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Abstract – Ejection chain methods lead the state-of-the-art in local search heuristics 
for the traveling salesman problem (TSP). The most effective local search approaches 
primarily originate from the Stem-and-Cycle ejection chain method and the classical 
Lin-Kernighan procedure, which can be viewed as an instance of an ejection chain 
method. This paper describes major components of the most effective ejection chain 
algorithms that are critical for success in solving large scale TSPs. A performance 
assessment of foremost algorithms is reported based upon an experimental analysis 
carried out on a standard set of symmetric and asymmetric TSP benchmark problems. 
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1. Introduction 
 

The Traveling Salesman Problem (TSP) consists in finding a minimum distance tour of n 

cities, starting and ending at the same city and visiting each other city exactly once. In 

spite of the simplicity of its problem statement, the TSP is exceedingly challenging and is 

the most studied problem in combinatorial optimization, having inspired well over a 

thousand publications. 

 
In graph theory, the problem can be defined on a graph ( , )G V A= , where 1{ ,..., }nV v v=  is 

a set of n  vertices (nodes) and {( , ) | , , }i j i jA v v v v V i j= ∈ ≠  is a set of arcs,  together with 

a non-negative cost (or distance) matrix ( )ijC c=  associated with A. The problem is 

considered to be symmetric (STSP) if ij jic c=  for all ( , ) ,i jv v A∈  and asymmetric (ATSP) 

otherwise. Elements of A are often called edges (rather than arcs) in the symmetric case. 

The version of STSP in which distances satisfy the triangle inequality ( )ij jk ikc c c+ ≥  is the 

most studied special case of the problem. The STSP (ATSP) consists in determining the 

Hamiltonian cycle (circuit), often simply called a tour, of minimum cost. 

 
The TSP is a classic NP-hard combinatorial problem, and therefore there is no known 

polynomial-time algorithm (and unless ,P NP=  none exists) that is able to solve all 

instances of the problem. Consequently, heuristic algorithms are used to provide 

solutions that are of high quality but not necessarily optimal. The importance of 

identifying effective heuristics to solve large-scale TSP problems prompted the “8th 

DIMACS Implementation Challenge”, organized by Johnson, McGeogh, Glover, and Rego 

[17] and solely dedicated to TSP algorithms. 

 
In this paper we focus on heuristics based on ejection chain methods because they have 

proven to dominate other known approaches, solving TSP problems of vastly greater size 

and difficulty than would have been imagined possible before the advent of recent 

algorithmic developments. We also describe the state-of-the-art data structures used in 

the implementation of TSP algorithms, which play a key role in their efficiency. 

 

Although there are several individual publications on ejection chain approaches to TSP, 

with this paper we intend to provide a new survey that summarizes and compares the 

best of those approaches that fit into the local search category. Other more general survey 

publications concerning heuristics for TSP, such as Johnson and McGeoch book chapters 

[14, 16], are no longer up to date and we include algorithms in our analysis that are not 

considered in these previous treatments. Furthermore, we introduce and report 
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computational outcomes for additional algorithms that represent new advances for solving 

problems in the ATSP class. Finally, we summarize latest developments in data structures 

that are providing greater efficiencies in solving TSP problems. 

 

The following sections provide a brief survey of the most prominent ejection chain 

algorithms for the TSP and discuss their salient performance characteristics, together 

with a summary of computational results that demonstrate the remarkable efficacy of 

these methods. 

 
 
2. Symmetric TSP 
  
 
2.1. Ejection chain based algorithms 
 
Subpath ejection chain methods start from an initial tour and iteratively attempt to 

improve the current solution, generating moves coordinated by a reference structure. The 

generation of moves throughout the ejection chain process is based on a set of legitimacy 

restrictions that determine the set of edges allowed to be used in subsequent steps of 

constructing the ejection chain. Ejection chains are variable depth methods that generate 

a sequence of interrelated simple moves to create a compound move. 

 

In the graph theory context, a subpath ejection chain of L  levels on graph G  consists of 

a sequence of simple operations, called ejection moves, < 1 ,..., ,...,m Le e e >, that 

sequentially transform a subgraph mG  of G  into another subgraph 1mG +  by 

disconnecting a subpath and reconnecting it with different components. At each level of 

the chain the subgraph may not represent a feasible solution (usually the reference 

structure does not correspond to a solution), but it is always possible to obtain a solution 

to the problem by applying an extra operation called a trial move. Therefore, a 

neighborhood search ejection chain procedure consists in generating a sequence of moves 

< 1 1, ,..., , ,..., ,m m L Le t e t e t >, where < ,m me t > represents the paired ejection and trial moves of 

level m  of the chain. The new solution is obtained by carrying out the compound move 

< 1 2, ,..., ,m me e e t >, where the subscript m  identifies the chain level that produced the best 

trial solution. For an extensive description of ejection chain methods we refer the reader 

to [23]. 
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In this section we summarize the main components of the most effective local search 

ejection chain algorithms and analyze their performance. These algorithms are chiefly 

based on the Stem-and-Cycle (S&C) procedure and the Lin-Kernighan (LK) heuristic [19]. 

 

The S&C procedure is a specialized approach that generates dynamic alternating paths. 

The classical Lin-Kernighan approach, by contrast, generates static alternating paths. A 

theoretical analysis of the differences between the types of paths generated by S&C and 

LK procedures is provided in Funke, Grünert and Irnich [7].  

