k largest RRj values, where k = min(|N ′(0, 1)− T |, kmax); (c)
create a rank ordering by letting Rp, p = 1, . . . , r denote the distinct values
among the RRj , j ∈ N(k), where R1 > R2 > . . . Rr, (r ≥ 1).

Then the rule to determine the c′j and x′j values for the variables xj , j ∈
N(k), is given as follows:

N ′(0, 1)− T Rule for Generating c′j and x′j , j ∈ N(k) (for NR = NF (0, 1) 6=
∅):

If x′j = 1, and RRj = Rp, set c′j = 〈1 + 20(r + 1− p)/r〉 and re-set x′j = 0
If x′j = 0, and RRj = Rp, set c′j = −〈1 + 20(r + 1− p)/r〉 and re-set x′j = 1

Mixed Binary Optimization 23

We see that this rule assigns c′j coefficients so that the |c′j | values are the
positive integers 〈1 + 20(1/r)〉, 〈1 + 20(2/r)〉, . . . , 〈1 + 20(r/r)〉 = 21.

We are now ready to specify the Phase 2 procedure in overview, which
incorporates its main elements except for the creation and updating of the
tabu list T .

Procedure 3 - Phase 2 Procedure in Overview
1. Solve (LP). (Stop if the first instance of (LP) yields an integer feasible solution

x′′ which therefore is optimal for (MIP:0-1).) (If the solution x′′ to the first
instance of (LP) is integer feasible, the method stops with an optimal solution
for (MIP:0-1).)

2. There exists at least one fractional variable (NF 6= ∅). Remove blatant resistors
if any exist, from NR and transfer them to N ′(Φ) (or to N ′(1 − x′j)) so NR =
NF (0, 1).
(a) If NF = NF (Φ) (hence NR = ∅), apply the NF (∅) Rule for Generating c′j

and x′j , j ∈ N(k), to produce the new target objective c′x and associated
target vector x′.

(b) If instead NR 6= ∅, then apply the N ′(0, 1)− T Rule for Generating c′j and
x′j , j ∈ N(k), to produce the new target objective c′x and associated target
vector x′.

3. Solve LP(x′, c′), yielding the solution x′′. Update the Problem Inequalities.
4. If x′′ is integer feasible: update the best solution (x∗, y∗) = (x′′, y′′), update

U0 < x∗0, and return to Step 1. Otherwise, return to Step 2.

6.3 Creating and Managing the Tabu List T – Phase 2 Completed

We propose an approach for creating the tabu list T that is relatively simple
but offers useful features within the present context. As in a variety of con-
structions for handling a recency-based tabu memory, we update T by adding
a new element j to the first position of the list when a variable xj becomes
tabu (as a result of assigning it a new target value x′j and coefficient c′j), and
by dropping the “oldest” element that lies in the last position of T when its
tabu status expires.

Our present construction employs a rule that may add and drop more than
one element from T at the same time. The checking of tabu status is facilitated
by using a vector Tabu(j) that is updated by setting Tabu(j) = true when j is
added to T and by setting Tabu(j) = false when j is dropped from T . (Tabu
status is often monitored by using a vector TabuEnd(j) that identifies the
last iteration that element j qualifies as tabu, without bothering to explicitly
store the list T , but the current method of creating and removing tabu status
makes the indicated handling of T preferable.).

We first describe the method for the case where k = 1, i.e., only a single
variable xj is assigned a new target value (and thereby becomes tabu) on

24 Fred Glover

a given iteration. The modification for handling the case k > 1 is straight-
forward, as subsequently indicated. Two parameters Tmin and Tmax govern
the generation of T , where Tmax > Tmin ≥ 1. For simplicity we suggest the
default values Tmin = 2 and Tmax = n6. (In general, appropriate values are
anticipated to result by selecting Tmin from the interval between 1 and 3 and
Tmax from the interval between n5 and n7.)14

The target value x′j and coefficient c′j do not automatically change when
j is dropped from T and xj becomes non-tabu. Consequently, we employ one
other parameter AssignSpan that limits the duration that xj may be assigned
the same x′j and c′j values, after which x′j is released from the restrictions in-
duced by this assignment. To make use of AssignSpan, we keep track of when
xj most recently was added to T by setting TabuAdd(j) = iter, where iter de-
notes the current iteration value (in this case, the iteration when the addition
occurred). Then, when TabuAdd(j)+AssignSpan < iter, xj is released from
the influence of x′j and c′j by removing j from the set N ′(0, 1) and adding it to
the unassigned set N ′(Φ). As long as xj is actively being assigned new x′j and
c′j values, TabuAdd(j) is repeatedly being assigned new values of iter, and
hence the transfer of j to N ′(Φ) is postponed. We suggest a default value for
AssignSpan between 1.5×Tmax and 3×Tmax; e.g. AssignSpan = 2×Tmax.

To manage the updating of T itself, we maintain an array denoted
TabuRefresh(j) that is initialized by setting TabuRefresh(j) = 0 for all
j ∈ N . Then on any iteration when j is added to T, TabuRefresh(j) is
checked to see if TabuRefresh(j) < iter (which automatically holds the first
time j is added to T). When the condition is satisfied, a refreshing operation
is performed, after adding j to the front of T , that consists of two steps: (a)
the list T is reduced in size to yield |T | = Tmin (more precisely, |T | ≤ Tmin)
by dropping all but Tmin the first elements of T ; (b) TabuRefresh(j) is up-
dated by setting TabuRefresh(j) = iter + v, where v is a number randomly
chosen from the interval [AssignSpan, 2×AssignSpan]. These operations as-
sure that future steps of adding this particular element j to T will not again
shrink T to contain Tmin elements until iter reaches a value that exceeds
TabuRefresh(j). Barring the occurrence of such a refreshing operation, T is
allowed to grow without dropping any of its elements until it reaches a size of
Tmax. Once |T | = Tmax, the oldest j is removed from the end of T each time
a new element j is added to the front of T , and hence T is stabilized at the
size Tmax until a new refreshing operation occurs.

