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Abstract 

Ejection chain procedures are based on the notion of generating compound sequences ol 
moves. leading from one solution to another, by linked steps in which changes in selected 
elements cause other elements to be “ejected from” their current state. position or value 
assignment. 

This paper introduces new ejection chain strategies designed to generate neighborhoods of 
compound moves with attractive properties for traveling salesman problems. These procedures 
derive from the principle of creating a reference structure that coordinates the options for the 
moves generated. We focus on ejection chain processes related to alternating paths, and 
introduce three reference structures, of progressively greater scope. that produce both classical 
and non-standard alternating path trajectories. Theorems and examples show that various 
rules for exploiting these structures can generate moves not available to customary neighbor- 
hood search approaches. We also provide a reference structure that makes it possible to 
generate a collection of alternating paths that precisely expresses the symmetric diffcrencc 
between two tours. 

In addition to providing new results related to generalized alternating paths, in directed and 
undirected graphs. we lay a foundation for achieving a combinatorial leverage effect. where an 
investment of polynomial effort yields solutions dominating exponential numbers of altcrna- 
tives. These consequences are explored in a sequel. 

K~~~ord.s: Traveling salesman; Graph theory; Combinatorial optimization; Integer propram- 
ming: Neighborhood search 

I. Introduction 

Ejection chain strategies give a useful way to build compound neighborhoods, with 

the goal of generating more powerful moves for solving discrete optimization 
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problems. Ejection chains combine and generalize ideas from a number of sources, 

including classical alternating paths from graph theory [l, 141, network related base 

exchange constructions in matroid optimization [S, 171, and bounding form struc- 

tures for solving integer programming problems [7]. Each of these embodies a related 

theme whose incorporation into neighborhood search offers a variety of new ap- 

proaches to combinatorial optimization applications. 

In rough overview, an ejection chain is initiated by selecting a set of elements to 

undergo a change of state (e.g., to occupy new positions or receive new values). The 

result of this change leads to identifying a collection of other sets, with the property 

that the elements of at least one must be “ejected from” their current states. State- 

change steps and ejection steps typically alternate, and the options for each depend on 

the cumulative effect of previous steps (usually, but not necessarily, being influenced 

by the step immediately preceding). In some cases, a cascading sequence of operations 

may be triggered representing a domino effect. The ejection chain terminology is 

intended to be suggestive rather than restrictive, providing a unifying thread that links 

a collection of useful procedures for exploiting structure, without establishing a nar- 

row membership that excludes other forms of classification. 

A number of methods deriving from this perspective recently have appeared in the 

literature. A node (or block) gjjection procedure has been proposed by Glover [S] for 

traveling salesman problems, and extended to provide new approaches for quadratic 

assignment and vehicle routing problems. Laguna et al. [16] introduce an ejection 

chain approach in conjunction with a tabu search procedure for multilevel generalized 

assignment problems, and demonstrate that ejection chains even of “small depth” 

produce highly effective results in this context. Ejection chain strategies are also 

proposed for clique partitioning by Dorndorf and Pesch [i] and for other forms of 

clustering problems by Hubscher and Clover [1.5], similarly yielding good 

outcomes. 

This paper focuses on the traveling salesman problem (TSP), whose goal is to find 

a minimum cost Hamiltonian cycle (tour) on a graph of n nodes. Letting c(i,j) denote 

the cost of edge (i,,j), and allowing the notational convention of treating paths and 

cycles as edge sets, the objective may be expressed as seeking a tour T that minimizes 

C(c(i,j) : (i,,j) E T). (See [lS] for a comprehensive background.) 

We characterize ejection chain strategies for the TSP that are founded on the notion 

of creating a reference structure to guide the generation of acceptable moves. We show 

such a structure can be controlled to produce transitions between tours with desirable 

properties, in particular generating alternating paths (or collections of such paths) of 

a non-standard yet advantageous type. 

The organization of the paper is as follows. We begin by identifying a basic 

stem-and-cycle reference structure in Section 2, and then describe a Subpath Ejection 

Method for exploiting it in Section 3. We also illustrate how the approach generates 

tours that cannot be obtained by “connectivity preserving” methods such as the 

LinKernighan procedure. Fundamental rules for treating stem-and-cycle reference 

structures are introduced in Section 4, together with characterizations of various types 



of alternating paths that differ from those customarily treated in graph theory 

literature. Section 5 examines parallel processing options applicable to these 

methods. 

In Section 6 we introduce a more general doubly rooted reference structure. uith 

examples and theorems to characterize advantages provided in exchange for a rela- 

tively modest increase in computational overhead. Section 7 completes the hierarchy 

of reference structures with a stem-and-multicycle structure capable of generating 

precisely the symmetric difference between any two tours, producing a succession of 

alternating path trajectories that never add or drop a “wrong” edge. Finally. Section 

8 examines implications of these outcomes. and identifies recent theoretical extensions 

and empirical studies that indicate the computational value of these results. 

2. A stem-and-cycle reference structure 

The stem-and-cycle reference structure is a spanning subgraph that consists of 

a node simple cycle attached to a path, called a stem. The node that represents the 

intersection of the stem and the cycle is called the root node. denoted by I’, and the two 

nodes of the cycle adjacent to the root are called the subroots. The other end of the 

stem is called the tip of the stem. denoted by t. An example of the stem-and-cycle 

structure is shown in Fig. 1. 

The stem can be degenerate, consisting of a single node, in which case I’ = t and the 

stem-and-cycle structure corresponds to a tour. Two trial solutions arc available fol 

creating a tour when the stem is non-degenerate, each obtained by adding an edge 

t = tip of stem 

r = root 

Sl, S2 = subroots 

Fig. I. Stem-and-cycle reference structure 
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(t, s) from the tip to one of the subroots s, and deleting the edge (r, s) between this 

subroot and the root. (When the stem is degenerate, this operation adds and deletes 

the same edge, leaving the tour unaffected.) 

3. Chains for ejecting tour suhpaths 

The first ejection chain construction we consider operates by cutting out and 

relinking tour subpaths. The process generates an evolving stem-and-cycle configura- 

tion which is initiated by selecting a node of the current tour to be the root node r, and 

hence also the initial tip t. The stem is then extended by a series of steps that consist of 

attaching a new non-tour edge (t,j) to a chain of tour nodes (j, . , k) which is thereby 

ejected from the tour. We forbid the ejected segment from including any nodes from 

a critical collection which initially contains node Y. In the simplest case, this segment 

can consist of only nodej itself (i.e.,j = k). Pesch [21] has suggested a variant of the 

node ejection of Glover [8] that follows a similar design, although without reference 

to subpaths or the guiding influence of the stem-and-cycle structure. The general form 

of the method is as follows. 

Subpath Ejection Method. 

Step 1: Select the root node Y and let t = I”. Let PC and SC respectively denote the 

sets of primary and secondary critical nodes, where to begin PC = (r} and SC is 

empty. Designate both subroots to be mxssible. 

Step 2: Identify a tour subpath (‘j, . . , k) that contains no nodes of PC or SC. Eject 

this segment from the tour by adding edge (t, j) and dropping the two tour edges (j’, j) 

and (k, k”) that lie outside the subpath (where, relative to the orientation of the 

subpath, j’ may be viewed as the predecessor of j, and k” may be viewed as the 

successor of k). Complete the step by adding the non-tour edge (j’, k”) to “cap the 

hole” left by the extracted segment. 

Step 3: Let t = k, identifying the new tip of the extended stem. Add nodes j and k to 

PC, and nodesj’ and k” to SC. If a node added to PC is a subroot, then designate it to 

be no longer accessible and add the remaining subroot also to PC (to preserve its 

accessibility). 

Step 4: Examine the trial solutions for creating a completed tour that result by 

joining t to each accessible subroot (keeping a record to recover the best trial solution 

found). Stop if PC and SC together contain all tour nodes (or if the quality of the trial 

solutions has not attained a desired threshold for a chosen number of steps). Other- 

wise return to Step 2. 

We note the preceding method permits subpaths to be ejected within other sub- 

paths previously ejected. The sets PC and SC governing legitimate ejections need not 

be disjoint (a node can belong to both if it is added to PC first), but only their union is 

relevant except in the special case where a subroot becomes a member of PC. The 
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method also allows one “exceptional situation.” We have not required that the 

edge joining r to a subroot. for creating a trial solution. must be a non-tour edge. 