 
Johnson and McGeoch Lin-Kernighan (LK-JM) 

The Lin-Kernighan neighborhood search is designed as a method to generate k-opt moves 

(which consist in deleting k edges and inserting k new edges) in a structured manner that 

provides access to a relevant subset of these moves by an efficient expenditure of 

computational effort. The approach is based on the fact that any k-opt move can be 

constructed as a sequence of 2-opt moves [4], and a restricted subset of those move 

sequences can be produced in a systematic and economic fashion.  

 

The method starts by generating a low order k-opt move (with 4)k ≤  and then creates a 

Hamiltonian path by deleting an edge adjacent to the last one added. This completes the 

first level of the LK process. In succeeding levels each move consists of linking a new edge 

to the unique degree 1 edge that was not adjacent to the last edge added, followed by 

deleting the sole edge whose removal will generate another Hamiltonian path. 

 

Additional sophistication of the basic method is provided by a backtracking process that 

allows restarting with an alternative vertex for insertion or deletion of an edge at level i 

and proceeding iteratively until reaching level L. 

 

The Lin-Kernighan algorithm implementation analyzed in this paper is from Johnson and 

McGeoch [15], featured among the lead papers of the “8th DIMACS Implementation 

Challenge” [17].  The results reported for this implementation use Greedy initial solutions, 

20 quadrant-neighbor candidate lists, the don’t-look-bits strategy, and the 2-level tree 

data structure [6] to represent the tour.  

 

We will indicate the primary algorithms that incorporate one or more of these strategies in 

their design, including the best algorithms as determined by the 8th DIMACS 

Implementation Challenge. Algorithms that incorporate more innovative structures and 

that achieve the highest levels of performance are described in greater detail. 
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Neto’s Lin-Kernighan (LK-N) 

This implementation is described in [20]. Its main differences from LK-JM are the 

incorporation of special cluster compensation routines, the use of a candidate set 

combining 20 quadrant-neighbors and 20 nearest neighbors, and a bound of 50 moves for 

the LK searches. It also takes advantage of the don’t-look-bits technique and the 2-level 

tree data structure. 

 
Applegate, Bixby, Chvatal, and Cook Lin-Kernighan (LK-ABCC) 
This implementation is part of the Concorde library [1] and is based on [2]. It uses Q-

Boruvka starting tours, 12 quadrant-neighbors candidate lists, the don’t-look-bits 

technique, and the 2-level tree data structure. LK-ABCC bounds the LK searches by 50 

moves, and the backtracking technique is slightly deeper than that of the LK-JM 

implementation. 

 
Applegate, Cook and Rohe Lin-Kernighan (LK-ACR) 

The implementation of this method is very similar to that of the preceding LK-ABBC 

approach, but the backtracking strategy is even deeper and broader. The depth of the LK 

searches, by contrast, is half that of the LK-ABBC approach (25 moves). This 

implementation is based on the design reported in [2, 3]. 

 
Helsgaun's Lin-Kernighan Variant (LK-H) 

This implementation, described in [13], modifies several aspects of the original Lin-

Kernighan heuristic. The most notable difference is found in the search strategy. The 

algorithm uses larger (and more complex) search steps than the original procedure. Also, 

sensitivity analysis is used to direct and restrict the search. The algorithm does not 

employ backtracking, but uses the don’t-look-bits technique and the 2-level tree data 

structure. 

 
LK-H is based on 5-opt moves restricted by carefully chosen candidate sets. Helsgaun's 

method for creating candidate sets may be the most valuable contribution of the 

algorithm. The rule in the original algorithm restricts the inclusion of links in the tour to 

the five nearest neighbors of a given city.  LK-JM includes at least 20 nearest quadrant 

neighbors. Helsgaun points out that edges selected simply on the basis of length may not 

have the highest probability of appearing in an optimal solution. Another problem with 

the original type of candidate set is that the candidate subgraph need not be connected 
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even when a large fraction of all edges is included. This is the case for geometrical 

problems in which the point sets exhibit clusters.   

 

Helsgaun therefore develops the concept of an α -nearness measure that is based on 

sensitivity analysis of minimum spanning 1-trees. This measure undertakes to better 

reflect the probability that an edge will appear in an optimal solution. It also handles the 

connectivity problem, since a minimum spanning tree is (by definition) always connected. 

The key idea, in brief, is to assign a value to each edge based on the length of a minimum 

1-tree containing it. A candidate set of edges can then be chosen for each city by selecting 

edges with the lowest values.  The effectiveness of α -nearness in selecting promising 

edges can be further improved by transforming the graph. For this, a subgradient 

optimization method is utilized that strives toward obtaining graphs in which minimum 1-

trees are close to being tours. 

 
By using the α -measure, the cardinality of the candidate set may generally be small 

without reducing the algorithm’s ability to find short tours. In fact, Helsgaun claims that 

for his initial set of test problems, the algorithm was able to find optimal tours using as 

candidate edges the 5 α -nearest edges incident to each node. 

