
Theory and Methodology

Construction heuristics for the asymmetric TSP

Fred Glover a, Gregory Gutin b,*, Anders Yeo c, Alexey Zverovich b

a School of Business, University of Colorado, Boulder, CO 80309-0419, USA
b Department of Mathematical Sciences, Brunel University, Uxbridge, Middlesex UB8 3PH, UK

c Department of Mathematics and Statistics, University of Victoria, P.O. Box 3045, Victoria BC, Canada V8W 3P4

Received 17 March 1999; accepted 25 November 1999

Abstract

Non-Euclidean traveling salesman problem (TSP) construction heuristics, and especially asymmetric TSP con-

struction heuristics, have been neglected in the literature by comparison with the extensive e�orts devoted to studying

Euclidean TSP construction heuristics. This state of a�airs is at odds with the fact that asymmetric models are relevant

to a wider range of applications, and indeed are uniformly more general that symmetric models. Moreover, common

construction approaches for the Euclidean TSP have been shown to produce poor quality solutions for non-Euclidean

instances. Motivation for remedying this gap in the study of construction approaches is increased by the fact that such

methods are a great deal faster than other TSP heuristics, which can be important for real time problems requiring

continuously updated response. The purpose of this paper is to describe two new construction heuristics for the

asymmetric TSP and a third heuristic based on combining the other two. Extensive computational experiments are

performed for several di�erent families of TSP instances, disclosing that our combined heuristic clearly outperforms

well-known TSP construction methods and proves signi®cantly more robust in obtaining (relatively) high quality

solutions over a wide range of problems. Ó 2001 Elsevier Science B.V. All rights reserved.

Keywords: Traveling salesman; Heuristics; Construction heuristics

1. Introduction

A construction heuristic for the traveling
salesman problem (TSP) builds a tour without an
attempt to improve the tour once it is constructed.
Most of the construction heuristics for the TSP

[12,15] are very fast; they can be used to produce
approximate solutions for the TSP when the time
is restricted, to provide good initial solutions for
tour improvement heuristics, to obtain upper
bounds for exact branch-and-bound algorithms,
etc.

Extensive research has been devoted to con-
struction heuristics for the Euclidean TSP (see,
e.g., [15]). Construction heuristics for the non-
Euclidean TSP are much less investigated. Quite
often, the Greedy algorithm (GR) is chosen as a

European Journal of Operational Research 129 (2001) 555±568
www.elsevier.com/locate/dsw

* Corresponding author.

E-mail addresses: Fred.Glover@Colorado.EDU (F. Glover),

z.g.gutin@brunel.ac.uk (G. Gutin), yeo@Math.UVic.CA (A. Yeo),

Alexey.Zverovich@brunel.ac.uk (A. Zverovich).

0377-2217/01/$ - see front matter Ó 2001 Elsevier Science B.V. All rights reserved.

PII: S 0 3 7 7 - 2 2 1 7 (9 9) 0 0 4 6 8 - 3

construction heuristic for the non-Euclidean TSP
(see, e.g., [12]). Our computational experiments
show that this heuristic is far from being the best
choice in terms of quality and robustness. Various
insertion algorithms [15] which perform very well
for the Euclidean TSP produce poor quality so-
lutions for instances that are not (and not close to)
Euclidean.

Hence, it is important to study construction
heuristics for the asymmetric TSP (we understand
by the asymmetric TSP the general TSP which
includes both asymmetric and symmetric instanc-
es). Our aim is to describe two new construction
heuristics for the asymmetric TSP as well as a
combined algorithm based on those heuristics. In
this paper we also present results of our compu-
tational experiments obtained for several di�erent
families of TSP instances. These results show that
overall the combined algorithm clearly outper-
forms well-known construction heuristics for the
TSP. While other heuristics produce good quality
tours for some families of TSP instances and fail
for some other families of instances, the combined
algorithm appears much more robust. Being a
heuristic the combined algorithm is not always a
winner among various heuristics. However, we
show that it obtains (relatively) poor quality so-
lutions rather seldom.