It is possible that this edge may be a tour edge that was deleted immediately prior to 

examining the trial solution. Although the edge has been temporarily deleted and 

then added back. the organization of the method encounters no contradiction by 

this. 

Throughout this paper we assume that data structures for carrying out prescribed 

operations are evident. A simple example will be given for the present method. Begin 

the SEM procedure with a list J that contains the nodes in any order. Associated with 

J keep an array LOC(I’) that names the position of node i on J (i.e., J(LOC(i)) = i. 

where LOC(i) = 0 if i is not on J, or LOC(i) can simply be a binary flag in this limited 

application). When a node thus is to be added to PC or SC. it is removed from J, as by 

writing the last node of J over it and decreasing the size of J by 1 (updating the LOC 

array appropriately). Then at each execution of Step 2. nodej can be any element of J. 

and the subpath (j. k) can be generated by tracing along the tour in either direction 

from node ,j, stopping when desired, subject to not going beyond the first node 

i encountered such that LOC(I’) = 0. In the latter case. the node reachedjust before i ih 

the last acceptable choice of k in the direction traced. 

By this organization. any choice rule that allows at most a fixed given number of 

nodes to be examined at each iteration of Step 2 (in selectingj from J and tracing the 

subpaths (,j. k) as indicated) will result in an effort of O(H) for applying the method 

from start to finish. 

We now establish the validity of the method as follows. 

Proposition. Each trial solution generated ut Step 4 of the Suhpth Ejection Method is 

(1 f&isihle tour’. 

Proof. We must show that the method generates a valid stem-and-cycle structure at 

each step, and that a subroot qualifies as accessible only if in fact it constitutes 

a current suhroot. By induction, assume the construction gives a valid stem-and-cycle 

structure before the current execution of Step 2. If no node of (,j. . k) is on PC or SC. 

then none of these nodes meets a previously added or deleted edge, and hence the 

subpath is well defined, constituting a component of the initial tour. Moreover. ( j’. j) 

and (k, k”) also must be edges of the initial tour. If the ejected segment comes from the 

current cycle. the capping edge therefore creates a new cycle, while if it comes from the 

current stem. the capping edge retains the stem intact (where in each case the ejected 

segment is transferred to the tip). Finally. since the root I’ belongs to PC. no Ned 

non-tour edge can meet I’ (after the first) except where I’ also becomes a member of SC. 

This implies that an edge is dropped between the root and a subroot s and that .\ is 

added to PC (as j or k) in Step 4. Thus this condition accurately identifies that s no 

longer fulfills the role of a subroot, and the operation of adding the remaining subroot 

to PC assures it cannot become inaccessible. 0 



228 F. Clocer 1 Discrete Applied Mathematics 65 (1996) 223-253 

3.1. Exploiting the subpath ejection neighborhoods 

The Subpath Ejection Method generates a compound neighborhood for defining 

moves to transition from a current tour to a new one. The termination condition in 

Step 4 provides a signal to select the best trial solution found at this step as the new 

current tour, and then to begin again with this tour at Step 1. 

Our motive for creating an ejection chain of the type generated by the Subpath 

Ejection Method derives from the following consideration. If the current tour is not 

optimal, there must exist some node r and a sequence of nodes starting from r and 

leading finally back to an adjacent node, that will bring the current tour in closer 

correspondence to an optimal tour. Moreover, if the current tour is already “locally 

optimal” (by applying an approach such as 2-opt, for example), then it is likely that 

a number of subpaths of the tour are already properly sequenced. Consequently, an 

ejection chain process designed to piece together appropriate segments may provide 

a foundation for finding additional improvements. 

3.2. An illustrated construction 

We provide an example to illustrate the kinds of outcomes the Subpath Ejection 

Method is capable of generating in transitioning from one tour to another, establish- 

ing a basis that leads to more advanced considerations. The graph for our example 

consists of ten nodes, shown in Fig. 2. The current tour is assumed to visit these nodes 

in their numerical order. The illustrated process ejects two subpaths, each consisting 

of a single edge, and then selects a trial solution. In Fig. 2, the ejection chain starts 

with node 1 as the root r, then adds edge (1,8) to attach to and eject (“cut free”) the 

subpath (8,9) (which in this case consists of an edge), followed by adding edge (9,4) to 

attach to and eject the subpath (4,5) (likewise in this case consisting of an edge). Thus 

the capping edges added by these two ejections are (7,lO) and (3,6), while the edges 

deleted are (7,8), (9, lo), (3,4) and (.5,6). Of the two trial solutions available at this 

point, we select the one associated with subroot 2 to conclude the process, thus adding 

edge (5,2) and deleting edge (1,2). 

Fig. 2. An ejected subpath tour construction (not obtainable by maintaining tour connectivity). 



The transformation of the current tour into the new one of this simple example 

produces an outcome that cannot be achieved by the popular heuristic approach of 

tin and Kernighan [19], or by any heuristic that is designed similarly to maintain an 

underlying feasible tour construction at each step. Specifically. we see that the two 

deleted edges adjacent to the first added edge destroy- the connectivity of the graph. 

That is. the initial addition of edge (1,X) cannot be accompanied by the deletion of 

both (1,2) and (7,8), since this divides the graph into a disjoint path and subtour. 

Moreover. the same sort of inf~asibiIity occurs in this example regardless of which 

edge is added first. Thus, the resulting tour cannot be obtained by a “connectivity 

preserving” approach regardless of which node of the graph is selected to initiate the 

process. (The Lin Kernighan procedure allows for an optional maneuver on its first 

step in an attempt to overcome its connectivity limitation, but even after such 

a rn~~neLl~‘er the example again destroys the connectivity required to continue at the 

following step.) 

Additional somewhat different but equally simple constructions by the Subpath 

Ejection Method yield the same type of outcome. (For example, an instance of such 

a construction occurs by replacing the three interior edges of Fig. 2 by the three edges 

(1.4). (5. X) and (9, Z).) If it is indeed desirable to be able to build new tours by linking 

-‘good segments”, as previously suggested. then the question arises as to how to 

identify such segments, and more broadly. whether there may exist alternative types ot 

linking that can produce other tour constructions Lvorth considering. We will sho\v it 

is possible to exploit the reference structure concept to create more powerful processes 

whose tnoves include those of the Subpath Ejection Method as a special case. 

There is a link between the preceding Subpath Ejection Method and classical 

alternating path constructions from graph theory (see, e.g.. Cl. 141). Assume the edges 

of a path are numbered consecutively according to their order of occurrence. An 

alternating path may be defined as an edge simple path in which even-numbered edges 

belong to a current solution subgraph, and odd-numbered edges do not. (In typical 

graph theory applications. the current solution subgraph is one whose edges define 

a matching or satisfy other degree constrained conditions.) 

The purpose of such a path is to identify a transformation of the current solution 

into another by successively adding and deleting path edges according to whether 

they are absent or present, respectively, in the current solution. Each edge to be 

deleted is determined by its adjacency to the preceding edge that is added (at the 

endpoint to tvhich the path is currently traced) in order to lnailltain feasibility. In the 

in~~t~hing problem context. prima1 methods use this construction to generate cost 

improving alternating cycles, while dual methods use it to augment the current 

solution by reference to successive shortest (minimum cost) alternating paths. (See. for 

example. [4].) 
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Although derived from a different perspective, it is not hard to see that the Subpath 

Ejection Method implicitly generates a type of alternating path construction. This 

interpretation arises by conceiving the ejection of Step 2 to be broken into a sequence 

of four operations, first adding the non-tour edge (t,,j), followed by deleting the tour 

edge (,j’,j), adding the capping edge (j’, k”), and finally deleting the tour edge (k, k”). 

The ordering of this sequence, and the fact that node k becomes the new t, reveals the 

correspondence with an alternating path. (It is shown in Giover [lo] that the 

Lin-Kernighan heuristic also can be interpreted as a form of alternating path 

procedure.) The following sections extend this orientation to establish further links 

between alternating path constructions and the traveling salesman problem. 