 
Nguyen, Yoshihara, Yamamori and Yasunaga Lin-Kernighan Variant (LK-NYYY) 
 
A short description of this implementation can be found in [17]. This variant starts with a 

5-opt move but uses 3-opt moves in the LK searches as opposed to the LK-H approach 

that uses 5-opt as a basic move. The LK-NYYY also uses don’t-look-bits, Greedy starting 

solutions, and 12 quadrant-neighbor lists, but it uses a data structure with properties 

similar to segment trees [6]. The results reported from this algorithm were submitted to 

the DIMACS Challenge after the summary chapter [17] was finished. An extremely 

significant difference from the Helsgaun variant is that LK-NYYY is able to run instances 

up to 1,000,000 nodes whereas LK-H only manages instances up to 85,900 nodes and 

consumes a significant amount of computational time as is evident in Table 4. 

 
Rego, Glover and Gamboa Stem-and-Cycle (SC-RGG) 
 
The SC-RGG algorithm implements an ejection chain method that differs from the LK 

procedure in several key ways. Most notably the LK approach uses a Hamiltonian path as 

the reference structure to generate moves throughout the neighborhood construction. 

This structure is very close to being a valid TSP solution (it only requires adding an edge 

to link the two degree 1 nodes to obtain a tour). As a result, the structure implicitly limits 

the different types of moves it can generate. More general ejection chain methods allow a 
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diversified set of reference structures which are able to generate moves that the classical 

TSP neighborhood approaches cannot. 

 
The S&C ejection chain method is based on the stem-and-cycle reference structure [10]. 

The implementation reported here was designed by Rego [22] and subsequently enhanced 

by Gamboa, Rego and Glover [8, 9]. The S&C reference structure is a spanning sub-graph 

of G  consisting of a path called a stem ( ,..., )t rST v v=  connected to a cycle 

1 2
( , ,..., , ).r s s rCY v v v v=  A diagram of a Stem-and-Cycle structure is shown in Figure 1. The 

vertex rv in common to the stem and the cycle is called the root, and the two vertices of 

the cycle adjacent to rv  are called subroots. Vertex tv  is called the tip of the stem. 

 
s1

s2

rt

 
 

Figure 1 - The S&C reference structure 

 
The method starts by creating the initial S&C reference structure from a TSP tour, by 

linking two nodes of the tour and removing one of the edges adjacent to one of those 

nodes. Each ejection move links the tip node to any other node on the graph, except for 

the one adjacent to the tip. Two different ejection moves are possible depending where in 

the graph the node to be linked to tv  is placed (in the stem or in the cycle). Trial solutions 

are obtained by inserting an edge ( , ),t sv v  where sv  is one of the subroots, and deleting 

edge ( , ).r sv v  

 

The results reported in this paper improve upon those for the S&C method  reported in 

the DIMACS challenge due to changes outlined in [9] and the addition of a type of don’t-

look-bits candidate list strategy. Here we present results using Greedy initial solutions, 12 

quadrant-neighbor candidate lists concatenated with a list generated by the construction 

of Delaunay triangulations, and the 2-level tree data structure. 

 
 
2.2. Comparative analysis of performance 
 
We now evaluate the performance of the heuristic algorithms referenced above using the 

results submitted to the “8th DIMACS Implementation Challenge” [17] and the updated 

results for SC-RGG for a comparative analysis. We restrict attention to the evaluation of 
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the results reported for the algorithms relevant to this paper’s main focus. For a complete 

list of algorithm results and other information related to the generation of the testbed 

instances, the scale factors to compare running times for different computer systems, and 

other characteristics of the challenge, we refer the reader to the Challenge web site [17]. 

 

The complete Challenge testbed consists of 3 sets of instances: uniformly distributed 

problems (sizes between 1,000 and 10,000,000 nodes), clustered problems (sizes between 

1,000 and 316,228 nodes), and those from the TSP Library [24] with at least 1,000 nodes. 

In the current study we limited the number of problems to instances up to 3,000,000 

nodes. 

 
A benchmark code was provided for Challenge participants that was run on the same 

machines used to run the competing algorithms of the participants, in order to obtain a 

more accurate comparison of running times. The tests for the updated version of S&C 

have been run on the same machine used to run the first S&C version for the DIMACS 

Challenge, and the same scale factor has been used to normalize the new implementation 

running times. An exception was made for the 3 million-node problem whose results were 

obtained on a Dual Intel Xeon, 3.06 GHz with 2GB of memory. A scale factor of 2.89 was 

used to compute our normalized time for this problem. 

 

Tables 1-4 summarize the results of the aforementioned algorithms. The values presented 

are averages of solution quality and computational times (in seconds), where instances 

are grouped by size. This grouping is similar to the one used by Johnson and McGeoch 

[16] to design the tables of results in their book chapter summarizing the Challenge’s 

submissions. It is important to stress, however, that a number of algorithms and results 

described here were submitted or updated after the chapter was published. In the 

solution quality tables, in addition to reporting average percentage excess over the 

optimal solution or over the Held-and-Karp lower bound, we present the number of best 

solutions (NBS) found by each algorithm, meaning that for the indicated number of 

instances the associated algorithm obtained the solution of highest quality. The values in 

bold indicate the best averages. 

 
We separate the basic LK algorithmic variants and the S&C approach from the other two 

LK variants since the latter are considerably more sophisticated, placing them in a 

different category of method by virtue of consuming significantly greater time as they 

implement more complex and advanced strategies. In particular, the simpler algorithms 

use 2-opt as a basic move while the more advanced procedures use 3-opt or 5-opt. Basic 
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LK variants and the S&C method alike determine moves by deleting one edge and 

inserting another one, completing the 2-exchange with a trial move. The NYYY and 

Helsgaun variants search for valid 3-exchange and 5-exchange moves. To make this 

search possible without consuming excessively large amounts of computation time, these 

procedures use special and highly sophisticated candidate lists as previously noted.  