For the reader interested in solving the TSP on
particular families of non-Euclidean instances, this
paper may suggest a construction algorithm,
which is appropriate for the families under con-
sideration.

2. Terminology and notation

The vertex set of a weighted complete digraph
K is denoted by V �K�; the weight of an arc xy of K
is denoted by wK�x; y� (we say that K is complete if
for every pair x; y of distinct vertices of K both xy
and yx are arcs of K). The length of a cycle C (path
P) is the number of arcs in C (P). The asymmetric
traveling salesman problem is de®ned as follows:
given a weighted complete digraph K on n vertices,
®nd a Hamiltonian cycle (tour) H of K of mini-
mum weight. The domination number of a tour T in
K is the number of tours in K which are heavier or

of the same weight as T. A cycle factor of K is a
collection of vertex-disjoint cycles in K covering all
vertices of K. A cycle factor of K of minimum
(total) weight can be found in time O�n3� using
assignment problem (AP) algorithms (for the
corresponding weighted complete bipartite graph)
[4,13,14]. Clearly, the weight of the lightest cycle
factor of K provides a lower bound to the solution
of the TSP (AP lower bound).

We will use the operation of contraction of a
(directed) path P � v1; v2; . . . ; vs of K. The result of
this operation is a weighted complete digraph K=P
with vertex set

V �K=P � � V �K� [fpg ÿ fv1; v2; . . . ; vsg;

where p is a new vertex. The weight of an arc xy of
K=P is

wK=P �x; y� �
wK�x; y� if x 6� p and y 6� p;

wK�vs; y� if x � p and y 6� p;

wK�x; v1� if x 6� p and y � p:

8><>:
�1�

Sometimes, we contract an arc a considering a as a
path (of length one).

3. Greedy and random insertion heuristics

These two heuristics were used in order to
compare our algorithms with well-known ones.
Both heuristics are extensively used especially for
the Euclidean TSP [12,15] since they give consis-
tently good results for the Euclidean problem.
Despite being the winner among some other con-
struction heuristics for the (general) symmetric
TSP, the GR algorithm produces rather poor so-
lutions for this problem [12].

The GR algorithm ®nds the lightest arc a in K
and contracts it (updating the weights according to
(1)). The same procedure is recursively applied to
the contracted digraph K :� K=a till K consists of
a pair of arcs. The contracted arcs and the pair of
remaining arcs form the ``Greedy'' tour in K.

The random insertion heuristic chooses ran-
domly two initial vertices i1 and i2 in K and forms

556 F. Glover et al. / European Journal of Operational Research 129 (2001) 555±568

the cycle i1i2i1. Then, in every iteration, it chooses
randomly a vertex ` of K which is not in the
current cycle i1i2; . . . ; isi1 and inserts ` in the cycle
(i.e., replaces an arc imim�1 of the cycle with the
path im`im�1) such that the weight of the cycle
increases as little as possible. The heuristic stops
when all vertices have been included in the cur-
rent cycle.

4. Modi®ed Karp±Steele patching heuristic

Our ®rst heuristic (denoted by GKS) is based
on the well-known Karp±Steele patching (KSP)
heuristic [13,14]. The algorithm can be outlined as
follows:
1. Construct a cycle factor F of minimum weight.
2. Choose a pair of arcs taken from di�erent cy-

cles in F, such that by patching (i.e. removing
the chosen arcs and adding two other arcs that
join both cycles together) we obtain a cycle fac-
tor (with one less cycle) of minimum weight
(within the framework of patching).

3. Repeat Step 2 until the current cycle factor is
reduced to a single cycle. Use this cycle as an
approximate solution for the TSP.

The di�erence from the original KSP algorithm
is that instead of joining two shortest cycles
together it tries all possible pairs, using the best
one.

