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Abstract

We introduce a new extension of Punnen’s exponential neighborhood for the traveling
salesman problem (TSP). In contrast to an interesting generalization of Punnen’s neigh-
borhood by De Franceschi, Fischetti and Toth (2005), our neighborhood is searchable in
polynomial time, a feature that invites exploitation by heuristic and metaheuristic proce-
dures for the TSP and related problems, including those of De Franceschi, Fischetti and
Toth (2005) for the vehicle routing problem.
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Local search heuristics are among the main tools to compute near optimal solutions in
large instances of combinatorial optimization problems in relatively short time. These heuris-
tics include variants of both constructive algorithms and iterative improvement local search,
including more advanced metaheuristic variants such as tabu search, simulated annealing and
genetic algorithms, among others (see, e.g., Aarts and Lenstra (1997)). In most cases the
neighborhoods used in these algorithms are of polynomial cardinality. One may ask whether
it is possible to have exponential size neighborhoods for the traveling salesman problem (TSP)
such that the best tour in such a neighborhood can be computed in polynomial time, i.e.,
exponential size polynomial time searchable neighborhoods. Fortunately, the answer to this
question is positive. This question is far from being trivial for some generalizations of TSP,
e.g., Deineko and Woeginger (2000) conjectured that for the quadratic assignment problem
there is no exponential size polynomial time searchable neighborhood.

In this paper we consider the asymmetric TSP (called simply TSP in what follows),
i.e., the problem of finding a Hamilton cycle (called a tour) of minimum total weight in a
weighted complete digraph K∗

n. It is easy to adopt notions and results for the asymmetric
TSP neighborhoods to the symmetric case. We will always use n as the number of vertices
in the complete digraph under consideration and c as the weight function.
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We adopt the definition of a neighborhood for the TSP due to Deineko and Woeginger
(2000). Let Π be a set of permutations on n vertices. Then the neighborhood with respect to
Π of a tour T = u1u2 . . . unu1 is defined as follows:

NΠ(T ) = {uπ(1)uπ(2) . . . uπ(n)uπ(1) : π ∈ Π}.
While most TSP neighborhoods are of cardinality 2Θ(n) (Deineko and Woeginger (2000),

Ergun and Orlin (2005), Gutin, Yeo and Zverovitch (2002)), there are neighborhoods of larger
cardinality, 2Θ(n log log n) (Burkard, Deineko and Woeginger (1998)) and even 2Θ(n log n) (Gutin
(1984), Punnen (2001), Sarvanov and Doroshko (1981)). We call neighborhoods of cardinal-
ity 2Θ(n log n) factorial (note that even n! is encompassed by the order bound of 2Θ(n log n)).
The first factorial neighborhood was introduced by Sarvanov and Doroshko (1981) and, in-
dependently, by Gutin (1984). Following Deineko and Woeginger (2000), this neighborhood
is called the Assign Neighborhood; its cardinality is bn/2c!. Punnen (2001) introduced an
extension of the Assign Neighborhood, which we describe in the next section.

A modification of Punnen’s approach led De Franceschi, Fischetti and Toth (2005) to
a highly successful local search heuristic for the distance-constrained capacitated vehicle
routing problem. The heuristic in De Franceschi, Fischetti and Toth (2005) is not the first
local search algorithm that uses exponential cardinality neighborhoods (for other heuristics
see, e.g., Ahuja, Orlin and Sharma (2003), Balas and Simonetti (2001)), but it appears to be
one of the most successful such heuristics. Also, the heuristic in De Franceschi, Fischetti and
Toth (2005) is the first practical heuristic based on a factorial neighborhood.

De Franceschi, Fischetti and Toth (2005) generalize Punnen’s neighborhood to a non-
polynomial time searchable neighborhood using an Integer Linear Programming solver to
find a tour that is not necessarily best in its domain. By contrast, we extend Punnen’s
neighborhood to a polynomial time searchable neighborhood which we call the Cascade Assign
Neighborhood (CAN). When at least one path Pi (see the next section) does not consist of
a single vertex, the CAN strictly contains Punnen’s neighborhood. Our approach is different
from previous ones, see Deineko and Woeginger (2000), Ergun and Orlin (2005), and Gutin,
Yeo and Zverovitch (2002).

