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ABSTRACT

We provide a descriptive review of the main approaches
for carrying out simulation optimization, and sample
some recent algorithmic and theoretical developments
in simulation optimization research. Then we survey
some of the software available for simulation languages
and spreadsheets, and present several illustrative appli-
cations.

1 INTRODUCTION

The advances in computing power and memory over the
last decade have opened up the possibility of optimizing
simulation models. This development offers one of the
most exciting opportunities in simulation, and there are
plenty of interesting research problems in the field. The
goals of this tutorial include the following:

• to provide a general overview of the primary ap-
proaches found in the research literature, and in-
clude pointers/references to the state of the art;

• to survey some of the commercial software;

• to illustrate the problems through examples and
real-world applications.

The general optimization problem we consider it to
find a setting of controllable parameters that minimizes
a given objective function, i.e.,

min
θ∈Θ

J(θ), (1)

where θ ∈ Θ represents the (vector of) input variables,
J(θ) is the (scalar) objective function, and Θ is the
constraint set, which may be either explicitly given or
implicitly defined.

The assumption in the simulation optimization set-
ting is that J(θ) is not available directly, but must be
estimated through simulation, e.g., the simulation out-
put provides Ĵ(θ), a noisy estimate of J(θ). The most

common form for J is an expectation, e.g.,

J(θ) = E[L(θ, ω)],

where ω represents a sample path (simulation replica-
tion), L is the sample performance measure. Although
this form is fairly general (includes probabilities by us-
ing indicator functions), it does exclude certain types
of performance measures such as the median (and other
quantiles) and the mode.

Real-World Example: Call Center Design
The state-of-the-art call centers (sometimes called con-
tact centers) integrate traditional voice operations with
both automated response systems (computer account
access) and Internet (Web-based) services, often spread
over multiple geographically separate sites. Most of
these centers handle multiple sources of jobs, including
voice, e-mail, fax, and interactive Web, each of which
may require a different levels of operator (call agent)
training, as well as different priorities, e.g., voice al-
most always preempting any of the other contact types
(except possibly interactive Web). There are also differ-
ent types of jobs according to the service required, e.g.,
checking the status of an order versus placing a new
order versus requesting live service help. Furthermore,
because of individual customer segmentation, there are
different classes of customers in terms of priority lev-
els. Designing and operating such a call center includes
such problems as selecting the number of operators at
each skill level, and determining what routing algorithm
and type of queue discipline to use. A trade off must
be made between achieving a desired level of customer
service and the cost of providing service. An objective
function might incorporate costs associated with oper-
ations such as agent wages and network utilization, as
well as customer service performance metrics such as
the probability of waiting more than a certain amount
of time. This is just one example of how simulation op-
timization can be applied to business process manage-
ment. A similar design problem is considered later in
the applications section for a hospital emergency room.
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Toy Example: Single-Server Queue
Consider a first-come, first-served (FCFS) single-server
queue. A well-studied optimization problem uses the
following objective function (cf. Fu 1994):

J(θ) = E[W (θ)] + c/θ, (2)

where W is the mean time spent in the system, θ is the
mean service time of the server (so 1/θ corresponds to
the server speed), and c is the cost factor for the server
speed (i.e., a higher-skilled worker costs more). Since
W is increasing in θ, the objective function quantifies
the trade-off between customer service level and cost of
providing service. This could be viewed as the simplest
possible case of the call center design problem, where
there is a single operator whose skill level must be se-
lected. For the special M/M/1 queue in steady state,
this problem is analytically tractable, and serves as a
test case for optimization procedures.

Another Academic Example: Inventory Control
The objective is to minimize a total cost function con-
sisting of ordering, holding, and backlogging or lost
sales components. The ordering policy involves two pa-
rameters, s and S, corresponding to the re-order level
and order-up-to level, respectively. When the inventory
level falls below s, an order is placed for an amount that
would bring the current level back up to S.

The input variables can be divided into two main
types: qualitative and quantitative. In the call center
example, both types are present, whereas in the two
simpler examples, the input variables are quantitative.
Quantitative variables are then either discrete or con-
tinuous. Many of the call center variables are inherently
discrete, e.g., the number of operators, whereas in the
single-server queue and inventory control examples, the
input variables θ and (s, S) could be specified as either,
depending on the particular problem setting or solution
technique being applied. As in deterministic optimiza-
tion, the approaches to solve these different types of
problems can differ greatly.

To get an idea of the particular challenges facing sim-
ulation optimization, consider the problem of finding
the value of θ that minimizes the objective function in
(1) versus the problem of finding the minimum value
of the objective function itself. In terms of our nota-
tion, this is the difference between finding a setting θ∗

that achieves the minimum in (1) versus finding the
value of J(θ∗). A key difference between deterministic
optimization and stochastic optimization is that these
two problems are not necessarily the same! In deter-
ministic optimization, where J can be easily evaluated,
the two problems are essentially identical; however, in
the stochastic setting, one or the other may be easier.