4. A fundamental stem-and-cycle approach 

We now describe an ejection chain process, likewise guided by the stem-and-cycle 

reference structure, which is able to generate alternating paths not accessible to the 

Subpath Ejection Method, and at the same time to produce constructions that differ 

from alternating paths. Rather than seek to eject (and attach) tour segments in 

conjunction with a capping operation, the process is organized to apply more 

fundamental ejection steps that preserve the stem-and-cycle structure. In addition, we 

replace the restrictions based on identifying the critical nodes by a simpler restriction, 

stipulating only that any edge deleted must not be added back. Each step then consists 

of adding a single edge and deleting another. We subdivide the rules for maintaining 

the stem-and-cycle reference structure into those that produce an alternating path and 

those that do not. 

Fundamental stem-and-cycle rules. 

Rule 1: Add an edge (ttj) wherej belongs to the cycle. Identify the deleted edge (j, 4) 

to be either of the two edges of the cycle incident at j. Node q becomes the new tip t. 

Rule 2: Add an edge (t,j) where j belongs to the stem. Identify the edge deleted (j, 4) 

by requiring q to lie on the portion of the stem betweenI and t. Node y becomes the 

new tip t. 

Auxilinry rules. 

R&e 3: Add ft,j), for an arbitrary node j. Delete an edge (r, y) incident at Y, where 

q is restricted to be a subroot if j is not a cycle node. Node q becomes the new tip t. 

Rule 4: Add (q,.j), where q is adjacent to r, and delete the uniquely identified edge 

(r, q). Node j is an arbitrary node if q is a subroot and otherwise j is a cycle node. Node 

f remains the tip node. 

The application of these rules is illustrated in Figs. 3 and 4. Note that the root never 

changes its identity. In Rule 1, if .j is one of the subroots and q is the root r, the 

stem-and-cycle reduces to a cycle (with a degenerate stem), causing the root r and new 



Fig. 3. Stem-and-cycle rules to generate an alternating path. 

Rule 

Fig. 4. Auxiliary stem-and-cycle rule\. 

tip r to coincide. Also, since r belongs both to the stem and the cycle, both Rule 1 and 

Rule 2 apply when j = r, and hence in this case there are three options for identifying 

the edge (j, q) to delete. (A null move may be possible that adds and drops the same 

edge.) 
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Rules 1 and 2 yield an alternating path sincej is a node in common with (t, j) and 

(,j, 4) and 4 is identified as the new t. As in the Subpath Ejection Method, such a path 

may not represent a sequence of feasible tour modifications in the customary sense, 

although a feasible tour completion always results by the two trial solution alterna- 

tives available at each step. Each step of the Subpath Ejection Method can be broken 

into either two or three steps of applying Rules 1 and 2, though we will later see that 

the “aggregate move” orientation has merit under certain conditions. 

The alternatives by Rules 3 and 4 slightly overlap with those available by Rules 

1 and 2. Rule 3 can create both a new tip and a new root, while Rule 4 always creates 

a new root. Heuristic choice criteria for applying Rules 1-4 (when the steps are not 

aggregated) can be based on selecting the combination that yields a best trial solution 

at each step, breaking ties according to the immediate cost of the move (that is, the 

cost of the added edge minus the cost of the dropped edge). Tie breaking is important 

since the trial solutions produced by the moves overlap. A more opportunistic (less 

expensive) alternative is to use the immediate move costs without reference to trial 

solutions. 

The foregoing rules clearly require O(n) effort to apply. The use of a candidate list to 

limit the number of edges meeting t (or y in Rule 4) does not change the order of this 

effort, because of the need to differentiate the stem from the cycle, and to keep track of 

subpaths that change orientation. However, the O(n) effort of updating can be reduced 

to an 0( 1) effort, by means of specialized processes which are treated in a sequel [lo]. 

While Rules 3 and 4 offer viable choice possibilities using a stem-and-cycle reference 

structure, we restrict attention to Rules 1 and 2 in this section in order to analyze 

implications concerning the generation of alternating paths. 

By applying Rules 1 and 2 subject to the stipulation that an edge deleted cannot 

subsequently be added back, we permit constructions that may not be edge simple in 

a customary sense. That is, by this stipulation, an edge that is added may possibly be 

deleted later. The classical conception of an alternating path does not harmonize well 

with this provision, but rather is static, where the edges that qualify as available to be 

deleted are assumed to be those initially present in the subgraph that is transformed. 

Instead, we require a conception that allows a path to be ~yn~~~i~~ so that the process 

of adding new edges enlarges the set susceptible to being deleted.’ 

Consequently, we seek a system of classification enabling us to treat alternating 

paths from such a perspective. For this purpose, we begin by defining an alternating 

path to be u&l simple (delete simple) if no added (deleted) edge appears more than once 

in the path. Note a path that is both add simple and delete simple is not necessarily 

’ This notion may be viewed as complementary to the ideas of de Werra and Roberts [2], who give a way to 
generalize alternating paths in the context of chain packing problems. 



edge simple in a static sense, since such a path allows the same edge to be both added 

and deleted. 

An additional level of differentiation is required to encompass the restriction we 

have imposed on generating alternating paths. Specifically. we require the notion ol 

a c.orlditir,rz~r//!. sirllple alternating path, in which the presence of one class of cdgcs 

depends on that of another. Define a path to be tl~lcr~ rrtlrl .s~uI~I/~ if a deleted cdgc 

does not subsequently reappear as an added edge. and to be trlltl’ delr~fc sirrlplc if an 

added edge does not subsequently reappear as a deleted edge. (By the natural analogs 

of these definitions, it can be seen that the classes of add add simple paths and 

delete ,deletc simple paths are the same as those of add simple and delete simple paths. 

respectively. In addition, add\delete simple paths and delete add simple paths arc 

both instances of paths that are simultaneously add simple and delete simple.) The 

type of alternating path produced by the restriction we apply with Rules 1 and 3 thus 

constitutes what we have called a delete add simple path. Our analysis \vill hc 

concerned with identifying special properties about the nature and existence of such 

paths in connection with the traveling salesman problem. 

A simple example shows the necessity of considering alternating paths more general 

than customary in order to transform one traveling salesman tour into another. The 

example is a familiar one known to provide an instance where the Lin-Kernighan 

construction fails to transform one tour into another. and can be expressed bq 

reference to a graph consisting of eight nodes. shokvn in Fig. 5. 

Starting from the tour that visits the eight nodes in numerical order. the goal is to 

reach the tour that visits the nodes in the order 1,6.7.4,5.3.3,8. 1. This tour deletes 

edges (1.2). (3,4), (5.6), (7.8), and adds edges (1.6). (2.5). (3.8). (4.7). It is clear the 

indicated transformation does not represent a connected alternating path. but rather 

two disjoint (and piecewise infeasible) alternating paths. (Evidently. the symmetric 

difference between two tours always can be expressed as a collection of alternating 

paths (cycles) whose maximum components are node dis.joint. Results bearing on this 

appear in Section 8.) Nevertheless, there does exist a delete add simple path that 

transforms the first tour into the second. which makes USC of the dotted edge in Fig. 5. 

We demonstrate this outcome by showing in addition that such a path can bc 

obtained by the stem-and-cycle approach following Rules I and 3. 

Starting from node 1 as the root I’ (and hence also the initial tip f). the alternating 

sequence of edges added and dropped by applying Rules 1 and 2 are as follows: 

(l-6).(6.5), (5. X).(X. 7).(7.4),(4.3),(3,8).(8,5).(5,2),(2. 1). At each step, the second node 

of the odd-numbered (added) edges represents the current node j in Rules I and 2. 

while the second node of the even-numbered (deleted) edges represents the current 

node (1. which becomes node t at the next step. The last pair of edges added and 

dropped may also be viewed as the outcome of selecting the trial solution associated 

with subroot 2 at the next to last step. (The indicated transformation is not the onl! 

one that can be obtained by this process.) 
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Fig. 5. A delete’;add simple alternating path transformation using a stem-and-cycle construction. 

4.2. Delete\add simple paths and the stem-and-cycle structure 

Clearly no alternating path exists to transform the first tour of the preceding 

example into the second except by adding an edge that must subsequently be deleted. 

At a more general level, the example prompts the question of whether a given tour 

may be transformed into any other by an alternating path that is delete\add 

simple. 

