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Abstract — The bandwidth of a matrix { }ijaA =  is defined as the maximum absolute 

difference between i and j for which 0≠ija .  The problem of reducing the bandwidth of 
a matrix consists of finding a permutation of the rows and columns that keeps the 
nonzero elements in a band that is as close as possible to the main diagonal of the 
matrix.  This NP-complete problem can also be formulated as a labeling of vertices on a 
graph, where edges are the nonzero elements of the corresponding symmetrical matrix.  
Many bandwidth reduction algorithms have been developed since the 1960s and 
applied to structural engineering, fluid dynamics and network analysis.  For the most 
part, these procedures do not incorporate metaheuristic elements, which is one of the 
main goals of our current development.  Another equally important goal is to design and 
test a special type of candidate list strategy and a move mechanism to be embedded in a 
tabu search procedure for the bandwidth reduction problem.  This candidate list 
strategy accelerates the selection of a move in the neighborhood of the current solution 
in any given iteration.  Our extensive experimentation shows that the proposed 
procedure outperforms the best-known algorithms in terms of solution quality 
consuming a reasonable computational effort. 
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1.  Introduction 

Let ( )EVG ,  be a graph with vertex set V and edge set E.  Assume nV = .  A labeling f of 
G assigns the integers { 1, 2, …, n } to the vertices of G.  Let ( )vf  be the label of vertex v, 
where each vertex has a different label.  The bandwidth of a vertex v, ( )vB f , is the 

maximum of the differences between ( )vf  and the labels of its adjacent vertices.  That 
is: 
 

( ) ( ) ( ) ( ){ }vNuufvfvB f ∈−= :max  
 
where ( )vN  is the set of vertices adjacent to v.  The bandwidth of a graph G with respect 
to a labeling f is then: 
 

( ) ( ){ }VvvBGB ff ∈= :max  
 
Then, the bandwidth of a graph is ( )GB , the minimum ( )GB f  value over all possible 
labelings f.  The bandwidth reduction problem consists of finding a labeling f that 
minimizes ( )GBf .  Note that a labeling is simply a renumbering of the vertices. 
 
If we let { }ijaA =  be the incidence matrix of a graph V (i.e., 0≠ija  if { } Eji ∈, , then the 
bandwidth reduction problem consists of finding a permutation of the rows and the 
columns that keeps all the non-zero elements of A in a band that is as close as possible 
to the main diagonal.  Note that for non-symmetrical matrices, there exist and edge in 

( )EVG ,  as long as either 0≠ija  or 0≠jia .  This interpretation of the problem arises in 
applications to solve nonsingular systems of linear algebraic equations of the form 
Ax = b.  The preprocessing of A to reduce its bandwidth results in substantial savings 
on the computational effort associated with solving the system of equations.  Other 
applications include problems in finite element methods for approximating solutions of 
partial differential equations, large-scale power transmissions systems, circuit design, 
hypertext layout, chemical kinetics and numerical geophysics. 
 
We do not begin with a detailed review of the numerous algorithms that have been 
developed for the bandwidth reduction problem, because such procedures are well 
documented in the literature (see e.g., Dueck and Jeffs, 1995; Gibbs, Poole and 
Stockmeyer, 1976a-b; Luo, 1992) and our goal is to compare our tabu search 
implementation with the best available solution methods.  In the next section, we briefly 
discuss the two algorithms that we will use for comparison purposes.  We then provide 
details of our implementation, followed by our extensive computational experimentation 
with symmetrical matrices.  Finally, we outline our conclusions and directions for 
future research. 

2. Relevant Existing Procedures 

Gibbs, Poole and Stockmeyer (1976a) developed a heuristic for the bandwidth reduction 
problem, referred to as GPS.  Their computational testing was performed on 19 cases 
with the order of the symmetrical matrices ranging from 68 to 918.  These matrices 
were taken from the solution of various differential equations and variational problems 
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in structural engineering applications of the finite element method.  The context of 
these applications included aircraft structures, liquid nitrogen gas tanks, propel blades 
and submarines.  Their comparisons were made against the reverse Cuthill-McKee 
algorithm (Cuthill and McKee, 1969).  The experiments show that on average GPS gives 
a bandwidth that is slightly smaller than that of the reverse Cuthill-McKee procedure, 
although in only 9 out of the 19 cases GPS is actually better than Cuthill-McKee.  It is 
reasonable to conclude that these two methods yield similar results in terms of solution 
quality.  However, GPS is considerably faster, averaging speed that is about 8 times 
faster than the reverse Cuthill-McKee procedure. 
 
