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Abstract

Non-Euclidean traveling salesman problem (TSP) construction heuristics, and especially asymmetric TSP con-
struction heuristics, have been neglected in the literature by comparison with the extensive efforts devoted to studying
Euclidean TSP construction heuristics. This state of affairs is at odds with the fact that asymmetric models are relevant
to a wider range of applications, and indeed are uniformly more general that symmetric models. Moreover, common
construction approaches for the Euclidean TSP have been shown to produce poor quality solutions for non-Euclidean
instances. Motivation for remedying this gap in the study of construction approaches is increased by the fact that such
methods are a great deal faster than other TSP heuristics, which can be important for real time problems requiring
continuously updated response. The purpose of this paper is to describe two new construction heuristics for the
asymmetric TSP and a third heuristic based on combining the other two. Extensive computational experiments are
performed for several different families of TSP instances, disclosing that our combined heuristic clearly outperforms
well-known TSP construction methods and proves significantly more robust in obtaining (relatively) high quality
solutions over a wide range of problems. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

A construction heuristic for the traveling
salesman problem (TSP) builds a tour without an
attempt to improve the tour once it is constructed.
Most of the construction heuristics for the TSP
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[12,15] are very fast; they can be used to produce
approximate solutions for the TSP when the time
is restricted, to provide good initial solutions for
tour improvement heuristics, to obtain upper
bounds for exact branch-and-bound algorithms,
etc.

Extensive research has been devoted to con-
struction heuristics for the Euclidean TSP (see,
e.g., [15]). Construction heuristics for the non-
Euclidean TSP are much less investigated. Quite
often, the Greedy algorithm (GR) is chosen as a
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construction heuristic for the non-Euclidean TSP
(see, e.g., [12]). Our computational experiments
show that this heuristic is far from being the best
choice in terms of quality and robustness. Various
insertion algorithms [15] which perform very well
for the Euclidean TSP produce poor quality so-
lutions for instances that are not (and not close to)
Euclidean.

Hence, it is important to study construction
heuristics for the asymmetric TSP (we understand
by the asymmetric TSP the general TSP which
includes both asymmetric and symmetric instanc-
es). Our aim is to describe two new construction
heuristics for the asymmetric TSP as well as a
combined algorithm based on those heuristics. In
this paper we also present results of our compu-
tational experiments obtained for several different
families of TSP instances. These results show that
overall the combined algorithm clearly outper-
forms well-known construction heuristics for the
TSP. While other heuristics produce good quality
tours for some families of TSP instances and fail
for some other families of instances, the combined
algorithm appears much more robust. Being a
heuristic the combined algorithm is not always a
winner among various heuristics. However, we
show that it obtains (relatively) poor quality so-
lutions rather seldom.

For the reader interested in solving the TSP on
particular families of non-Euclidean instances, this
paper may suggest a construction algorithm,
which is appropriate for the families under con-
sideration.

2. Terminology and notation

The vertex set of a weighted complete digraph
K is denoted by V' (K); the weight of an arc xy of K
is denoted by wx(x,y) (we say that K is complete if
for every pair x, y of distinct vertices of K both xy
and yx are arcs of K). The length of a cycle C (path
P) is the number of arcs in C (P). The asymmetric
traveling salesman problem is defined as follows:
given a weighted complete digraph K on 7 vertices,
find a Hamiltonian cycle (tour) H of K of mini-
mum weight. The domination number of a tour T in
K is the number of tours in K which are heavier or

of the same weight as T. A cycle factor of K is a
collection of vertex-disjoint cycles in K covering all
vertices of K. A cycle factor of K of minimum
(total) weight can be found in time O(n®) using
assignment problem (AP) algorithms (for the
corresponding weighted complete bipartite graph)
[4,13,14]. Clearly, the weight of the lightest cycle
factor of K provides a lower bound to the solution
of the TSP (AP lower bound).

We will use the operation of contraction of a
(directed) path P = vy, vy, ..., v, of K. The result of
this operation is a weighted complete digraph K /P
with vertex set

V(K/P)=V(K)U{p} —{v,v,...,0,},

where p is a new vertex. The weight of an arc xy of
K/P is

wg(x,y) if x# pandy#p,
wi(v5,y) if x=pand y#p,
wi(x,vy) if x # p and y = p.

