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1 Introduction

The 0-1 multi dimensional knapsack problem (01MKP) is an NP–Hard problem
which arises in several practical problems such as capital budgeting, cargo loading, cut-
ting stock problems, and computing processor allocation in large distributed systems.
The problem can be stated as follows :

01MKP

{
maximize c.x subject to
A.x ≤ b and x ∈ {0, 1}n

where c ∈ IN ∗n, A ∈ IN m×n and b ∈ IN m. The binary components xj of x are decision
variables: xj = 1 if the item j is selected, 0 otherwise. cj is the profit associated with
selecting item j. Aij is the “cost” (in terms of the ith resource) of selecting item j. bi

is the budget available for resource i.

Due to the problems intrinsic difficulty, which leads to intractable computation
time for larger instances, several heuristics have been used to solve it, including sim-
ulated annealing, tabu search, genetic algorithms, and many other population based
algorithms. Large instances (n = 500, m = 30 from OR-Library), for which exact
methods fail to prove the optimum, have thus been tackled successfully, i.e. lower-
bounds with small gap to the fractional optimum value were obtained by these incom-
plete methods.

2 Resolution Method

In a first study we have implemented an algorithm which combines Linear Program-
ming with Tabu Search [5, 6]. Linear Programming makes it possible to define geo-
metric constraint and cutting planes (1.x = k where k is an integer) and to design the
search space and the neighborhood. Instead of the classical 1 −move we have used
a specific 2−move that keeps the search in a specified hyperplane determined by an
equation constraining the sum of variables to a chosen constant. The exploration of
the search space avoid the trap of local optimality by using the TS reverse elimination
method to provide an exact tabu list management, as proposed by Fred Glover [2] and
examined in [3, 4].
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Starting from this point, we have intensified the local search around promising
zones in order to improve the lower-bounds obtained by this first algorithm. To do
so, we have organized the previous algorithm to operate within the context of limited
enumeration. This leads to selecting and fixing variables by using “good” points in
the search space [7].

The following table shows the improvement obtained by our algorithms on the 30
largest instances of the OR-Library. The whole benchmark is available at http:

//people.brunel.ac.uk/~mastjjb/jeb/orlib/mknapinfo.html. The description of
the data, per column is:

• instance Pb.: row number r of the instance. The whole name of the problem is
CBm.n r where m is the number of constraints and n the number of items;

• upper-bound z̄: the optimum value of the integrity relaxed version of the original
01MKP ;

• lower-bound GACB : obtained by Chu and Beasley’s Genetic Algorithm [1];

• lower-bound LP+TS: obtained by the first version of our algorithm [5];

• lower-bound Fix+LP+TS: obtained by the variables fixing heuristic [7].

Table 1: Improving CB30.500 lower-bounds

Pb. z̄ GACB LP+TS Fix+LP+TS

0 116619.0 115868 115991 116056
1 115370.1 114667 114810 114810
2 117342.5 116661 116683 116712
3 115946.4 115237 115301 115329
4 117079.3 116353 116435 116525
5 116377.6 115604 115694 115741
6 114689.7 113952 114003 114181
7 114847.8 114199 114213 114348
8 115902.6 115247 115288 115419
9 117668.8 116947 117055 117116

10 218601.5 217995 218068 218104
11 215074.7 214534 214562 214648
12 216401.1 215854 215903 215978
13 218350.5 217836 217910 217910
14 216094.5 215566 215596 215689
15 216327.4 215762 215842 215890
16 216376.3 215772 215838 215907
17 217014.1 216336 216419 216542
18 217839.2 217290 217305 217340
19 215218.5 214624 214671 214739
20 302038.8 301627 301643 301675
21 300455.0 299985 300055 300055
22 305501.2 304995 305028 305087
23 302456.2 301935 302004 302032
24 304901.4 304404 304411 304462
25 297409.4 296894 296961 297012
26 303765.9 303233 303328 303364
27 307402.5 306944 306999 307007
28 303605.9 303057 303080 303199
29 301020.6 300460 300532 300572

Bold face text highlights the first best values found by one of these three compared
methods.

3 Conclusion

The tabu search metaheuristic provides an alternative to exact methods that can per-
form a similarly rigorous (but more flexible) search space exploration by using an exact
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tabu list management method, as studied in our approach. We have seen also that
such a tabu list management entails a search space design (consisting of neighbor-
hoods, data structures and constraints) that is quite straightforward to implement,
yielding a very effective overall method.

Future advances may be produced by identifying improved ways to distribute the
second proposed algorithm in order to decrease the computational cost and further
improve the lower-bounds. A straightforward way to accomplish this would be to
dedicate each sub space defined by a set of fixed variables [7] to a thread on different
processing units. An additional promising approach consists in tacking into account
the reduced-cost constraint [8] to design a more restricted search space. Particularly
useful will be cooperative distributed tabu search algorithms which update the gap
value each time one of them improves the lower-bound, thereby providing additional
exploitation of the reduced-cost constraints.

References

[1] P.C. Chu and J.E. Beasley. A genetic algorithm for the multidimensional knapsack
problem. Journal of Heuristic, 4:63–86, 1998.

[2] F. Glover. Tabu Search - Part II. ORSA Journal of Computing, 2,1:4–32, 1990.

[3] F. Dammeyer and S. Voß. Dynamic Tabu List Management using the Reverse
Elimination Method. Annals of Operations Research, 41:31–46, 1993.

[4] F. Glover. and M. Laguna. Tabu Search. Kluwer Academic Publishers, 7:239–240,
1997.

[5] M. Vasquez and J.K. Hao. A Hybrid Approach for the 0–1 Multidimensionnal
Knapsack Problem. In proceedings of the 7th International Joint Conference on
Artificial Intelligence (IJCAI-01 ), volume 1, pages 328–333, Seattle, Washington,
USA, August 2001.

[6] M. Vasquez and J.K. Hao. Une approche hybride pour le sac à dos multidimen-
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