This approach for updating T is motivated by the following observation.
The first time j is added to T (when TabuRefresh(j) = 0) T may acceptably
be reduced in size to contain not just Tmin elements, but in fact to contain
only 1 element, and no matter what element is added on the next iteration the
composition of N ′(0, 1) cannot duplicate any previous composition. Moreover,

14 The small value of Tmin accords with an intensification focus, and larger values
may be selected for diversification. A procedure that modifies Tmax dynamically
is indicated in Section 8.1.

Mixed Binary Optimization 25

following such a step, the composition of N ′(0, 1) will likewise not be dupli-
cated as long as T continues to grow without dropping any elements. Thus,
by relying on intervening refreshing operations with TabuRefresh(j) = 0 and
Tmin = 1, we could conceivably allow T to grow even until reaching a size
Tmax = n. (Typically, a considerable number of iterations would pass before
reaching such a state.) In general, however, by allowing T to reach a size
Tmax = n the restrictiveness of preventing targets from being reassigned for
Tmax iterations would be too severe. Consequently we employ the two mecha-
nisms to avoid such an overly restrictive state consisting of choosing Tmax < n
and performing a refreshing operation that allows each j to shrink T more than
once (whenever iter grows to exceed the updated value of TabuRefresh(j))
The combination of these two mechanisms provides a flexible tabu list that is
self-calibrating in the sense of automatically adjusting its size in response to
varying patterns of assigning target values to elements.

The addition of multiple elements to the front of T follows essentially the
same design, subject to the restriction of adding only up to Tmin new indexes
j ∈ N(k) to T on any iteration, should k be greater than Tmin. We slightly
extend the earlier suggestion Tmin = 2 to propose Tmin = 3 for kmax ≥ 3.

One further comment is warranted concerning the composition of T . The
organization of the method assures T ⊂ N ′(0, 1) and typically a good portion
of N ′(0, 1) lies outside T . If exceptional circumstances result in T = N ′(0, 1),
the method drops the last element of T so that N ′(0, 1) contains at least one
non-tabu element.

Drawing on these observations, the detailed form of Phase 2 that includes
instructions for managing the tabu list is specified below, employing the stop-
ping criterion indicated earlier of limiting the computation to a specified maxi-
mum number of iterations. (These iterations differ from those counted by iter,
which is re-set to 0 each time a new solution is found and the method returns
to solve the updated (LP).)

The inequalities introduced in Sections 3 and 4 provide a useful component
of this method, but the method is organized to operate even in the absence of
such inequalities. The intensification and diversification strategies proposed
in Section 5 can be incorporated for solving more difficult problems.

The next section gives another way to increase the power of the forego-
ing procedure when faced with solving harder problems, by providing a class
of additional inequalities that are useful in the context of an intensification
strategy.

7 Additional Inequalities for Intensification from an
Elite Reference Set

We apply a somewhat different process than the type introduced Section 4
to produce new inequalities for the purpose of intensification, based on a
strategy of extracting (or “mining”) useful inequalities from a reference set R

26 Fred Glover

Procedure 4 – Complete Phase 2 Procedure
0. Choose the values Tmin and Tmax and AssignSpan.
1. Solve (LP). (Stop if the first instance of (LP) yields an integer feasible solution

x′′, which therefore is optimal for (MIP:0-1).) Set TabuRefresh(j) = 0 for all
j ∈ N and iter = 0.

2. There exists at least one fractional variable (NF 6= ∅). Remove each blatant
resistor xj , if any exists, from NR and transfer it to N ′(Φ) (or to N ′(1 − x′j)),
yielding NR = NF (0, 1). If j is transferred to N ′(Φ) and j ∈ T , drop j from T .
Also, if T = N ′(0, 1), then drop the last element from T .
(a) If NF = NF (Φ) (hence NR = ∅), apply the NF (Φ) Rule for Generating c′j

and x′j , j ∈ N(k).
(b) If instead NR = ∅, then apply the N ′(0, 1)− T Rule for Generating c′j and

x′j , j ∈ N(k).
(c) Set iter = iter + 1. Using the indexing that produces N(k) in (a) or (b),

add the elements j = 1, 2, . . . , min(Tmin, k) to the front of T (so that
T = (1, 2, . . .) after the addition). If TabuRefresh(j) < iter for any added
element j, set TabuRefresh(j) = iter + v, for v randomly chosen between
AssignLength and 2×AssignSpan (for each such j) and then reduce T to
at most Tmin elements by dropping all elements in positions > Tmin.

3. Solve LP(x′, c′), yielding the solution x′′. Update the Problem Inequalities.
4. If x′′ is integer feasible: update the best solution (x∗, y∗) = (x′′, y′′), update

U0 < x∗0, and return to Step 1. Otherwise, return to Step 2.

of elite solutions. The goal in this case is to generate inequalities that reinforce
the characteristics of solutions found within the reference set. The resulting
inequalities can be exploited in conjunction with inequalities such as (9) and
the systems (12)–(15). Such a combined approach gives an enhanced means
for achieving the previous intensification and diversification goals.

The basis for this inequality mining procedure may be sketched as follows.
Let Countj(v), for v ∈ {0, 1}, denote the number of solutions in R (or more
precisely in an updated instance R′ of R), such that xj = v. We make use of
sets J(0) and J(1) that record the indexes j for the variables xj that most
frequently receive the values 0 and 1, respectively, over the solutions in R. In
particular, at each iteration either J(0) or J(1) receives a new index j∗ for the
variable xj∗ that receives either the value 0 or the value 1 in more solutions
of R′ than any other variable; i.e., xj∗ is the variable having the maximum
Countj(v) value over solutions in R.

