

Implementation Analysis of Efficient Heuristic
Algorithms for the Traveling Salesman
Problem†

Dorabela Gamboaa, César Regob∗, Fred Gloverc

a Escola Superior de Tecnologia e Gestão de Felgueiras, Instituto Politécnico do Porto, Rua

do Curral, Casa do Curral, Apt. 205, 4610-156, Felgueiras, Portugal.
dgamboa@estgf.ipp.pt

b Hearin Center for Enterprise Science, School of Business Administration, University of

Mississippi, University, MS 38677, USA. crego@bus.olemiss.edu

c Leads School of Business, University of Colorado, Boulder, CO 80309-0419, USA.

fred.glover@colorado.edu

Latest Revision: May 13, 2004

Abstract – The state-of-the-art of local search heuristics for the traveling salesman
problem (TSP) is chiefly based on algorithms using the classical Lin-Kernighan (L-K)
procedure and the Stem-and-Cycle (S&C) ejection chain method. Critical aspects of
implementing these algorithms efficiently and effectively rely on taking advantage of
special data structures and on maintaining appropriate candidate lists to store and
update potentially available moves. We report the outcomes of an extensive series of
tests on problems ranging from 1,000 to 1,000,000 nodes, showing that by
intelligently exploiting elements of data structures and candidate lists routinely
included in state-of-the-art TSP solution software, the S&C algorithm clearly
outperforms all implementations of the Lin-Kernighan procedure. Moreover, these
outcomes are achieved without the use of special tuning and implementation tricks
that are incorporated into the leading versions of the L-K procedure to enhance
their computational efficiency.

Keywords: traveling salesman, local search, data structures, ejection chains

† This research has been supported in part by the Office of Naval Research (ONR) grant N000140110917
∗ Corresponding author.

 1

1. Introduction

The traveling salesman problem (TSP) has been frequently used as a testbed for the
study of new local search techniques developed for general circuit-based
permutation problems. An important characteristic of these problems is that tests
performed on challenging TSP instances provide a basis for analyzing the
performance characteristics of global search metaheuristic techniques.

We focus on the undirected (symmetric) TSP problem in this paper. However, our
observations and results also can be extended to the directed (asymmetric) case
since the underlying stem-and-cycle reference structure can readily be
implemented for directed TSPs. The undirected problem can be stated in graph
theory terms as follows. Let (,)G V A= be a graph, where { },...,1V v vn= is a vertex (or

node) set and { }(,) | , ,A v v v v V i ji j i j= ∈ ≠ is an edge set, with a non-negative cost (or
distance) matrix C = (cij) associated with A. The TSP consists in determining the

minimum cost Hamiltonian cycle on the problem graph, where the symmetry
implied by the use of undirected edges rather than directed arcs can also be
expressed by stipulating that c cij ji= We focus on the most widely studied form of

the symmetric problem in which costs are assumed to satisfy the triangle inequality
(+ >c c cij jk ik).

To document the current state-of-the-art, and to provide a better understanding of
the heuristic components that prove most effective for several classes of heuristic
algorithms applied to the TSP, the 8th DIMACS Implementation Challenge on the
Traveling Salesman Problem was recently organized by Johnson, McGeogh, Glover
and Rego [13]. In this paper we describe findings from this Implementation
Challenge as well as our own experience with different algorithm implementations.
The outcomes give important insights about how to improve the performance of
algorithms for several other circuit-based permutation problems.

Some of the most efficient local search algorithms for the TSP are based on variable
depth neighborhood search methods such as the classic Lin-Kernighan (L-K)
procedure [14] and the Stem-and-Cycle (S&C) ejection chain method [8]. Critical
aspects of implementing these algorithms efficiently and effectively derive from
considering appropriate candidates for available moves and from taking advantage
of specialized data structures, especially for large TSP problems. We describe how
these elements affect the performance of a Stem-and-Cycle ejection chain method,
and additionally show the impact of several other algorithmic components,
including different types of starting solutions and complementary neighborhood
structures.

While many studies have been performed to determine how data structures,
candidate lists and starting solutions affect the performance of alternative versions
of the Lin-Kernighan approach, no comparable study has been performed to
determine the effect of these elements on the S&C ejection chain method. We show
that by taking advantage of these components, but without relying on any of the
additional special tuning and implementation tricks used in the leading versions of
the Lin-Kernighan procedures, the Stem-and-Cycle approach proves superior to all
implementations of the L-K method. Our findings are documented by extensive
computational tests conducted for TSP instances containing from 1,000 to
1,000,000 nodes, and suggest several natural ways to obtain further enhancements
for future generations of TSP methods.

 2

2. Algorithm Description

We consider a local search algorithm based on the stem-and-cycle ejection chain
method proposed in Glover [8]. The current implementation of the stem-and-cycle
algorithm is a slight variant of the P-SEC algorithm described in Rego [16].
The algorithm can be briefly described as follows. Starting from an initial tour, the
algorithm attempts to improve the current solution iteratively by means of a
subpath ejection chain method, which generates moves coordinated by a reference
structure called a Stem-and-Cycle (S&C). The stem-and-cycle procedure is a
specialized variable depth neighborhood approach that generates dynamic
alternating paths, as opposed to static alternating paths produced, for example, by
the classical Lin-Kernighan approach. A theoretical analysis of the differences
between the types of paths generated by ejection chain procedures (including the
S&C approach) and the LK approach is given by Funke, Grünert and Irnich [6].

The generation of moves throughout the ejection chain process is based on a set of
rules and legitimacy restrictions determining the set of edges allowed to be used in
subsequent steps of constructing an ejection chain. Implementation improvements
in the basic algorithm strategy for S&C ejection chains (described in Rego [16])
make the current version of the S&C approach more efficient and more effective for
solving very large scale problems.