For this question to be meaningful, we assume either that the graph is dense or that 

artificial edges may be added as needed (which will also be removed during the path 

construction). The illustrated path in the example of Fig. 5 also exhibits another 

property we regard to be significant. After adding the edge (5,8) that subsequently 

becomes deleted, the next added edge is one that is not deleted. We call a delete\add 

simple path with this characteristic, i.e., in which at least one of any two successively 

added arcs is never subsequently deleted, ajrst order delete\add simple path. Results 

proved in [ 101 establish that such an alternating path can transform any tour into any 

other, and more importantly (from our perspective), that the transformation can 

always be produced by the stem-and-cycle approach using Rules 1 and 2. A useful 

implication is that an optimal tour is always potentially accessible at each execution of 

the stem-and-cycle approach. This outcome may be viewed as a connectivity result in 

the space defined by these special types of alternating paths. 

Moreover, the rules described for the symmetric case can be modified in a natural 

manner to handle asymmetric traveling salesman problems. This is a feature not 

shared by some popular approaches, such as 2-opt and the LinKernighan procedure, 

which entail reversals of subpaths in order to achieve such an extension. 

Next we examine how these ideas can be exploited in a parallel processing frame- 

work, which gives an implicit ability to generate structures more varied than by 

a serial approach. 
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5. Parallel processing and stem-and-cycle structures 

The issue of applying the stem-and-cycle reference structure to solve traveling 

salesman problems by parallel processing introduces concerns that are particularly 

relevant to solving large problems. We show it is possible to organize separate 

stem-and-cycle processes into a method that creates a graph with multiple cycles and 

stems, not necessarily connected, while operating only with the rules previously 

described. 

Our approach is based on the simple strategy of creating houndar~ norirs that 

subdivide a selected starting tour into subpaths. Each parallel process then is applied 

to the nodes of a given subpath (see, e.g., [6,20]). Our goal is to implement an ejection 

chain approach on the subgraph induced by the selected subpath nodes, in such a way 

that the stem-and-cycle structures of the separate processes can always be concat- 

enated to create a single feasible tour. 

Let N(u, P) denote the set of nodes of a given starting subpath, initiated by the 

boundary node u and terminated by the boundary node I‘. By applying the stem-and- 

cycle reference structure to this set of nodes, the rules for deleting edges will create 

stems and cycles that implicitly must be routed through nodes outside this set (in 

order to maintain an appropriate structure). The effect of operating in parallel on 

other sets of nodes of the graph, thereby introducing other stem-and-cycle configura- 

tions external to N(u, P) , creates a “divided” stem-and-cycle structure that destroys 

the simple external path routing on which the rules for altering the structure relative 

to N(u, P) presumably rely. Some device must be employed to assure that the diverse 

components of the divided structure are susceptible to relinking. Fortunately, this 

turns out to be easy to do, as noted in the following observation. 

Remark. To operate on the subpaths in parallel, create an initial subtour for each pail 

of successive boundary nodes u and u, consisting of the starting path from II to I’ and 

a single artificial edge (u, c). Then apply the stem-and-cycle preservation rules to each 

such subtour and the subgraph induced by N(u, ~1). subject to the restriction that edge 

(u, 1.) is never deleted. The trial solutions for the separate stem-and-cycle structures 

create a feasible tour over all nodes upon removing the artificial edges. 

The foregoing remark is immediately justified by the fact that each trial solution 

must generate a feasible tour over N(u, c), and this tour will constitute a path from u to 

r upon eliminating the artificial edge. The union of the paths is evidently a feasible 

tour. 

An example of a divided stem-and-cycle structure generated by the approach of the 

Remark is shown in Fig. 6. The starting structure represents one obtained after a first 

step that adds and deletes an edge in each subtour to create a non-degenerate 

stem-and-cycle. The three square nodes of the figure identify the selected boundary 

nodes and the artificial edges (not shown) thus connect each successive pair of these 

nodes. The final stem-and-cycle structure shown in Fig. 6 is obtained after two 
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Numbered nodes are tips, square nodes are boundary nodes 

Fig. 6. Divided stem-and-cycle structure for parallel processing. 

iterations applying Rules 1 and 2 to each subtour, subject to not deleting artificial 

edges. The stem tips for each of the three initial and final component configurations 

are indicated by the nodes numbered 1,2 and 3. 

Either of the two trial solutions for each component can be linked with remaining 

trial solutions to create a feasible tour. In practice, the best trial solution obtained by 

parallel processing over each component will be retained to construct the desired 

composite tour. Then another set of boundary nodes is selected to create a different 

division into subpaths, and the process repeats. 

We now show how the simple concept of the preceding Remark can be usefully 

broadened. 

Extended Remark. Let u~,c~,u~,v~, ,uk,ck, be a succession of consecutive boundary 

nodes. Create an initial subtour consisting of the starting subpaths over 



each of the sets N(ui, ci), i = 1, . . k, together with linking artificial edges 

(I.,,Uia,),i= l...., k.where~~+, = ~1,. Then apply the stem-and-cycle rules over the 

composite subgraph induced by the union of the ,Y(uj, ~1,) node sets. subject to the 

restriction that no artificial edge is deleted, and independently apply the approach 

over each separate subgraph induced by the node sets N(v,, 11, , I). by the rule of the 

preceding Remark. The trail solutions for each of these subgraphs can then be linked 

to create a feasible tour by deleting the artificial edges. 

The significance of the Extended Remark is to permit a strategy of identifying the 

sets N(ui. /li) with the goal of incorporating nodes which possibly should be redis- 

tributed among these sets. In particular. the application of the Extended Remark 

makes it possible for the final trial solution subpaths (from each Ifi to each I’,) to 

incorporate nodes other than those contained in the sets N(L/,. ri), as initially idcnti- 

tied. Further. these subpaths may become linked to the other subpaths in a sequence 

different from that indicated by their indexes. (The added flexibility of this second 

condition prevents the simultaneous creation of another subgraph induced b> the 

union of selected remaining subpaths. since the final subtours obtained from these 

“aggregate subgraphs” may arrange their components in incompatible sequences.) 

Finally, the Extended Remark can be applied recursively. That is. each node subset 

,\'(r,. ui_, ) and its associated starting subpath can be subdivided by the rules of the 

Extended Remark exactly as if it represented the node set of the complete problem. In 

this way. when boundary nodes are reselected in a repetitive application of the 

approach. it is possible to allow interactions among non-adjacent subpaths on the 

basis of varying criteria. We note these observations apply not only to the application 

of the stem-and-cycle approach. but also to any procedure capable of recovering 

a feasible trial solution at each step (over the subgraph considered). 

To exploit parallel processing opportunities as fully as possible in this setting. it is 

useful to supplement the possibilities made available by the Extended Remark. 

Ideally. we would seek to encompass interactions across non-adjacent subpaths that 

do not depend solely on the recursive identification of boundary points to qualify a4 

the pairs ([I,. t.J. This goal can be pursued by an ejection chain strategy using the 

constructions of [8]. A method using these constructions can easily control subdi\i- 

sions of a tour so that component subpaths will not become resequenccd relative to 

each other. Thus. in a parallel processing environment. such an approach may probide 

a useful companion to ejection chain approaches based on the roregoing ideas. 

6. Doubly rooted reference structures 

We identify a reference structure in this section that not only permits more direct 

trajectories between tours, but provides moves beyond those available by the combi- 

nation of the preceding approaches. This structure requires only slightly more effort to 

manage than the stem-and-cycle structure, still involving O(n) computation at each 
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execution. The structure may be conceived as arising from a stem-and-cycle by 

introducing a single additional edge (t,j), which connects stem tip t to an arbitrary 

nodej (without simultaneously deleting an edge). Nodej thus identifies a second root 

(possibly coinciding with the first root), and accordingly we call this construction 

a doubly rooted reference structure. When the two roots are distinct, each meets 

exactly three edges of the structure, and when they coincide, they meet four edges of 

the structure. All other nodes meet exactly two edges. 

The doubly rooted structure has two forms: a tricycle in which the two roots are 

connected by the three paths, thereby generating three cycles (two that share the 

“inner” path between the roots, and one that does not); and a bicycle in which the 

roots are connected by a single path, joining two cycles. (A degenerate bicycle is 

produced when the roots correspond.) These forms are illustrated in Fig. 7. 