Associated with xj∗ , we let v∗ (= 0 or 1) denote the value v that achieves
this maximum Countj(v) value. The identity of j∗ and v∗ are recorded by
adding j∗ to J(v∗). Then J(v∗) is removed from future consideration by drop-
ping it from the current N ′, whereupon R′ is updated by removing all of its
solutions x that contain the assignment xj∗ = v∗. The process repeats until
no more solutions remain in R′. At this point we have a minimal, though
no necessarily minimum, collection of variables such that every solution in R
satisfies the inequality (16) indicated in Step 4 below.

Mixed Binary Optimization 27

Procedure 5 – Inequality Mining Method (for the Elite Reference Set R)
0. Begin with R′ = R, N ′ = N and J(0) = J(1) = ∅.
1. Identify the variable xj∗ , j∗ ∈ N ′, and the value v∗ = 0 or 1 such that

Countj∗(v∗) = max
j∈N′,v∈{0,1}

Countj(v)

Add j∗ to the set J(v∗).
2. Set R′ = R′ − {x ∈ R′ : xj∗ = v∗} and N ′ = N ′ − {j∗}.
3. If R′ = ∅ or N ′ = ∅ proceed to Step 4. Otherwise, determine the updated values

of Countj(v), j ∈ N ′, v ∈ {0, 1} (relative to the current R′ and N ′) and return
to Step 1.

4. Complete the process by generating the inequality∑
j∈J(1)

xj +
∑

j∈J(0)

(1− xj) ≥ 1 (16)

7.1 Generating Multiple Inequalities

The foregoing Inequality Mining Method can be modified to generate multiple
inequalities by the following simple design. Let n(j) be the number of times
the variable xj appears in one of the instances of (16). To initialize these
values we set n(j) = 0 for all j ∈ N in an initialization step that precedes
Step 0. At the conclusion of Step 4, the n(j) values are updated by setting
n(j) = n(j) + 1 for each j ∈ J(0) ∪ J(1).

In the simplest version of the approach, we stipulate that each instance
of (16) must contain at least one xj such that n(j) = 0, thus automatically
assuring every instance will be different. Let L denote a limit on the number
of inequalities we seek to generate. Then, only two simple modifications of the
preceding method are required to generate multiple inequalities.

(A)The method returns to Step 0 after each execution of Step 4., as long as
n(j) = 0 for at least one j ∈ N , and as long as fewer than L inequalities
have been generated;

(B)Each time Step 1 is visited immediately after Step 0 (to select the first
variable xj∗ for the new inequality), we additionally require n(j∗) = 0, and
the method terminates once this condition cannot be met when choosing
the first xj∗ to compose a given instance of (16). Hence on each such “first
execution” of Step 1, j∗ is selected by the rule

Countj∗(v∗) = max
j∈N ′,n(j)=0,v∈{0,1}

Countj(v).

As a special case, if there exists a variable xj such that xj = 1 (respectively,
xj = 0) in all solutions x ∈ R, we observe that the foregoing method will
generate the inequality xj ≥ 1 (respectively, xj ≤ 0) for all such variables.

28 Fred Glover

The foregoing approach can be given still greater flexibility by subdividing
the value n(j) into two parts, n(j : 0) and n(j : 1), to identify the number
of times xj appears in (16) for j ∈ J(0) and for j ∈ J(1), respectively. In
this variant, the values n(j : 0) and n(j : 1) are initialized and updated in
a manner exactly analogous to the initialization and updating of n(j). The
restriction of the choice of j∗ on Step 1, immediately after executing Step 0,
is simply to require n(j∗ : v∗) = 0, by means of the rule

Countj∗(v∗) = max
j∈N ′,n(j:v)=0,v∈{0,1}

Countj(v).

For additional control, the n(j : 0) and n(j : 1) values (or the n(j) values)
can also be constrained not to exceed some specified limit in subsequent iter-
ations of Step 1, in order to assure that particular variables do not appear a
disproportionate number of times in the inequalities generated.

7.2 Additional Ways for Exploiting R

It is entirely possible that elite solutions can lie in “clumps” in different re-
gions. In such situations, a more effective form of intensification can result by
subdividing an elite reference set R into different components by a clustering
process, and then treating each of the individual components as a separate
reference set.

One indication that R should be subdivided is the case where the Inequal-
ity Mining Method passes from Step 3 to Step 4 as a result of the condition
N ′ = ∅. If this occurs when R′ 6= ∅, the inequality (16) is valid only for the
subset of R given by R − R′, which suggests that R is larger than it should
be (or that too many inequalities have been generated). Clustering is also
valuable in the context of using the inequalities of (12) for intensification,
by dividing the target solutions x′ underlying these inequalities into different
clusters.

There is, however, a reverse consideration. If clustering (or some other
construction) produces an R that is relatively small, there may be some risk
that the inequalities (16) derived from R may be overly restrictive, creating a
form of intensification that is too limiting (and hence that has a diminished
ability to find other good solutions). To counter this risk, the inequalities of
(16) can be expressed in the form of goal programming constraints, which are
permitted to be violated upon incurring a penalty.

Finally, to achieve a greater degree of intensification, the Inequality Mining
Method can employ more advanced types of memory to generate a larger
number inequalities (or even use lexicographic enumeration to generate all
inequalities of the indicated form). Additional variation can be achieved by
introducing additional binary variables as products of other variables, e.g.,
representing a product such as x1x2(1 − x3) as an additional binary variable
using standard rules (that add additional inequalities to those composing the

Mixed Binary Optimization 29

system (16)). These and other advanced considerations are addressed in the
approach of satisfiability data mining (Glover [8]).