GPS is a procedure that operates on a level structure L.  A level structure is a partition 
of V into sets L1, L2, …, Lk, called levels, with the following characteristics: 
 

•  Vertices adjacent to a vertex in level L1 are in either L1 or L2 
•  Vertices adjacent to a vertex in Lk are in either Lk or Lk-1 
•  Vertices adjacent to a vertex in Li (for 1 < i < k) are in either Li-1, Li or Li+1 

 
The procedure consists of the following three phases: 
 

1. Finding endpoints of a pseudo-diameter: This procedure attempts to find a 
pair of vertices that are at nearly maximal distance apart.  (Note that the 
diameter of G is the shortest path connecting two vertices of maximal 
distance apart.)  The resulting endpoints tend to generate level structures of 
small width and therefore maximal depth. 

 
2. Minimizing level width: In phase 1, the algorithm constructs level structures 

rooted at both endpoints.  Phase 2 combines these two level structures into a 
new structure whose width is usually less than that of either of the original 
ones. 

 
3. Numbering: The numbering procedure assigns, level-by-level, consecutive 

positive integers to the vertices V of G.  The numbering starts at the endpoint 
with lesser degree.  The procedure uses forward numbering but the 
numbering is reversed under special circumstances. 

 
The reported times for running this procedure range from 0.6 to 19.32 seconds on an 
IBM 360 model 50.  This compares favorably to the times ranging from 3.08 to 183.68 
seconds reported for the reverse Cuthill-McKee method. 
 
Regarding metaheuristic methods for the bandwidth reduction problem, Dueck and 
Jeffs (1996) describe an implementation of simulated annealing.  The search starts from 
a labeling f generated at random.  The search then moves from one labeling to another 
by exchanging the labels of two vertices.  That is, this SA implementation is based on 
swapping a pair of labels or also known as swap moves.  In any given iteration, a move 
is generated by randomly choosing two vertices to exchange labels and the move value 
is calculated.  Let f be the current labeling and f ′  the labeling after applying a swap 
move.  Then Dueck and Jeffs define the move value as: 
 

( ) ( )GBGBvaluemove ff −= ′_  
 
If move_value is less then or equal to zero then the move is accepted and immediately 
executed.  If the move_value is strictly positive (raising the bandwidth of the current 
labeling) then the move is accepted with a probability that depends on the current 
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temperature and is calculated with the negative exponential function used in standard 
simulated annealing implementations.  There are 5 parameters in Dueck and Leffs’ 
implementation: initial temperature (temp = 1.0), cooling rate (cool_rate = 0.95), 
maximum number of accepted moves at each temperature (max_moves = 4*|E|), 
maximum number of attempted moves at each temperature 
(max_attempted_moves = 80*max_moves), and the maximum number of consecutive 
iterations in which the procedure accepts less than max_moves 
moves(max_frozen = 50).  The authors justify their choice for the parameter values 
shown above based on general simulated annealing guidelines, their own experiences 
and experimental tuning in the current context. 
 
Dueck and Jeffs tested their SA implementation on 18 graphs with number of edges 
ranging from 13 to 255.  This set includes 8 different types of graphs.  The 
experimentation shows that this SA implementation is inferior to GPS on “grid”, “path”, 
circle”, “windmill” and “st” graphs.  However, SA outperforms GPS in terms of solution 
quality on ternary trees, binary trees and random graphs.  It is important to point out 
that even though SA finds better labelings than GPS in 11 out of 18 graphs, it does so 
by employing up to 2000 times longer.  The authors argue that although the 
computational effort of their implementation limits its applicability, it can be used as a 
tool to evaluate the performance of other procedures.  It is precisely in this way in 
which we make use of their solution method. 

3. Tabu Search Implementation 

One of the main characteristics of the bandwidth reduction problem is that there may 
be many labelings f with the same ( )GBf  value.  This means that for a given ( )GBf  

value there may be multiple critical vertices v for which ( ) ( )GBvB ff = .  Consequently, 

changing a labeling in order to reduce the ( )vB f  value of a critical vertex does not imply 

that the ( )GBf  value will also decrease.  We take into consideration this important 
feature of the problem to develop mechanisms (including an unconventional definition 
of the move value) that are effective in searching for good labelings. 
 