Furthermore, it may also be the case that only one or
the other is the real goal of the modeling exercise. In
some cases, selecting the best design is the goal, and the
objective function is merely a means towards achieving
this end, providing a way to measuring the relative per-
formance of each design, whereas the absolute value of
the metric may have little meaning. In other cases,
the objective function may have intrinsic meaning, e.g.,
costs or profits. And in yet other (less frequent) cases,
estimating the optimal value itself is the primary goal.
An example of this is the pricing of financial derivatives
with early exercise opportunities (especially when done
primarily for the sake of satisfying regulatory require-
ments of marking a portfolio to market).

To put it another way, simulation optimization has
two major components that vie for computational re-
sources: search and evaluation. How to balance be-
tween the two, i.e., how to best allocate simulation
replications, is a large challenge in making simulation
optimization practical. To be concrete, one is choosing
between simulation replications to get better estimates
versus more iterations of the optimization algorithm to
more thoroughly explore the search space.

2 APPROACHES

We now briefly describe the main approaches in the
simulation literature.

2.1 Ranking & Selection

In the setting where it is assumed that there is a fixed
set of alternatives — so no search for new candidates is
involved — the problem comes down to one of statisti-
cal inference, and ranking & selection procedures can be
applied. Let the probability of correct selection be de-
noted by PCS, which we will not define formally here,
but intuitively “correct selection” would mean either
selecting either the best solution or a solution within
some presecified tolerance of the best.

There are two main forms the resulting problem for-
mulations can take:

(i) minimize the number of simulation replications
subject to the PCS exceeding a given level.

(ii) maximize the PCS subject to a given simulation
budget constraint;

In case (i), one ensures a level of correct selection, but
has little control over how much computation this might
entail. This is the traditional statistics ranking & se-
lection approach, and in the simulation setting, Kim
and Nelson (2005) overview the state of the art, where
multiple comparison procedures can be used to provide
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valid confidence intervals, as well; see also Goldsman
and Nelson (1998). The books by Bechhofer, Sant-
ner, and Goldsman (1995) and Hochberg and Tamhane
(1987) contain more general discussion of multiple com-
parison procedures outside of the simulation setting.

In case (ii), one tries to do the best within a speci-
fied computational limit, but a priori one may not have
any idea how good the resulting solution will be. This
formulation was coined the “optimal computing bud-
get allocation” (OCBA) problem, as first proposed by
Chen (1995). Subsequent and related work includes
Chick and Inoue (2001ab), Chen et al. (2005), Fu et
al. (2005).

Ranking & selection procedures can also used in the
following ways that are relevant to simulation opti-
mization: for screening a large set of alternatives, i.e.,
quickly (meaning based on a relatively small amount
of replications) eliminating poor performers in order to
get a more manageable set of alternatives; for compar-
ing among candidate solutions in an iterative algorithm,
e.g., deciding whether or not an improvement has been
made; for providing some statistical guidance in assess-
ing the quality of the declared best solution versus all
the solutions visit. The latter is what Boesel, Nelson
and Kim (2003) call “cleaning up” after simulation op-
timization.

The framework of ordinal optimization (Ho, Sreeni-
vas, and Vakili 1992; Ho et al. 2000) might also be
classified under ranking & selection. This approach is
based on the observation that in most cases it is much
easier to find ordering among candidate solutions than
to carry out the estimation procedure for each solution
individually, and then try to rank order the solutions.
This can be especially true in the simulation setting,
where the user has more control, so for instance can
use common random numbers to induce positive cor-
relation between estimates of solution performance to
dramatically reduce the number of simulation replica-
tions required to make a distinction. Intuitively, it is the
difference between estimating J1−J2 = E[L1−L2] ver-
sus “estimating” P (J1 > J2), say using the simple mean
based on n simulation replications. Estimating the for-
mer using the sample mean is governed by the Monte
Carlo convergence rate of n−1/2, whereas deciding on
the latter based on the sample mean has an exponential
convergence rate. Using the theory of large deviations
from probability, Dai and Chen (1997) explore this ex-
ponential rate of convergence in the discrete-event sim-
ulation context.

2.2 Response Surface Methodology

Response surface methodology (RSM) has its roots in
statistical design of experiments, and its goal is to ob-

tain an approximate functional relationship between
the input variables and the output objective function.
In design of experiments terminology, these are re-
ferred to as the factors and the response, respectively.
RSM carried out on the entire domain of interest re-
sults in what is called a metamodel (see Barton 2005).
The two most common ways of obtaining this repre-
sentation are regression and neural networks. Once
a metamodel is in hand, optimization can be carried
out using deterministic optimization procedures. How-
ever, when optimization is the focus, a form of se-
quential RSM is usually employed (Kleijnen 1998), in
which a local response surface representation is ob-
tained that guides the sequential search. For example,
linear regression could be used to obtain an estimate
of the direction of steepest descent. This approach
is model free, well-established, and fairly straightfor-
ward to apply, but it is not implemented in any of
the commercial packages. Until recently, SIMUL8
(<http://www.SIMUL8.com/optimiz1.htm>) had em-
ployed an optimization algorithm based on a form of
sequential RSM using neural networks, but now uses
OptQuest instead. The primary drawback seems to be
the excessive use of simulation points in one area before
exploring other parts of the search space. This can be
especially exacerbated when the number of input vari-
ables is large. Recently, kriging has been proposed as
a possibly more efficient way of carrying out this step
(see van Beers and Kleijnen 2003). For more informa-
tion on RSM procedures for simulation optimization,
see Barton (2005) and Kleijnen (1998).