8 Supplemental Strategic Considerations

This section identifies a number of supplemental strategic considerations to
enhance the performance of the approaches described in preceding sections.

8.1 Dynamic Tabu Condition for Tmax

The value of Tmax can be translated into a tabu tenure that varies within a
specified range, and that can take a different value each time a variable xj

(i.e., its index j) is added to the tabu list T . This can be done by employing
an array TabuEnd(j) initialized at 0 and updated as follows. Whenever j is
added to T , a value v is selected randomly from an interval [Ta, Tb] roughly
centered around Tmax. (For example, if Tmax = n6 the interval might be
chosen by setting Ta = n5 and Tb = n7). TabuEnd(j) is assigned the new
value TabuEnd(j) = v + iter. Subsequently, whenever j is examined to see if
it belongs to T (signaled by Tabu(j) = true), if iter > TabuEnd(j) then j is
dropped from T .

In place of the rule that removes an element from T by selecting the
element at the end of the list as the one to be dropped, we instead identify
the element to be dropped as the one having the smallest TabuEnd(j) value.
When j is thus removed from T , we re-set TabuEnd(j) = 0.

The condition TabuEnd(j) ≥ iter could be treated as equivalent to
Tabu(j) = true, and it would be possible to reference the TabuEnd(j) ar-
ray in place of maintaining the list T , except for the operation that drops
all but the Tmin first elements of T . Because of this operation, we continue
to maintain T as an ordered list, and manage it as specified. (Whenever an
element is dropped from T , it is dropped as if from a linked list, so that the
relative ordering of elements remaining on T is not disturbed.) Alternatively,
T can be discarded if TabuEnd(j) is accompanied by an array TabuStart(j),
where TabuStart(j) = iter at the iteration where j becomes tabu, thus mak-
ing it possible to track the longevity of an element on T .

8.2 Using Model Embedded Memory to Aid in Generating New
Target Objectives

We may modify the specification of the c′j values in Phase 2 by using model
embedded memory, as proposed in parametric tabu search. For this, we replace
the value 20 in the c′j generation rules of Section 6 by a value BaseCost which
is increased on each successive iteration, thus causing the new |c′j | values to
grow as the number of iterations increases. The influence of these values in

30 Fred Glover

driving variables to reach their targets will thus become successively greater,
and targets that have been created more recently will be less likely to be
violated than those created earlier. (The larger the absolute value of c′j the
more likely it will be that xj will not resist its target value x′j by becoming
fractional.)

Consequently, as the values |c′j | grow from one iteration to the next, the
variables that were given new targets farther in the past will tend to be the
ones that become resistors and candidates to receive new target values. As
a result, the c′j coefficients produced by progressively increasing BaseCost
emulate a tabu search recency memory that seeks more strongly to prevent
assignments from changing the more recently that they have been made.

The determination of the c′j values can be accomplished by the same rules
specified in Section 6 upon replacing the constant value 20 by BaseCost.
Starting with BaseCost = 20 in Step 1 of Phase 2, the value of BaseCost
is updated each time iter is incremented by 1 in Step 3 to give BaseCost =
λ×BaseCost where the parameter λ is chosen from the interval λ ∈ [1.1, 1.3].
(This value of λ can be made the same for all iterations, or can be selected
randomly from such an interval at each iteration.)

To prevent the |c′j | values from becoming excessively large, the current |c′j |
values can be reduced once BaseCost reaches a specified limit by the applying
following rule.

Reset BaseCost = 20 and index the variables xj , j ∈ N ′(0, 1) so that
|c′1| ≥ |c′2| ≥ . . . ≥ |c′p| where p = |N ′(0, 1)|.

Define ∆j = |c′j | − |c′j+1| for j = 1, . . . , p − 1.
Select λ ∈ [1.1, 1.3].
Set |c′p| = BaseCost and |c′j | = min(|c′j+1|+ ∆j , λ|c′j+1|) for j = p − 1, . . . , 1.
Let sign(c′j) =“+” if x′j = 0 and sign(c′j) =“−” if x′j = 1, j ∈ N ′(0, 1).
Finally, reset BaseCost = |c′1| (=maxj∈N′(0,1) |c′j |).

The new |c′j | values produced by this rule will retain the same ordering as
the original ones and the signs of the c′j coefficients will be preserved to be
consistent with the target values x′j .

In a departure for diversification purposes, foregoing rule can be changed
by modifying the next to last step to become

Set |c′1| = BaseCost and |c′j+1| = min(|c′j |+ ∆j+1, λ|c′j |) for j = 1, . . . , p− 1

and concluding by resetting BaseCost = |c′p|.

8.3 Multiple Choice Problems

The Phase 2 procedure can be specialized to provide an improved method for
handling (MIP:0-1) problems that contain multiple choice constraints which

Mixed Binary Optimization 31

take the form ∑
j∈Nq

xj = 1, q ∈ Q

where the sets Nq, q ∈ Q, are disjoint subsets of N .
Starting with all j ∈ Nq unassigned (hence Nq ⊂ N ′(Φ)), the specialization

is accomplished by only allowing a single j ∈ Nq to be transferred from N ′(Φ)
to N ′(1). Once this transfer has occurred, let j(q) denote the unique index
j ∈ N ′(1)∩Nq and let xj(q) denote a resisting variable, hence j(q) ∈ NR. After
disposing of blatant resistors, we are assured that such a resisting variable
satisfies j(q) ∈ NF (i.e., xj(q) is fractional).

We seek a variable xj∗ to replace xj(q) by selecting

j∗ = arg max
j∈NR∩(Nq−{j(q)})

RRj − T

(note j ∈ NR∩ (Nq −{j(q)}) implies j ∈ N ′(0)), or if no such index j∗ exists,
selecting

j∗ = arg max
j∈N ′(Φ)∩Nq

RRj − T.