Maintaining the fundamental rules of our algorithm unchanged, we have
introduced the following modifications as a basis for investigating the effects of
alternative candidate list strategies and data structures. The first introduces the
two-level tree data structure described in Fredman et al. [5], and used in some of
the most efficient Lin-Kernighan implementations reported in the DIMACS
Challenge (e.g. those of Johnson and McGeoch [12]; Applegate, Cook and Rohe [2];
and Helsgaun [11]). In our modified algorithm we have adapted the two-level tree
data structure to replace the less effective doubly-linked lists previously used to
represent both the TSP tours and the S&C reference structures. Another
modification is to replace a two-dimensional array-based data structure with an n-
vector to control ”legitimacy restrictions” during the ejection chain construction,
substantially reducing the storage space required by the earlier version. We also
have also incorporated in the modified algorithm the ability to directly access
external neighbor lists in the format used by the Concorde system, thus providing
additional alternatives to the nearest neighbor list used in the P-SEC algorithm.

Our algorithm is implemented as a local search improvement method in the sense
that no meta-strategy is used to guide the method beyond local optimality. Also, the
method always stops after n iterations if its re-routing strategy fails to improve the
best solution found so far. (Re-routing consists of starting an S&C ejection chain
from a different route node.) Thus our implementation of the S&C algorithm is
simpler and more direct than Lin-Kernighan implementations that make use of
additional supplementary techniques such as the ”don’t look bits” strategy, caching
distances, and other implementation tricks.

2.1. The Stem-and-Cycle Reference Structure

The reference structure used in the subpath ejection chain (SEC) algorithm whose
implementation is described in Rego [16] and now enhanced in the present work is
called Stem-and-Cycle (S&C). The S&C structure has its theoretical foundation in
Glover [8] and is defined by a spanning subgraph of G, consisting of a path

(, ... ,)ST v vt r= called the stem, attached to a cycle
1 2

(, , ... , ,)CY v v v vr s s r= . An

illustrative diagram of a Stem-and-Cycle structure is shown in Figure 1. The vertex
vr in common to the stem and the cycle is called the root, and consequently the

 3

two vertices of the cycle adjacent to vr (
1
vs and

2
vs) are called subroots. Vertex vt is

called the tip of the stem.

Figure 1 – The Stem-and-Cycle reference structure.

In each step of the ejection chain process, a subpath is ejected in the form of a
stem. The method starts by creating the initial S&C reference structure from a TSP
tour. Its creation is accomplished by linking two nodes of the tour and removing
one of the edges adjacent to one of those nodes. The possible transformations for
the S&C structure at each level of the chain are defined by two distinct ejection
moves described as follows:

Cycle-ejection move: Insert an edge (,)v vt p , where vp belongs to the cycle. Choose
an edge of the cycle (,)v vp q to be removed, where vq is one of the two adjacent

vertices of vp . Vertex vq becomes the new tip.

Stem-ejection move: Insert an edge (,)v vt p , where vp belongs to the stem. Identify

the edge (,)v vp q so that vq is a vertex on the subpath (, ... ,)v vt p . Vertex vq becomes

the new tip.

Figure 2 illustrates an example of the application of each of these moves to the S&C
structure of Figure 1. In the example, grey lines represent the edges to be inserted
in the new structure, and the dotted lines point out possible edges to be removed
from the current structure.

Figure 2 – Ejection moves.

The structure obtained through the application of an ejection move usually does
not represent a feasible tour (unless vt = vr); thus, a trial move is required to
generate a feasible TSP solution. Trial solutions are obtained by inserting an edge
(,)v vt s , where vs is one of the subroots, and removing edge (,)v vr s . Figure 3 shows
the two possible trial solutions that can be obtained from the S&C structure in
Figure 1.

p

q

s1

q

t

s2

r

Cycle-ejection

p

s1

t

s2q

r

Stem-ejection

s1

t

s2

r

cyclestem

--

 4

Figure 3 – Trial solutions.

2.2. Implementation Issues

One of the primary modifications in our algorithm was the replacement of the Array
data structure (implemented as a doubly-linked list) by the Two-Level Tree data
structure (2-level tree). This structure was initially proposed by Chrobak, Szymacha
and Krawczyk [3] and has been used in efficient implementations of the 2-Opt and
3-Opt procedures as well as their generalization of the Lin-Kernighan procedure
[14]. Fredman et al. [5] show the improvement in performance over the array data
structure obtained in their implementation of the Lin-Kernighan algorithm by using
the 2-level tree - they also report results for two other data structures.

The main advantage of the 2-level tree is its ability to reverse an entire subpath of
the structure in constant time, thus significantly reducing the computational times
for large-scale problems. The path reversal issue arises because in computer
implementation, an orientation is assumed in order to make the structure readable.
It is likely that an application of an ejection move would cause the need to reverse a
subpath of the structure in order to preserve an orientation that corresponds
appropriate to the tour produced.

In Lin-Kernighan implementations, the 2-level tree is used to represent a TSP tour;
however, in our algorithm it also represents the S&C structure, and hence requires
some modifications from the way the tree is implemented for procedures based on
the Lin-Kernighan approach.

Our 2-level tree structure consists of two interconnected doubly-linked lists forming
two levels of a tree. The first list defines a set of Parent nodes, each one associated
with a segment of the S&C structure (or tour). Each segment represents an oriented
path, and the correct association of all the paths represents a S&C structure (or
tour). Figure 4-(B) shows the Parent and the segment node structures and gives an
example of the 2-level tree representation of the S&C structure, shown in Figure 4-
(A), with CY=(5, 0, 7, 1, 4, 2, 5) and ST=(6, 8, 9, 3, 5).

Each member of a segment contains a pointer to the associated Parent node, Next
and Previous pointers, the index of the client it represents (Client), and a sequence
number (I.D.). The numbering within one segment is required to be consecutive
(but it does not need to start at 1), since each I.D. indicates the relative position of
that element within the segment.

A Parent node contains relevant information about the associated segment: the
total number of clients (Size), pointers to the segment’s endpoints, a sequence
number (I.D.), a reverse bit (Reverse), and a presence bit (Presence). The reverse bit
is used to indicate whether a segment should be read from left to right (if set to 0)

s1

t

s2

r

s1

t

s2

r

Trial Solution 2Trial Solution 1

 5

or in the opposite direction (if set to 1). Likewise, the presence bit indicates whether
a segment belongs to the stem (if set to 0) or to the cycle (if set to 1).