2.3 Gradient-Based Procedures

The gradient-based approach tries to mimic its coun-
terpart in deterministic optimization. In the stochastic
setting, the resulting procedures usually take the form
of stochastic approximation (SA) algorithms; the book
by Kushner and Yin (1997) contains a general discus-
sion of SA outside of simulation. Specifically, given a
current best setting of the input variables, a movement
is made in the gradient direction, similar to sequen-
tial RSM. However, unlike sequential RSM procedures,
SA algorithms can be shown to be provably convergent
(asymptotically, usually to a local optimum) under ap-
propriate conditions on the gradient estimator and step
sizes, and they generally require far less simulations per
iteration. Practically speaking, the key to making this
approach successful is the quality of the gradient esti-
mator. Fu (2005) surveys the main approaches avail-
able for coming up with gradient estimators that can
be implemented in simulation. These include “brute-
force” finite differences, simultaneous perturbations,
perturbation analysis, the likelihood ratio/score func-
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tion method, and weak derivatives. For technical details
on simultaneous perturbation stochastic approximation
(SPSA), see Spall (1992), Fu and Hill (1997), Spall
(2003), and <http://www.jhuapl.edu/spsa>. SPSA
has two advantages over the other methods: it requires
only two simulations per gradient estimate, regardless
of the number of input variables, and it can treat the
simulation model as a black box, i.e., no knowledge of
the workings of the system is required (model free). A
one-simulation version of SPSA is also available, but in
practice it appears far noisier than the two-simulation
version, even accounting for the effort being half as
much.

An in-depth study of various gradient-based algo-
rithms for the single-server M/M/1 queue example can
be found in L’Ecuyer, Giroux, and Glynn (1994); see
Fu (1994b) and Fu and Healy (1997) for the (s, S)
inventory system. Kapuscinski and Tayur (1999) de-
scribe the use of perturbation analysis in a simulation
optimization framework for inventory management of
a capacitated production-inventory system. This ap-
proach was implemented on the worldwide supply chain
of Caterpillar (its success reported in a Fortune maga-
zine article by Philip Siekman, October 30, 2000: “New
Victories in the Supply Chain Revolution”). The pri-
mary drawback of the gradient-based approach is that it
currently is really only practically applicable to the con-
tinuous variable case, notwithstanding recent attempts
to apply it to discrete-valued variables. Furthermore,
estimating direct gradients may require knowledge of
the underlying model, and the applicability of such es-
timators is often highly problem dependent.

2.4 Random Search

In contrast to gradient-based procedures, random
search algorithms are targeted primarily at discrete in-
put variable problems. They were first developed for
deterministic optimization, but have been extended to
the stochastic setting. Like gradient-based procedures,
they proceed by moving iteratively from a current best
setting of the input variables (candidate solution). In-
stead of using a gradient, however, the next move is
probabilistically drawn from the “neighborhood” of the
current best. For example, defining the neighborhood
of a solution as all of the other solutions and drawing
from a uniform distribution (assuming the number of
feasible solutions is finite) would give a “pure” random
search algorithm. Practically speaking, the success of
a particular random search algorithm depends heavily
on the defined neighborhood structure. Furthermore,
in the stochastic setting, the estimation problem must
also be incorporated into the algorithm. Thus, the two
features that define an algorithm in the simulation op-

timization setting are
(a) how the next candidate solution(s) is(are) chosen;
and
(b) how to determine which is the current best solution
(which is not necessarily the current iterate).
The second feature (b) does not arise in the determin-
istic setting, because the current best (among visited
solutions) is known with certainty, since the objective
function values have no estimation noise. However, in
the stochastic case, due to the noise in the objective
function estimates, there are many possible choices,
e.g., the current solution, the solution that has been
visited the most often, or the solution that has the best
sample mean thus far.

Like stochastic approximation algorithms, random
search algorithms can generally be shown to be provably
convergent (often to a global optimum). For more de-
tails on random search methods in simulation, see An-
dradóttir (2005); for a more general survey on discrete
input simulation optimization problems, see Swisher
et al. (2001). A recently proposed version of ran-
dom search that is very promising is Convergent Op-
timization via Most-Promising-Area Stochastic Search
(COMPASS), introduced by Hong and Nelson (2005),
which utilizes a unique neighborhood structure and re-
sults in a provably convergent algorithm to a locally
optimal solution.

2.5 Sample Path Optimization

Sample path optimization (also known as stochastic
counterpart, sample average approximation; see Ru-
binstein and Shapiro 1993) takes many simulations
first, and then tries to optimize the resulting estimates.
Specifically, if J̃i denotes the estimate of J from the ith
simulation replication, the sample mean over n replica-
tions is given by

Ĵn(θ) =
1
n

n∑

i=1

J̃i(θ).