Then j∗ is transferred from its present set, N ′(0) or N ′(Φ), to N ′(1), and
correspondingly j(q) is transferred from N ′(1) to either N ′(1) or N ′(Φ). After
the transfer, j(q) is re-defined to be given by j(q) = j∗.

8.4 Generating the targets x′
j and coefficients c′

j post-optimization

More advanced evaluations for generating new target assignments and objec-
tives for the Phase 2 procedure can be created by using linear programming
post-optimization. The approach operates as follows.

The procedures described in Section 6 are used to generate a candidate set
N(k) of some number k of “most promising options” for further consideration.
The resulting variables xj , j ∈ N(k), are then subjected to a post-optimization
process to evaluate them more thoroughly. We denote the value k for the
present approach by k#, where k# can differ from the k used in the component
rules indicated in Section 6. (k# may reasonably be chosen to lie between 3 and
8, though the maximum value of k# can be adapted from iteration to iteration
based on the amount of effort required to evaluate the current variables that
may be associated with N(k#).) By the nature of the process described below,
the value of k in Phase 2 will be limited to satisfy k ≤ k#.

As in the Phase 2 procedure, there are two cases, one where no resistors
exits and N(k#) is composed of fractional variables from the set NF (Φ),
and the other where resistors exist and N(k#) is composed of resistors and
potential resistors from the set N ′(0, 1). To handle both of these cases, let cmax

denote the absolute value of the maximum c′j coefficient normally assigned on
the current iteration, i.e., cmax = |c′1| where c′1 is identified by the indexing
used to create the candidate set N(k#). Also, let v′′0 (= c′x′′) denote the

32 Fred Glover

objective function value for the current solutions x′′ of LP(c′, x′), where we
include reference to the associated value x′′0 by including x0 as a secondary
objective, as discussed in Section 1. (i.e., implicitly v′′0 = c′x′′ + εx′′0 for some
small value ε. The reference to x′′0 is particularly relevant to the case where
no resistors exist, since then c′x′′ = 0.)

We then evaluate the assignment that consists of setting x′j = 0 and c′j =
cmax or setting x′j = 1 and c′j = −cmax for each j ∈ N(k#), to determine
the effect of this assignment in changing the value of v′′0 upon solving the new
LP(c′, x′) (i.e., the form of LP(c′, x′) that results for the indicated new value
of x′j and c′j). To avoid undue computational expense, we limit the number of
iterations devoted to the post-optimization performed by the primal simplex
method to solve the new LP(c′, x′). (The post-optimization effort is unlikely
to be excessive in any event since the new objective changes only the single
coefficient c′j .)

Denote the new x′j and c′j values for the variable xj currently being evalu-
ated by x#

j and c#
j and denote the new v′′0 that results by the post-optimization

process by v#
0 . Then we employ v#

0 to evaluate the merit of the option of as-
signing x′j = x#

j and c′j = c#
j .

Case 1. N(k#) ⊂ NF (Φ) (and there are no resistors).
Both of the options consisting of setting x#

j = 0 and c#
j = cmax and of

setting x#
j = 1 and c#

j = −cmax exist for each j ∈ N(k#). Denote the
quantity v#

0 for each of these two options respectively by v#
0 (j : 0) and

v#
0 (j : 1). Then we prefer to make the assignment x#

j = v# where

v# = arg min
v∈{0,1}

v#
0 (j : v),

and we select the index j# ∈ N(k#) for this assignment by

j# = arg max
j∈N(k#)

EVj ,

where EVj is the evaluation given by EVj = |v#
0 (j : 0) − v#

0 (j : 1)|.
(Greater refinement results by stipulating that

min
v#
0 (j:1)

v#
0 (j : 0)

equals or exceeds a specified threshold value, such as the average of the
min(v#

0 (j : 0), v#
0 (j : 1)) values over j ∈ N(k#).)

Case 2. N(k#) ⊂ N ′(0, 1)− T (and resistors exist)
In this case only a single option exists, which consists of setting x#

j = 1−x′j
and setting c#

j = cmax or −cmax according to whether the resulting x#
j

Mixed Binary Optimization 33

is 0 or 1. The evaluation rule is therefore simpler than in Case 1: the
preferred j# for implementing the single indicated option is given simply
by

j# = arg min
j∈N(k#)

v#
0 .

In both Case 1 and Case 2, if more than one xj is to be assigned a new
target, the elements of N(k#) can be ordered by the indicated evaluation to
yield a subset that constitutes the particular N(k) used in Phase 2 (where
possibly k < k#).

The foregoing approach can be the foundation of an aspiration criterion
for determining when a tabu element should be relieved of its tabu status.
Specifically, for Case 2 the set N(k#) can be permitted to include some small
number of tabu elements if they would qualify to belong to N(k#) if removed
from T . (k# might be correspondingly increased from its usual value to allow
this eventuality.) Then, should the evaluation v#

0 (j : x#
j) be 0 for some such

j ∈ T , indicating that all variables achieve their target values in the solution to
the associated problem LP(c′, x′), and if no j ∈ N(k#)−T achieves the same
result, then the identified j ∈ T may shed its tabu status and be designated
as the preferred element j# of Case 2.

8.5 Target Analysis

Target analysis is a strategy for creating a supervised learning environment to
determine effective parameters and choice rules (see, e.g., Glover and Green-
berg [10]; Glover and Laguna [11]). We refer to a target solution in the context
of target analysis as an ultimate target solution to avoid confusion with the
target solutions discussed in preceding sections of this paper. Such an ultimate
target solution, which we denote by xt, is selected to be an optimal (or best
known) solution to (MIP:0-1). The supervised learning process of target anal-
ysis is applied to identify decision rules for a particular method to enable it to
efficiently obtain solutions xt to a collection of problems from a given domain.
The approach is permitted to expend greater effort than normally would be
considered reasonable to identify the solutions xt used to guide the learning
process (unless by good fortune such solutions are provided by independent
means).