As in the case of the SA implementation described above, we define a move as the swap 
of labels of a pair of vertices.  That is, the operator ( )uvmove ,  assigns the label ( )uf  to 
vertex v and the label ( )vf  to vertex u.  Since our focus is to change the labels in order 
to reduce the current value of ( )GBf , we construct a candidate list of moves based on a 

set ( )fC  of critical and near-critical vertices.  A near-critical vertex v is one for which 
( ) ( )GBvB ff *α≥  and 1 > α > 0.  Near-critical vertices do not determine the value of the 

objective function ( )GBf  in the current labeling, but they are considered likely to do so 
in subsequent iterations.  In other words, if a move is able to eliminate a critical vertex, 
it is likely that a near-critical vertex will become critical in subsequent iterations.  The 
set that consists of both critical and near-critical vertices can be defined as: 
 

( ) ( ) ( ){ }GBvBvfC ff *: α≥= . 
 
When this set is constructed, the updated value of ( )GBf  is used.  This value, however, 
is not updated after the execution of a move during the examination of the vertices in 

( )fC , because the updating is a computationally expensive calculation.  In particular, 
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the calculation of ( )GBf  requires the examination of all the vertices in the graph.  The 
notion of not updating key values (e.g., move values) after every iteration is based on 
the elite candidate list suggested in Glover and Laguna (1997).  The design considers 
that it is not absolutely necessary to update the value of the moves in a candidate list 
after an iteration is completed (i.e., the selected move is executed) because most of 
these move values either remain the same or their relative merit remains almost 
unchanged.  The application of this strategy is particularly useful when the updating of 
the move values is computationally expensive, as in our context. 
 
In order to construct a candidate list of moves based on the vertices in ( )fC , we must 
find a set of suitable swapping vertices for each vertex in ( )fC .  We define the following 
two quantities for a vertex v and a labeling f: 
 
 ( ) ( ) ( ){ }vNuufvmax ∈= :max  
 ( ) ( ) ( ){ }vNuufvmin ∈= :min  
 
Since the best label for v in the current labeling f is: 
 

( ) 






 +
=

2
)min()max( vvvmid  

 
then the set of suitable swapping vertices for v is defined as: 
 

( ) ( ) ( ) ( ) ( ){ }vfvmidufvmiduvN −<−=′ : , 
 
which considers all vertices u with labels ( )uf  that are “closer” to ( )vmid  than ( )vf .  If 

( ) ∅=′ vN , then ( )vB f  cannot be reduced by simply changing the current label of v.  

The candidate list of moves associated with a vertex v ∈  C(f) is given by: 
 

( ) ( ) ( ){ }vNuuvmovevCL ′∈= :, . 
 
For all u in ( )vCL , ( )vB f  will decrease after performing ( )uvmove , ; but we must also 

consider the change in the bandwidth value of the vertices adjacent to u (i.e., ( )vN  and 
( )uN ). 

 
Let ( )uf ′  be the new label for vertex u (i.e., ( ) ( )vfuf =′ ), then if ( ) ( )uBuB ff >′  the 
bandwidth of vertex u has increased.  Instead of rejecting the move, we check if the 
increase is marginal with respect to the bandwidth of the graph.  We only consider that 
the bandwidth of vertex u has experienced more than just a marginal increase when 
 

)()(' GBuB ff β>  
 
If this expression is true we set ( )uvmovevalue ,  to 1; otherwise we set it to 0. 
 
Note that when the label for vertex v changes, one or more of the ( )wB f  values for 

( )vNw ∈  could change.  However, the bandwidth of the adjacent vertices will remain the 
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same as long as the new label for vertex v, ( )vf ′ , is within the range ( ) ( )[ ]ww maxmin ,  for 
all ( )vNw ∈ .  Hence, when ( ) ( ) ( )wvfw maxmin ≤′≤ , it is possible to reduce the bandwidth 
of v without increasing the bandwidth of its adjacent vertices.  In practice, this criterion 
can be relaxed.  For example, consider the case when ( ) ( )wvf max>′ .  ( )wB f  increases 

only if ( ) ( ) ( ) ( )wwfwfvf min−>−′ .  Similarly, if ( ) ( )wminvf <′ , then ( )wB f  increases 

only if ( ) ( ) ( ) ( )wfwvfwf −>′− max . 
 