If each of the J̃i are i.i.d. unbiased estimates of J , then
by the strong law of large numbers,

Ĵn(θ) −→ J(θ) with probability 1.

The approach then is to optimize, for a sufficiently large
n, the deterministic function Ĵn, which approximates J .
Its key feature, as Robinson (1996) advocates, is that
“we can bring to bear the large and powerful array of
deterministic [primarily continuous variable] optimiza-
tion methods that have been developed in the last half-
century. In particular, we can deal with problems in
which the parameters θ might be subject to complicated
constraints, and therefore in which gradient-step meth-
ods like stochastic approximation may have difficulty.”
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In the simulation context, the method of common ran-
dom numbers is used to provide the same sample paths
for Ĵn(θ) over different values of θ. Furthermore, the
availability of derivatives greatly enhances the effective-
ness of the approach, as many nonlinear optimization
packages require these.

2.6 Metaheuristics

Metaheuristics are methods that guide other procedures
(heuristic or truncated exact methods) to enable them
to overcome the trap of local optimality for complex
optimization problems. Four metaheuristics have pri-
marily been applied with some success to simulation
optimization: simulated annealing, genetic algorithms,
tabu search and scatter search (occasionally supple-
mented by a procedure such as neural networks in a
forecasting or curve fitting role). Of these, tabu search
and scatter search have proved to be by far the most
effective, and are at the core of the simulation opti-
mization software that is now most widely used. We
briefly sketch the nature of these two approaches be-
low. The general metaheuristics framework of Ólaffson
(2005), which looks very much like the deterministic
version of random search, also contains discussion of
the nested partitions method introduced by Shi and
Ólaffson (2000ab) (see also Pinter 1996).

Tabu Search (TS) is distinguished by introducing
adaptive memory into metaheuristic search, together
with associated strategies for exploiting such memory,
equipping it to penetrate complexities that often con-
found other approaches. Applications of TS span the
realms of resource planning, telecommunications, VLSI
design, financial analysis, space planning, energy, dis-
tribution, molecular engineering, logistics, pattern clas-
sification, flexible manufacturing, waste management,
mineral exploration, biomedical analysis, environmen-
tal conservation and scores of others. A partial indi-
cation of the rapid recent growth of TS applications
is disclosed by the fact that a Google search on tabu
search returns more than 90,000 pages, a figure that
has been growing exponentially over the past several
years.

Adaptive memory in tabu search involves an
attribute-based focus, and depends intimately on the
elements of recency, frequency, quality and influence.
This catalog disguises a surprising range of alterna-
tives, which arise by differentiating attribute classes
over varying regions and spans of time. The TS no-
tion of influence, for example, encompasses changes in
structure, feasibility and regionality, and the logical
constructions used to interrelate these elements span
multiple dimensions, involving distinctions between se-
quential logic and event driven logic, giving rise to dif-

ferent kinds of memory structures.
The most comprehensive reference for tabu search

and its applications is the book by Glover and Laguna,
(1997). A new book that gives more recent applications
and pseudo-code for creating various implementations
is scheduled to appear in 2006.

Scatter Search (SS) has its foundations in propos-
als from the 1970s that also led to the emergence of
tabu search, and the two methods are highly comple-
mentary and often used together. SS is an evolutionary
(population-based) algorithm that constructs solutions
by combining others.

Scatter search is designed to operate on a set of
points, called reference points, that constitute good
solutions obtained from previous solution efforts. No-
tably, the basis for defining good includes special cri-
teria such as diversity that purposefully go beyond the
objective function value. The approach systematically
generates combinations of the reference points to cre-
ate new points, each of which is mapped into an asso-
ciated feasible point. The combinations are generalized
forms of linear combinations, accompanied by processes
to adaptively enforce feasibility conditions, including
those of discreteness.

The SS process is organized to (1) capture informa-
tion not contained separately in the original points, (2)
take advantage of auxiliary heuristic solution methods
(to evaluate the combinations produced and to actively
generate new points), and (3) make dedicated use of
strategy instead of randomization to carry out com-
ponent steps. SS basically consists of five methods:
a diversification generation method, an improvement
method (often consisting of tabu search), a reference
set update method, a subset generation method, and a
solution combination method. Applications of SS, like
those of TS, have grown dramatically in recent years,
and its use in simulation optimization has become the
cornerstone of significant advances in the field. The
most complete reference on SS is the book by Laguna
and Marti (2002).