Unfortunately, a straightforward implementa-
tion of this algorithm would be very ine�cient in
terms of execution time. To partly overcome this
problem we introduced a pre-calculated n� n
matrix D of patching costs for all possible pairs of
arcs. On every iteration we ®nd a smallest element
of D and perform corresponding patching; also,
the matrix is updated to re¯ect the patching op-
eration that took place. Having observed that only
a relatively small part of D needs to be re-calcu-
lated during an iteration, we cache row minima of
D in a separate vector B, incrementally updating it
whenever possible. If it is impossible to update an
element of B incrementally (this happens when the
smallest item in a row of D has been changed to a
greater value), we re-calculate this element of B by
scanning the corresponding row of D in the be-
ginning of the next iteration. Finally, instead of

scanning all n2 elements of D in order to ®nd its
minimum, we just scan n elements of B to achieve
the same goal.

Although the improved version has the
same O�n3� worst-case complexity as the origi-
nal algorithm, our experiments show that the
aforementioned improvements yield signi®cant
reduction of execution time. Pseudo-code for
the approach outlined above is displayed in
Fig. 1.

5. Recursive path contraction algorithm

The second heuristic originates from [16]. The
main feature of this algorithm is the fact that its
solution has a large domination number. Heu-
ristics yielding tours with exponential yet much
smaller domination numbers were introduced in
the literature on so-called exponential neigh-
bourhoods for the TSP (for a comprehensive
survey of the topic, see [5]). Exponential neigh-
bourhood local search [6±8] has already shown its
high computational potential for the TSP (see,
e.g., [1,3]).

The algorithm (denoted by RPC) proceeds as
follows:
1. Find a minimum weight cycle factor F.
2. Delete a heaviest arc of each cycle of F and con-

tract the obtained paths one by one.
3. If the number of cycles is greater than one, ap-

ply this procedure recursively.
4. Finally, we obtain a single cycle C. Replace all

vertices of C with the corresponding contracted
paths and return the tour obtained as a result of
this procedure.
Let ci be the number of cycles in the i-th cycle

factor (the ®rst one is F) and let m be the number
of cycle factors derived in RPC. Then one can
show that the domination number of the tour
constructed by RPC is at least �nÿ c1 ÿ 1�!
�c1 ÿ c2 ÿ 1�! . . . �cmÿ1 ÿ cm ÿ 1�! [16]. This number
is quite large when the number of cycles in cycle
factors is small (which is often the case for
pure asymmetric instances of the TSP). By pure
asymmetric instances we mean instances for
which w�i; j� 6� w�j; i� for all or almost all pairs
i 6� j.

F. Glover et al. / European Journal of Operational Research 129 (2001) 555±568 557

Fig. 1. Pseudo-code.

558 F. Glover et al. / European Journal of Operational Research 129 (2001) 555±568

Fig. 1. (Continued).

F. Glover et al. / European Journal of Operational Research 129 (2001) 555±568 559

6. Contract or patch heuristic

The third heuristic (denoted by COP ± contract
or patch) is a combination of the last two algo-
rithms. It proceeds as follows:
1. Fix a threshold t.
2. Find a minimum weight cycle factor F.
3. If there is a cycle in F of length at most t, delete

a heaviest arc in every short cycle (i.e. of length
at most t) and contract the obtained paths (the
vertices of the long cycles are not involved in
the contraction) and repeat the above proce-
dure. Otherwise, patch all cycles (they are all
long) using GKS.
Our computational experiments (see the next

section) showed that t � 5 yields a quite robust
choice of the threshold t. Therefore, this value of t
has been used while comparing COP with other
heuristics.

7. Computational results

We have implemented all three heuristics along
with KSP, the GR algorithm and the random in-
sertion algorithm (RI), and tested them on the
following seven families of instances of the TSP:
1. all asymmetric TSP instances from TSPLib;
2. all Euclidean TSP instances from TSPLib with

the number of vertices not exceeding 3000;
3. asymmetric TSP instances with weights matrix

W � �w�i; j��, with w�i; j� independently and
uniformly chosen random numbers from
f0; 1; 2; . . . ; 105g;

4. asymmetric TSP instances with weights matrix
W � �w�i; j��, with w�i; j� independently and
uniformly chosen random numbers from
f0; 1; 2; . . . ; i� jg;