Enforcing a criterion that forbids moves, associated with critical vertices, when either of 
aforementioned conditions is violated makes the search unnecessarily inflexible.  Note 
that if the bandwidth of a vertex w that is adjacent to a vertex ( )fCv ∈  increases 
marginally with respect to the bandwidth of the graph, then we can consider that the 
move does not affect the bandwidth of w.  In fact, we only consider that the bandwidth 
of vertex w increases when 
 

( ) ( ) ( )wBwfvf f>−′ | and ( ) ( ) ( )GBwfvf f*β>−′ . 
 
For each vertex w in ( )vN  that satisfies this expression ( )uvmovevalue ,  increases by 
one unit.  This criterion is applied to both vertices involved in a swap.  That is, if the 

( )uvmove ,  is being considered, then the criterion is applied to determine the change in 
the bandwidth of the vertices adjacent to v and those adjacent to u.  Note that in such 
exchange ( ) ( )ufvf =′  and ( ) ( )vfuf =′ . 
 
These concepts are best understood if we illustrate them with an example.  Consider 
the partial graph in Figure 1.  The graph consists of 7 vertices with the current labeling 
given by the numbers shown next to each vertex.  Consider the following values 
associated with vertices u, v and w: 
 
 ( ) 11=uf  ( ) 9=vf  ( ) 8=wf  
 ( ) 6=uB f  ( ) 7=vB f  ( ) 1=wB f  

 ( ) 9=umin  ( ) 2=vmin  ( ) 7=wmin  
 ( ) 17=umax  ( ) 11=vmax  ( ) 9=wmax  
  ( ) 6=vmid  
 

 

Figure 1.  Labeled partial graph. 
 

u v w

17 11 9 8 7

2

10

u v w

17 11 9 8 7

2

10
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Suppose that it is possible to swap the current level for v from 9 to 6, where the value of 
6 corresponds to the current label of a vertex that is not shown in Figure 1 (referred to 
as vertex z).  According to our previous notation, we have that while ( ) 9=vf , ( ) 6=′ vf .  
This means that although ( ) ( )uminvf <′ , ( )uB f  does not change because 

( ) ( ) ( ) ( )ufumaxvfuf −<′− , that is 11-6 < 17-11 or 5 < 6.  On the other hand, ( )wB f  
increases as a result of executing the move.  The increase, however, is of one unit since 
the new bandwidth value for w is ( ) ( ) 2=−′ wfvf , which cannot cause an increase in 

( )GB f  because ( )vB f  is now 5 and this value represents a lower bound for ( )GB f .  This 
partial analysis (which disregards the effect in the swapping vertex z) shows that the 
move is favorable.  The bandwidth associated with vertex v is reduced from 7 to 5, while 
the bandwidth for vertex u remains the same and the bandwidth for vertex w increases 
from 1 to 2.   
 
One of the key elements in heuristic search is the definition of the value of a move.  The 
most common practice is to define the move value as the change in the objective 
function value, which is the way it was defined in the simulated annealing 
implementation described in the previous section.  Nevertheless, in the context of the 
bandwidth reduction problem, the change in the objective function value provides little 
or no information during the search whenever the current labeling has more than one 
critical vertex.  Additionally, the calculation of ( )GB f  is computationally expensive.  As 

a result, we have defined the value of a ( )uvmove ,  as the number of vertices adjacent to 
v or u whose bandwidth increases due to the move.  (Recall that the bandwidth increase 
for adjacent vertices is controlled by the parameter β as specified above.)  The following 
pseudo-code summarizes the move mechanism embedded in our procedure: 
 
Move Evaluation Pseudo-code  
 
Initialization 

1. Let f be the current labeling; 
2. Select v from ( )fC ; 
3. Select u from ( )vN ′ ; 
4. Let f ′  be the labeling after the ( )uvmove , ; 
5. ( ) 0, =uvmovevalue  

Evaluate ( )uvmove ,  
6. If ( ( ) ( )uBuB ff >′ and )()(' GBuB ff β>  ) 