3 MODEL-BASED METHODS

An approach that looks promising and which has just
begun to be explored in the simulation optimization
context are model-based methods. These are contrasted
with what are called instance-based approaches, which
generate new solutions based only on the current solu-
tion (or population of solutions) (cf. Dorigo and Stützle
2004, pp.139-140). The metaheuristics described earlier
generally fall into this latter category, with the excep-
tion of tabu search, because it uses memory. Model-
based methods, on the other hand, are not dependent
explicitly on any current set of solutions, but use a prob-
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Table 1: Optimization for Simulation: Commercial Software Packages

Optimization Package Vendor Primary Search Strategies
(simulation platform) (URL)

AutoStat AutoSimulations, Inc. evolutionary,
(AutoMod) (www.autosim.com) genetic algorithms

Evolutionary Optimizer AutoSimulations, Inc. evolutionary,
(Extend) (www.imaginethatinc.com) genetic algorithms

OptQuest OptTek Systems, Inc. scatter search, tabu search,
(Arena, Crystal Ball, ProModel, SIMUL8, et al.) (www.opttek.com) neural networks

RISKOptimizer Palisade Corp. genetic algorithms
(@RISK) (www.palisade.com)

Optimizer Lanner Group, Inc. simulated annealing,
(WITNESS) (www.lanner.com/corporate) tabu search

ability distribution on the space of solutions to provide
an estimate of where the best solutions are located.

The following are some examples:

• Swarm Intelligence. This approach is perhaps
best known under the name of “Ant Colony Opti-
mization,” because it uses ant behavior (group co-
operation and use of pheromone updates and evap-
oration) as a paradigm for its probabilistic work-
ings. Because there is memory involved in the
mechanisms, like tabu search, it is not instance-
based; see Dorigo and Stützle (2004) for more de-
tails.

• Estimation of Distribution Algorithms
(EDAs). The goal of this approach is to pro-
gressively improve a probability distribution on
the solution space based on samples generated
from the current distribution. The crudest form
of this would utlize all samples generated to a
certain point, hence the use of memory, but in
practical implementation, parameterization of
the distribution is generally employed, and the
parameters are updated based on the samples; see
Larrañaga and Lozano (2002) for more details.

• Cross-Entropy (CE) Method. This approach
grew out of a procedure to find an optimal impor-
tance sampling measure by projecting a parameter-
ized probability distribution, using cross entropy
to measure the distance from the optimum mea-
sure. Like EDAs, samples are taken that are used
to update the parameter values for the distribu-
tion. Taking the optimal measure as a point mass
at the solution optimum of an optimization prob-
lem, the procedure can be applied in that con-

text; see De Boer et al. (2005), Rubinstein and
Kroese (2004), and <http://www.cemethod.org>
for more details.

• Model Reference Adaptive Search. As in
EDAs, this approach updates a parameterized
probability distribution, and like the CE method,
it also uses the cross-entropy measure to project
a parameterized distribution. However, the par-
ticular projection used relies on a stochastic se-
quence of reference distributions rather than a sin-
gle fixed reference distribution (the final optimal
measure) as in the CE method, and this results
in very different performance in practice. Further-
more, stronger theoretical convergence results can
be established; see Hu, Fu, and Marcus (2005abc)
for details.

4 SOFTWARE

Table 1 surveys a few simulation optimization software
packages (either plug-ins or integrated) currently avail-
able, and summarizes their search strategies. Compar-
ing with Table 1 in Fu (2002), one observes that Pro-
Model and SIMUL8 have both migrated to OptQuest
from their previous simulation optimization packages
(SimRunner and OPTIMIZ, respectively).

5 APPLICATIONS

Applications of optimization technology are quite di-
verse; they cover a broad surface of business activities.
To illustrate, the user of simulation and other business
or industry evaluation models may want to know:
• What is the most effective factory layout?
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• What is the safest equipment replacement policy?
• What is the most cost effective inventory policy?
• What is the best workforce allocation?
• What is the most productive operating schedule?
• What is the best investment portfolio?

The answers to such questions require a painstaking
examination of multiple scenarios, where each scenario
in turn requires the implementation of an appropriate
simulation or evaluation model to determine the conse-
quences for costs, profits and risks. The critical “miss-
ing component” is to disclose which decision scenarios
are the ones that should be investigated – and still more
completely, to identify good scenarios automatically by
a search process designed to find the best set of deci-
sions. This is the core problem for simulation optimiza-
tion in a practical setting. The following descriptions
provide a sampling of uses of the technology that enable
solutions to be identified efficiently.

5.1 Project Portfolio Management

For project portfolio management, OptFolio is a soft-
ware tool being implemented in several markets in-
cluding Petroleum and Energy, IT Governance, and
Pharmaceuticals. The following example demonstrates
the versatility of OptFolio as a simulation optimization
tool.

Among many other types of initiatives, the Pharma-
ceutical Industry uses project portfolio optimization to
manage investments in new drug development. A phar-
maceutical company that is developing a new break-
through drug is faced with the possibility that the drug
may not do what it was intended to do, or have se-
rious side effects that make it commercially infeasible.
Thus, these projects have a considerable degree of un-
certainty related to the probability of success. Rela-
tively recently, an options-pricing approach, called “real
options” has been proposed to model such uncertain-
ties. Initial feedback has indicated that an obstacle
to its market penetration is that it is difficult to un-
derstand and use; furthermore, there are no research
results that illustrate performance that rivals the algo-
rithmic approach underlying OptFolio.