 

In order to assess the potential effect of using restricted neighborhood search of the type 

employed by the don’t-look-bits strategy considered in the LK implementations, we report 

results for a first attempt to incorporate this technique in the S&C algorithm. In the 

tables, SC-RGG+ refers to the version of the S&C algorithm that adds restricted 

neighborhood search to SC-RGG.  

 

From Tables 1 and 2 it is clear that the S&C approach is better than all other 

implementations for generating high quality solutions.  We utilize the notation x|y to 

signify that the associated algorithm found x better solutions than SC-RGG and y better 

solutions than SC-RGG+ in the corresponding group of problems. To facilitate the analysis 

of the tables, we replace zeros with dashes and likewise for cases where x=y we use only a 

single number to avoid repetition. Figure 2 provides a graphical visualization of the 

results summarized in Table 1. Note that besides achieving better solution quality on 

average, both S&C variants find significantly larger number of best solutions across all 

problems and tables. However, it has longer running times, due primarily to our relatively 

short experience in finding the most effective ways to shortcut the computation required 

by the don’t-look-bits framework.   

 
The graphics in Figure 3 show the effect of the don’t-look-bits strategy on the S&C 

algorithm using the results in Tables 1 and 2. We can see that even a straightforward 

implementation of the don’t-look-bits candidate list strategy produces major reductions in 

the running times for the S&C algorithm without sacrificing the solution quality. In some 

cases the quality of the solutions is even better when restricting the neighborhood 

suggesting that more elaborate implementations of the don’t-look-bits strategy can have a 

dual effect on the performance of the S&C by simultaneously improving the efficiency and 

effectiveness of the algorithm. For the uniform distributed problems, the variant of the 

S&C algorithm that makes use of don’t-look-bits (SC-RGG+) performs better than its 

counterpart (SC-RGG], that does not consider such a strategy, in three out of the seven 

group of problems, while performing comparably on the remaining problems.  Also as 

illustrated in the graphic of Figure 3 depicting the computational times associated with 

the same testbed, the running times with the don’t-look-bits strategy grow sub-linearly 
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with the problem size while these times are significantly affected in the absence of this 

strategy as the problem size increases. A similar advantage should be expected for 

clustered problems, as observed with the LK implementations; hence this topic invites 

special attention in future developments.  

 

We conjecture that additional improvements can be made in determining more effective 

neighbor lists that restrict the neighborhood size without omitting arcs that may be 

critical to perform potentially good moves—not only the best solutions cannot be found if 

some of the corresponding arcs are not available, but also the search can take much 

longer to find these solutions when arcs are not made accessible at the appropriate time.  

 
Noticeably, all the aforementioned observations invite the investigation of other more 

advanced forms of candidate list constructions and strategies such as those that abound 

in tabu search proposals. 

 

Finally, the consideration of sophisticated techniques like caching of distances and other 

implementation tricks that proved efficient in LK implementations can likewise be 

incorporated in the S&C algorithm to close the computational gap that still exists between 

the implementations of the two approaches.  (For details on these techniques, we refer to 

Johnson and McGeoch [15].)  

 

The tables also suggest that LK-JM has some advantages over the clustered instances. 

From Tables 3 and 4 we can assess the LK-H achieves higher solution quality but with 

very heavy computational times. This is a serious drawback because the method becomes 

extremely difficult to use for solving the bigger instances. LK-NYYY obtains reasonably 

good results in this group of algorithms and is able to report solutions to all instances.  
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Problem Size/Number of Instances – 25 Uniformly Distributed Problems 
  

 1000/10 3162/5 10000/3 31623/2 100000/2 316228/1 1000000/1 3000000/1 Total 

Algorithm % NBS % NBS % NBS % NBS % NBS % NBS % NBS % NBS Average NBS 

LK-JM 1,18 1|2 1,27 1|2 2,02 -- 2,02 -- 1,97 -- 1,96 -- 1,96 -- 1,92 -- 1,79 2|4 

LK-N 1,17 - |2 1,26 -- 1,99 -- 1,88 -- 1,95 -- 1,97 -- 1,92 -- 1,878 -- 1,75 - |2 

LK-ABCC 1,47 2|1 1,71 -- 2,60 -- 2,48 -- 2,54 -- 2,67 -- 2,68 -- 2,55 -- 2,34 2|1 

LK-ACR 1,61 -- 2,18 -- 2,72 -- 2,72 -- 2,74 -- 2,75 -- 2,77 -- 2,67 -- 2,52 -- 

SC-RGG 0,79 7 0,95 4 1,68 3 1,61 2 1,65 2 1,86 1 1,91 1 -- -- 1,49 20 

SC-RGG+ 0,93 5 0,98 3 1,55 3 1,66 2 1,72 2 1,84 1 1,90 1 1,875 1 1,56 17+1 

 
 