WK/P(xay) =

(1)

Sometimes, we contract an arc a considering a as a
path (of length one).

3. Greedy and random insertion heuristics

These two heuristics were used in order to
compare our algorithms with well-known ones.
Both heuristics are extensively used especially for
the Euclidean TSP [12,15] since they give consis-
tently good results for the Euclidean problem.
Despite being the winner among some other con-
struction heuristics for the (general) symmetric
TSP, the GR algorithm produces rather poor so-
lutions for this problem [12].

The GR algorithm finds the lightest arc ¢ in K
and contracts it (updating the weights according to
(1)). The same procedure is recursively applied to
the contracted digraph K := K/a till K consists of
a pair of arcs. The contracted arcs and the pair of
remaining arcs form the “Greedy’ tour in K.

The random insertion heuristic chooses ran-
domly two initial vertices i; and i; in K and forms
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the cycle ijiyi;. Then, in every iteration, it chooses
randomly a vertex ¢ of K which is not in the
current cycle ijiy, ...,i; and inserts ¢ in the cycle
(i.e., replaces an arc i,i,., of the cycle with the
path i,0i,.;) such that the weight of the cycle
increases as little as possible. The heuristic stops
when all vertices have been included in the cur-
rent cycle.

4. Modified Karp—Steele patching heuristic

Our first heuristic (denoted by GKS) is based
on the well-known Karp-Steele patching (KSP)
heuristic [13,14]. The algorithm can be outlined as
follows:

1. Construct a cycle factor F of minimum weight.

2. Choose a pair of arcs taken from different cy-
cles in F, such that by patching (i.e. removing
the chosen arcs and adding two other arcs that
join both cycles together) we obtain a cycle fac-
tor (with one less cycle) of minimum weight
(within the framework of patching).

3. Repeat Step 2 until the current cycle factor is
reduced to a single cycle. Use this cycle as an
approximate solution for the TSP.

The difference from the original KSP algorithm

is that instead of joining two shortest cycles

together it tries all possible pairs, using the best
one.

Unfortunately, a straightforward implementa-
tion of this algorithm would be very inefficient in
terms of execution time. To partly overcome this
problem we introduced a pre-calculated n x n
matrix D of patching costs for all possible pairs of
arcs. On every iteration we find a smallest element
of D and perform corresponding patching; also,
the matrix is updated to reflect the patching op-
eration that took place. Having observed that only
a relatively small part of D needs to be re-calcu-
lated during an iteration, we cache row minima of
D in a separate vector B, incrementally updating it
whenever possible. If it is impossible to update an
element of B incrementally (this happens when the
smallest item in a row of D has been changed to a
greater value), we re-calculate this element of B by
scanning the corresponding row of D in the be-
ginning of the next iteration. Finally, instead of

scanning all n* elements of D in order to find its
minimum, we just scan n elements of B to achieve
the same goal.

Although the improved version has the
same O(n®) worst-case complexity as the origi-
nal algorithm, our experiments show that the
aforementioned improvements yield significant
reduction of execution time. Pseudo-code for
the approach outlined above is displayed in
Fig. 1.

5. Recursive path contraction algorithm

The second heuristic originates from [16]. The
main feature of this algorithm is the fact that its
solution has a large domination number. Heu-
ristics yielding tours with exponential yet much
smaller domination numbers were introduced in
the literature on so-called exponential neigh-
bourhoods for the TSP (for a comprehensive
survey of the topic, see [5]). Exponential neigh-
bourhood local search [6-8] has already shown its
high computational potential for the TSP (see,
e.g., [1,3)]).

The algorithm (denoted by RPC) proceeds as
follows:

1. Find a minimum weight cycle factor F.

2. Delete a heaviest arc of each cycle of F and con-
tract the obtained paths one by one.

3. If the number of cycles is greater than one, ap-
ply this procedure recursively.

4. Finally, we obtain a single cycle C. Replace all
vertices of C with the corresponding contracted
paths and return the tour obtained as a result of
this procedure.