Target analysis can be applied in the context of both the Phase 1 and Phase
2 procedures. We indicate the way this can be done for Phase 2, since the
Phase 1 approach is simpler and can be handled by a simplified variant. The
target analysis operates by examining the problems from the collection under
consideration one at a time to generate information that will then be subjected
to a classification method to determine effective decision rules. At any given
iteration of the Phase 2 procedure, we have available a variety of types of
information that may be used to compose a decision rule for determining
whether particular variables xj should be assigned a target value of x′j = 0 or

34 Fred Glover

x′j = 1. The goal is to identify a classification rule, applied to this available
information, so that we can make correct decisions; i.e., so that we can choose
xj to receive its value in the solution xt, given by x′j = xt

j .
Denote the information associated with a given variable xj as a vector Ij

(“I” for “information”). For example, in the present setting, Ij can consist of
components such as x′′j , x0

j , Vj , |c′j |,∆j , RMj , λj , RRj , Rλj , and so forth, de-
pending on whether xj falls in category identified in Step 2(a) or Step 2(b) of
the Phase 2 procedure. The advanced information given by the values v#

0 (j : v)
discussed in Section 8.4 is likewise relevant to include. For those items of in-
formation that can have alternative definitions, different components of Ij can
be created for each alternative. This allows the classification method to base
its rules on multiple definitions, and to identify those that are preferred. In
the case of parameterized evaluators such as RRj , different instances of the
evaluator can be included for different parameter settings (values of λ), thus
allowing preferred values of these parameters likewise to be identified. On the
other hand, some types of classification procedures, such as separating hy-
perplane methods, automatically determine weights for different components
of Ij and for such methods the identification of preferred parameter values
occurs implicitly by reference to the weights of the basic components, without
the need to generate multiple additional components of Ij .

From a general perspective, a classification procedure for Phase 2 may be
viewed as a method that generates two regions R(0) and R(1), accompanied
by a rule (or collection of rules) for assigning each vector of information Ij to
exactly one of these regions. The goal is compose R(0) and R(1) and to define
their associated assignment rule in such a fashion that Ij will be assigned
to R(0) if the correct value for xj is given by xt

j = 0, and will be assigned
to R(1) if the correct value for xj is given by xt

j = 1. Recognizing that the
classification procedure may not be perfect, and that the information available
to the procedure may not be ideal, the goal more precisely is to make “correct
assignments” for as many points as possible. We will not discuss here the
relative merits of different types of classification methods, but simply keep in
mind that the outcome of their application is to map points Ij into regions
R(0) and R(1). Any reasonable procedure is likely to do a very much better
job of creating such a mapping, and hence of identifying whether a given
variable xj should be assigned the value 0 or 1, than can be accomplished by
a trial and error process to combine and calibrate a set of provisional decision
rules. (An effort to simply “look at” a range of different data points Ij and
figure out an overall rule for matching them with the decisions xj = 0 and
xj = 1 can be a dauntingly difficult task.)

In one sense, the classification task is easier than in many classification
settings. It is not necessary to identify a correct mapping of Ij into R(0) or
R(1) for all variables xj at any given iteration of Phase 2. If we can identify
a mapping that is successful for any one of the variables xj in the relevant
category of Step 2(a) or Step 2(b) of the Phase 2 procedure, then the procedure
will be able to quickly discover the solution xt. Of course, the mapping must

Mixed Binary Optimization 35

be able to detect the fact that assigning a particular Ij to R(0) or R(1) is
more likely to be a correct assignment than one specified for another Ij . (For
example, if a particular point Ij is mapped to lie “deeply within” a region
R(0) (or R(1)), then the classification of Ij as implying xt

j = 0 (or xt
j = 1) is

presumably more likely to be correct. In the case of a separating hyperplane
procedure, for instance, such a situation arises where a point lies far from
the hyperplane, hence deeply within one of the two half-spaces defined by the
hyperplane.)

The points Ij to be classified, and that are used to generate the regions
R(0) and R(1) (via rules that map the points into these regions), are drawn
from multiple iterations and from applications of Phase 2 on multiple prob-
lems. Consequently, the number of such data points can potentially be large
and discretion may be required to limit them to a manageable number. One
way to reduce the number of points considered is to restrict the points Ij

evaluated to those associated with variables xj for j ∈ N(k). The smaller
the value of kmax, the fewer the number of points generated at each iteration
to become inputs for the classification procedure. Another significant way to
reduce the number of points considered derives from the fact that we may ap-
propriately create a different set of rules, and hence different regions R(0) and
R(1), for different conditions. A prominent example concerns the conditions
that differentiate Step 2(a) from Step 2(b).

Still more particularly, the condition NF = NF (Φ) of Step 2(a), which
occurs when there are no fractional resistors, can receive its own special treat-
ment. In this case we are concerned with determining target values for frac-
tional variables that are not currently assigned such x′j values. In an ideal
situation, we would identify an optimal target value x′j for some such variable
at each step (considering the case for kmax = 1, to avoid the difficulty of
simultaneously identifying optimal x′j values for multiple variables simultane-
ously), and Phase 2 would then discover the solution xt almost immediately.
In addition, no resistors would ever arise, and the condition NF = NF (Φ)
would be the only one relevant to consider at any step.

Consequently, to create a mapping and associated sets R(0) and R(1) for
the condition NF = NF (Φ), it is appropriate to control each iteration of
Phase 2 for the purpose of target analysis so that only “correct decisions” are
implemented at each iteration. Then the data points Ij for j ∈ NF (Φ) are
based on information that is compatible with reaching the ultimate target xt

at each step. (If an incorrect target x′j were produced on some step, so that xj

is induced to receive the wrong value, then it could be that the “correct rule”
for a new (different) variable xh would not be to assign it the target x′h = xt

h,
because the target x′h = 1 − xt

h might lead to the best solution compatible
with the previous assignment xj = x′j .)