Problem Size/Number of Instances – 23 Clustered Problems 
  

 1000/10 3162/5 10000/3 31623/2 100000/2 316228/1   Total 

Algorithm % NBS % NBS % NBS % NBS % NBS % NBS     Average NBS 

LK-JM 1,21 6 2,32 4|2 3,41 2 3,72 -- 3,63 1|2 3,67 1     2,99 14|13 

LK-N 1,97 1 3,55 -- 4,76 -- 4,42 -- 4,78 -- -- --     3,90 1 

LK-ABCC 3,22 -- 5,58 -- 5,70 -- 6,38 -- 5,31 -- 5,45 --     5,27 0 

LK-ACR 3,34 -- 5,48 -- 5,92 -- 6,28 -- 5,55 -- 5,54 --     5,35 0 

SC-RGG 1,35 3 2,57 1 3,24 1 3,16 2 3,69 1 3,99 --     3,00 8 

SC-RGG+  1,79 3 2,24 3 3,27 1 3,29 2 3,72 -- 3,81 --     3,02 9 

 
 

Problem Size/Number of Instances – 11 TSPLIB Problems 
  

 1000/4 3162/3 10000/2 31623/1 100000/1    Total 

Algorithm % NBS % NBS % NBS % NBS % NBS       Average NBS 

LK-JM 1,40 -- 1,28 -- 1,38 -- 1,23 -- 1,213 --       1,30 -- 

LK-N 1,43 -- 1,44 -- 1,34 -- 1,49 -- -- --       1,43 -- 

LK-ABCC 2,56 -- 2,41 -- 1,86 -- 1,65 -- 1,208 -|1       1,94 -|1 

LK-ACR 3,49 -- 2,59 -- 3,17 -- 2,40 -- 2,00 --       2,73 -- 

SC-RGG 0,52 4 0,60 3 0,91 2 1,02 1 1,17 1       0,84 11 

SC-RGG+  0,89 4 0,79 3 0,94 2 1,21 1 1,57 --       1,08 10 

 

Table 1 - Basic LK and S&C – Solution Quality 
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Figure 2 - Basic LK and S&C (values from Tables 1 and 2) 
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Problem Size/Number of Instances – 25 Uniformly Distributed Problems 

 1000/10 3162/5 10000/3 31623/2 100000/2 316228/1 1000000/1 3000000/1 

Algorithm CPU CPU CPU CPU CPU CPU CPU CPU 

LK-JM 0,16 0,53 1,77 6,81 27,74 108,87 493,42 2049,28 

LK-N 0,19 0,87 3,35 14,40 89,58 574,42 3577,74 17660,51 

LK-ABCC 0,09 0,34 1,49 5,95 21,43 60,79 307,17 1332,79 

LK-ACR 0,07 0,29 0,93 2,95 16,40 76,32 318,10 1289,25 

SC-RGG 4,04 19,82 100,92 733,93 5804,09 33239,39 255971,44 -- 

SC-RGG+ 2,95 13,49 80,88 313,11 2872,61 13584,87 69542,57 336304,79 

 
 

Problem Size/Number of Instances – 23 Clustered Problems 

 1000/10 3162/5 10000/3 31623/2 100000/2 316228/1   

Algorithm CPU CPU CPU CPU CPU CPU   

LK-JM 1,30 3,62 11,99 57,65 211,30 916,91   

LK-N 4,35 15,04 51,17 138,59 558,07 --   

LK-ABCC 0,20 0,72 2,55 11,04 37,91 107,67   

LK-ACR 0,11 0,45 1,40 4,49 24,97 114,19   

SC-RGG 4,17 18,41 135,12 956,39 5416,85 60199,97   

SC-RGG+ 2,58 16,25 89,02 445,76 3818,27 39353,15   

 
 

Problem Size/Number of Instances – 11 TSPLIB Problems 

 1000/4 3162/3 10000/2 31623/1 100000/1    

Algorithm CPU CPU CPU CPU CPU    

LK-JM 0,29 0,54 3,61 14,57 35,90    

LK-N 0,41 1,08 10,26 47,09 --    

LK-ABCC 0,10 0,29 1,22 3,48 8,84    

LK-ACR 0,08 0,23 0,74 1,74 5,42    

SC-RGG 7,59 26,47 134,99 665,85 3253,16    

SC-RGG+ 4,14 21,67 78,11 505.99 1461,85    

 

Table 2 - Simple LK and S&C – Computation Time 
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Figure 3 - The Effect of don’t-look-bits Strategy on the S&C Algorithm 
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Problem Size/Number of Instances – 24 Uniformly Distributed Problems 
  

 1000/10 3162/5 10000/3 31623/2 100000/2 316228/1 1000000/1 Total 

Algorithm % NBS % NBS % NBS % NBS % NBS % NBS % NBS Average NBS 

LK-H 0,16 10 0,19 5 0,83 3 0,83 2 -- -- -- -- -- -- 0,50 20 

LK-NYYY 0,73 -- 0,74 -- 1,57 -- 1,48 -- 1,48 2 1,53 1 1,49 1 1,29 4 

 
 

Problem Size/Number of Instances – 23 Clustered Problems 
  

 1000/10 3162/5 10000/3 31623/2 100000/2 316228/1  Total 

Algorithm % NBS % NBS % NBS % NBS % NBS % NBS   Average NBS 

LK-H 0,71 8 1,38 4 3,32 1 3,58 1 -- -- -- --   2,25 14 

LK-NYYY 1,22 2 2,18 1 3,08 2 3,45 1 3,51 2 3,49 1   2,82 9 

 
 

