Tabu search for Matrix Bandwidth Minimization
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Summary

Let G=(V,E) be a graph with vertex set V (|V|=n) and edge set E (|E|=m).  A labeling or linear layout f of G assigns the integers 1, 2, …, n to the vertices of G.  Let f(v) be the label of vertex v, where each vertex has a different label.  The bandwidth of a vertex v, Bf(v), is the maximum of the differences between f(v) and the labels of its adjacent vertices.  That is:
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where N(v) is the set of vertices adjacent to v.  The bandwidth of a graph G with respect to a labeling f is then:
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The bandwidth B(G) of graph G is thus the minimum Bf(G) value over all possible labelings f.  The main application of this problem is to solve non-singular systems of linear algebraic equations.  The preprocessing of the coefficient matrix to reduce its bandwidth results in substantial savings in the computational effort associated with solving the system of equations.  The context of these applications includes aircraft structures, liquid nitrogen gas tanks, propel blades and submarines.  The MBMP is known to be NP-hard (Papadimitriou 1976).

We first describe the three moves in which our TS algorithm for the MBMP is based on. 
Move 1: exchanges. The operator move1(u,v) assigns the label f(u) to vertex v and the label f(v) to vertex u.

Move 2: double exchanges. The operator move2(u,v,w) first performs move1(u,v) and then performs move1(v,w).  Thus, if u, v and w initially have labels f(u), f(v) and f(w) respectively, after performing move1(u,v) the labels are f(v), f(u) and f(w) for u, v and w respectively.  Then when we apply move1(v,w), the labels are f(v), f(w) and f(u) for u, v and w respectively.

Move 3: multiple shifts. The operator move3(u,v) assigns the label f(v) to vertex u.  For the other assignments in this move we distinguish two cases.  If f(u) < f(v), let u1, u2, …, uk, uk+1=v be the intermediate vertices with consecutive labels f(u)+1, f(u)+2, … f(u)+k, f(u)+k+1 respectively, then this move assigns label f(u) to u1, f(u)+1 to u2, …. f(u) + k-1 to uk, and f(u)+k to v.  Alternatively, if f(u) > f(v), let u1, u2, …, uk, uk+1=v be the vertices with labels f(u)-1, f(u)-2, … f(u)-k, f(u)-k-1 respectively, then this move assigns label f(u) to u1, f(u)-1 to u2, …. f(u) - k+1 to uk, and f(u)-k to v.

Since our focus is to change the labels in order to reduce the current value of Bf(G), we consider the set of critical vertices, where a vertex v is critical if Bf(v)=Bf(G).  Note that it is necessary to reduce the value Bf(v) for all the critical vertices in order to improve the bandwidth of the graph G.  Moreover, we define a near-critical vertex v as one for which Bf(v)( ( Bf(G) with 0<( <1.  Near-critical vertices do not determine the value of the objective function Bf(G) in the current labeling, but they are considered likely to do so in subsequent iterations. We then construct the candidate list C(f) of critical and near-critical vertices at each iteration.  The neighborhood of a solution is defined from the set C(f), their best labels and the moves introduced above.   
In the short-term memory design, we have considered a memory structure that implements a different tenure value for vertex v from the other vertices involved in the move.  In such a design, regarding neighborhood 1 (when move1(v,u) is performed) it is clear that the role of v and u are different in the move, because v is a critical or near critical vertex and u is a vertex that simply happens to have a label that makes the move attractive.  The same situation appears in neighborhood 2 when move2(v,u,w) is performed.  On the other hand, since move3(v,u) could modify the labels of a large number of vertices (u, u1, u2, …, uk, v), we only set the tabu status for the "extreme vertices" v, u to avoid an excessive reduction in the search space.  We define c-tenure as the tabu tenure of the critical or near critical vertex v and nc-tenure as the tabu tenure of the non-critical vertices in the move.  We have also implemented an aspiration criteria that permits changing the label of a tabu vertex u if its current label f(u) is the best label for a vertex v in C(f), i.e. mid(v)=f(u), and the associated move has a positive value.

This short term memory is complemented with a long term memory based on a re-starting strategy. Specifically, the new solution is generated using a level structure initiated in a vertex which has been randomly selected according to the frequencies collected during the application of the short term memory phase. 
.  In this paper we study the adaptation of tabu search (TS) and Scatter ssearch (SS) to solve the matrix bandwidth minimization problem. TS and SS have a common history as their basic principles were suggested by Glover (1977).  They are probably the metaheuristic procedures that employ memory in the most strategic and direct way, constituting the core of what has been coined as Adaptive Memory Programming in recent years.
TS (Glover and Laguna, 1997) incorporates adaptive memory which allows the implementation of procedures that are capable of searching the solution space in an efficient way.  The memory used in tabu search is both explicit and attributive.  Explicit memory records complete solutions, typically consisting of elite solutions visited during the search, while attributive memory is mainly used for guiding purposes.  This latter type of memory records information about solution attributes that change in moving from one solution to another.  Short and long-term memory structures are responsible for the specific composition of the solution neighborhood.  In other words, the neighborhood in a given iteration is the result of maintaining a selective history of the states encountered during the search.  In this sense TS can be viewed as a dynamic neighborhood method.

SS (Laguna and Martí, 2003) maintains a set of solutions throughout the search (the Reference Set) and combines these solutions to generate new ones.  GA operate on a population of solutions and the “survivable of the fittest” philosophy translates into an implicit use of memory.  In SS however, from one iteration to the next, the method keeps track of the subsets of reference solutions that have already been combined.  When new solutions enter the reference set, the method generates only those subsets that are admissible for combination in the current iteration, using a memory structure that allows it to identify the subsets that contain new reference solutions.  There is no equivalent use of memory in genetic algorithms, since they select solutions for combination purposes using a random scheme. 
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