Segments are organized to place the root and the tip nodes as endpoints of a cycle
and a stem segment, respectively. A null pointer is set to the tip node to indicate
the end of the stem. The numbering of the Parent nodes always starts at the tip’s
Parent that also fails to define one of its links.

Also, clients are organized in an array structure allowing for random access to any
client node in the 2-level tree.

Figure 4 – (B) A Two-Level Tree representation of the S&C structure shown in graph

(A)

3
3

1

2
3

1
4

4
7

5
1

2
4

3
2

4
5

1
6

4
3

3
0

Segment Element Structure

I.D.
Client

Next ClientPrevious
Client

Parent

Two-Level Tree

Presence
Size
I.D.

Next ParentPrevious Parent

End of the
Segment

Beginning of the
Segment

Parent Structure

Reverse

0 0 11 0

2
8

3
9

3

1

7

0

4

6

2

8

9

5

cyclestem

--

(A)

(B)

t

r

s2s1

 6

This 2-level tree structure is a special adaptation of the one described in Fredman
et al. [5]. This adaptation involves a substantial modification of the operations
described in [5] due to the significant differences between the Stem-and-Cycle and
the Lin-Kernighan neighborhood structures. Since the S&C structure usually does
not represent a Hamiltonian cycle and different rules for ejection moves apply to
the stem and the cycle, a presence bit has been added to the Parent node structure
to indicate whether one segment belongs to the stem or to the cycle. Another
difference in our structure is the existence of null pointers in the tip node and
associated Parent structures. We also introduce specialized 2-level tree update
operations to ensure that each entire segment is either part of the stem or the
cycle. The basic scheme is outlined in the following diagrams.

Five basic operations are needed to manage the 2-level tree data structure. Two
operations deal with structure’s orientation and are used to traverse the structure.
Three other operations are designed to implement each type of move considered in
the S&C ejection chain method. These operations can be defined as follows:

Path Traversal Operations

Next(a), returns a’s successor in the current structure. First, it finds node a in the
segment list and follows the pointer to its Parent node. If the reverse bit is set to
zero, the return value is obtained by following a’s Next pointer or following a’s
Previous pointer, otherwise.

Previous(a), returns a’s predecessor in the current structure.

Move Operations

CycleEjection(r, t, p, q), updates the reference structure by removing edge (p, q) and
inserting edge (t, p). Depending on the orientations of the paths within the current
structure, the path between t and r may have to be reversed.

StemEjection(r, t, p, q), updates the reference structure removing edge (p, q) and
inserting edge (t, p). The path between t and q is reversed.

Trial(r, t, s), updates the reference structure by removing edge (s, r) and inserting
edge (t, s). Depending on the orientations of the current structure, the path between
t and r may have to be reversed.

In the move operations, any time the edge to be deleted is in the same segment, the
operation involves splitting the segment between the edge’s nodes and merging one
of the resulting partitions with a neighbor segment. Besides these cut and merge
procedures, other actions are needed to update the structure through the execution
of any of the operations, such as updating pointers and renumbering sequence
values for the segment nodes and Parent nodes involved as well as other Parent
information such as segment size and presence bits. The values of the reverse bits
change every time the associated segment is part of a path to be reversed. After
performing the necessary cut and merges, path reversal is performed by flipping the
reverse bits of the Parent nodes of all the segments in the path.

Our cut and merge operations are designed to maintain a 2-level tree structure with
the following characteristics. Each segment is restricted such that all its nodes
either belong to the cycle (cycle-segment) or to the stem (stem-segment). In
addition, the root is set to be an endpoint of a cycle-segment, and the tip is set to
be an endpoint of the rightmost segment of the stem. These specifications
complicate the merge options and sometimes necessitate additional cuts and
merges. Special cases also cause extra cuts and merges, such as the case that the
cycle occupies a single segment. For a comprehensive description and detailed

 7

explanation of all these operations and special cases we refer the reader to
Gamboa, Rego and Glover [7].

In order to clarify the effects of the execution of an operation, an example of a cycle-
ejection move on the graph of Figure 4-(A) and associated the 2-level tree (Figure 4-
(B)) is illustrated in Figure 5. In this move, edge (4, 2) is deleted and edge (4, 6) is
added, which generates the S&C structure with CY=(5, 0, 7, 1, 4, 6, 8, 9, 3, 5) and
ST=(2, 5). The execution of CycleEjection(5, 6, 4, 2) involves the following operations.
Number the new part of the cycle (6, 8, 9, 3, 5) by setting to 1 the presence bit of
Parent 1 (original I.D.). Also, because nodes 4 and 2 are on the same segment, split
it up between those nodes and merge node 4 to the initial segment 3. As the root
(node 5) is now the new stem-segment, merge it into segment 3. Set up the links
between nodes 4 and 6 and between the associated Parent nodes. Reverse the path
6 and 5 by flipping the reverse bit of Parent 1. Set up links between the root and its
new subroot (node 3) and between the associated Parent nodes. Flip the presence
bit of Parent 2 and number the new stem. Finally, reorder the I.D. numbers of the
Parent nodes starting at the new tip’s (node 2) Parent node.

Figure 5 – Cycle-ejection move: resulting graph and 2-level tree structure.

3. Experimental Results

This section studies the effects of a number of algorithm features that are usually
critical for the performance of local search algorithms. The testbed consists of
instances used in the “8th DIMACS Implementation Challenge” [13] from classes E
(uniformly distributed clients) and C (clients organized in clusters) as well as a set
of instances from the TSPLIB library [17] with different characteristics and sizes.

Runs were performed on a Sun Enterprise with two 400 MHz Ultra Sparc
processors and 1 GB of memory.