( ) ( ) 1,, += uvmovevalueuvmovevalue ; 
7. For All w in ( )vN  

If ( ( ) ( ) ( )wBwfvf f>−′  and ( ) ( ) ( )GBwfvf fβ>−′  ) 

( ) ( ) 1,, += uvmovevalueuvmovevalue ; 
8. For All w in N(u) 

If ( ( ) ( ) ( )wBwfuf f>−′  and ( ) ( ) ( )GBwfuf fβ>−′  ) 

( ) ( ) 1,, += uvmovevalueuvmovevalue ; 
Return ( )uvmovevalue ,  
 
Our basic tabu search implementation consists of a short-term memory design in which 
the identity of a vertex whose label has been changed is the attribute used to impose a 
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tabu restriction.  Specifically, after a ( )uvmove ,  is executed, the labels of vertices v and 
u are not allowed to change until the tabu tenure expires.  We employ a one-
dimensional array ( )vtabu , initially set to zero, to store the iteration number when 
vertex v looses is tabu status.  That is, if vertex v changes labels at iteration iter, then 

( ) tenureitervtabu += , where tenure is the number of iterations that vertex v is not 
allowed to change labels.  Then, ( )uvmove ,  is tabu if: 
 

( ) itervtabu >  or ( ) iterutabu >  
 
Note that although we use the same tenure value for both vertices, an interesting 
variant is to use a different tenure value for vertex v than for vertex u.  In such design, 
the tenure value for vertex v should be larger than the tenure value for vertex u, because 
v is a critical or near-critical vertex and u is a vertex that simply happens to have a 
label that makes the move attractive.  In our experiments, however, we determined that 
the effect of using different tenure values does not justify the increase in complexity 
related to calibrating an additional search parameter. 
 

 
Figure 2 shows a pseudo-code of our implementation.  The basic implementation starts 
from a random initial labeling or from a labeling constructed using the restarting 
mechanism explained below, which is based on longer-term diversification.  In step 2, 
we initialize the counter of iterations without improvement (iterwi).  The procedure runs 
until maxiter iterations without improvement.  Step 3 builds ( )fC *  which consists of 
the near-critical vertices whose tabu status is inactive.  The inner while-loop (steps 5-9) 
searches for and executes moves until the updated list of critical or near-critical vertices 
is empty.  In step 6, the best vertex u to swap labels with vertex v is found as follows.  

Figure 2.  TS pseudo-code. 
 
1. Build initial labeling f and update best 
2. iterwi = 0 and iter = 0 
while ( iterwi < maxiter ) { 
 3. iter = iter + 1 
 4. Build ( ) ( ) ( ){ }itervtabuvfCfC >−= :*  

 while ( ( ) ∅≠fC *  ) { 

  5. Select the first vertex v from ( )fC *  
  6. Select the best vertex u from ( ) ( ){ }iterutabuuvN >−′ :  
  7. Execute ( )uvmove ,  
  8. ( ) ( ) tenureiterutabuvtabu +==  

  9. ( ) ( ) { }vfCfC −= **  
 } 
 10. Evaluate ( )GB f  

 if ( ( )GB f  improves the best ) { 
  Update best 
  iterwi = 0 
 } else iterwi = iterwi + 1 
} 
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Since the best label for v is ( )vmid , then the search for the best swapping vertex 
attempts to find a vertex u in ( )vN ′  whose tabu status is inactive.  The search order is 

( )vmid , ( ) 1+vmid , ( ) 1−vmid , ( ) 2+vmid , …, ( ) ( )vfvmid − , as long as the range of labels 
stay within the allowed range from 1 to n.  The search uses a first-improving strategy 
that selects and executes the first non-tabu ( )uvmove ,  with a move value of zero.  If a 
move with a value of zero is not found, then the one with the minimum value is 
selected. 
 
The basic procedure shown in Figure 2 does not incorporate sophisticated elements of 
the tabu search framework, as elaborated in Glover and Laguna (1997).  This basic 
procedure is meant to yield reasonably good solutions at a competitive speed.  In order 
to improve solution quality, we added a longer-term search strategy to the basic 
implementation, which also bears in the determination of an appropriate value for 
maxiter. 