It should be noted that, in this paper, we only consider Punnen’s basic neighborhood.
This neighborhood has some relatively straightforward variations (one is described in Punnen
(2001)). The variations can also be extended by the CAN construction allowing us to have
neighborhoods containing their Punnen’s counterparts. While some of the variations may well
be of interest in practical applications (such a variation is used in De Franceschi, Fischetti
and Toth (2005)), their practical value can only be assessed in computational experiments
that are outside the scope of this short paper, which restricts attention to Punnen’s basic
neighborhood and, thus, the basic CAN.

1 Cascade Assign Neighborhood

Let C = x1x2 . . . xkx1 be a cycle in K∗
n. The operation of removal of a vertex xi (1 ≤ i ≤ k)

results in the cycle x1x2 . . . xi−1xi+1 . . . xkx1. Let P = y1y2 . . . yq be a path of K∗
n with no

common vertices with C. The operation of insertion of P into an arc (xj , xj+1) results in the
cycle x1x2 . . . xjy1y2 . . . yqxj+1 . . . xkx1. The cost of the insertion is defined as

c(P, C, j) = c(xj , y1) + c(yq, xi+1)− c(xj , xj+1).

Let W = [wi,j ] be an m × `-matrix of reals with m ≤ `. The assignment problem is the
problem of finding a one-to-one mapping (injection) ρ : {1, 2, . . . ,m}→{1, 2, . . . , `} such that
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∑m
i=1 wi,ρ(i) is minimal. It is well known that the assignment problem can be solved in time

O(`3) (see, e.g., Bang-Jensen and Gutin (2000)).
Now we are ready to describe Punnen’s neighborhood of a tour T = u1u2 . . . unu1. We will

use the operation of removal defined earlier. Choose a subset Z of {u1, u2, . . . , un} and, by
removing the vertices of Z from T one by one (in any order), form a cycle C = v1v2 . . . vkv1.
Partition Z into s(≤ k) sets Z1, Z2, . . . Zs and choose a Hamilton path Pi in the subgraph of
K∗

n induced by Zi for each 1 ≤ i ≤ s. Punnen’s neighborhood of T is formed by tours obtained
by choosing an injection ρ : {1, 2, . . . , s}→{1, 2, . . . , k} and inserting each Pi into the arc
(vρ(i), vρ(i)+1), 1 ≤ i ≤ s. Here vk+1 = v1. Observe that the weight of such a tour equals the
weight of C plus the weight of all P ′

is plus the sum of all insertion costs c(Pi, C, ρ(i)).
Since the weight of C and the weight of each Pi are constants, to compute a mini-

mum weight tour in Punnen’s neighborhood, it suffices to find an injection ρ that minimizes∑s
i=1 c(Pi, C, ρ(i)). Such an injection can be obtained as a solution to the assignment problem

with the s× k matrix with entries c(Pi, C, j), 1 ≤ i ≤ s, 1 ≤ j ≤ k. Thus, a minimum weight
tour in the neighborhood can be found in time O(k3).

Consider an example of Punnen’s neighborhood. Let T = 12345671. Set Z = {1, 2, 4, 5},
then C = 3673. Let P1 = 12 and P2 = 54. Punnen’s neighborhood of T has six tours:
3F6G7H3, where {F, G,H} = {12, 54, ∅}.

De Franceschi, Fischetti and Toth (2005) generalized Punnen’s neighborhood by creating
a large number of intersecting paths from vertices of Z, choosing (optimally or near optimally,
using an Integer Linear Programming solver) from this collection a set of paths whose vertices
partition Z, and optimally inserting the chosen paths into arcs of C. De Franceschi, Fischetti
and Toth (2005) stress that while they avoid fixing, in the beginning, the set of chosen paths,
they were unable to avoid inserting at most one chosen path into an arc of C.

To alleviate this limitation, we allow paths Pi to be inserted into each other. The operation
of insertion of Pi = y1y2 . . . yq into an arc (xt, xt+1) of Pj = x1x2 . . . xk (i 6= j) results in the
path x1x2 . . . xty1y2 . . . yqxt+1 . . . xk. The cost of the insertion is defined as

c(Pi, Pj , t) = c(xt, y1) + c(yq, xt+1)− c(xt, xt+1).

To construct our neighborhood, which we call the cascade assign neighborhood (CAN), of
a tour T = u1u2 . . . unu1 we first construct a cycle C = v1v2 . . . vkv1 and paths P1, P2, . . . , Ps

as above (in what follows we denote P0 = C). Now we do not assume that s ≤ k, instead
we assume that, for each i ≤ s, the total number of arcs in P0, P1, . . . , Pi−1 is at least i. A
tour in the CAN is formed by inserting each Pi into an arc of some Pj (0 ≤ j < i) such that
no two paths are inserted into the same arc. The weight of this tour equals the weight of all
P ′

is plus the sum of the costs of all s insertions. Notice that, unlike the form of all tours in
Punnen’s neighborhood, the form of many tours in the CAN depends on the order of paths
P1, P2, . . . , Ps.