Problem Size/Number of Instances – 11 TSPLIB Problems 
  

 1000/4 3162/3 10000/2 31623/1 100000/1   Total 

Algorithm % NBS % NBS % NBS % NBS % NBS     Average NBS 

LK-H 0,24 4 0,15 3 0,24 2 0,46 1 0,85 1     0,39 11 

LK-NYYY 1,15 -- 0,86 -- 0,72 -- 0,99 -- 1,03 --     0,95 0 

 

Table 3 - Helsgaun & NYYY – Solution Quality 

 

 
 

Problem Size/Number of Instances – 24 Uniformly Distributed Problems 

 1000/10 3162/5 10000/3 31623/2 100000/2 316228/1 1000000/1 

Algorithm CPU CPU CPU CPU CPU CPU CPU 

LK-H 5,64 71,49 861,71 7819,27    

LK-NYYY 0,16 0,57 1,76 4,97 20,86 84,73 507,62 

 
 

Problem Size/Number of Instances – 23 Clustered Problems 

 1000/10 3162/5 10000/3 31623/2 100000/2 316228/1  

Algorithm CPU CPU CPU CPU CPU CPU  

LK-H 6,93 70,28 768,31 12812,46    

LK-NYYY 0,50 1,36 3,96 9,68 38,81 147,20  

 
 

Problem Size/Number of Instances – 11  TSPLIB Problems 

 1000/4 3162/3 10000/2 31623/1 100000/1   

Algorithm CPU CPU CPU CPU CPU   

LK-H 7,82 73,32 1063,13 7982,09 48173,84   

LK-NYYY 0,26 0,66 1,96 5,09 13,06   

 

Table 4 - Helsgaun & NYYY – Computational Time 
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2.3. Advances in data structures for large STSPs 
 
The problem of data representation is fundamental to the efficiency of search algorithms 

for the TSP and particularly important for large STSP instances. The nature of these 

algorithms necessitates the performance of certain basic tour operations involving 

subpath reversal and traversal. The computational effort that must be devoted to these 

operations becomes increasingly pronounced with larger problem instances. For example, 

if the tour is represented as an array (or doubly linked list) of nodes, a subpath reversal 

takes time ( ),O n  where n is the problem size.  

 

We have recently developed a new data structure—the k-level satellite tree [21]—for the 

purpose of minimizing the contribution of tour management toward the overall runtime 

cost of a given search.   

 

The 2-level tree [6] has for many years been considered the most practical choice for 

representing the tour, retaining that reputation until the recent emergence of the k-level 

satellite tree described herein. A worst-case cost of ( )O n  for tour operations may be 

achieved using the 2-level tree representation. The idea is to divide the tour into roughly 

n  segments, where each segment is maintained as a doubly linked list and the 

segments are connected in a doubly linked list. 

 

The k-level satellite tree takes the segmentation idea a step further:  the tour is divided 

into segments containing roughly 1 kn  nodes each, and the resulting segments are 

grouped into parent segments containing about 1 kn  segments each. Ultimately, k–1 

groupings are performed, giving the tree k levels with at least 1 kn  parents on the top level. 

The leveraging effect achieved by this grouping of nodes into segments is the same as that 

achieved by the 2-level tree, except that we no longer assume that “2” is always the 

appropriate number of levels. 

 
The 2-level tree representation reduces the time complexity of move operations but pays 

for it with slightly larger constant costs, also called overhead. One might guess that 

choosing higher values for k (making the tree “taller”) would further reduce complexity 

while driving up overhead. It turns out that when these costs are balanced, the best value 

for k increases logarithmically with n, but only approximately, since k must be integer. A 

related property is that, in most cases, the ideal size of a segment will remain the same as 

problem size increases. This can be shown algebraically under the assumption, simply 
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put, that a given algorithm will splice the tree during moves about as often as it will 

traverse parents. Therefore, the key to choosing k is discovering the ideal segment size. 

This value, however, varies depending on the design and tuning of a given algorithm, and 

therefore should be determined experimentally. 

 

Some of the overhead associated with introducing additional levels may be defrayed by 

utilizing a satellite design [21]. A satellite list is similar to a doubly linked list but is 

symmetric in that an orientation is not inherent. Furthermore, there are no drawbacks in 

its practical use. The traditional 2-level tree incorporates doubly linked lists. If these are 

replaced with satellite lists, many of the query operations required in the course of a given 

algorithm may be performed more quickly than would be possible otherwise. This benefit 

becomes more pronounced when the tree is expanded to include more than two levels. 

 

In summary, the tour is most efficiently represented with a k-level satellite tree in which k 

is chosen appropriately. The best value for k can be calculated according to the size of the 

instance and the ideal segment size, which is unique to each algorithm implementation 

and must be determined experimentally. 

 

Recent experiments show the k-level satellite tree representation to be far more efficient 

than its predecessors. Particularly outstanding reductions in algorithm running times 

occur with large problem instances. When the tree is created with k chosen optimally in 

comparison to k=2, the average running time reduction balloons from a modest 7% for 

1,000 node problems to 27% for 10,000 node problems and to 71% for 100,000 node 

problems. For these tests, a S&C algorithm implemented with the k-level satellite tree was 

run on Euclidean instances from the DIMACS Challenge [17]. 