Once such a controlled version of target analysis produces rules for classi-
fying vectors Ij for j ∈ N(Φ), then these decision rules can be “locked into”
the Phase 2 procedure, and the next step is to determine rules to handle the
condition NR 6= ∅ of Step 2(b). Thus the target analysis will execute Phase 2

36 Fred Glover

for its “best current version” of the rules for determining assignments xj = x′j
(which for Step 2(b) amounts to determining which variables should reverse
their assignments to set x′j = 1 − x′j). This procedure can also be controlled
to an extent to prevent the current collection of x′j targets from diverging to
widely from the xt

j values. The resulting new rules generated by the classifica-
tion method can then be embedded within a new version of Phase 2, and this
new version can be implemented to repeat the target analysis and thereby
uncover still more refined rules.

This process can also be used to identify aspiration criteria for tabu search.
Specifically, an additional round of target analysis can be performed that
focuses strictly on the tabu variables xj , j ∈ T on iterations where Step 2(b)
applies. Then the classification procedure identifies a mapping of the vectors
Ij for these tabu variables into the regions R(0) and R(1). A version of Phase
2 can then use this mapping to identify vectors Ij for j ∈ T that lie deeply
within R(0) and R(1), and to override the tabu status and drop j from T if
Ij lies in R(v) but x′j = 1− v. This rule can be applied with additional safety
by keeping track of how often a tabu variable is evaluated as preferably being
assigned a target value that differs from its current assignment. If such an
evaluation occurs sufficiently often, then the decision to remove j from T can
be reinforced.

8.6 Incorporating Frequency Memory

Tabu search methods typically incorporate frequency memory to improve their
efficacy, where the form of such memory depends on whether it is intended to
support intensification or diversification strategies.

Frequency memory already implicitly plays a role in the method for han-
dling the tabu list T described in Section 6.3, since a variable that is frequently
added to T is automatically prevented from initiating a refreshing operation,
and hence T will continue to grow up to its limit of Tmax elements until a
variable that is less frequently added (or more specifically, that has not been
added for a sufficient duration) become a member of T and launches an op-
eration that causes T to shrink.

We consider two additional ways frequency memory can be employed
within the Phase 2 procedure. The first supports a simple diversification ap-
proach by employing an array Target(j : v) to record how many iterations xj

has been assigned the target value v ∈ {0, 1} throughout previous search, or
throughout search that has occurred since x∗0 was last updated. (The type of
frequency memory is called residence frequency memory.) The diversification
process then penalizes the choice of an assignment xj = v for variables xj and
associated values v for which Target(j : v) lies within a chosen distance from

max
j∈N,v∈{0,1}

Target(j : v),

Mixed Binary Optimization 37

motivated by the fact that this maximum identifies a variable xj and value
v such that the assignment xj = v has been in force over a larger span of
previous iterations than any other target assignment.

A more advanced form of frequency memory that supports an intensifi-
cation process derives from parametric tabu search. This approach creates
an intensification score InScore(xj = x#

j) associated with assigning xj the
new target value x#

j , and takes into account the target assignments xh = x′h
currently active for other variables xh for h ∈ N ′(0, 1) − {j}. The score is
specifically given by

InScore(xj = x#
j) =

∑
h∈N ′(0,1)−{j}

Freq(xj = x#
j , xh = x′h)

where Freq(xj = x#
j , xh = x′h) denotes the number of times that the assign-

ments xj = x#
j and xh = x′h have occurred together in previously identified

high quality solutions, and more particularly in the elite solutions stored in the
reference set R as described in Section 7. Abstractly, Freq(xj = x#

j , xh = x′h)
constitutes a matrix with 4n2 entries (disregarding symmetry), one for each
pair (j, h) and the 4 possible assignments of 0-1 values to the pair xj and xh.
However, in practice this frequency value can be generated as needed from
R, without having to account for all assignments (all combinations of xj and
xh = 0 and 1) since only a small subset of the full matrix entries will be
relevant to the set R. The portion of the full matrix relevant to identifying
the values Freq(xj = x#

j , xh = x′h) is also further limited by the fact that
the only variables xj considered on any given iteration are those for which
j ∈ N(k) where k is a relatively small number. (In the case treated in Step
2(b) of the Phase 2 Procedure, a further limitation occurs since only the single
x#

j value given by x#
j = 1− x′j is relevant.)

By the intensification perspective that suggests the assignments that occur
frequently over the elite solutions in R are also likely to occur in other high
quality solutions, the value InScore(xj , x

#
j) is used to select a variable xj to

assign a new target value x#
j by favoring those variables that produce higher

scores. (In particular, the assignments xj = x#
j for such variables occur more

often in conjunction with the assignments xh = x′h, h ∈ N ′(0, 1) − {j} over
the solutions stored in R.)

9 Conclusions

Branch-and-bound (B&B) and branch-and-cut (B&C) methods have long con-
sidered the methods of choice for solving mixed integer programming prob-
lems. This orientation has resulted in attracting contributions to these classi-
cal methods from many researchers, and has led to successive improvements
in these methods extending over a period of several decades. In recent years,

38 Fred Glover

these efforts to create improved B&B and B&C solution approaches have in-
tensified and have produced significant benefits, as evidenced by the existence
of MIP procedures that are appreciably more effective than their predecessors.

It remains true, however, that many MIP problems resist solution by the
best current B&B and B&C methods. It is not uncommon to encounter prob-
lems that confound the leading commercial solvers, resulting in situations
where these solvers are unable to find even moderately good feasible solu-
tions after hours, days, or weeks of computational effort. As a consequence,
metaheuristic methods have attracted attention as possible alternatives or
supplements to the more classical approaches. Yet to date, the amount of ef-
fort devoted to developing good metaheuristics for MIP problems is almost
negligible compared to the effort being devoted to developing refined versions
of the classical methods.