Let ¢; be the number of cycles in the i-th cycle
factor (the first one is F) and let m be the number
of cycle factors derived in RPC. Then one can
show that the domination number of the tour
constructed by RPC is at least (n—c¢; —1)!
(e1 —eo — D (et — ¢ — 1)![16]. This number
is quite large when the number of cycles in cycle
factors is small (which is often the case for
pure asymmetric instances of the TSP). By pure
asymmetric instances we mean instances for
which w(i,j) # w(j,i) for all or almost all pairs

i
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Pseudo-code:

BestCost is D, BestNode is B
Arguments:

N - number of nodes

W = [w(i,7)] - N x N matrix of weights

(* Next[:] = j if the current cycle factor contains the arc (7, ) *)
Nezt: array[l..N] of integer;
(* Cost[z, j] is cost of removing arcs (7, Next[i]) and (j, Next[j]), and
adding (¢, Next[j]) and (j, Next[s]) instead. *)
Cost: array[l..N,1..N] of integer;
(* BestCost[i] contains a smallest value found in the i-th row of Cost *)
BestCost: array[l..N] of integer;
estNode|i| 1s column index of corresponding BestCost|:| in Cost
* BestNodeli] is col index of ding BestCost[i] in Cost *
BestNode: array[l..N] of integer;

(* Whenever possible, caches row minimum in BestNode and BestCost *)
procedure UpdateCost(r, ¢, newCost: integer);
begin

if (r < ¢) then Swap(r, ¢); (* Exchange r and ¢ values *)

Cost[r, c] := newClost;

if BestNode[r] # —1 and newCost < BestCost[r] then
(* New value is smaller than current row minimum *)
BestNode[r] := c;
BestCost[r] := newCost,;
else if BestNode[r] = ¢ and newCost > BestCost[r] then
(* Current row minimum has been updated to a greater value *)

BestNode[r] := —1; (* stands for "unknown” *)
BestCost[r] := +o0o;
end if;

end;

function GetPatchingCost(7, j: integer): integer;
begin
if vertices 7 and j belong to the same cycle then
return +oo; (* patching not allowed *)
else
return Wi, Next[j]] + W[j, Neat[i]] — W[i, Next[i]] — W[5, Next[j]];
end if;
end;
BEGIN
Build a cycle factor by solving LAP on the weights matrix D, store result in
Next and number of cycles obtained in M,

Fig. 1. Pseudo-code.
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(* Initialize Cost, BestCost and BestNode *)
for i :=1to N do
bn = 1;

for j :=1toido

Cost[i, j] := GetPatchingCost(i, j);

if Cost[i, j] < Cost[i, bn] then bn := j;
end for;

BestNodel[i] := bn;
BestCost[i] := Cost[t, bn];
end do;

repeat M — 1 times

Find the smallest value in BestCost and store its index in ;
J := BestNodeli];

update Cost:
1) for each pair of nodes k and [, such as k belongs to
the same cycle as ¢, and [ belongs to the same cycle as j:
UpdateCost(k, 1, +00);

2) for each node m, which does not belong to the same cycle as either 7 or j:

UpdateCost(i, m, Get PatchingCost(i, m));
UpdateCost(m, j, Get PatchingCost(m, j));

Patch two cycles by removing arcs (i, Next[i]), (j, Next[j]), and

adding (¢, Nexzt[j])and(j, Newt[i]); update Next to reflect the patching operation;

(* re-calculate BestNode and BestCost if necessary *)
fori:=1to N do
if BestNode[i] = —1 then
(* Needs re-calculating *)
bn = 1,

for j ;= 1toido
if Cost[i, j] < Cost[i, bn] then bn = j;
end for;
BestNodeli] := bn;
BestCost[i] := Cost[i, bn];
end if;
end for;

end repeat;

END.

Fig. 1. (Continued).