2
5

1

1
1

3
4

4
7

5
1

6
4

3
2

2
5

1
6

4
3

3
0

0 1 00 0

2
8

3
9

3

1

7

0

4

6

2

8

9

5

cycle

stem
--

(A)

t

rs2

s1

(B)

 8

3.1. Efficiency Analysis

To measure the relative efficiency of the 2-level tree implementation, several
computational tests were carried out on three classes of problems. Table 1 reports
the running times for two implementations of the same S&C algorithm [16] that
only differ in the data structures used to represent the S&C structure and the TSP
tour. Besides the designation and size of each instance, the table shows the
normalized (i.e. divided by n) computational times, the difference between the
running times obtained by the two implementations, and the number of times the
array version is slower than the 2-level tree version.

 Time/n Difference Times (1)

Problem n Array(1) 2L Tree(2) (1)-(2) slower than (2)

E1k.0 1,000 0.013 0.008 0.005 0.6

E3k.0 3,162 0.041 0.012 0.029 2.4

E10k.0 10,000 0.124 0.018 0.106 5.9

E31k.0 31,623 0.438 0.044 0.394 9.0

E100k.0 100,000 0.926 0.055 0.871 15.8

E316k.0 316,228 4.231 0.202 4.029 20.0

C1k.0 1,000 0.011 0.008 0.003 0.4

C3k.0 3,162 0.027 0.010 0.017 1.7

C10k.0 10,000 0.087 0.020 0.067 3.4

C31k.0 31,623 0.360 0.059 0.301 5.1

C100k.0 100,000 1.032 0.109 0.923 8.5

pla7397.tsp 7,397 0.091 0.015 0.076 5.1

rl11849.tsp 11,849 0.145 0.020 0.125 6.3

usa13509.tsp 13,509 0.129 0.019 0.110 5.8

d18512.tsp 18,512 0.267 0.025 0.242 9.7

pla33810.tsp 33,810 0.758 0.060 0.698 11.6

pla85900.tsp 85,900 0.701 0.048 0.653 13.6

Table 1 – Running times (seconds) for three classes of problems.

The results show that the efficiency of the 2-level tree implementation over the
array implementation grows significantly with the problem size. In fact, if we
consider the real times (not normalized), in order to solve the largest instance, the
array implementation takes about 15 days to obtain a solution identical to the one
provided by the 2-level tree implementation in 17 hours.

3.2. Analysis on the Effect of the Initial Solution

Typically, constructive algorithms are used to rapidly create a feasible solution for
an optimization problem; however, the quality of the solutions provided by these
algorithms is usually far below from the one that can be obtained by effective local
search procedures. Because local search algorithms are based on the definition of a
neighborhood structure designed to locally explore the solution space of the current
solution at each iteration of the method, different solutions may be obtained
depending on the initial solution from which the method starts.

 9

This section analyzes the possible effect of the starting solution on the quality of the
solutions provided by the S&C algorithm. Table 2 reports results for the algorithm
starting from three constructive algorithms (Boruvka, Greedy and Nearest
Neighbor) as well as randomly generated solutions (Random). For each type of
initial solution, the results were obtained by running the algorithm using two
different candidate lists: 20 quadrant neighbors (20QN) and 50 nearest neighbors
(50NN). We should point out that the purpose of using random solutions is not to
provide a significant statistical assessment on the performance or robustness of the
algorithm when starting from random initial solutions, but rather it is to verify how
the algorithm performs starting from significantly unstructured solutions
comparatively to well structured solutions provided by various constructive
methods. To this end, we have generated four random solutions for each instance
based on the systematic generator in Rego [16], with k=2, 5, 8 and 10 to provide
starting solutions for four runs—results for the “Random” columns are the average
of the four runs. The Concorde TSP Library [4] was used to generate the remaining
initial solutions and the candidate lists. All runs were performed with a fixed set of
algorithm parameters.

The aforementioned candidate lists are created by finding 20 quadrant neighbors –
5 nearest neighbors from each of the four quadrants of the Euclidian plane -
(20QN) or 50 nearest neighbors (50NN) for each node in the problem. The numbers
20 and 50 were chosen experimentally. Other candidate numbers were tested but it
turned out that these numbers provide a good trade-off between solution quality
and running times. In fact, for superior values the solution quality does not
improve, only the running times increase.

The choice of the constructive algorithms was also decided experimentally. In both
cases our conclusions led to the use of candidate lists and constructive algorithms
similar to the ones used by the other authors reporting results in the “8th DIMACS
Implementation Challenge” [13].

 Candidate Lists

 20QN 50NN

 % above the optimal solution or above the Held and Karp lower bound

Problem Boruvka Greedy Nearest Random Boruvka Greedy Nearest Random

E100k.0 1,709 1,762 1,694 1,707 1,738 1,662 1,815 1,666

C100k.0 3,684 3,496 3,453 3,859 6,839 6,529 8,276 38,612

pla7397.tsp 0,846 1,168 0,958 0,943 0,756 1,964 1,098 0,918

rl11849.tsp 1,654 0,931 1,390 1,537 1,249 0,998 1,064 1,507

usa13509.tsp 1,100 1,109 1,186 1,080 1,158 1,257 0,960 0,934

d18512.tsp 0,754 0,877 0,958 0,947 0,915 0,887 0,822 0,873

pla33810.tsp 1,115 1,481 1,089 1,201 1,518 1,143 1,214 0,993

Pla85900.tsp 1,358 1,337 1,113 1,840 1,115 1,020 1,235 1,034

Average 1,528 1,520 1,480 1,639 1,911 1,933 2,061 5,817

Number of
times best

2 1 4 1 1 4 1 2

Table 2 – Results for different initial solutions.

The quality of the solutions obtained is measured by the percentage above the
optimal solution (when known) or the Held and Karp lower bound [9, 10].

The last two lines in the table show the average solution quality for each column
and the number of times the algorithm found the best solution starting from the

 10

initial solution provided by the associated constructive algorithm (the values in bold
point out these best results).

Graphs in Figure 6 depict the effect of the different starting solutions using the
results in Table 2. The results for problem C100k.0 are not shown on the graphics
because their high values (especially for the Random initial solution and 50NN
candidate list) would not allow a clear reading of the graphics.