Since the weight of each Pi is a constant, to compute a minimum weight tour in the CAN,
it suffices to find an optimal sequence of the injections. Let a = (wt, wt+1) be an arc of Pj ,
0 ≤ j ≤ s. Then define the cost of insertion of Pi into a to be equal to c(Pi, Pj , t) if i > j
and to ∞, otherwise. Let a1, a2, . . . , aα be a sequence of all arcs of P0, P1, . . . , Ps. Then we
can find an optimal sequence of the injections, by solving the assignment problem with the
s × α matrix with entries mi,q, where mi,q is the cost of insertion of Pi, 1 ≤ i ≤ s, into the
arc aq. Thus, an optimal tour in the CAN can be found in time O(α3) = O(n3).

Consider the example that we have earlier used for Punnen’s neighborhood. Let T =
12345671. Let P0 = 3673, P1 = 12 and P2 = 54. Apart from the six tours of Pun-
nen’s neighborhood of T listed above, the CAN neighborhood of T has three other tours:
3Q673, 36Q73, 367Q3, where Q = 1542.
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2 How Large Can a TSP Neighborhood Be?

Let pi be the number of vertices in Pi, 0 ≤ i ≤ s. Form a vector p = (p0, p1, . . . , ps) and
observe that the CAN has exactly can(p) = p0(p0 + p1− 2) · · · (p0 + p1 + · · ·+ ps− 2s) tours.
Let pi = (p0, p1, . . . , pi−2, pi−1 + pi − 1, 1, pi+1, . . . , ps). Observe that if pi > 1 for some i ≥ 1,
then can(pi) > can(p). Thus, for a fixed s, the CAN of maximum cardinality has the vector
p = (n − s, 1, 1, . . . , 1). This means that the maximum cardinality of the CAN equals the
maximum cardinality of Punnen’s neighborhood, which was computed by Gutin (1999).

It was shown by Gutin (1999) that, for each integer d ≥ 0, by combining a polynomial
number of Punnen’s neighborhoods with vector p = (n− s, 1, 1, . . . , 1) for optimal s, one can
obtain a polynomial time searchable TSP neighborhood of cardinality Θ(bn+1

2 c!e
√

n/2nd−q),
where q = 1/4 for even n and q = 3/4 for odd n. Gutin, Yeo and Zverovitch (2002)
pose the question of whether there exist polynomial time searchable neighborhoods of larger
cardinality. In Section 1, we mentioned a variation of Punnen’s neighborhood described in
Punnen (2001). Unfortunately, this variation, even extended to the CAN, does not lead us
to larger neighborhoods (see Punnen (2001)).

Deineko and Woeginger (2000) conjectured that, for some β > 1/2 there exists a poly-
nomial time searchable neighborhood of cardinality at least bβ(n − 1)c!. Of relevance to
this conjecture, Gutin and Yeo (2003) proved that there is no polynomial time searchable
neighborhood of cardinality at least (n− k)! for each integral constant k unless NP⊆P/poly
(similarly to P=NP, NP⊆P/poly is highly unlikely to hold). The idea that defines P/poly is
that, for each input size n, one is able to compute a polynomial-sized “key for size n inputs.”
It is allowed that the computation of this key may take time exponential in n (or worse).
P/poly means solvable in polynomial time (in input size n) / given the key for inputs of
size n. For formal definitions of P/poly and related nonuniform complexity classes, consult
Balcazar, Diaz and Gabarro (1995).

3 Conclusions

Finally, we observe that the Cascade Assign Neighborhood effectively operates as a collection
of ejection chain moves, in which paths are permitted to replace (eject) arcs, subject to special
limitations. (In the present case, ejections are only transmitted in a single direction along
the hierarchy created by the path indexing.) The effectiveness of ejection chain methods
for the TSP, as demonstrated by the studies of Rego and Glover (2002) and Gamboa, Rego
and Glover (2005), suggest that our current procedure may also be used to advantage in
combination with such ejection chain constructions. Similarly, our procedure can be used
to supplement the appealing vehicle routing approach of De Franceschi, Fischetti and Toth.
These possibilities open up a wide range of future avenues for research.
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