3.1 Longer-term Diversification 

The goal of incorporating a longer-term diversification strategy to our basic tabu search 
implementation is to find labelings of higher quality even if this means investing 
additional computational effort.  Diversification is the notion of expanding the search to 
unexplored regions in the solution space.  This expansion consists of visiting solutions 
that have not been previously examined.  Diversification strategies are generally based 
on either encouraging the incorporation of new elements or discouraging often 
examined elements.  In particular, we use a frequency count ( )( )vfvfreq ,  to record the 
number of times vertex v is labeled with label ( )vf . 
 
We use this frequency count to re-start the search with a new labeling f.  The new 
labeling is built considering that the best label for vertex v should be “close” to the 
average label of the vertices in ( )vN .  Since we want to diversify, we select the label ( )vf  
in such a way that the frequency value ( )( )vfvfreq ,  is small relative to alternative 
labels.  With this in mind, we implemented a function that given a vertex v and a label 

( )vf  it returns the label ( )( )vfvleastfreq , , in the interval ( ) ( )[ ]5,5 +− vfvf , that has been 
assigned to v the least number of times during the search. 
 
The construction procedure based on frequency information starts with the random 
selection of a vertex v among those of minimal degree.  We then assign the label 

( )rvleastfreq ,  to v, where r is a random integer number between 1 and n.  At each 
construction step after the first, the set of candidate vertices consists of those unlabeled 
vertices that are adjacent to vertices that have been already labeled.  A vertex v in the 
set of candidates is randomly selected.  This random selection was experimentally 
shown to outperform other pseudo-random criteria such as one based on the degree of 
the vertices in the candidate set.  The selected vertex v is assigned the label 

( )rvleastfreq , , where r is the average label of the vertices in ( )vN  that have already been 
labeled. 
 
This restarting procedure is used to experiment with two versions of our 
implementation.  The first version is a simple run of the basic TS implementation of 
Figure 2.  In the second version, we execute the basic TS procedure maxstart times 
using the diversification strategy discussed in this section. 
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4. Computational Experiments 

For our computational testing, we implemented, in C, the GPS procedure of Gibbs, 
Poole and Stockmeyer (1976a), the simulated annealing (SA) of Dueck and Jeffs (1995) 
and our two variants of the TS procedure: 1) TS(maxiter), the basic TS implementation 
with a stopping criterion of maxiter iterations and 2) TS(maxiter,maxstart), the TS 
implementation with the diversification mechanism for restarting maxiter times.  The 
codes were compiled with Microsoft Visual C++ 5.0, optimizing for maximum speed.  
The experiments with 126 instances were run on a Pentium II at 350 MHz.  We 
performed three sets of experiments with the following goals: 
 

1. A preliminary experimentation with 10 instances to find the best values for 
the key search parameters α, β and tenure. 

 
2. An experiment with the entire set of 126 instances to compare the 

performance of GPS, SA, TS(maxiter) and TS(maxiter,maxstart). 
 

3. An experiment to find the best-known solutions to all the instances by using 
GPS to generate the initial solution for a TS(maxiter,maxstart) run. 

 
4. An experiment to compare the performance of TS(maxiter,maxstart) when 

maxiter  is much larger than maxstart and when maxiter  is much smaller 
than maxstart. 

 
The preliminary experimentation was performed on 10 representative problem instances 
with the goal of finding appropriate values for the three key search parameters.  We 
tested values for α and β in the range [0.2, 0.8], and for tenure in the range [3, 15].  The 
results of this test are shown in Table 1.   
 

Table 1.  Preliminary experimentation. 

α β tenure ( )GB f  CPU seconds 
0.5 0.5 5  43.89 15.02  
0.8 0.8 5  46.00 5.93  
0.8 0.2 5  75.44 2.33  
0.2 0.2 5  71.89 22.69  
0.2 0.8 5  35.00 7.79  
0.8 0.8 10  49.00 4.38  
0.8 0.8 15  82.22 4.10  
0.2 0.8 3  35.67 7.24  
0.2 0.8 7  37.00 7.15  

 
For each combination of parameter values, Table 1 shows the average bandwidth and 
the average CPU seconds over 10 problem instances.  These results show that the best 
average bandwidth value at a competitive speed is obtained when α = 0.2, β = 0.8 and 
tenure = 5.  Hence, we use these values to perform the rest of our experimentation. 
 