Table 2 shows that for each type of candidate list (20QN or 50NN), the algorithm
finds solutions of similar quality (on average) regardless of the type of constructive
algorithm used to generate the starting solution (Boruvka, Greedy, or Nearest).

However, by contrasting both sides of the table, we can see that the average quality
of the solutions produced using the 20QN candidate list is superior to the ones
achieved with the 50NN candidate list. Especialy for clustered problems the
candidate list can have a great inpact on the quality of the final solution, as
indicated by the terrible result obtained for the C100k.0 instance using the 50NN
candidate list. Specifically, these results indicate that in cases where the starting
solution does not contain a sufficient number of arcs in common with the optimal
or high-quality solutions and the missing arcs are not in the candidate list either, it
is very unlikely that the algorithm could find a good solution. At this point, it is
clear that the candidate list is a key factor for the performance of a local search
algorithm. A more extensive examination of the possible effect of the candidate
design is presented in the next section.

As far as the combination of the initial solution and candidate list is concerned the
20QN/Nearest leads to the highest average solution quality and allows the
algorithm to find 4 best solutions (if restricting the analisys to the 20QN candidate
list). However, if the 50NN candidate list is used, the Greedy procedure seems to be
a better choice as the algorithm finds 4 best solutions (if restricting the analisys to
the 50NN candidate list) with an average solution quality similar to the one
obtained by the best combination (50NN/Boruvka) in this set. These results
indicate that there is no significant evidence of domination of one initial solution
procedure over all the others. In fact, the graphics in Figure 6 clearly show that the
choice of any of these initial solutions does not greatly influence the quality of the
final solutions.

Figure 6 – Comparing the effect of the initial solutions.

20QN Candidate List

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1,80

2,00

E100k.0 pla7397.tsp rl11849.tsp usa13509.tsp d18512.tsp pla33810.tsp pla85900.tsp

Problems

P
er

ce
nt

ag
e

ab
o

ve
 o

pt
im

al
 o

r
th

e
H

K
 l

ow
er

 b
ou

n
d

Boruvka Greedy Nearest Random

50NN Candidate List

0,00

0,50

1,00

1,50

2,00

2,50

E100k.0 pla7397.tsp rl11849.tsp usa13509.tsp d18512.tsp pla33810.tsp pla85900.tsp

Problems

P
er

ce
n

ta
ge

 a
b

ov
e

o
pt

im
al

 o
r

th
e

H
K

 lo
w

er
 b

o
u

nd

Boruvka Greedy Nearest Random

 11

3.3. Analysis on the effect of the candidate list

The application of neighborhood search procedures to large-scale TSP problems
requires the utilization of candidate lists in order to restrict the size of the
neighborhood to search (at each iteration). The candidate list should contain all the
components (or move attributes) necessary for an effective application of the
neighborhood structure. Therefore, different candidate list designs may lead to
different levels of performance for the same algorithm.

Table 3 reports comparative results for four different candidate lists: 12 quadrant
neighbors (12QN), 50 nearest neighbors (50NN) and two other lists obtained by
concatenating the first two with the list generated by the construction of Delaunay
triangulations. We denote the latter by 12QN+D and 50NN+D, respectively.

The motivation for the chosen candidate lists results from the fact that nearest
neighbor (NN) is a classical candidate (or neighbor) list but has important
limitations, such as its fixed size, not exploiting the geometric structure of the
problem and not suitable for problems where vertices on a Euclidian plane occur in
separate clusters. Quadrant neighbor (QN) is a more appropriate neighbor list as it
considers nearest neighbors in 4 different quadrants. As shown in Reinelt [18] a
candidate list based on the computation of the Delaunay graph generates edges
that are useful for many TSP instances. Moreover, this type of neighbor list is
usually different from those produced by NN or QN lists.

Figure 7 provides illustrative graphics for the results presented in Table 3. In order
to expose possible dependencies of the candidate lists on the structure of the initial
solution, two different solutions (Greedy and Random) were used with each
candidate list.

 Initial Solutions

 Greedy Random

 % above the optimal solution or above the Held and Karp lower bound

Problem 12QN 12QN+D 50NN 50NN+D 12QN 12QN+D 50NN 50NN+D

E100k.0 1,757 1,653 1,662 1,632 1,760 1,694 1,666 1,819

C100k.0 3,558 3,881 6,529 4,051 4,439 3,929 38,612 5,482

pla7397.tsp 0,998 0,931 1,964 1,305 2,021 0,819 0,918 0,815

rl11849.tsp 1,642 1,200 0,998 1,165 1,842 1,615 1,507 1,257

usa13509.tsp 0,868 1,284 1,257 0,800 0,905 0,994 0,934 1,093

d18512.tsp 1,237 0,795 0,887 0,949 0,961 0,889 0,873 0,964

pla33810.tsp 1,551 1,0165 1,143 1,0171 2,457 1,599 0,993 1,378

pla85900.tsp 1,223 1,168 1,020 1,131 2,949 1,797 1,034 1,027

Average 1,604 1,491 1,933 1,506 2,167 1,667 5,817 1,729

Number of
times best

1 3 2 2 1 1 3 3

Table 3 – Results for different candidate lists.

Table 3 shows that the use of the 12QN+D candidate list with a Greedy initial
solution provides better final solutions (on average) and usually finds the best
solutions more often. The overall performance and relative advantage of this
candidate list is illustrated in Figure 7. On the other hand, it appears that
quadrant-based candidate lists result in better solutions (as expected) for clustered
problems, as shown by the results obtained for the C100k.0 problem. (Even a 12-
node quadrant list can do better than a 50-node nearest neighbor list enriched with
Delaunay triangulations for this clustering problem). This conclusion is reinforced

 12

by the results in Table 2 where a 20-node quadrant list (20QN) significantly
outperforms (on average) a 50-node nearest neighbor list (50NN), regardless of the
initial solution.

Figure 7 – Comparing candidate lists.