559
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6. Contract or patch heuristic

The third heuristic (denoted by COP — contract
or patch) is a combination of the last two algo-
rithms. It proceeds as follows:

1. Fix a threshold .

2. Find a minimum weight cycle factor F.

3. If there is a cycle in F of length at most ¢, delete
a heaviest arc in every short cycle (i.e. of length
at most 7) and contract the obtained paths (the
vertices of the long cycles are not involved in
the contraction) and repeat the above proce-
dure. Otherwise, patch all cycles (they are all
long) using GKS.

Our computational experiments (see the next
section) showed that =5 yields a quite robust
choice of the threshold ¢. Therefore, this value of ¢
has been used while comparing COP with other
heuristics.

7. Computational results

We have implemented all three heuristics along
with KSP, the GR algorithm and the random in-
sertion algorithm (RI), and tested them on the
following seven families of instances of the TSP:
1. all asymmetric TSP instances from TSPLib;

2. all Euclidean TSP instances from TSPLib with
the number of vertices not exceeding 3000;

3. asymmetric TSP instances with weights matrix
W = [w(i,j)], with w(i,j) independently and
uniformly chosen random numbers from
{0,1,2,...,10°};

4. asymmetric TSP instances with weights matrix
W =[w(i,j)], with w(i,j) independently and
uniformly chosen random numbers from
{0,1,2,...,i x j};

5. symmetric TSP instances with weights matrix
W = [w(i,j)], with w(i,j) independently and
uniformly chosen random numbers from
{0,1,2,...,10°} (i <)),

6. symmetric TSP instances with weights matrix
W = [w(i,j)], with w(i,j) independently and
uniformly chosen random numbers from
{0,1,2,...,ixj} (i <j);

7. sloped plane instances [11]. These are defined as
follows: for a given pair of vertices p; and p;, de-

fined by their planar coordinates p; = (x;, )
and p; = (x;,;), the weight of the correspond-

ing arc is w(ij) = /(v —x)* + (- y)*—
max(0,y; — y;)+ 2 xmax(0,y; —»). We have
tested the algorithms on sloped plane instances
with independently and uniformly chosen ran-
dom coordinates from {0,1,2,...,10°}.
For the families 3-7, the number of vertices n was
varied from 100 to 3000, in increments of 100. For
100 < 7 < 1000, all results are average over 10 trials
each, and for 1000 < n <3000, the results are av-
erage over three trials each.

The number and variety of the families used
allows us to check robustness of tested algorithms
[11]. We use instances produced in both random
and deterministic manner. It is perhaps worth re-
calling that this paper deals only with construction
heuristics for the TSP. Thus, we cannot expect near
optimal solutions for the majority of instances.

All tests were executed on a Pentium II 333
MHz machine with 128MB of RAM. All results
for TSPLib instances are compared to optima. For
the asymmetric instance families 3, 4 and 7 we used
AP lower bound, the weight of the lightest cycle
factor. The AP lower bound is known to be of high
quality for the pure asymmetric TSP [2]. For the
symmetric instance families 5 and 6, we exploited
the Held-Karp (HK) lower bound [9,10], which is
known to be very effective for this type of TSP
instances [12].

Table 1 provides an overview of the quality of
the results obtained. Observe that COP is the only
heuristic from the above six that performs well
(relatively to the other heuristics) on all tested
families. All other heuristics fail on at least one of
the families. Compared to the other algorithms,
GR is good only for the Euclidean instances. RI,
KSP and GKS provide good results for all families
apart from the two random symmetric families,
where all produce tours of rather low quality. RPC
is quite stable, but almost always gives solutions of
relatively low quality.