 

Fortunately, leading ejection chain algorithms for the TSP are similar enough that they 

may all make use of the same data structures. Consequently, the improvement offered by 

the k-level satellite tree may be shared as a common advantage in the same way that the 

2-level tree has been incorporated in multiple implementations. 

 
3. Asymmetric TSP 
  
 
3.1. Ejection chain based algorithms 
 
The Kanellakis-Papadimitriou (KP) heuristic [18] (based on the LK procedure) was the only 

local search ejection chain algorithm for the ATSP submitted to the “8th DIMACS 

Implementation Challenge” as reported by Johnson and McGeoch in the Challenge 
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summary chapter [14]. The other two algorithms presented here were not submitted to 

the Challenge. These are the ATSP version of the S&C algorithm described in the previous 

section and a new approach for the ATSP using the doubly-rooted stem-and-cycle 

reference structure [11]. 

 
Kanellakis-Papadimitriou Heuristic (KP-JM) 

Lin and Kernighan were not concerned with the ATSP when they developed their TSP 

heuristic in 1973 [19]. LK is based on 2-opt moves which always imply segment reversals 

that entail exceedingly high computational effort, and hence this method can not be 

directly applied to the ATSP. A variant of the LK approach presented by Kanellakis and 

Papadimitriou in 1980 [18] solved this problem by  using segment reordering instead of 

segment reversals (creating and breaking cycles so that the resulting sequence 

corresponds to a sequence of 3-opt moves). The KP method starts with a variable-depth 

search based on LK but where the moves performed correspond to k-opt moves for odd 

values of 3.k ≥  When the variable-depth search fails to improve the solution, the method 

searches for an improving 4-opt double-bridge move (with no reversals). Then KP returns 

to variable-depth search and iterates in this manner until neither of the searches 

improves the tour. 

 

The KP algorithm implementation analyzed in this paper is due to Johnson and McGeoch 

and described in Cirasella et al. [5]. It takes advantage of the same speedup techniques 

used in the authors’ LK implementation [15], including neighbor lists and the don’t-look-

bits candidate list strategy. It also uses the dynamic programming approach introduced 

by Glover [12] to find the best 4-opt move in 2( )O n  time. 

 

Rego, Glover, Gamboa Stem-and-Cycle (SC-RGG) 
This algorithm is based on the S&C ejection chain algorithm for the STSP by the same 

authors but ignores moves that generate path reversals. This implementation does not 

use candidate lists to reduce the neighborhood size, thereby penalizing the computation 

times as discussed in the following subsection. 

 
Rego, Glover, Gamboa and Osterman Doubly-Rooted S&C (DRSC-RGGO) 

The main distinguishing feature of this approach is its use of the doubly-rooted stem-and-

cycle reference structure defined in Glover [11], which generalizes the S&C structure by 

allowing for additional moves on each level of the ejection chain.  The doubly rooted 

structure has two forms: a bicycle in which the roots are connected by a single path, 
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joining two cycles, and a tricycle in which the two roots are connected by three paths, 

thereby generating three cycles (see Figure 4 where 1r  and 2r  indicate the roots). 

 

Tricycle Structure

Bicycle Structure

r1 r2

r2r1

 

Figure 4 - The Doubly-Rooted reference structure 

 

Ejection moves consist of adding a new edge (s, j), where s is a subroot and deleting the 

edge (s, r) resulting in node j as the new root.  

 

In order to assess the effectiveness of the double-rooted S&C neighborhood structure 

compared to the KP variant, we have adopted for our implementation a similar alternating 

strategy between the ejection chain search and the 4-opt double-bridge neighborhood. 

The results reported for this algorithm constitute a preliminary study that is currently 

being extended. All the implementations use Nearest Neighbor starting tours. 

 

3.2. Comparative analysis of performance 
 
Table 5 shows the results reported for the three algorithms on all the TSP Library [24] 

asymmetric instances with at least 100 nodes. The table shows the percentage deviation 

above the optimal solution (%), the running times in seconds and average of both values 

for each algorithm. The best solution for each instance is indicated in bold.  

 

Since our ATSP experiments were not conducted on the same computer considered for the 

above STSP results (and reported in the Challenge), it is important to explicitly identify 

the machines used to carry out the tests. The SC-RGG and DRSC-RGGO algorithms were 

run on an Intel Centrino 1.5GHz processor with 128MB of memory.  The results for the 
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KP-JM algorithm were obtained on the TSP Challenge reference machine, a Silicon 

Graphics Power Challenge with 31 196 MHz MIPS R10000 processors, 1MB 2nd level 

caches and 7.6GB of main memory shared by all processors. To be consistent with the 

analysis reported for the STSP, we provide normalized running times derived from runs of 

the standard benchmark code available in the Challenge website [17]. We note that the 

benchmark code used here corresponds to an implementation of the “Hungarian method”, 

and is different from the Greedy (or Multi-Fragment) geometric benchmark code used 

above in the normalizations of STSP algorithms. As suggested in [14] such a specialized 

method for the solution of linear assignment problems is more likely to reflect the pattern 

of ATSP computations. We encountered relative factors of 1.000, 1.476 and 2.3429 for 

n=100, 316 and 1000, respectively; hence we found 1.6 a reasonable compromise for the 

actual factors of the two machines.  