3.4. Comparative Analysis of Alternative Algorithms

We now analyze the performance of several highly effective heuristic algorithms
using the results submitted to the “8th DIMACS Implementation Challenge” [13] for
a comparative analysis. For the purpose of this study we restrict our attention to
the information that is relevant to the analysis under consideration. For a complete
list of results and details on generating the testbed instances, running times, scale
factors for different computer systems, and other settings used in the challenge, we
refer the reader to the Challenge web site [13].

The complete testbed consists of instances of class E (sizes between 1,000 and
10,000,000 nodes), C (sizes between 1,000 and 316,228 clients), and those from
the TSP Library [17] with at least 1,000 nodes. However, for the current study we
limited the number of problems to instances up to 1,000,000 (for classes E and C)
and to problems larger than 3,000 nodes for the TSP instances.

In the attempt to render an accurate comparison of running times, a benchmark
code was provided for Challenge participants to run in the same machines as the
competing algorithms were run.

Table 4 and Figures 8 and 9 provide comparative results on the performance of the
following algorithms:

SC: The Stem-and-Cycle algorithm, 12QN+D candidate list, Boruvka (SC-B) and
Greedy (SC-G) initial solutions, two-level tree structure. All runs were performed
with a fixed set of algorithm parameters. The algorithm considers ejection chains of
50 levels (component steps or “depth”).

LK-JM: Implementation of the Lin-Kernighan algorithm by Johnson and McGeoch
[12], Greedy initial solutions, 20QN candidate list, “don’t look bits” strategy, two-
level tree structure.

Greedy Initial Solution

0,00

0,50

1,00

1,50

2,00

2,50

E100k.0 pla7397.tsp rl11849.tsp usa13509.tsp d18512.tsp pla33810.tsp pla85900.tsp

Problems

P
er

ce
nt

ag
e

ab
o

ve
 o

p
tim

al
 o

r
th

e
H

K
 l

ow
er

 b
o

un
d

12QN 12QN+D 50NN 50NN+D

Random Initial Solution

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

E100k.0 pla7397.tsp rl11849.tsp usa13509.tsp d18512.tsp pla33810.tsp pla85900.tsp

Problems

P
er

ce
nt

ag
e

ab
ov

e
op

tim
al

 o
r

th
e

H
K

 lo
w

er
 b

ou
nd

12QN 12QN+D 50NN 50NN+D

 13

LK-N: Implementation of the Lin-Kernighan algorithm by Neto [15], 20QN+20NN
candidate list, especial routines for “Clusters” compensation, “don’t look bits”
strategy, two-level tree structure.

LK-ABCC: Implementation of the Lin-Kernighan algorithm (in the Concorde library)
by Applegate, Bixby, Chvátal and Cook [1, 4], 12QN candidate list, Q-Boruvka initial
solutions, “don’t look bits” strategy, two-level tree structure.

LK-ACR: Implementation of the Lin-Kernighan algorithm by Applegate, Cook and
Rohe [2], 12QN candidate list, “don’t look bits” strategy, two-level tree structure.

Table 4 summarizes the quality of solutions obtained by the five algorithms on the
testbed described, grouped by class of problems, presenting average values and
pointing out the best results (values in bold). The graphics in Figure 8 only show
the Stem-and-Cycle results using the Greedy initial solution.

Figure 8 – Comparing TSP algorithms.

Comparing TSP Algorithms

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

E1k
.0

E1k
.4

E1k
.8

E3k
.0

E3k
.2

E3k
.4

E10k
.0

E10k
.1

E10k
.2

E31k
.0

E31k
.1

E10
0k.0

E10
0k.1

E31
6k.0

E1M
.0

Uniformly Distributed Problems

P
er

ce
nt

ag
e

ab
ov

e
op

tim
al

 o
r

th
e

H
K

 lo
w

er
 b

ou
nd

SC-G LK-JM LK-N LK-ABCC LK-ACR

Comparing TSP Algorithms

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

C1k.
0

C1k.
4

C1k.
8

C3k.
0

C3k.
2

C3k.
4

C10k
.0

C10k
.1

C10k
.2

C31k
.0

C31k
.1

C100
k.0

C100
k.1

C316
k.0

Clustered Problems

P
er

ce
n

ta
ge

 a
bo

ve
 o

p
tim

al
 o

r
th

e
H

K
 l

ow
er

 b
ou

n
d

SC-G LK-JM LK-N LK-ABCC LK-ACR

Comparing TSP Algorithms

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

pcb303
8

fl3
795

fnl
446

1
rl5

91
5

rl5
93

4

pla7
397

rl1
18

49

usa
13

509

brd140
51

d151
12

d185
12

pla3
381

0

pla8
590

0

TSPLIB Problems

P
er

ce
nt

ag
e

ab
o

ve
 o

pt
im

al
 o

r
th

e
H

K
 lo

w
er

 b
o

un
d

SC-G LK-JM LK-N LK-ABCC LK-ACR

 14

Table 4 – Comparing TSP algorithms.