It is worth mentioning that while there are some
good construction heuristics for the pure asym-
metric TSP, the best example of which is KSP
[14,17], the symmetric non-Euclidean TSP appears
much more difficult for the existing construction




F. Glover et al. | European Journal of Operational Research 129 (2001) 555-568 561

Table 1
Average excess over optimum, AP or HK lower bound

Class Number

of instances

Asymmetric (TSPLib) 26
Euclidean (TSPLib) 69
Random asymmetric (distances from [1, 10°]) 160
Random asymmetric (distances from [1, 7 x J]) 160
Random symmetric (distances from [1, 10°]) 160
Random symmetric (distances from [1, 7 x J]) 160
Random sloped plane 160

GR RI KSP GKS RPC cop
(%) (70) (%) (%) (%) (%)
30.62 1736 4.29 3.36 18.02 477
18.29 1155 1493 17.25 3672 17.50
320.13  1467.38 3.1l 3.09  106.65 1.88
515.10 1369.13  2.06 202 14673 L11
177.41 117877 57490 45318 12427  46.60
799.75  890.70 302.04  161.39  209.55  41.90
2201.19 4178 4420 4633 7217 47.29

heuristics. This difficulty is reflected in our com-
putational results. While COP certainly narrows
the gap between approximate solutions and the
HK lower bound, this gap still remains wide.

All of the tested algorithms except GR and RI
start by solving the AP in order to find a mini-
mum weight cycle factor, and then apply various
patching techniques to transform the cycle factor
into a tour. In our view, the difficulty with the

symmetric non-Euclidean TSP for these algo-
rithms stems from the fact that the AP lower
bound is far from being sharp for this type of
instances. For the vast majority of symmetric in-
stances under consideration, the AP lower bound
produces a cycle factor consisting of a large
number of short (in the number of vertices)
cycles. This makes patching rather ineffective.
Two remaining algorithms, GR and RI, also fail

Table 2
TSPLIB Euclidean instances: Excess over optimum
Name Size GR (%) RI (%) KSP (%) GKS (%) RPC (%) COP (%)
us74 574 19.19 11.46 16.82 20.05 36.90 13.56
rat575 575 12.46 12.30 16.20 16.79 38.80 19.53
p654 654 17.59 6.17 11.34 15.86 48.54 21.65
d6s57 657 16.90 11.27 18.78 17.94 35.60 15.58
u724 724 18.12 12.80 15.02 18.31 43.70 16.31
rat783 783 15.34 11.86 20.89 16.49 37.80 20.13
pr1002 1002 13.45 14.40 16.90 17.82 31.34 16.02
ul060 1060 18.18 12.50 18.45 20.30 36.42 15.92
vm1084 1084 22.55 13.06 18.56 22.53 46.68 21.12
pcb1173 1173 17.36 17.32 21.08 20.47 39.70 21.22
d1291 1291 24.14 20.69 19.38 17.94 42.52 27.61
rl1304 1304 12.10 20.01 23.16 31.30 50.06 29.01
rl1323 1323 13.78 18.37 21.30 30.29 50.65 29.33
nrwl379 1379 15.60 13.15 16.91 14.36 35.45 17.82
11400 1400 18.35 5.85 9.81 14.40 32.73 18.47
ul432 1432 21.61 12.90 13.48 10.15 31.37 13.41
11577 1577 16.02 18.66 18.76 26.16 34.42 22.46
d1655 1655 16.34 17.79 20.58 18.58 38.52 18.26
vm1748 1748 18.10 12.39 18.02 21.50 44.80 21.36
ul8l7 1817 19.03 18.99 2291 15.19 38.15 21.94
11889 1889 16.59 19.33 21.12 27.82 52.25 26.92
d2103 2103 12.12 22.28 12.34 5.92 26.29 10.22
u2152 2152 17.33 17.40 22.71 15.82 36.69 19.14
u2319 2319 16.41 7.28 4.99 3.81 22.63 6.27
pr2392 2392 21.30 16.73 21.08 22.26 27.76 6.69
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on these instances, but perhaps for a different
reason. This suggests a need for further study of
construction heuristics for the symmetric non-
Euclidean TSP.

Tables 2 and 3 show the results obtained for the
families 1 and 2. For the family 2, only instances of
size between 500 and 3000 vertices are presented
due the large total number of Euclidean instances
in TSPLib (note that the values presented in Table
1 reflect all Euclidean TSPLib instances of not
more than 3000 vertices).