The following example is based on data provided by
Decision Strategies, Inc., a consulting firm with numer-
ous clients in the Pharmaceutical Industry. The data
consists of twenty potential projects in drug develop-
ment having rather long horizons – 5 to 20 years –
and the pro-forma information is given as triangular
distributions for both per-period net contribution and
investment. The models use a probability of success in-
dex – from 0% to 100% – applied in such a way that, if
the project fails during a simulation trial, then the in-
vestments are realized, but the net contribution of the

project is not. In this way, the system can be used to
model premature project terminations providing a sim-
ple, understandable alternative to real options. In this
example, we examined five cases, the first two repre-
senting approaches commonly used in practice but, as
we have found, turn out to be significantly inferior to
the ones using the OptFolio software.

Case 1: Simple Ranking of Projects
Projects were ranked in this approach according to a
specific objective criterion, a process often adopted in
currently available Project Portfolio Management tools
in order to select projects under a budgetary constraint.
In this case the following objective measure was se-
lected:

R =
PV (Revenues)
PV (Expenses)

.

Employing the customary design, the 20 projects were
ranked in descending order according to this measure,
and projects were added to the final portfolio as long as
the budget constraint was not violated. This procedure
resulted in a portfolio with the following statistics:

µNPV = 7342, σNPV = 2472, q.05 = 3216,

where q.05 denotes the 5th percentile (quantile), i.e.,
P (NPV ≥ qp) = p.

In this case, 15 projects were selected in the final
portfolio. What follows is a discussion of how using
OptFolio can help improve these results.

Case 2: Traditional Markowitz Approach
The decision was to determine participation levels [0,1]
in each project with the objective of maximizing the
expected NPV of the portfolio while keeping the stan-
dard deviation of the NPV below a specified threshold
of 1000. An investment budget was also imposed on the
portfolio, where Bi denotes the budget in period i.

Maximize µNPV subject to

σNPV ≤ 1000, B1 ≤ 125, B2 ≤ 140, B3 ≤ 160.

This formulation resulted in a portfolio with the follow-
ing statistics:

µNPV = 4140, σNPV = 1000, q.05 = 2432.

We performed this traditional mean-variance case
to provide a basis for comparison for the subsequent
cases. An empirical histogram for the optimal portfolio
is shown in Figure 1.

Case 3: Risk Controlled by 5th Percentile
The decision was to determine participation levels [0,1]
in each project with the objective of maximizing the
expected NPV of the portfolio while keeping the 5th
percentile of NPV above the value determined in Case 2
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Figure 1: Mean-Variance Portfolio

(2432), keeping the same investment budget constraints
on the portfolio.

Maximize µNPV subject to

q.05 ≥ 2432, B1 ≤ 125, B2 ≤ 140, B3 ≤ 160.

This case has replaced standard deviation with the 5th
percentile for risk containment, which is an intuitive
way to control catastrophic risk (Value at Risk or VaR
in traditional finance terminology). The resulting port-
folio has the following attributes:

µNPV = 7520, σNPV = 2550, q.05 = 3294.

By using the 5th percentile as a measure of risk, we
were able to almost double the expected return com-
pared to the solution found in Case 2, and improved on
the simple ranking solution. Additionally, as previously
discussed, the 5th percentile provides a more intuitive
measure of risk, i.e., there is a 95% chance that the
portfolio will achieve a NPV of 3294 or higher. The
NPV distribution is shown in Figure 2. It is interesting
to note that this solution has more variability but is
focused on the upside of the distribution. By focusing
on the 5th percentile rather than standard deviation, a
superior solution was created.

Case 4: Maximizing Probability of Success
The decision was to determine participation levels [0,1]
in each project with the objective of maximizing the
probability of meeting or exceeding the mean NPV
found in Case 2, keeping the same investment budget
constraints on the portfolio.

Maximize Prob(NPV ≥ 4140) subject to

B1 ≤ 125, B2 ≤ 140, B3 ≤ 160.

This case focuses on maximizing the chance of obtaining
a goal and essentially combines performance and risk
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Figure 2: 5th Percentile Portfolio

containment into one metric. The resulting portfolio
has the following attributes:

µNPV = 7461, σNPV = 2430, q.05 = 3366.

This portfolio has a 91% chance of achieving/exceeding
the NPV goal of 4140, representing a significant im-
provement over the Case 2 portfolio, where the proba-
bility was only 50%. The NPV distribution is shown in
Figure 3.
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Figure 3: 5th Percentile Portfolio

Case 5: All-or-Nothing
In many real-world settings, these types of projects
have all-or-nothing participation levels, whereas in the
Case 4 solution, most of the optimal participation lev-
els found were fractional. Under the same investment
budget constraints on the portfolio, Case 5 modified the
Case 4 constraints to allow only 0 or 1 participation lev-
els, i.e., a project must utilize 100% participation or be
excluded from the portfolio.

Maximize Prob(NPV ≥ 4140) subject to

B1 ≤ 125, B2 ≤ 140, B3 ≤ 160, Participations ∈ {0, 1}.
The resulting portfolio has the following attributes:

µNPV = 7472, σNPV = 2503, q.05 = 3323.
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In spite of the participation restriction, this portfolio
also has a 91% chance of exceeding an NPV of 4140, and
has a high expected return. In this case, as in Case 1,
15 out of the 20 projects were selected in the final port-
folio, but the expected returns are higher. These cases
illustrate the benefits of using alternative measures for
risk. Not only are percentiles and probabilities more
intuitive for the decision-maker, but they also produce
solutions with better financial metrics. The OptFolio
system can also be used to optimize performance met-
rics such as Internal Rate of Return (IRR) and Payback
Period.