 Optimal or SC-B SC-G LK-LM LK-N LK-ABCC LK-ACR

Problem HK lower bound Percentage above optimal or HK lower bound

E1k.0 23360648 0,856 0,939 1,422 1,055 1,525 1,632

E1k.4 22698717 0,983 0,683 1,360 1,135 1,435 1,851

E1k.8 23025754 0,512 0,759 0,899 1,031 2,116 1,143

E3k.0 40634081 1,056 0,825 1,125 1,444 1,560 2,080

E3k.2 40303394 0,858 0,743 1,382 1,262 1,519 2,883

E3k.4 40757209 0,866 1,014 1,176 1,208 1,934 2,094

E10k.0 71362276 1,706 1,555 1,958 2,045 2,603 2,591

E10k.1 71565485 1,718 1,570 2,093 1,949 2,572 3,124

E10k.2 71351795 1,665 1,921 2,000 1,963 2,629 2,435

E31k.0 126474847 1,456 1,566 2,057 1,868 2,542 2,945

E31k.1 126647285 1,616 1,656 1,985 1,899 2,425 2,497

E100k.0 224330692 1,751 1,653 2,022 1,954 2,551 2,624

E100k.1 224241789 1,744 1,641 1,924 1,954 2,528 2,862

E316k.0 398582616 1,876 1,864 1,963 1,966 2,668 2,748

E1M.0 708703513 2,022 1,907 1,956 1,925 2,684 2,770

 Average 1,379 1,353 1,688 1,644 2,219 2,419

C1k.0 11387430 1,189 1,355 0,758 1,361 2,233 3,416

C1k.4 11499958 1,727 1,334 2,313 2,324 2,231 2,701

C1k.8 11605723 1,105 1,187 1,297 1,329 3,019 6,439

C3k.0 19198258 1,619 1,851 1,812 2,225 6,201 5,993

C3k.2 19547551 1,960 2,362 1,732 4,008 5,139 4,830

C3k.4 18864046 1,484 1,839 2,335 3,294 6,453 7,327

C10k.0 32782155 3,709 2,884 2,600 4,534 5,436 5,796

C10k.1 32958946 2,882 3,344 4,654 5,014 6,198 6,378

C10k.2 32926889 3,253 3,494 2,985 4,737 5,472 5,599

C31k.0 59169193 3,367 3,035 3,824 4,540 5,677 5,720

C31k.1 58840096 3,601 3,278 3,610 4,298 7,080 6,835

C100k.0 103916254 3,528 3,881 3,409 4,702 5,507 5,480

C100k.1 104663040 3,710 3,501 3,856 4,864 5,106 5,613

C316k.0 185576667 4,097 3,990 3,667 -- 5,452 5,542

 Average 2,659 2,667 2,775 3,633 5,086 5,548

pcb3038 137694 0,755 0,696 1,166 1,339 2,160 2,914

fl3795 28772 0,848 0,834 2,252 3,211 2,259 6,433

fnl4461 182566 0,752 0,555 1,229 1,131 1,756 1,811

rl5915 565530 1,025 0,970 1,325 1,072 3,321 3,080

rl5934 556045 1,179 1,451 1,648 1,723 2,618 2,607

pla7397 23260728 0,804 0,931 1,308 1,408 1,938 2,804

rl11849 923288 1,312 1,200 1,496 1,395 2,469 2,800

usa13509 19982859 1,109 1,284 1,263 1,255 2,521 2,639

brd14051 469375 0,910 0,882 1,453 1,265 1,773 3,540

d15112 1573040 0,885 0,898 1,107 1,145 1,821 1,879

d18512 645230 0,823 0,795 1,135 1,167 1,552 1,769

pla33810 66033000 1,003 1,017 1,227 1,491 1,654 2,400

pla85900 142360000 1,190 1,168 1,213 -- 1,208 2,003

 Average 0,969 0,975 1,371 1,467 2,081 2,821

 15

Table 4 and the graphics in Figure 8 show that the Stem-and-Cycle algorithm is
very robust and clearly outperforms all implementations of the Lin-Kernighan
procedure.

Figure 9 depicts the running time variation as the problem size increases (for both
groups E and C). We can see that the computation times for the SC-G algorithm
suddenly deteriorate for sizes larger than 10,000 nodes, making the algorithm less
efficient than the LK implementations for such problem sizes. However, it is
important to note that state-of-the-art LK implementations (e.g. LK-JM) contain
several tuning and implementation tricks (not described in this paper) that explain
its relative efficiency. In contrast, the Stem-and-Cycle implementation has no
additional components or tuning beyond the basic approach already indicated.

Figure 9 – Comparing running times.

Graphics in Figure 10 show the normalized running times of the Stem-and-Cycle
algorithm. For the problems of groups E and C the running times significantly
increase for problems over 100,000 nodes. As shown in Figure 10 in the graphic for
the TSPLIB problems, problem size is not the only factor affecting the
computational times. The structure of the problem also appears to be important.
This result suggests that the increase in running times for very large scale
instances is due to the fact that the current implementation of the stem-and-cycle
algorithm does not take advantage of any specialized mechanism to reduce the size
of the neighborhood operating on the initial candidate list. Under this assumption,
the “don’t look bits” strategy used in the LK implementations is particularly critical
for the relative performance of these algorithms when solving large scale instances.

Another important factor worth noting as a basis for further improvement is the
use of more efficient candidate lists to restrict the neighborhood size while keeping
the “right” edges to be considered for a move. In fact, it is clearly shown in
Helsgaun [11] that the choice of an appropriate candidate list has great influence
on both the efficiency and effectiveness of a LK implementation and thus a local
search algorithm.

Efficiency can also be improved by avoiding repeated computations of the same
objective value as in the Johnson and McGeogh LK implementation [12] where the
run-time performance is optimized by using a caching technique.

Another key feature that has proved crucial in the most efficient LK-based
implementations (including the ones discussed in this study) is the use of
supplementary neighborhoods called “double-bridges” that generate disconnected

Comparing TSP Algorithms

0,00

0,01

0,02

0,03

0,04

E1k.0 C1k.0 E3k.0 C3k.0 E10k.0 C10k.0 E31k.0 C31k.0

Randomly Generated Problems

(T
im

e
in

 s
ec

on
d

s
)/

n

SC-G LK-JM LK-N LK-ABCC LK-ACR

 16

moves that cannot be achieved with the basic LK neighborhood. Again, we should
point out that no alternative neighborhood is used in our stem-and-cycle algorithm.

Figure 10 – Stem-and-Cycle running times.

These results suggest that the Stem-and-Cycle neighborhood structure provides
additional advantages over the Lin-Kernighan structure.

Although the possibilities for disconnected moves exist as an integral component of
a generalization of the S&C ejection chain method (the doubly-rooted reference
structure of Glover [8]), this feature remains unexplored in our current
implementations.

Finally, other possible improvements may consist in using adaptive memory
programming (as proposed in tabu search contexts) to implement intensification
and diversification strategies for effective exploration of the solution space.