5. symmetric TSP instances with weights matrix
W � �w�i; j��, with w�i; j� independently and
uniformly chosen random numbers from
f0; 1; 2; . . . ; 105g �i < j�;

6. symmetric TSP instances with weights matrix
W � �w�i; j��, with w�i; j� independently and
uniformly chosen random numbers from
f0; 1; 2; . . . ; i� jg �i < j�;

7. sloped plane instances [11]. These are de®ned as
follows: for a given pair of vertices pi and pj, de-

®ned by their planar coordinates pi � �xi; yi�
and pj � �xj; yj�, the weight of the correspond-

ing arc is w�i; j� �
��
�xi ÿ xj�2 � �yi ÿ yj�2

q
ÿ

max�0; yi ÿ yj�� 2�max�0; yj ÿ yi�. We have
tested the algorithms on sloped plane instances
with independently and uniformly chosen ran-
dom coordinates from f0; 1; 2; . . . ; 105g.

For the families 3±7, the number of vertices n was
varied from 100 to 3000, in increments of 100. For
1006 n6 1000, all results are average over 10 trials
each, and for 1000 < n6 3000, the results are av-
erage over three trials each.

The number and variety of the families used
allows us to check robustness of tested algorithms
[11]. We use instances produced in both random
and deterministic manner. It is perhaps worth re-
calling that this paper deals only with construction
heuristics for the TSP. Thus, we cannot expect near
optimal solutions for the majority of instances.

All tests were executed on a Pentium II 333
MHz machine with 128MB of RAM. All results
for TSPLib instances are compared to optima. For
the asymmetric instance families 3, 4 and 7 we used
AP lower bound, the weight of the lightest cycle
factor. The AP lower bound is known to be of high
quality for the pure asymmetric TSP [2]. For the
symmetric instance families 5 and 6, we exploited
the Held±Karp (HK) lower bound [9,10], which is
known to be very e�ective for this type of TSP
instances [12].

Table 1 provides an overview of the quality of
the results obtained. Observe that COP is the only
heuristic from the above six that performs well
(relatively to the other heuristics) on all tested
families. All other heuristics fail on at least one of
the families. Compared to the other algorithms,
GR is good only for the Euclidean instances. RI,
KSP and GKS provide good results for all families
apart from the two random symmetric families,
where all produce tours of rather low quality. RPC
is quite stable, but almost always gives solutions of
relatively low quality.

It is worth mentioning that while there are some
good construction heuristics for the pure asym-
metric TSP, the best example of which is KSP
[14,17], the symmetric non-Euclidean TSP appears
much more di�cult for the existing construction

560 F. Glover et al. / European Journal of Operational Research 129 (2001) 555±568

heuristics. This di�culty is re¯ected in our com-
putational results. While COP certainly narrows
the gap between approximate solutions and the
HK lower bound, this gap still remains wide.

All of the tested algorithms except GR and RI
start by solving the AP in order to ®nd a mini-
mum weight cycle factor, and then apply various
patching techniques to transform the cycle factor
into a tour. In our view, the di�culty with the

symmetric non-Euclidean TSP for these algo-
rithms stems from the fact that the AP lower
bound is far from being sharp for this type of
instances. For the vast majority of symmetric in-
stances under consideration, the AP lower bound
produces a cycle factor consisting of a large
number of short (in the number of vertices)
cycles. This makes patching rather ine�ective.
Two remaining algorithms, GR and RI, also fail