The doubly rooted structure contains no explicit tips, but contains up to six implicit 

tips identified by deleting edges (one at a time) that meet the roots. Thus, the implicit 

tips coincide with the subroots, which we define to constitute the nodes adjacent to the 

roots. Subroots are divided into two classes, cycle subroots and non-cycle subroots, 

where the latter are those that lie on the path between the two roots of a bicycle. (A 

tricycle and a degenerate bicycle contain only cycle subroots.) The roots can also be 

tricycle structure 

bicycle structure 

rl, r2 = roots 

Fig. 7. Doubly rooted stem-and-cycle structures. 
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subroots if they join by an edge. In this special case. a root r of a bicycle that is also 

a subroot must by definition be a non-cycle subroot. Although it lies on a cycle, the 

cycle is not shared with the root to which it is adjacent. 

A stem-and-cycle structure results by deleting any edge (r, s) such that I’ is a root 

and s is a cycle subroot. Node s becomes the tip, while the (root) node that remains 

with three incident edges becomes the stem-and-cycle root. The trial solutions avail- 

able to the doubly rooted structure are thus the union of the trial solutions available 

to these component stem-and-cycle structures. In fact, the trial solutions that result by 

transforming a cycle subroot s into a tip, for each such s associated with a given root I^. 

are the same as the trial solutions similarly produced from the subroots of the other 

root, and hence attention can be restricted to only one of the two sets of subroots for 

this purpose. (Each cycle subroot of a given root produces two trial solutions.) The 

enriched pool of such trial solutions, together with an enriched set of moves for 

transitioning from one reference structure to the next. provide the potential advantage 

of the doubly rooted structure. The rules to transition between structures are as 

follows. 

Rules for the doubly rooted structure. 

Rule I-DR: Select a cycle subroot s and an associated root r. Add an arbitrary new 

edge (.s,j) (not in the current structure) and delete the edge (s, r). After the step, 

j becomes a root (and r is no longer a root unless the two roots coincided before the 

step). 

Ruk 2-DR: Select a non-cycle subroot s and an associated root r. Add a new edge 

(s,,j) such that ,j lies on the cycle in common with r, and delete (s, I’). Node,j becomes 

a new root (and I’ is no longer a root). 

These two rules, although simple to describe, encompass all alternatives available to 

the Subpath Ejection Method and all possibilities contained in Rules 1~ 4 of the 

stem-and-cycle approach, as applied to each of the component stem-and-cycle struc- 

tures implicit within the doubly rooted structure. This outcome is somewhat counter- 

intuitive, since the stem-and-cycle rules appear to offer a broader range of options, 

allowing for the deletion of edges not specified in Rules l-DR and 2-DR. 

The broader purview of Rules l-DR and 2-DR becomes understandable by consid- 

ering how they achieve the effect of Rule 1 for the stem-and-cycle structure. which 

adds an edge (t.,j) from the tip t to the cycle, and drops an adjacent cycle edge (y. j). 

The corresponding doubly rooted structure contains an edge that joins t to a root F’, 

which makes t a cycle subroot of 1.‘. Assume the same edge (t,j) is added to this 

augmented structure. No corresponding deletion of an edge (q,,j) occurs by Rule 1 -DR 

or 2-DR. The fact that j becomes a new root means that q corresponds a new subroot. 

(If ,j = r’ the root and subroot are unchanged.) It thus can be seen that the trial 

solutions available to the stem-and-cycle structure after applying Rule 1 (and drop- 

ping (q,j)) are a subset of those available to the doubly rooted structure after applying 

Rule I-DR or 2-DR (and making,j a new root). Moreover. the doubly rooted structure 
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has the option now to execute a move that drops (q,,j), which implicitly corresponds to 

choosing y as the new tip t in the stem-and-cycle approach. However, we are not 

limited to the options that result by specifying 4 to be the new tip, and hence an 

expanded set of move possibilities is available. 

Rules I-DR and 2-DR of course do not in general create a connected path sequence, 

and thus go beyond alternating path structures, though again we will be interested in 

such constructions as an important special case. To prevent a return to an alternative 

available on the preceding step, an edge deleted may be prevented from in~mediately 

being added back (or, more broadly, prescriptions of the form used with tabu search 

can be applied). 

6. I. The doubly rooted structure,fbr the asymmetric problem 

The form of the doubly rooted structure for the asymmetric problem is a direct 

analog of the one for the symmetric problem. The asymmetric structure gives rise to 

three directed cycles in the case of a tricycle, and to two directed cycles, joined by 

a directed path, in the case of a bicycle. (The directed path may have no arcs if the 

roots coincide.) When the roots are distinct, one root has two arcs entering and one 

arc leaving, while the other root has two arcs leaving and one arc entering. Each root 

has two subroots (instead of three), which he on the two arcs that enter or the two arcs 

that leave the root. In the degenerate case, as before, each of the four nodes adjacent to 

the root is a subroot. The distinction between cycle subroots and non-cycle subroots 

remains unchanged. 

By these conventions, the rules for the directed case of the doubly rooted structure 

are exactly the same as Rules l-DR and 2-DR, except that the added and deleted arcs 

must be directed the same relative to the subroot s (i.e., the added and deleted pair is 

either (sj) and (s, r) or (,j, s) and (r, s)). 

The ability of the doubly rooted structure to generate more effective alternating 

path sequences can be established rigorously as follows. 

Theorem 1. There exists n,fir.st rtrder de~et~~,add simple ~l~t~r~~tin~ path, .~tff~ti~g.fr~~ 

an arbitrary node r as a,first root, and obta~nub~e by the doubly rooted structure using 

Rules l-DR and 2-DR1 that \vill trunsfbrm an initial directed tour into another directed 
tour his adding less than 2m urcs, where m is the number qf‘arcs in the second tour not in 
the ,fir.st. 

Proof. We begin by adding a non-tour arc (P, r*) to the initial tour to create a doubly 

rooted structure with roots r and I’ *. Since the doubly rooted structure always 

contains one more arc than a tour, we seek a transformation that yields the second 

tour plus a single arc (which is dropped in a final degenerate trial solution). As before, 



arcs belonging to the second tour will be classified white and others black. and we 

identify a linked succession of steps that assures the path is alternating. 

In the worst case, the first non-tour arc added is compelled to be black (where the 

tour arc out of node I’ is white). Then choose r* so that the unique arc (L. I’*) into 

V* also is black. (If instead (r. r*) is white, then (L r*) automatically is black.) In 

general. we use such an approach to assure each step of adding an arc likewise creates 

a root Y* that is met by an associated arc (k. r*) which is black. At this point h 

is a subroot s of v*. since the doubly rooted structure has two arcs entering I.*. 

The next step therefore will be to drop the black arc (s. v”). If this deletion 

creates a tour (corresponding to a degenerate trial solution). and if all arcs are white. 

the process is completed. Otherwise. we add a neu arc (.L j) by either Rule l-DR OI 

‘-DR. 

Assume first s is a cycle subroot (as it must be on the first step after adding (I’. I’* )). 

Then Rule l-DR applies, permittingj to be an arbitrary node. We therefore can select 

(s, j) to be white. provided either that s was not a root node before deleting (s. F*). ot 

else that there is no white arc out of this root. Then, upon identifyingj as the new I.*. 

we are ready to begin again under the same conditions that initiated the preceding 

step (where (li, I.*) is black, etc.). 

The only way to break a sequence of add-drop steps where every added arc is white 

(and every dropped arc is black) is therefore reduced to two cases: (1) encountering 

a non-cycle subroot s that renders Rule I-DR inapplicable: or (2) encountering a cycle 

subroot s that also is a root with a white arc out of it. First suppose (1) applies. Then 

the nodc,j of the added arc (s,,j) must lie on the cycle containing the root r* (where this 

cycle is disconnected from the rest of the structure by deleting (s, r*)). If the white arc 

out of node s does not lie on this cycle. the cycle must contain at least one black arc. 

which we denote by (k,j), thus identifyins node,j chosen for the endpoint of the added 

arc (s.,j). Since j becomes the new v*, we fulfill the previous claim that the arc (IL P) is 

always black. t’urther, node li must in fact be a cycle subroot, since k and the new P lie 

on the same cycle identified by reference to the previous r*. Consequently. Rule I-DK 

is applicable when k becomes s on the following step, and we conclude s cannot be 

a root. This assures that the next arc added is white. as desired. 

Next suppose case (2) applies. Node s can be both a cycle subroot and a root that 

already initiates a white arc only if the deletion of (s. r.*) reduces the structure to 

a cycle. Thus, if the cycle is not the desired tour, and any black arc remains. we can 

select such an arc as (k,,j), and by the argument just given we conclude a white arc can 

be added on the step after adding a black arc. The alternating path therefore is a first 

order path. Fewer than 2m arcs are added. due to the first order condition and the fact 

that at least two white arcs must be added after the last black arc is added. 