 

It is important also to mention that SC-RGG and DRSC-RGGO results were obtained in a 

single run of the algorithms with fixed parameters. By contrast, results for the KP-JM 

algorithm are averages over at least 5 runs for each instance. Also, the SC-RGG procedure 

corresponds to a version of the S&C method created by removing features from its STSP 

version that do not apply to the ATSP, and no effort has been undertaken to create a 

specialized S&C variant for asymmetric instances to take advantage of the principles that 

gave rise to the KP variant of the LK method. Similarly, our 4-opt search used in the 

current DRSC implementation corresponds to the potentially 4( )O n procedure considered 

in the original KP algorithm [18], as opposed to Glover’s efficient 2( )O n procedure used in 

its recent implementations [5] analyzed here. 

 

From Table 5 we can infer that the SC-RGG algorithm obtains competitive results but the 

DRSC-RGGO approach is clearly more effective in producing high quality solutions. On 

the 28 instances of the complete testbed, DRSC-RGGO achieves 15 best solutions (and 9 

optimal values) as opposed to 4 best solutions (and 3 optimal values) obtained by the KP 

implementation. The overall percentage deviation average is considerably better, however, 

for the doubly-rooted S&C approach, although the computational times are higher. These 

results are displayed in the graphics of Figure 5.  
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 Algorithm   Algorithm 

 KP-JM SC-RGG DRSC-RGGO   KP-JM SC-RGG DRSC-RGGO 

Problem % CPU % CPU % CPU  Problem % CPU % CPU % CPU

atex600 4,25 3,38 6,97 98,30 3,54 1440,80  ftv120 3,12 0,50 1,80 2,03 0,92 18,27

big702 2,10 6,04 3,54 167,34 1,58 692,14  ftv130 2,16 0,60 2,90 2,02 0,26 17,17

Code198 0,00 0,54 0,00 1,87 0,00 0,10  ftv140 3,15 0,60 2,23 2,48 0,25 68,43

Code253 0,10 1,09 0,35 3,30 0,00 41,02  ftv150 4,43 0,70 2,68 2,42 1,80 18,88

dc112 0,39 15,47 0,91 1,33 0,14 26,35  ftv160 5,89 0,70 5,63 3,65 0,00 33,81

dc126 0,65 22,69 1,68 2,19 0,20 76,14  ftv170 4,44 0,90 3,59 4,35 0,11 171,02

dc134 0,57 13,43 0,80 2,40 0,21 32,90  rbg323 0,78 3,71 1,06 26,90 0,08 64,40

dc176 0,67 20,48 2,39 1,95 0,19 112,77  rbg358 1,50 3,33 3,44 46,27 0,00 81,46

dc188 0,59 12,98 1,19 4,58 0,22 156,43  rbg403 0,22 9,00 0,28 69,94 0,00 33,63

dc563 0,79 111,95 2,47 46,53 0,93 280,48  rbg443 0,11 11,74 1,10 107,31 0,00 7,92

dc849 0,62 114,80 0,63 103,30 0,63 214,72  td100.1 0,00 0,20 0,09 2,06 0,00 2,30

dc895 0,60 144,43 2,18 217,78 0,58 3070,08  td1000.20 0,01 7,29 0,06 1106,91 0,10 4373,92

dc932 0,26 119,17 1,23 190,35 0,40 2423,55  td316.10 0,00 3,87 0,17 52,80 0,00 84,88

ftv100 3,11 0,40 1,45 1,12 0,00 7,74         

ftv110 4,04 0,40 1,28 1,74 0,31 24,58  Average 1,59 22,51 1,86 81,19 0,44 484,85

 

Table 5 - Solution Quality & Computational Time 

 

Figure 5 - Comparison of ATSP Algorithms (values from Table 5) 
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4. Concluding Remarks 
  
 

In this paper we describe and compare the most effective and efficient local search 

ejection chain algorithms for the TSP. These algorithms concern variants of the Lin-

Kernighan (LK) approach and two variants of the stem-and-cycle (S&C) ejection chain 

method. We find that the S&C approaches clearly outperform the basic LK 

implementations.  

 

For symmetric instances, the S&C approach finds better solutions than all (four) of the 

leading LK variants for about 70% of the problems tested. Conspicuously, the 70% 

advantage of the S&C approach refers to a comparison with the most effective variant of 

the LK procedure. The second best variant of this approach is dominated by the S&C 

approach in approximately 97% of the problems. Some other variants failed to find even a 

single solution better than the S&C approach over all 59 problems tested.  

 

Similar success was achieved by our doubly-rooted S&C variant applied to the 

asymmetric setting of the problem. Tests on 28 standard instances revealed 15 best 

solutions (and 9 optimal values) for our doubly-rooted S&C algorithm as opposed to 4 

best solutions (and 3 optimal values) obtained by a specialized LK variant for these 

asymmetric instances.  

 

We conjecture that gains in performance from the ejection chain methods are 

accomplished by their ability to use k-opt moves for 4k ≥  that are not accessible to the 

LK approaches. We anticipate that future gains will result by introducing more effective 

candidate lists that narrow the neighborhood size without causing solution quality to 

deteriorate. The ejection chain methods not only perform better than the local search TSP 

algorithms based on the LK framework, but also give the overall best solutions when the 

local search algorithms described here are used as engines for iterated local search 

heuristics. 
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