Table 2

TSPLIB Euclidean instances: Excess over optimum

Name Size GR (%) RI (%) KSP (%) GKS (%) RPC (%) COP (%)

u574 574 19.19 11.46 16.82 20.05 36.90 13.56

rat575 575 12.46 12.30 16.20 16.79 38.80 19.53

p654 654 17.59 6.17 11.34 15.86 48.54 21.65

d657 657 16.90 11.27 18.78 17.94 35.60 15.58

u724 724 18.12 12.80 15.02 18.31 43.70 16.31

rat783 783 15.34 11.86 20.89 16.49 37.80 20.13

pr1002 1002 13.45 14.40 16.90 17.82 31.34 16.02

u1060 1060 18.18 12.50 18.45 20.30 36.42 15.92

vm1084 1084 22.55 13.06 18.56 22.53 46.68 21.12

pcb1173 1173 17.36 17.32 21.08 20.47 39.70 21.22

d1291 1291 24.14 20.69 19.38 17.94 42.52 27.61

rl1304 1304 12.10 20.01 23.16 31.30 50.06 29.01

rl1323 1323 13.78 18.37 21.30 30.29 50.65 29.33

nrw1379 1379 15.60 13.15 16.91 14.36 35.45 17.82

¯1400 1400 18.35 5.85 9.81 14.40 32.73 18.47

u1432 1432 21.61 12.90 13.48 10.15 31.37 13.41

¯1577 1577 16.02 18.66 18.76 26.16 34.42 22.46

d1655 1655 16.34 17.79 20.58 18.58 38.52 18.26

vm1748 1748 18.10 12.39 18.02 21.50 44.80 21.36

u1817 1817 19.03 18.99 22.91 15.19 38.15 21.94

rl1889 1889 16.59 19.33 21.12 27.82 52.25 26.92

d2103 2103 12.12 22.28 12.34 5.92 26.29 10.22

u2152 2152 17.33 17.40 22.71 15.82 36.69 19.14

u2319 2319 16.41 7.28 4.99 3.81 22.63 6.27

pr2392 2392 21.30 16.73 21.08 22.26 27.76 6.69

Table 1

Average excess over optimum, AP or HK lower bound

Class Number

of instances

GR

(%)

RI

(%)

KSP

(%)

GKS

(%)

RPC

(%)

COP

(%)

Asymmetric (TSPLib) 26 30.62 17.36 4.29 3.36 18.02 4.77

Euclidean (TSPLib) 69 18.29 11.55 14.93 17.25 36.72 17.50

Random asymmetric (distances from [1, 105]) 160 320.13 1467.38 3.11 3.09 106.65 1.88

Random asymmetric (distances from [1, I � J]) 160 515.10 1369.13 2.06 2.02 146.73 1.11

Random symmetric (distances from [1, 105]) 160 177.41 1178.77 574.90 453.18 124.27 46.60

Random symmetric (distances from [1, I � J]) 160 799.75 890.70 302.04 161.39 209.55 41.90

Random sloped plane 160 2201.19 41.78 44.20 46.33 72.17 47.29

F. Glover et al. / European Journal of Operational Research 129 (2001) 555±568 561

on these instances, but perhaps for a di�erent
reason. This suggests a need for further study of
construction heuristics for the symmetric non-
Euclidean TSP.

Tables 2 and 3 show the results obtained for the
families 1 and 2. For the family 2, only instances of
size between 500 and 3000 vertices are presented
due the large total number of Euclidean instances
in TSPLib (note that the values presented in Table
1 re¯ect all Euclidean TSPLib instances of not
more than 3000 vertices).

Figs. 2±11 show our results in a more detailed
form for all families except for the families 1 and 2.
In Figs. 2 and 4, we present only the results for
KSP, GKS and COP as they are clear winners for
the families 3 and 4. For both families the tours
produced by COP are almost always better than
those by all other tested heuristics. Note that the
results of KSP and GKS are very similar for these
two families of instances. This suggests that for
certain classes of instances the use of GKS instead

of KSP is not justi®ed. Notice that GKS requires
signi®cantly more involved programming than
KSP.

Figs. 6 and 8 contain our results on the families
5 and 6 for all heuristics. For the families 5 and 6
COP is again a clear winner. Taking into consid-
eration both families, RPC produces results, which
are relatively better or not much worse than those
of the others (apart from the tours of COP). In-
terestingly enough GR behaves worse on the
families 4 and 6 than on the families 3 and 5. This
justi®es partially our use of families 4 and 6 to-
gether with the families 3 and 5.