Finally, we must show the path is delete\add simple. Suppose on the contrary 

:I black arc (&j) is deleted and then subsequently added. birst. we argue that (L i) 

cannot be deleted in a step that also adds a white arc (s, j). This would prelent (IL i) 

from being added later by the construction previously indicated. which permits 

;I black arc to be added to meet a node,j only if there is exactly one arc into j and this 
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arc is black. The presence of a white arc (s,j) renders this impossible, and hence (s,j) 

must be black. We have shown a new white arc (k,j’) is added on the next step, and at 

this point no black arc exists out of node k. In order to add any new arc (k, q) out of 

node k (and in particular (k,j)), it is necessary first to drop some arc (k, h) out of k. 

Moreover (k, h) must be black since the process never drops a white arc. But this is 

impossible, since no black arc currently exists out of node k, and none can be added 

(unless one exists already to be dropped). We therefore conclude the path is de- 

lete\add simple. 0 

Corollary to Theorem 1. The statement of Theorem 3 also is vulid,for the symmetric 

TSP (upon stipulating that tours are undirected). 

Proof. The result follows by an argument that parallels the proof for the directed 

case. 0 

Theorem 1 is a stronger result than the theorems for stem-and-cycle reference 

structures, which raises the question of whether this outcome may have practical as 

well as theoretical significance. From an applied standpoint, the potential value of the 

doubly rooted reference structure rests on the tradeoff in effort required to manage it 

and on identifying choice rules that can capitalize on its expanded range of options. It 

is shown in [lo] that the doubly rooted structure offers particular benefits in 

designing a method to create a combinatorial leverage effect, 

7. Stem-and-multicycle reference structures 

The relationship between the stem-and-cycle structure and the doubly rooted 

structure suggests that a further advanced reference structure is likely to encompass 

an additional number of edges (or arcs). However, we will show that a reference 

structure satisfying the desired conditions exists which contains only the same number 

of edges as in a tour. This structure, which we call the stem-and-multicycle structure, is 

a spanning subgraph whose components include a stem-and-cycle, denoted S-C, and 

a collection of cycles, denoted C(h), h E H (where N may be empty). The components 

of the stem-and-multicycle are pairwise node disjoint. An illustration of this structure 

appears in Fig. 8. 

Although the organization and transition rules of the stem-and-multicycle structure 

are more complex than those of the reference structures previously discussed, they are 

not difficult to manage. Each step for modifying the structure, as before, is a simple 

add-drop operation. The effort required to perform each step remains O(n) . 

We first describe the rules for transitioning from one stem-and-multicycle structure 

to another, and then indicate how these rules may be integrated with the generation of 

trial solutions. 
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Fig. 8. Stem-and-multicycle structure 

7.1. Trunsition rules ,jbr the stem-and-multicyle rgference structure 

For convenience, we let SMC denote the full stem-and-multicycle structure, and let 

S and C respectively denote the stem and the cycle of the SC component. The rules to 

modify SMC consist exactly of Rules 1 and 2 for the ordinary stem-and-cycle, plus two 

others. We identify these rules as follows. 

Stem-and-multicycle rules. 

Rule l*: Apply Rule 1 to S-C. 

Rule 2*: Apply Rule 2 to S-C. 

Rule 3*: Add edge (t,,j), where t is the tip of S, and node j lies on some cycle 

C’(h), h E H. Delete either cycle edge (q,,j) meetingj. Node q becomes the new tip t of 

S (which is now augmented), and C(h) is removed from the collection of cycles (by 

deleting h from H). 
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Rule 4”: Add edge (t, j), where t is the tip of S and node j lies on S, with j # Y. Delete 

edge (q, j), where q is the stem node adjacent to j that lies closer to r. Edge (r, j) together 

with the segment (j, . , t) of the stem becomes a new cycle C(h), h E H, and node 

q becomes the new tip of S (which is now reduced). 

Special provision. If S becomes degenerate as a result of Rule 1* or 4* (hence 

causing the cycle C to compose all of S-C), then a new root r and tip t may be selected 

(with r = t). 

The preceding special provision can be accompanied by changing the designation 

of the cycle identified as S-C, if desired. Also, after executing the provision, the 

method optionally may restrict attention to applying Rule 3* on the succeeding step, if 

H is not empty. Rules 3* and 4*, which provide the elements of this approach that are 

new, are illustrated in Fig. 9. 

We establish that the foregoing rules indeed suffice to transform one tour into 

another without superfluous moves. In fact, we give a stronger result which shows that 

the stem-and-multicycle reference structure in a sense is the “correct” structure for 

Rule 3* 

Rule 3’: Add (t,j3), delete either edge (q3,j3) 

Rule 4’: Add (t,j4). delete edge (q4,j4) 

Fig. 9. Additional rules of the stem-and-multicycle reference structure. 



transforming one tour into another, for the goal of creating a collection of alternating 

paths (cycles) that yield a partition of the symmetric difference of the tours. More 

precisely, by the preceding rules, the structure makes it possible to produce any such 

collection that is capable of transforming the first tour into the second. We state this 

result as follows, where alternating cycles are understood to be defined relative to the 

tours considered. 

Theorem 2. Lrt T, md T, he two distinct tours, and let Ci, i E I, hc LE collrctior~ of’c~lyc 

simple ultcmutimq cycles, pairwise edye disjoint, which e.uactl~. describe the s~wvnctric~ 

rliffkwnce hetwcen T, und T, (i.e., T, - Tz = T1 n C und T, - T, = T2 n C, fiw C = 

[I (Ci : i E I ) Then Rules I* - 4* cun he applied to yrneratc~ preciwl~~ ewh c~,c,lc of’tlw 

collcctiou Ci, i E I, .sturting,from T 1, The stcnz-and_multic~~l~J structure produced ut LJLK/I 

step corrr.spond.s to the trmsformntion of’ T 1 produced his thr currmt suhcollcction of’ 

rrltcrnuting puths, rind the ,final structure c~orrc~sponds to T,. 

Proof. Designate edges of T2 to be white and others black. We begin with SMC as the 

tour T,, and select r (with r = t) to be any node that meets a white edge not in SMC. 

This edge, (t,,j), belongs to some alternating cycle Ci, and an adjacent black edge (cl.,j~ 

of C, must exist that also lies on T1, hence SMC. Rule 1 permits this edge to be deleted. 

transforming SMC into the S-C structure where S is non-degenerate. SMC contains 

all edges of T 1 except those already accounted for as part of C,, and on a general step 

contains all edges except those that are elements of paths previously generated or in 

the process of being generated. Further. the white edges that have not yet become 

a part of SMC are exactly those edges in cycles that are not yet accounted for. and this 

also holds on a general step. Consequently, upon designating the new tip t to be ~1, we 

are assured the next white edge (t,,j) of CL is not in SMC. and more broadly, whenevel 

S is non-degenerate (and hence t has degree 1 in SMC). there must exist a white edge 

(t.,j) of a current Ci being generated that likewise is not in SMC. (The cycle cannot be 

completed until dropping an edge results in t = r, creating a degenerate stem.) Hence 

we now select this white (t,,j) to add to SMC. At least one of the edges (~l,,j) of SMC 

must be the next black edge of C,. Rules I*-4* permit this edge to be deleted. 

regardless of its identity. by the following correspondences: (1) Rule I * governs if (y, j) 

lies on C: (2) Rule 2” governs if (q,,j) lies on S and q is on the path from j to t: (3) Rule 

3* governs if (y.,j) lies on a cycle C(h) ; (4) Rule 4* governs if (cl,,j) lies on S and y is on 

the path from,j to r. In each case, a new SMC is created that preserves the conditions 

previously identified and permits Rules l*- 4* to be applied again. Upon encountering 

a degenerate S, an alternating cycle is produced. This cycle may not be all of C‘, . since 

Ci is not required to be node simple. In this case. we continue exactly as before. 

without changing r. But if C, is fully generated. and if SMC dots not yet correspond to 

T2. then there must be some node r of C that meets a white edge not in SMC. (If H is 

not empty, we further can find such an edge that joins C to some other cycle of SMC.) 