We observe that our preliminary tests were not extensive, and a more through study 
may determine better values for the key parameters, perhaps as a function of problem 
statistics or structure.  Alternatively, a dynamic determination of the parameters by a 
search that overlaps the execution of the solution method is also possible (Adenso- Díaz 
and Laguna, 2000). 
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In our second set of experiments, we use 126 problem instances to compare the 
performance of our proposed procedure with the best heuristic reported in the literature 
(GPS) and a metaheuristic based on simulated annealing (SA).  Instead of limiting our 
experimentation to less than 20 problem instances (as done in the articles referenced in 
section 2), we have compiled 126 instances from the Harwell-Boeing Sparse Matrix 
Collection (http://math.nist.gov/MatrixMarket/data/Harwell-Boeing).  This collection 
consists of a set of standard test matrices arising from problems in linear systems, least 
squares, and eigenvalue calculations from a wide variety of scientific and engineering 
disciplines. The problems range from small matrices, used as counter-examples to 
hypotheses in sparse matrix research, to large test cases arising in applications.  Iain 
Duff, Roger Grimes, and John Lewis (1992) originally developed this collection.  Table 2 
shows, for each method, the average bandwidth over the instances in each set along 
with the average CPU seconds.  This table also shows the average deviation from the 
best-known solutions.  The best-known solutions are the best solutions found by 
applying all the procedures to the same problem instance. 
 
Note that there are two versions of simulated annealing (SA and SA2) in Table 2.  The 
version denoted with SA is the one originally proposed by Dieck and Jeffs (1995).  This 
version employs a set of parameter values that result in a cooling profile that is so slow 
that for large instances the method does not finish.  SA2 uses a set of parameter values 
that speeds the cooling and allows the search to finish before the cutoff time of 30 
minutes.  (Note that for the large instances, SA reaches the cutoff limit every time.)  
Regardless of the parameter settings, SA yields inferior solutions compared to TS.  The 
basic implementation of TS is superior to GPS in terms of solution quality and 
competitive in terms of speed in the small instances.  In the large instances, TS cannot 
compete in terms of time with GPS.  The TS version with restarting is robust in terms of 
solution quality, with an average deviation from the best-known solutions of 5% for the 
longer runs.  These experiments show that GPS is capable of generating good solutions 
at a speed that is hard to match by a metaheuristic.  Nonetheless, tabu search keeps 
finding high-quality solutions when the search is allowed to go beyond a few 
(approximately 5) CPU seconds.  It should also be mentioned that GPS performs best on 
instances with structured graphs.  That is, the more structure in the graph the better 
the performance of GPS.  For example, GPS would perform very well on a hierarchical 
graph, in which the vertices are organized in layers and all the edges are defined in 
consecutive layers. While GPS is designed to exploit the underlying structure of a graph, 
our TS implementation does not take advantage of the particular characteristics of a 
graph. 
 
Table 2.  Performance comparison according to problem size. 

37 instances with n = 30, …, 199 
 GPS SA SA2 TS(100) TS(200) TS(100,10) TS(200,20)

Bf(G) 37.73 36.59 57.54 30.49 30.35 27.68 27.57 
Deviation 33% 37% 220% 19% 19% 6% 5% 
CPU sec. 0.02 1434.97 22.27 0.98 1.69 24.82 74.32 

89 instances with n = 200, …, 1000 
 GPS SA SA2 TS(100) TS(200) TS(100,10) TS(200,20)
Bf(G) 161.07 439.45 384.98 111.04 109.64 101.79 100.31 
Deviation 43% 942% 866% 32% 30% 8% 5% 
CPU sec. 0.71 1800.00 581.53 32.76 54.89 711.42 3151.3 
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Since GPS obtains good solutions fast, a viable strategy for finding solutions of the 
highest quality is to first run GPS and then use the resulting solution as the starting 
point for tabu search.  We use this strategy and report our findings in Table 3.  In this 
experiment, we are concerned only with the quality of the resulting solutions and not 
with the time to find them, which is determined by the values of maxiter and maxstart 
because GPS generates the initial solutions almost instantaneously.  Table 3 shows the 
average bandwidth found with GPS, TS and the GPS-TS combination along with the 
relative deviation of their corresponding solutions.  The results in Table 3 do not 
categorically determine a winning strategy for finding the best solution to a given 
problem instance.  For instances with less than 200 vertices, the GPS-TS combination 
yields a larger average bandwidth than the TS procedure that starts from a random 
labeling.  For the larger instances, the GPS-TS yields the best solutions in terms of both 
the average bandwidth and the average deviation from the best solutions found.   
 