The quality of results for the family 7 is shown
in Fig. 10. Being a very good heuristic for the
Euclidean TSP, RI is the winner among our heu-
ristics on the family 7, which consists of asym-
metric instances somewhat similar to Euclidean
instances. While GR is hopeless (and therefore not
presented on the chart), and RPC behaves not
particularly well on the family 7, KSP, GKS and

Table 3

TSPLIB asymmetric instances: Excess over optimum

Name Size GR (%) RI (%) KSP (%) GKS (%) RPC (%) COP (%)

br17 17 102.56 0.00 0.00 0.00 0.00 0.00

p43 43 3.59 0.30 0.11 0.32 0.66 0.68

ry48p 48 32.55 11.66 7.23 4.52 29.50 7.97

ft53 53 80.84 24.82 12.99 12.31 18.64 15.68

ft70 70 14.84 9.32 1.88 2.84 5.89 1.90

ftv33 34 31.34 11.82 13.14 8.09 21.62 9.49

ftv35 36 24.37 9.37 1.56 1.09 21.18 1.56

ftv38 39 14.84 10.20 1.50 1.05 25.69 3.59

ftv44 45 18.78 14.07 7.69 5.33 22.26 10.66

ftv47 48 11.88 12.16 3.04 1.69 28.72 8.73

ftv55 56 25.93 15.30 3.05 3.05 33.27 4.79

ftv64 65 25.77 18.49 3.81 2.61 29.09 1.96

ftv70 71 31.85 16.15 3.33 2.87 22.77 1.85

ftv100 101 43.40 24.22 3.52 5.31 29.75 7.72

ftv110 111 38.61 12.46 5.41 5.67 21.35 6.89

ftv120 121 44.60 25.62 7.62 5.12 19.25 6.51

ftv130 131 49.15 27.13 5.46 4.90 17.34 5.59

ftv140 141 45.91 24.17 4.46 4.67 23.84 5.99

ftv150 151 47.53 22.75 4.75 4.33 22.56 6.70

ftv160 161 36.64 28.62 1.71 1.49 22.77 2.87

ftv170 171 32.05 28.97 2.40 1.38 25.66 3.59

kro124p 100 21.01 12.17 16.95 8.69 23.06 8.79

rbg323 323 8.52 29.34 0.00 0.00 0.53 0.00

rbg358 358 7.74 42.48 0.00 0.00 2.32 0.26

rbg403 403 0.85 9.17 0.00 0.00 0.69 0.20

rbg443 443 0.92 10.48 0.00 0.00 0.00 0.00

562 F. Glover et al. / European Journal of Operational Research 129 (2001) 555±568

Fig. 2. Random asymmetric instances (0::105): Excess over AP lower bound.

Fig. 3. Random asymmetric instances (0::105): Execution time (s).

F. Glover et al. / European Journal of Operational Research 129 (2001) 555±568 563

Fig. 4. Random asymmetric instances (0 . . . i � j): Excess over AP lower bound.

Fig. 5. Random asymmetric instances (0::i � j): Execution time (s).

564 F. Glover et al. / European Journal of Operational Research 129 (2001) 555±568

Fig. 6. Random symmetric instances (0::105): Excess over Held±Karp lower bound.

Fig. 7. Random symmetric instances (0::105): Execution time (s).

F. Glover et al. / European Journal of Operational Research 129 (2001) 555±568 565

Fig. 9. Random symmetric instances (0::i � j): Execution time (s).

Fig. 8. Random symmetric instances (0::i � j): Excess over Held±Karp lower bound.

566 F. Glover et al. / European Journal of Operational Research 129 (2001) 555±568

Fig. 11. Random sloped plane instances: Execution time (s).

Fig. 10. Random sloped plane instances: Excess over AP lower bound.

F. Glover et al. / European Journal of Operational Research 129 (2001) 555±568 567

COP provide tours whose quality is close to that
produced by RI, especially when the size of the
instance increases.