The view adopted in this paper is that metaheuristic approaches can ben-
efit from a change of perspective in order to perform at their best in the MIP
setting. Drawing on lessons learned from applying classical methods, we an-
ticipate that metaheuristics can likewise profit from generating inequalities
to supplement their basic functions. However, we propose that these inequal-
ities be used in ways not employed in classical MIP methods, and indicate
two principal avenues for doing this: the first by generating the inequalities in
reference to strategically created target solutions and target objectives, as in
Sections 3 and 4, and the second by embedding these inequalities in special
intensification and diversification processes, as in Sections 5 and 7 (which also
benefit by association with the targeting strategies).

The use of such strategies raises the issue of how to compose the target
solutions and objectives themselves. Classical MIP methods such as B&B and
B&C again provide a clue to be heeded, by demonstrating that memory is
relevant to effective solution procedures. However, we suggest that gains can
be made by going beyond the rigidly structured memory employed in B&B
and B&C procedures. Thus we make use of the type of adaptive memory
framework introduced in tabu search, which offers a range of recency and
frequency memory structures for achieving goals associated with short term
and long term solution strategies. Section 6 examines ways this framework can
be exploited in generating target objectives, employing both older adaptive
memory ideas and newer ones proposed here for the first time. Additional
opportunities to enhance these procedures described in Section 8 provide a
basis for future research.

Acknowledgment

I am grateful to Said Hanafi for a preliminary critique of this paper and for
useful observations about connections to other work. I am also indebted to
César Rego for helpful suggestions that have led to several improvements.

Mixed Binary Optimization 39

References

1. Balas E Jeroslow R (1972) Canonical Cuts on the Unit Hypercube. SIAM Jour-
nal of Applied Mathematics, 23(1):60–69.

2. Dantzig G (1963) Linear Programming and Extensions. Princeton University
Press, Princeton, NJ.

3. Davoine T Hammer PL Vizviári B (2003). A Heuristic for Boolean Optimization
Problems. Journal of Heuristics 9:229–247.

4. Fischetti M Glover F Lodi A (2005) Feasibility Pump. Mathematical Program-
ming – Series A 104:91–104.

5. Glover F (1978) Parametric Branch and Bound. OMEGA, The International
Journal of Management Science 6(2):145–152.

6. Glover F (2005) Adaptive Memory Projection Methods for Integer Program-
ming. In: Rego C Alidaee B (eds) Metaheuristic Optimization Via Memory and
Evolution: Tabu Search and Scatter Search. Kluwer Academic Publishers.

7. Glover F (2006) Parametric Tabu Search for Mixed Integer Programs. Com-
puters and Operations Research 33(9):2449–2494.

8. Glover F (2006a) Satisfiability Data Mining for Binary Data Classification
Problems. Research Report, University of Colorado, Boulder.

9. Glover F (2007) Infeasible/Feasible Search Trajectories and Directional Round-
ing in Integer Programming. Journal of Heuristics, Kluwer Publishing (to ap-
pear).

10. Glover F Greenberg H (1989) New Approaches for Heuristic Search: A Bilateral
Linkage with Artificial Intelligence. European Journal of Operational Research
39(2):119–130.

11. Glover F Laguna M (1997) Tabu Search. Kluwer Academic Publishers.
12. Glover F Sherali HD (2003) Foundation-Penalty Cuts for Mixed-Integer Pro-

grams. Operations Research Letters 31:245–253.
13. Guignard M Spielberg K (2003) Double Contraction, Double Probing, Short

Starts and BB-Probing Cuts for Mixed (0,1) Programming. Wharton School
Report.

14. Hanafi S Wilbaut C (2006) Improved Convergent Heuristic for 0-1 Mixed Inte-
ger Programming. Research Report, University of Valenciennes.

15. Hvattum LM Løkketangen A Glover F (2004) Adaptive Memory Search for
Boolean Optimization Problems. Discrete Applied Mathematics 142:99–109.

16. Nediak M Eckstein J (2007) Pivot, Cut, and Dive: A Heuristic for Mixed 0-1
Integer Programming. Journal of Heuristics, Kluwer Publishing (to appear).

17. Pardalos PS Shylo OV (2006) An Algorithm for Job Shop Scheduling based on
Global Equilibrium Search Techniques. Computational Management Science
(Published online), DOI: 10.1007/s10287-006-0023-y.

18. Patel J Chinneck JW (2006) Active-Constraint Variable Ordering for Faster
Feasibility of Mixed Integer Linear Programs. Mathematical Programming (to
appear).

19. Pedroso JP (2005) Tabu Search for Mixed Integer Programming. In: Rego C
Alidaee B (eds) Metaheuristic Optimization via Memory and Evolution: Tabu
Search and Scatter Search. Kluwer Academic Publishers.

20. Shylo OV (1999) A Global Equilibrium Search Method. (Russian) Kybernetika
I Systemniy Analys 1:74–80.

21. Soyster AL Lev B Slivka W (1978) Zero-One Programming with Many Variables
and Few Constraints. European Journal of Operational Research 2(3):195–201.

40 Fred Glover

22. Spielberg K Guignard M (2000) A Sequential (Quasi) Hot Start Method for BB
(0,1) Mixed Integer Programming. Mathematical Programming Symposium,
Atlanta.

23. Ursulenko A (2006) Notes on the Global Equilibrium Search. Working paper,
Texas A&M University.

24. Wilbaut C Hanafi S (2006) New Convergent Heuristics for 0-1 Mixed Integer
Programming. Research Report, University of Valenciennes.