The argument now repeats, permitting the generation of the (new) cycle c’i that 

contains this white edge meeting r. Eventually, all white edges will be brought 
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into SMC, thus assuring that all cycles are generated, and causing SMC to correspond 

to T,. 0 

The foregoing proof also can be used as a constructive argument to show the 

existence of a collection Ci, i E I of the form indicated (allowing some simplification of 

the proof for this purpose). 

The stem-and-multicycle structures for the asymmetric TSP 

For the asymmetric problem, we assume all cycles are directed cycles, and S is 

directed from P to t. The rules applicable to this problem are as follows. 

Directed stem-and-multicycle rules. 

Rule lA*: Apply Rule 1A to SC. 

Rule 2A*: (Nonexistent). 

Rule 3A*: Replace “edge” by “arc” in Rule 3*, and delete the unique cycle arc (q,j) 

meeting ,j. 

Rule 4A*: Replace “edge” by “arc” in Rule 4*. 

Corollary to Theorem 2. Theorem 4 is valid for the asymmetric problem by replacing 

Rules l*-4* with Rules IA*-4A”. In addition, the application of these rules identifies 

the collection of alternating cycles Ci, i E I to be uniquely determined, given T1 and T,. 

Proof. The argument takes a form analogous to the proof of Theorem 2. The unique 

identity of the collection Ci, i E I follows from the fact that as long as S is non- 

degenerate, the identity of each (t,j) and (q,j) is uniquely determined, and the 

generation of the current Ci is completed as soon as S becomes degenerate. 0 

7.2. Trial solutions for the stem-and-multicycle structure 

To characterize the form of trial solutions, and also to update the stem-and- 

multicycle reference structure, we stipulate the use of linked lists identifying the 

predecessor and successor of each node in the cycles C(h), h E H, and in S-C. (When 

S is non-degenerate, the tip t has no successor and r has two successors, one on S and 

one on C.) All observations are expressed in terms of the symmetric problem, but can 

be applied in an evident manner to the asymmetric problem also. 

Assume H consists of positive indexes only, and each node i of a cycle C(h) is given 

a label n(i) = h. Also, label each node i of S, except r, by n(i) = 0 and each node i of 

C by z(i) = - 1. Changes in the labels that result by applying Rules l*-4* can easily 

be carried out in O(n) time. Associated trial solutions are generated as follows. 

For each cycle C(h), we identify a trial edge (u(h), v(h)), whose removal creates 

a partial stem S(h) with tip u(h) and tail v(h). The cycles, and hence partial stems, are 

ordered in a strict sequence, each with a predecessor and successor cycle (except that 
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the first lacks a predecessor and the last lacks a successor). Thus we connect the tip 

u(h) and tail u(k) of S(k) by edges (u(k), u), and (u, u(k)) to the tail z’ of the successor 

partial stem and the tip u of the predecessor partial stem. If S(k) is the first partial stem, 

the node u of (u, u(k)) is in fact t of the stem S, thus creating a linking that establishes 

a complete stem S* of a trial stem-and-cycle structure. The tip u(k) of the last partial 

stem is also the tip t* of S*. An illustration of such a linking appears in Fig. 10. This 

trial stem-and-cycle structure provides the source of trial solutions by the customary 

rules. 

Once the trial edges are chosen and a linking is established, updates to the linking 

and the identification of new trial solutions for each tentative move examined by 

Rules l*-4* can be achieved in constant time. In the case where a move would destroy 

a cycle, a sequential ordering of the remaining cycles (partial stems) is preserved by 

relinking the predecessor and successor of the cycle removed (allowing a simplified 

relinking if this cycle is the first or the last in the sequence). If instead the move would 

create a cycle. this cycle becomes the new “first” C(k), k E H. (The effort of the 

preceding updates is independent of the size of H once H contains two or more 

elements.) 

Fig. 10. Linked partial stems (to create trial solutions) 
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The precise rules for changing the links defining the trial solutions, except those 

already established for linking the tip t* to the associated subroots of Y, may be stated 

as follows. 

Changes to S*. 

After applying Rule 1” or Rule 2*. Drop (t, u( 1)) and add (q, ~(1)) Node q becomes 

the new t and t” is unchanged. 

After applying Rule 3*. Let C(h’) and C(h”) respectively denote the cycles that 

precede and follow C(h), where C(h) contains the deleted edge (q,j). 

Case 1: C(K) and C(h”) both exist. Drop (t, v(l)), (u(h), v(h”)) and (u(h’), u(k)). Add 

(4, v(l)), (G), c(h)), and (u(h’), UP”)). 
Case 2: C(k’) exists but C(h”) does not. Drop (t, v(l)) and (U(K), u(k)). Add (q, v(l)) 

and (u(h), v(k)). C(k’) becomes the new “last” cycle and u(h’) becomes the new t*. 

Cuse 3: C(k”) exists but C(k’) does wt. Drop (t, ~(1)) and (u(h), u(k”)). Add (q, o(h”)) 

and (u(h), u(k)). 

Case 4: C(k’) and C(k”) both do not exist. Drop (t, v(l)) and add (u(h), v(k)). Node 

q becomes the new t* (and H becomes empty). 

After applying Rule 4”. No change in S* occurs. (Edge (t,j) becomes the trial edge 

(u(l), o(l)) for the newly created cycle C(l).) 

We express these as changes to S*, which occur in addition to the changes of adding 

(t, j) and dropping (q, j) after applying each of the Rules l*-4*. We assume H is 

non-empty for Rules l*-3*, for otherwise the changes are those already stipulated for 

a simple stem-and-cycle. Also, we use the convention that C(1) denotes the “first” 

C(h), k E H, hence identifying (u(l), v(1)) as the trial edge associated with this cycle. 

Note in the cases associated with Rule 3*, the changes should be interpreted as 

occurring before the addition of (t,j) and deletion of (q,j). Thus, the addition of 

(u(h), c(k)), which restores S(k) to C(k), may be offset by the deletion of (q,j), if the two 

edges are the same. Similarly, the deletion of (t, v(l)) may be offset by the addition of 

(t,j) in Case 4, if these edges are the same. The fact that S* does not change after 

applying Rule 4* underscores the importance of evaluating moves by reference to cost 

changes other than (or in addition to) those produced by trial solutions. For example, 

trial solutions may be used as a secondary evaluation criterion except where one of 

particularly high quality is produced. 

The identification of (t,j) as the trial edge (u(l), v( 1)) after applying Rule 4* of course 

may not be the best choice, and an option that can be quickly tested is to consider the 

more costly of the two edges adjacent to (t, j) on C(1) as a candidate for (u(l), v(1)). 

Such options normally will be restricted during the examination of potential moves so 

that each move can be evaluated in constant time. However, once a move is selected 

and executed (or a preferred of moves are isolated for more extensive evaluation), 

superior choices for the trial edges may be considered. The next section examines this 

issue. 



7.3. Ident$tiing trial edges and relinking partial stems 

We describe a straightforward method to identify trial edges for the goal 01 

determining improved trial solutions, constituting a local improvement process that 

can be applied in O(n) time (or less). For this, let H* = H u (0, - 1) and consider two 

additional cycles, C(0) and C( - 1) C( - 1) is just C (recalling that each node i of C is 

labeled n(i) = ~ 1). We create C(0) by first identifying the partial stem S(0) that spans 

the nodes i labeled n(i) = 0 (all nodes of S except r). and then adding an edge joining 

the endpoints of S(0) to complete the cycle. For this we assume S is non-degenerate 

(else S(0) has no nodes), and denote the endpoints of S(0) by v(O) and r(O). where 

u(0) = t and z(O) is the node that links S(0) to C by the edge (Y, r(0)). 

The cycle C(O), created by adding (~(0). r(0)) to S(O), may be degenerate if S(0) has 

only one node, and also (in the symmetric problem) if S(O) has two nodes. since then 

the added edge (u(0). t>(O)) duplicates the single edge of S(0). 

We identify the trial edge (u( - l), z:( - 1)) of C(- I) by stipulating that 14( - 1) = r 

and I( -- 1) is the subroot s of C that yields a preferred trial solution (upon deleting 

(1.. s)). H* is ordered just as H is ordered, taking - 1 and 0 to be the first two elements 

of H *, followed by the first element of H (if H is non-empty). H * further is treated as 

cyclic, where the last element of H* precedes the first. (In special case where S is 

degenerate and S(0) does not exist, we remove the index 0 from N*.) Thus, the linking 

of partial stems S(h) by adding (n(h), c(h”)), where h” follows /I. for each /I E tf*. 

corresponds exactly to the trial solution previously specified for SMC. This holds true 

also for the case where S(0) contains only one or two nodes (and C(0) is degenerate). 