The illustrated analyses can be applied very effec-
tively for complex, as well as simple, sets of projects,
where different measures of risk and return can produce
improvements over the traditional Markowitz (mean-
variance) approach, as well as over simple project rank-
ing approaches. The flexibility to choose various mea-
sures and statistics, both as objective performance mea-
sures as well as constraints, is a major advantage to us-
ing a simulation optimization approach as embedded in
OptFolio. The user is given an ability to select better
ways of modeling and controlling risk, while aligning
the outcomes to specific corporate goals.

OptFolio also provides ways to define special relation-
ships that often arise between and among projects. Cor-
relations can be defined between the revenues and/or
expenses of two projects. In addition, the user can de-
fine projects that are mutually exclusive, or dependent.
For example, in some cases, selecting Project A implies
selecting Project B; such a definition can easily be done
in OptFolio.

Portfolio analysis tools are designed to aid senior
management in the development and analysis of project
portfolio strategies, by giving them the capability to as-
sess the impact on the corporation of various investment
decisions. To date, commercial portfolio optimization
packages are relatively inflexible and are often not able
to answer the key questions asked by senior manage-
ment. As a result of the simulation optimization capa-
bilities embodied in OptFolio, new techniques are made
available that increase the flexibility of portfolio opti-
mization tools and deepen the types of portfolio analy-
sis that can be carried out.

5.2 Business Process Management

When changes are proposed to business processes in
order to improve performance, important advantages
can result by evaluating the projected improvements
using simulation, and then determining an optimal set
of changes using simulation optimization. In this case
it becomes possible to examine and quantify the sensi-
tivity of making the changes on the ultimate objectives

to reduce the risk of actual implementation. Changes
may entail adding, deleting, and modifying processes,
process times, resources required, schedules, work rates
within processes, skill levels, and budgets. Performance
objectives may include throughput, costs, inventories,
cycle times, resource and capital utilization, start-up
times, cash flow, and waste. In the context of business
process management and improvement, simulation can
be thought of as a way to understand and communicate
the uncertainty related to making the changes while op-
timization provides the way to manage that uncertainty.

The following example is based on a model provided
by CACI, and simulated on SIMPROCESS. Consider
the operation of an emergency room (ER) in a hospital.
Figure 4 shows a high-level view of the overall process,
which begins when a patient arrives through the doors
of the ER, and ends when a patient is either released
from the ER or admitted into the hospital for further
treatment. Upon arrival, patients sign in, receive an
assessment of their condition, and are transferred to
an ER. Depending on their assessment, patients then
go through various alternatives involving a registration
process and a treatment process, before being released
or admitted into the hospital.

Patients arrive either on their own or in an ambu-
lance, according to some arrival process. Arriving pa-
tients are classified into different levels, according to
their condition, with Level 1 patients being more criti-
cal than Level 2 and Level 3 patients.

Level 1 patients are taken to an ER immediately upon
arrival. Once in the room, they undergo their treat-
ment. Finally, they complete the registration process
before being either released or admitted into the hospi-
tal for further treatment.

Level 2 and Level 3 patients must first sign in with
an Administrative Clerk. After their condition is then
assessed by a Triage Nurse, and then they are taken to
an ER. Once in the room, Level 2 and 3 patients, must
first complete their registration, then go on to receive
their treatment, and, finally, they are either released or
admitted into the hospital for further treatment.

After undergoing the various activities involved in
registration and treatment, 90% of all patients are re-
leased from the ER, while the remaining 10% are admit-
ted into the hospital for further treatment. The final
release/hospital admission process consists of the fol-
lowing activities: 1. In case of release, either a nurse
or a PCT fills out the release papers (whoever is avail-
able first). 2. In case of admission into the hospital,
an Administrative Clerk fills out the patients admis-
sion papers. The patient must then wait for a hospital
bed to become available. The time until a bed is avail-
able is handled by an empirical probability distribution.
Finally, the patient is transferred to the hospital bed.
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Figure 4: High-level Process View

The following illustrates a simple instance of this pro-
cess that is actually taken from a real world applica-
tion. In this instance, due to cost and layout considera-
tions, hospital administrators have determined that the
staffing level must not exceed 7 nurses, 3 physicians, 4
PCTs and 4 Administrative Clerks. Furthermore, the
ER has 20 rooms available; however, using fewer rooms
would be beneficial, since the additional space could be
used more profitably by other departments in the hos-
pital. The hospital wants to find the configuration of
the above resources that minimizes the total asset cost.
The asset cost includes the staffs hourly wages and the
fixed cost of each ER used. We must also make sure
that, on average, Level 1 patients do not spend more
than 2.4 hours in the ER. This can be formulated as an
optimization problem, as follows:

Minimize Expected Total Asset Cost
subject to the following constraints:
Average Level 1 Cycle Time ≤ 2.4 hours,
# Nurses ≤ 7,
# Physicians ≤ 3,
# PCTs ≤ 4,
# Admin. Clerks ≤ 4,
# ERs ≤ 20.