Figs. 2-11 show our results in a more detailed
form for all families except for the families 1 and 2.
In Figs. 2 and 4, we present only the results for
KSP, GKS and COP as they are clear winners for
the families 3 and 4. For both families the tours
produced by COP are almost always better than
those by all other tested heuristics. Note that the
results of KSP and GKS are very similar for these
two families of instances. This suggests that for
certain classes of instances the use of GKS instead

of KSP is not justified. Notice that GKS requires
significantly more involved programming than
KSP.

Figs. 6 and 8 contain our results on the families
5 and 6 for all heuristics. For the families 5 and 6
COP is again a clear winner. Taking into consid-
eration both families, RPC produces results, which
are relatively better or not much worse than those
of the others (apart from the tours of COP). In-
terestingly enough GR behaves worse on the
families 4 and 6 than on the families 3 and 5. This
justifies partially our use of families 4 and 6 to-
gether with the families 3 and 5.

The quality of results for the family 7 is shown
in Fig. 10. Being a very good heuristic for the
Euclidean TSP, RI is the winner among our heu-
ristics on the family 7, which consists of asym-
metric instances somewhat similar to Euclidean
instances. While GR is hopeless (and therefore not
presented on the chart), and RPC behaves not
particularly well on the family 7, KSP, GKS and

Table 3
TSPLIB asymmetric instances: Excess over optimum
Name Size GR (%) RI (%) KSP (%) GKS (%) RPC (%) COP (%)
brl7 17 102.56 0.00 0.00 0.00 0.00 0.00
p43 43 3.59 0.30 0.11 0.32 0.66 0.68
ry48p 48 32.55 11.66 7.23 4.52 29.50 7.97
ft53 53 80.84 24.82 12.99 12.31 18.64 15.68
ft70 70 14.84 9.32 1.88 2.84 5.89 1.90
ftv33 34 31.34 11.82 13.14 8.09 21.62 9.49
ftv35 36 24.37 9.37 1.56 1.09 21.18 1.56
ftv3s 39 14.84 10.20 1.50 1.05 25.69 3.59
ftv44 45 18.78 14.07 7.69 5.33 22.26 10.66
ftva47 48 11.88 12.16 3.04 1.69 28.72 8.73
ftv55 56 25.93 15.30 3.05 3.05 33.27 4.79
ftvo4 65 25.77 18.49 3.81 2.61 29.09 1.96
ftv70 71 31.85 16.15 3.33 2.87 22.77 1.85
ftv100 101 43.40 24.22 3.52 5.31 29.75 7.72
ftv110 111 38.61 12.46 5.41 5.67 21.35 6.89
ftv120 121 44.60 25.62 7.62 5.12 19.25 6.51
ftv130 131 49.15 27.13 5.46 4.90 17.34 5.59
ftv140 141 4591 24.17 4.46 4.67 23.84 5.99
ftv150 151 47.53 22.75 4.75 4.33 22.56 6.70
ftv160 161 36.64 28.62 1.71 1.49 22.77 2.87
ftv170 171 32.05 28.97 2.40 1.38 25.66 3.59
kro124p 100 21.01 12.17 16.95 8.69 23.06 8.79
rbg323 323 8.52 29.34 0.00 0.00 0.53 0.00
rbg358 358 7.74 42.48 0.00 0.00 2.32 0.26
rbgd03 403 0.85 9.17 0.00 0.00 0.69 0.20
rbgd43 443 0.92 10.48 0.00 0.00 0.00 0.00
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COP provide tours whose quality is close to that
produced by RI, especially when the size of the
instance increases.

Apart from being quite effective, COP is also
comparable to the GR algorithm with respect to
the execution time, see Figs. 3, 5, 7, 9 and 11 for
details. RI is clearly the fastest heuristic, but its
use should be restricted to Euclidean and close to
Euclidean instances as we have seen above.

8. Conclusions

The results of our computational experiments
show clearly that our combined algorithm COP
can be used for wide variety of the TSP instances
as a fast heuristic of relatively good quality. It also
demonstrates that theoretical investigation of al-
gorithms that produce solutions of exponential
domination number can be used in practice to
design effective and efficient construction heuristics
for the TSP. Further study of construction heu-
ristics for the symmetric non-Euclidean TSP is
suggested.
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