4. Conclusions

The ability of the basic Stem-and-Cycle approach to outperform the leading Lin-
Kernighan methods, without recourse to the usual array of supplementary
strategies and auxiliary neighborhoods used to make these alternative methods
competitive, suggests that a significant opportunity exists for additional

SC-G

Normalized Times

0,00

0,10

0,20

0,30

E1k
.0

E1k
.4

E1k
.8

E3k
.0

E3k
.2

E3k
.4

E10
k.0

E10
k.1

E10
k.2

E31
k.0

E31
k.1

E100
k.0

E100
k.1

E316
k.0

E1M
.0

Uniformly Distributed Problems

(T
im

e
in

 s
ec

on
ds

)
/n

SC-G

 Normalized Times

0,00

0,10

0,20

C1k.
0

C1k.
4

C1k.
8

C3k.
0

C3k.
2

C3k.
4

C10k
.0

C10k
.1

C10k
.2

C31k
.0

C31k
.1

C100
k.0

C100
k.1

C316
k.0

Clustered Problems

(T
im

e
in

 s
ec

o
nd

s
)/

n

SC-G

 Normalized Times

0,00

0,01

0,02

0,03

0,04

pcb
303

8
fl3

795

fnl
44

61
rl5

91
5

rl5
93

4

pla7
39

7

rl1
18

49

usa
135

09

brd14
051

d151
12

d185
12

pla3
381

0

pla8
590

0

TSPLIB Problems

(T
im

e
in

 s
ec

on
ds

)
/n

 17

enhancement of the S&C approach. A natural change in this direction is simply to
utilize more effectively designed candidate lists. In addition, several types of choice
and trial solution options in the stem-and-cycle approach remain unexplored,
including those arising from more general doubly-routed reference structures. The
incorporation of multilevel strategies as in the interesting study of Walshaw [19]
also provides an area whose investigation may hold promise.

Apart from the quality of the solutions that can be obtained by the S&C approach,
the computation time remains an important factor to consider, especially when very
large instances have to be solved. Because finding good solutions for large scale
problems necessarily requires a significant number of iterations of a local search
algorithm, there are two natural ways to reduce the time complexity for the next
generation of TSP algorithms. One way is to develop more effective data structures
than the current widely-used 2-level tree to maintain and update a TSP tour (and
possible reference structures). Another obvious way is to call upon parallel
processing, which not only allows for reducing computation times but also provides
an opportunity to design new neighborhood structures that may be effectively
implemented in parallel. These possibilities are currently under examination and
will be reported in future work.

References

[1] D. Applegat, R. Bixby, V. Chvatal and W. Cook, Finding Tours in the TSP,

Research Institute for Discrete Mathmetics, Universitat Bonn, 1999.

[2] D. Applegate, W. Cook and A. Rohe, Chained Lin-Kernighan for large traveling

salesman problems, INFORMS Journal on Computing 15 (2003) 82-92.

[3] M. Chrobak, T. Szymacha and A. Krawczyk, A Data Structure Useful for

Finding Hamiltonian Cycles, Theoretical Computer Science 71 (1990) 419-
424.

[4] V. Chvatal D. Applegate, R. Bixby and W. Cook, Concorde: A code for solving

traveling salesman problems, 1999,
http://www.math.princeton.edu/tsp/concorde.html.

[5] M. L. Fredman, D. S. Johnson, L. A. McGeoch and G. Ostheimer, Data

Structures for Traveling Salesman, J. Algorithms 18 (1995) 432-479.

[6] B. Funke, T. Grünert and S. Irnich, "A Note on Single Alternating Cycle

Neighborhoods for the TSP", Lehr- und Forschungsgebiet Operations
Research und Logistic Management, Rheinisch-Westfälische Hochschule
(RWTW) Aachen, Germany, 2004.

[7] D. Gamboa, C. Rego and F. Glover, Data Structures and Ejection Chains for

Solving Large Scale Traveling Salesman Problems, European Journal of
Operational Research, 2004, to appear.

[8] F. Glover, New Ejection Chain and Alternating Path Methods for Traveling

Salesman Problems, Computer Science and Operations Research (1992) 449-
509.

[9] H. Held and R. M. Karp, The Traveling Salesman Problem and Minimum

Spanning Trees, Operations Research 18 (1970) 1138-1162.

[10] H. Held and R. M. Karp, The Traveling Salesman Problem and Minimum

Spanning Trees: Part II, Math. Programming 1 (1971) 6-25.

 18

[11] K. Helsgaun, An effective implementation of the Lin-Kernighan traveling
salesman heuristic, European Journal of Operational Research 1 (2000) 106–
130.

[12] D. S. Johnson and L. A. McGeoch, The Traveling Salesman Problem: A Case

Study in Local Optimization, Local Search in Combinatorial Optimization, E. H.
L. Aarts and J. K. Lenstra, Editors, John Wiley and Sons, Ltd., 1997, 215–
310.

[13] D. S. Johnson, L. McGeogh, F. Glover and C. Rego, 8th DIMACS

Implementation Challenge: The Traveling Salesman Problem, Technical
report, AT&T Labs, 2000, http://www.research.att.com/~dsj/chtsp/.

[14] S. Lin and B. Kernighan, An Effective Heuristic Algorithm for the Traveling

Salesman Problem, Operations Research 21 (1973) 498-516.

[15] D. Neto, Efficient Cluster Compensation for Lin-Kernighan Heuristics,

Department of Computer Science, University of Toronto, 1999.

[16] C. Rego, Relaxed Tours and Path Ejections for the Traveling Salesman

Problem, European Journal of Operational Research 106 (1998) 522-538.

[17] G. Reinelt, TSPLIB - A Traveling Salesman Problem Library, ORSA Journal on

Computing 3 (1991) 376-384.

[18] G. Reinelt, Fast Heuristics for Large Geometric Traveling Salesman Problems,

ORSA Journal on Computing 4 (1992) 206-217.

[19] C. Walshaw, A Multilevel Approach to the Travelling Salesman Problem,

Operations Research 50:5 (2002) 862-877.