This experiment indicates that while GPS provides good starting points for TS, the effect 
of starting from a good solution is diluted by the restarting mechanism implemented in 
TS.  We also attempted to run TS(maxiter) with larger values of maxiter in combination 
with GPS and were not able to improve upon the solutions found when the restarting 
procedure is used. 
 

Table 3.  Results of using GPS to generate a starting solution for TS. 

37 instances with n = 30, …, 199 
 GPS TS(100,10) GPS-TS 

Bf(G) 37.73 27.68 57.54 
Deviation 31.05% 4.61% 1.34% 
CPU sec. 0.02 24.82 22.27 

89 instances with n = 200, …, 1000 
 GPS TS(100,10) GPS-TS 
Bf(G) 161.07 101.79 100.5 
Deviation 42.25% 6.95% 0.70% 
CPU sec. 0.71 711.42 721.02 

 
In our last experiment, we focus on our TS(maxiter,maxstart) implementation.  Our 
research question centers on whether it is better to search more from a given point or to 
search less from multiple starting points.  To answer this, we compare the results 
obtained from running TS(100,10) with those obtained from running TS(10,100).  The 
results of these experiments are summarized in Table 4. 
 

Table 4.  Comparing TS(100,10) with TS(10,100). 

37 instances with n = 30, …, 199 
 GPS TS(100,10) TS(10,100) 

Bf(G) 37.73 27.68 28.30 
Deviation 31.05% 4.61% 4.73% 
CPU sec. 0.02 24.82 27.05 

89 instances with n = 200, …, 1000 
 GPS TS(100,10) TS(10,100) 
Bf(G) 161.07 101.79 104.34 
Deviation 40.54% 5.62% 7.67% 
CPU sec. 0.71 711.42 1152.38 
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The results strongly suggest that our TS implementation is capable of finding better 
solutions when allowed to run longer from a few starting points instead of using the 
alternative strategy.  While TS(10,100) competes with TS(100,10) in the 37 instances 
with less than 200 vertices, TS(100,10) is clearly superior in the larger instances. 

5. Conclusions 

In this paper, we report our research on the use of a candidate list strategy that allows 
us to cope with a computationally expensive objective function evaluation within a tabu 
search procedure.  Our procedure selects moves from a candidate list of moves whose 
move values are not updated after every iteration.  The list follows the TS principle that 
the values of a set of elite moves do not drastically change from one iteration to the next 
and therefore it is not necessary to update them after the execution of every move.  In 
addition to the application of this candidate list strategy, our procedure employs an 
unconventional definition of move value, which is not based on the change of the 
objective function value to direct the search.  In this way, our move value definition 
conveys information that is not available when the change in the objective function 
value is calculated. 
 
The results of our computational experiments reveal that the strategies implemented 
within a relatively simple tabu search procedure are capable of outperforming a 
competing metaheuristic, such as simulated annealing.  In particular, the restarting 
procedure based on frequency information confirms the benefit of encouraging the 
diversification of the search.  The additional diversification results in a solution method 
capable of finding high-quality solutions to the bandwidth reduction problem, although 
we must admit that the procedure consumes considerably more computer time than a 
constructive heuristic such as GPS. 
 
An interesting question related to search diversification deals with the balance between 
restarting and search-depth (i.e., the time spent searching from a single starting point).  
Some metaheuristics, such as GRASP (Feo and Resende 1995), launch limited local 
searches from numerous constructions (i.e., starting points).  Typically in tabu search, 
the search starts from one initial point and if a restarting procedure is also part of the 
implementation, it is invoked only a limited number of times.  In our last set of 
experiments in this paper, we tested both alternatives and concluded that it was better 
to invest the time searching from a few staring points than restarting the search more 
often.  Although we cannot draw a general conclusion from these experiments, our 
experience in the current context and in previous projects indicates that tabu search 
procedures need to reach a critical depth search to be effective.  If this search depth is 
not reached, the effectiveness of the method is severely compromised.  So we can 
conclude that while our TS(100,10) runs effectively reached the critical search-depth, 
the TS(10,100) runs did not. 
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