Apart from being quite e�ective, COP is also
comparable to the GR algorithm with respect to
the execution time, see Figs. 3, 5, 7, 9 and 11 for
details. RI is clearly the fastest heuristic, but its
use should be restricted to Euclidean and close to
Euclidean instances as we have seen above.

8. Conclusions

The results of our computational experiments
show clearly that our combined algorithm COP
can be used for wide variety of the TSP instances
as a fast heuristic of relatively good quality. It also
demonstrates that theoretical investigation of al-
gorithms that produce solutions of exponential
domination number can be used in practice to
design e�ective and e�cient construction heuristics
for the TSP. Further study of construction heu-
ristics for the symmetric non-Euclidean TSP is
suggested.

Acknowledgements

We would like to thank the anonymous re-
viewer and referees for providing useful comments
and suggestions on the initial version of the paper.
The research of GG was partially supported by a
grant from the Nu�eld Foundation. The research
of AY was partially supported by a grant from
DNSRC (Denmark).

References

[1] E. Balas, N. Simonetti, Linear time dynamic programming

algorithms for some new classes of restricted TSP's, in:

Proceedings of IPCO V, Lecture Notes in Computer

Science 1084, Springer, Berlin, 1996, pp. 316±329.

[2] E. Balas, P. Toth, Branch and bound methods, in: E.L.

Lawler et al. (Eds.), The Traveling Salesman Problem,

Wiley, New York, 1985, pp. 361-401.

[3] J. Carlier, P. Villon, A new heuristic for the traveling

salesman problem, RAIRO 24 (1990) 245±253.

[4] W.J. Cook, W.H. Cunninghan, W.R. Pulleyblank, A.

Schrijver, Combinatorial Optimization, Wiley, New York,

1998.

[5] V. Deineko, G.J. Woeginger, A study of exponential

neighbourhoods for the travelling salesman problem and

for the quadratic assignment problem, TR Woe-05, TU of

Graz, Graz, Austria, 1997.

[6] F. Glover, A.P. Punnen, The travelling salesman problem:

New solvable cases and linkages with the development of

approximation algorithms, Journal of Operations Re-

search Society 48 (1997) 502±510.

[7] G. Gutin, Exponential neighbourhood local search for the

traveling salesman problem, Computers & Operations

Research 26 (1999) 313±320.

[8] G. Gutin, A. Yeo, Small diameter neighbourhood graphs

for the traveling salesman problem: At most four moves

from tour to tour, Computers & Operations Research 26

(1999) 321±327.

[9] M. Held, R.M. Karp, The traveling-salesman problem and

minimum spanning trees, Operations Research 18 (1970)

1138±1162.

[10] M. Held, R.M. Karp, The traveling-salesman problem and

minimum spanning trees: Part II, Mathematical Program-

ming 1 (1971) 6±25.

[11] D.S. Johnson, private communication, 1999.

[12] D.S. Johnson, L.A. McGeoch, The traveling salesman

problem: A case study in local optimization, in: E.H.L.

Aarts, J.K. Lenstra (Eds.), Local Search in Combinatorial

Optimization, Wiley, New York, 1997, pp. 215±310.

[13] R.M. Karp, A patching algorithm for the nonsymmetric

traveling salesman problem, SIAM Journal on Computing

8 (1979) 561±573.

[14] R.M. Karp, J.M. Steele, Probabilistic analysis of heuristics,

in: E.L. Lawler et al. (Eds.), The Traveling Salesman

Problem, Wiley, New York, 1985, pp. 181±205.

[15] G. Reinelt, The traveling salesman problem: Computa-

tional Solutions for TSP Applications, Lecture Notes in

Computer Science 840, Springer, Berlin, 1994.

[16] A. Yeo, Large exponential neighbourhoods for the TSP,

Preprint, Department of Maths and CS, Odense Univer-

sity, Odense, Denmark, 1997.

[17] W. Zhang, R.E. Korf, On the asymmetric traveling

salesman problem under subtour elimination and local

search, Manuscript, Department of CS, University of

California, LA, 1993.

568 F. Glover et al. / European Journal of Operational Research 129 (2001) 555±568