This is a relatively unimposing problem in terms of
size: five variables and six constraints. However, if we
were to rely solely on simulation to solve this problem,
even after the hospital administrators have narrowed
down our choices to the above limits, we would have to
perform 7x3x4x4x20=6,720 experiments. If we want a
sample size of, say, at least 30 runs per trial solution
in order to obtain the desired level of precision, then
each experiment would take about 2 minutes, based on
a Dell Dimension 8100 with a 1.7GHz Intel Pentium 4
processor. This means that a complete enumeration of

all possible solutions would take approximately 13,400
minutes, or about 70 working days. This is obviously
too long a duration for finding a solution.

In order to solve this problem in a reasonable amount
of time, we called upon the OptQuest optimization
technology integrated with SIMPROCESS. As a base
case we used the upper resource limits provided by hos-
pital administrators, to get a reasonably good initial
solution. This configuration yielded an Expected Total
Asset Cost of $36,840, and a Level 1 patient cycle time
of 1.91 hours.

Once we set up the problem in OptQuest, we ran it
for 100 iterations (experiments), and 5 runs per itera-
tion (each run simulates 5 days of the ER operation).
Given these parameters, the best solution, found at it-
eration 21 was: 4 nurses, 2 physicians, 3 PCTs, 3 ad-
ministrative clerks, and 12 ERs.

The Expected Total Asset Cost for this configura-
tion came out to $25,250 (a 31% improvement over the
base case), and the average Level 1 patient cycle time
was 2.17 hours. The time to run all 100 iterations was
approximately 28 minutes.

After obtaining this solution, we redesigned some fea-
tures of the current model to improve the cycle time of
Level 1 patients even further. In the redesigned model,
we assume that Level 1 patients can go through the
treatment process and the registration process in paral-
lel. That is, we assume that while the patient is under-
going treatment, the registration process is being done
by a surrogate or whoever is accompanying the patient.
If the patients condition is very critical, than someone
else can provide the registration data; however, if the
patients condition allows it, then the patient can pro-
vide the registration data during treatment.

Figure 5 shows the model with this change. By opti-
mizing the model that incorporates this change, we now
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Figure 5: Proposed Process

obtain an average Level 1 patient cycle time of 1.98 (a
12% improvement).

The new solution had 4 nurses, 2 physicians, 2 PCTs,
2 administrative clerks, and 9 ERs, yielding an Ex-
pected Total Asset Cost of $24,574, and an average
Level 1 patient cycle time of 1.94 hours. By using sim-
ulation optimization, we were able to find a very high
quality solution in less than 30 minutes.

6 CONCLUSIONS

In addition to chapters in the Handbook on Operations
Research and Management Science: Simulation volume
cited already, more technical details on simulation op-
timization techniques can be found in the chapter by
Andradóttir (1998) and the review paper by Fu (1994),
whereas the feature article by Fu (2002) explores deeper
research versus practice issues. Previous volumes of
these Winter Simulation Conference proceedings also
provide good current sources (e.g., April et al. 2003,
2004). Other books that treat simulation optimization
in some technical depth include Rubinstein and Shapiro
(1993), Fu and Hu (1997), Pflug (1997), Spall (2003).

Note that the “model” in model-based approaches is
a probability distribution on the solution space, as op-
posed to modeling the response surface itself; the input
variables are the same in both cases. Is there some
way of combining the two approaches? One seeming
advantage of the probabilistic approach is that it ap-
plies equally well to both the continuous and discrete
case. The key in both cases to practical implementa-
tion is parameterization! For example, neural networks
and regression are used in the former case, whereas the
natural exponential family works well in the latter case.

Relatively little research has been done on multi-

response simulation optimization, or for that matter,
with random constraints, i.e., where the constraints
themselves must be estimated. Most of the commer-
cial software packages, however, do allow multiple re-
sponses (combining by using a weighting) and explicit
inequality constraints on output performance measures,
but in the latter case, there is usually not provided any
statistical estimate as to how likely the constraint is ac-
tually being violated (just a confidence interval on the
performance measure itself).

To summarize, here are some key issues in simulation
optimization algorithms:

• neighborhood definition;

• mechanism for exploration/sampling (search), es-
pecially how previously generated (sampled) solu-
tions are incorporated;

• determining which candidate solution(s) to declare
the best (or “good”); statistical statements?

• the computational burden of each function esti-
mate (obtained through simulation replications)
relative to search (the optimization algorithm).

The first two issues are not specific to the stochastic
setting of simulation optimization, but their effective-
ness depends intimately on the last issue. For example,
defining the neighborhood as a very large region may
lead to theoretical global convergence, but it may not
lead to very efficient search, especially if simulation is
expensive. The model-based algorithms allow a large
neighborhood, but can also allow search in a localized
manner by the way the model (probability distribution)
is constructed and updated.
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