Given this framework, the local improvement procedure for determining a better 

trial solution seeks an identity for (u(h), r(h)) in each C(h), so that the linking of the 

resulting partial stems S(h) yields a least cost tour. We observe that u(O) and r,(O) must 

be held invariant if S(0) contains no more than two nodes. and hence C(0) is excluded 

from the process in this circumstance. 

Local improvement of trial edges. 

Initiulizution. Let L be a list of all h E H* such that C(h), or its predecessor OI 

successor cycle in H*, has changed since the last execution of this method. 

Step I: Select and remove some h from L, and identify the predecessor h’ and 

successor h” of h in H *. 

Step 2: Select (u(h), l:(h)) to be an edge of C(A) that minimizes c(u(h), I) + 

c(u(h’), C(h)) - C(ll(h), u(h)). If u(h) or o(h) changes its identity, add h’ and h” to L. Then 

return to Step 1 unless L is empty. 

The identity of u(h) and 11(h) in the edge (z4(h), u(h)) implicitly “orders” these nodes. 

That is. if u(h) and t:(h) are interchanged in the minimization criterion of Step 2, 

a different outcome results. Thus each (i.,j) of C(h) is examined twice, once to check for 

i = u(h) and,j = c(h), and once to check for i = r(h) andj = u(lz) This procedure can 

alter the stem S if it selects u(O) to be different from t, and also can alter the root of C if 
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it selects u( - 1) to be different from r. Since the number of edges in all cycles on the 

list L is at most n, the method requires at most O(n) effort between successive 

improvements, or before terminating after the last improvement. 

7.4. A global method for identibing best trial edges 

We now provide a more advanced procedure that generates a globally best 

selection of trial edges, given the identification of the partial stem S(O), with tip 

t = u(0) and tail v(O). In particular, we seek edges (u(h), v(h)) for each C(h), h # 0, that 

yield a trial solution that is optimal over the alternatives available (henceforth called 

an optimal trial solution). 

The method makes a single pass of the nodes of the SMC, and of edges that meet 

each node, hence involving O(n’) effort in a dense graph. For star(i) defined relative to 

the “best k” edges meeting node i, the method reduces to O(kn) effort, hence to O(n) 

effort for k constant. 

The method has two types of steps, “across cycle” steps and “within cycle” steps. 

For each node i, we maintain an “across cycle” cost and predecessor node, denoted 

a-cost(i) and a_pred(i), and also maintain a “within cycle” cost and predecessor node, 

denoted w-cost(i) and w_pred(i). In contrast to the Local Improvement Method for 

selecting trial edges, we do not allow S to be degenerate, and hence, assume S(0) 

contains at least one node. To handle the case of a degenerate S, we extract r from C to 

compose S(O), with u(0) = v(O) = r, and reconstitute C by joining the two previous 

subroots of Y. 

Define N(h) to be the set of nodes in C(h), for h E H* and h # 0, and define N(0) to 

be the set consisting of the single node v(O). The method starts with h = 0, and then 

examines elements of H* in reverse (predecessor) order, from 0 to - 1 to the last 

element of H*, and finally ending with the element whose predecessor is the first 

element of H, if H is non-empty. 

SMC Cycle Linking Procedure. 

Initialization step. Set acost and w-cost(i) to infinity for all nodes i # u(0) and set 

w_cost(zj(O)) = 0. Begin with h = 0. 

Across cycle step. Let h’ denote the predecessor of h in H *. For each node i of N(h), 

examine each edge (i,j) such that j E star(i)nN(h’). If c(i, j) + w-cost(i) < a-cost(j), 

then set a-cost(j) = c(i, j) + w-cost(i), and set i = a_pred(j). 

Within cycle step. Let h = h’ (the predecessor element of h in H*). For each 

i E N(h), examine the two edges (i, j) in C(h) meeting node i. If 

a&cost(j) - c(i,j) < w-cost(j), then set w-cost(j) = a-cost(j) - c(i,,j) and set 

i = w_pred(j). Finally, if the predecessor of h is 0, go to the Final Step. Otherwise, 

return to the across cycle step. 

Final step. Let i* = argmin(w_cost(i, u(0)) + c(i, u(0)): i E N(h)), and let 

a-cost (u(0)) = w_cost(i*, u(0) + c(i*, u(0)). The trial edges (u(h), u(h)) for each C(h), 
h E H and h = - 1, are identified as follows. Begin with h at its current value 
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(with predecessor 0). 

(1) Let v(h) = i* and u(h) = w_pred(i*). 

(2) If h = - 1, stop. Otherwise, redefine i* = a_pred(u(h)), replace h by its suc- 

cessor in H *, and return to (1). 

The following theorem establishes the optimality of this procedure. 

Theorem 3. For the giuen sequencing of the cycles C(h). h E H, the SMC C~,cle Linkirlg 

Procedure yields an optimal triul solution bused on determining u(h) lmd c(h),@ c~acl~ 

h E H* - (0). wYth u(O) and v(O),fixed. The cost of this triul solution equals: 

a_cost(u(O) + cost(S(0)) + C(cost(C(h)): h E H* - (0)). 

M,here cost(X) denotes the sum cf edge costs irz suhgruph X. 

Proof. The validity of the theorem follows by identifying the linking problem as 

equivalent to solving an acyclic shortest path problem whose digraph results by 

creating two layers of nodes, each duplicating the nodes of N(h), for every h E H *. 

A collection of ucross cycle arcs (i,,j) is created, for each i in the second layer of N(h) 

and eachi in the first layer of N(h’), where h’ precedes 11, over all h E H*. The cost of 

each such arc equals the cost c(i, j) of the associated edge of the original problem. The 

digraph also contains within cycle arcs (i, j), for each i in the first layer of N(h) and fat 

each of the two nodes j in the second layer of N(h) such that (i, j) is an edge of C(h). 

over all h E HI* - [Oi. Each within cycle arc has a cost of - c(i.,j) (associated with 

dropping edge c(i,,j)). Evidently, each way to identify edges (u(h), c(h)) over all 

h E H * - (01, and each way to create linking edges (u(h’), v(h)), where h’ precedes 11, 

over all II E H*, corresponds to a unique path from ~(0) to U(O) in the acyclic digraph. 

The SMC Linking Procedure then can be interpreted as a specialization of a standard 

method for solving an acyclic shortest path problem. U 

8. Implications and conclusions 

The preceding sections give characterizations and connectivity results for TSP 

neighborhoods created by ejection chain constructions, which range from generaliz- 

ations of alternating paths to more complex transformations. In each instance, the key 

to generating the desired forms of these constructions lies in establishing an associated 

reference structure as a guidance mechanism. Our designs allow transformations to be 

carried out in a different space than the space of tours, yet allow access to tours by 

associated trial solution mappings. 

The orientation of this paper has been primarily structural, seeking to identify 

transformations based on a graph theory perspective, and to disclose their underlying 

properties. Special algorithmic consequences of these results are explored in a sequel 

[lo] by showing the ejection chain constructions identified here can be exploited by 
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a fast updating procedure that requires only O(1) effort per iteration. In addition, our 

results give a basis for obtaining a combinatorial leverage efkct, where the investment of 

O(n2) or 0(n3) effort produces solutions that dominate O(n2”) or O((n/2)!) alternatives, 

respectively. We also show how this work yields strategies to create combinatorial 

leverage for NP hard graph problems other than the traveling salesman problem. 

In conclusion, we note that recent studies are confirming the usefulness of these 

ejection chain approaches. Pesch 1221 develops a TSP method based on the stem-and- 

cycle reference structure that performs more effectively than recent extensions of the 

Lin-Kernighan approach (which combine the L-K method with genetic algorithms). 

Rego [23] provides an effective application of ejection chain procedures to vehicle 

routing which likewise proves competitive with currently leading approaches. Finally, 

by extension of the results of Section 7, Glover and Punnen [l l] develop new methods 

that find optimal tours in linear time over subsets that contain exponential numbers of 

tours. These outcomes suggest a variety of possibilities exist for further applications of 

these ideas. 
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