
A HYBRID IMPROVEMENT HEURISTIC FOR THE
ONE-DIMENSIONAL BIN PACKING PROBLEM

ADRIANA C.F. ALVIM, CELSO C. RIBEIRO, FRED GLOVER, AND DARIO J. ALOISE

Abstract. We propose in this work a hybrid improvement procedure for the
bin packing problem. This heuristic has several features: the use of lower
bounding strategies; the generation of initial solutions by reference to the
dual min-max problem; the use of load redistribution based on dominance,
differencing, and unbalancing; and the inclusion of an improvement process
utilizing tabu search. Encouraging results have been obtained for a very wide
range of benchmark instances, illustrating the robustness of the algorithm. The
hybrid improvement procedure compares favourably with all other heuristics in
the literature. It improved the best known solutions for many of the benchmark
instances and found the largest number of optimal solutions with respect to
the other available approximate algorithms.

1. Introduction

Given a set N = {1, . . . , n} of items with weights wi, i = 1, . . . , n, the bin pack-
ing (BP) problem consists of finding the minimum number of bins of capacity C
necessary to pack the items without violating the capacity constraints. Alterna-
tively, the problem may also be seen as that of partitioning the set of items into a
minimum number of subsets, such that the sum of the weights of the items in each
subset is less than or equal to C. This problem is classified as 1/V/I/M according
with the typology of Dyckhoff [6]. This formulation also entails a min-max problem
sharing a kind of duality relationship [16, 24] with BP, in which we seek to min-
imize the capacity C of a fixed number of identical bins, so that all items can be
accommodated in these bins without violating the capacity constraints. The dual
bin packing problem (DBP) is known in the literature as the Multiprocessor Sched-
uling Problem. This relationship is explored by our heuristic for the bin packing
problem.

The bin packing problem is NP-hard [10, 19]. The branch-and-bound procedure
MTP of Martello and Toth [20] is the basic reference used in most comparative
studies. Scholl et al. [24] proposed an exact method (BISON) which makes use
of several bounds, reduction procedures, heuristics, and a branch-and-bound pro-
cedure using a new branching scheme. Later, Schwerin and Wäscher [27] showed
that MTP provides significantly better results using the bound LCS derived from
the cutting stock problem. Valério de Carvalho [30] presented an exact algorithm
based on colunm generation and branch-and-bound. Vanderbeck [31] proposed yet
another column generation based exact algorithm for the cutting stock problem
and showed its effectiveness for some classes of bin packing instances. Two of the
fastest heuristics for the approximate solution of BP are the well-known First-Fit
Decreasing (FFD) and Best-Fit Decreasing (BFD) greedy algorithms, see e.g. [20]

1

2 A.C. ALVIM, C.C. RIBEIRO, F. GLOVER, AND D.J. ALOISE

for a review. Hübscher and Glover [16] proposed a tabu search with influential di-
versification algorithm for DBP. Falkenauer [7] described a hybrid grouping genetic
algorithm (HGGA) for BP. More recently, Fleszar and Hindi [9] proposed a few
new heuristics to BP, the most effective of them being based on the VNS meta-
heuristic [15] and using new lower bounds proposed by Fekete and Schepers [8].

In this work, we describe a hybrid improvement procedure for the bin packing
problem, originally outlined in [1, 2] and based on the progressive increase of the
number of bins used by a feasible solution to DBP. This type of strategy is also
known as a “lower bound method” in the assembly line balancing literature, see e.g.
Hackman et al. [14] and Scholl and Voss [25]. The basic structure of this procedure
is the following:

• Reductions: use reduction techniques to eliminate some items and to fix
the items in some bins.

• Bounds: compute lower and upper bounds LB and UB for BP. If LB = UB,
then stop.

• Construction: apply a greedy algorithm to build a solution for DBP using
exactly LB bins.

• Redistribution: if the current solution is not feasible to BP, then apply load
balancing/unbalancing strategies to improve bin usability.

• Improvement: if the current solution is not feasible to BP, then use a tabu
search heuristic to attempt to knock down capacity violations.

• Stopping criterion: if the current solution is feasible to BP, then stop;
otherwise set LB ← LB + 1 and go back to the construction phase.

The reduction procedure of Martello and Toth [21] is summarized in Section 2.
Lower bounds and greedy construction procedures are briefly reviewed in Section 3.
In Section 4, we present different construction algorithms used to build initial solu-
tions for the hybrid improvement procedure. Section 5 describes an item dominance
rule and the load balancing/unbalancing strategies used to improve bin usability.
A tabu search procedure to reduce infeasibilities is proposed in Section 6, and the
full hybrid improvement heuristic is described in Section 7. Computational results
and comparisons with other heuristics for different classes of test problems are pre-
sented in Section 8. Some concluding remarks and extensions are discussed in the
last section.

2. Reductions

We define a feasible set of items as any subset F ⊆ N such that
∑

i∈F wi ≤ C.
Given two feasible sets F1 and F2, we say that F1 dominates F2 if and only if the
number of bins in some optimal solution obtained by setting B1 = F1 is not greater
than that obtained by setting B1 = F2. This will be the case if there exists a
partition P1, . . . , P� of F2 and a subset {i1, . . . , i�} ⊂ F1 such that wih

≥ ∑
k∈Ph

wk

for h = 1, . . . , �.
Martello and Toth [20, 21] used the above dominance criterion in their MTRP

reduction procedure. An iterative procedure to reduce the size of an instance of BP
could enumerate all feasible sets, search for a feasible set F dominating all others,
assign F to a new bin, and remove the items in F from N , until either no such F
exists or all items have been placed. Since this is clearly impractical, the reduction
procedure MTRP limits the search to feasible sets of cardinality at most three.

A HYBRID HEURISTIC FOR THE BIN PACKING PROBLEM 3

3. Lower and upper bounds

Let S be a (not necessarily feasible) solution to BP and denote by z(S) its
number of bins. Associated with solution S there is a family of subsets B1, . . . , Bz(S)

representing each bin, where Bj is used to denote both the j-th bin itself and the
set of items it contains, for every j = 1, . . . , z(S). Let wS(j) =

∑
i∈Bj

wi be the
total weight of the items placed in bin Bj in solution S, j = 1, . . . , z(S). Then, each
bin Bj is in exactly one of the following situations:

• violated: wS(j) > C
• full or complete: wS(j) = C
• incomplete: C > wS(j) > 0.
• empty: wS(j) = 0

A bin is saturated if it is violated or full. Bins which are not violated are said to be
feasible.

The reader is referred to [5, 20] for reviews of greedy algorithms for BP. They
usually start by sorting the items in non-increasing order of their weights. Next,
items are picked in this order and placed one-at-a-time in a bin selected according
with some strategy. In this work, we use the Best-Fit Decreasing (BFD) heuristic
to compute feasible solutions to BP. This algorithm always selects the bin with the
smallest sufficient residual capacity. If none of the bins already in use has enough
capacity to accommodate the new item, then a new bin is opened. Algorithm BFD
can be implemented to run in O(n log n) time.

Lower bounds to BP are reviewed by Scholl et al. [24]. We describe below
the bounds used in this work. A trivial lower bound to BP is given by L1 =
�∑n

i=1 wi/C�. The dominating lower bound L2 ≥ L1 originally described in [20]
considers a partition of N into two subsets J1 and J2 defined by an integer parameter
0 ≤ α ≤ C/2, where J1 = {j ∈ N : wj > C − α} and J2 = {j ∈ N : C − α ≥
wj ≥ α}. Then, L(α) = |J1| + �(1/C)

∑
j∈J2

wj�) is a lower bound on the number
of bins required for packing all items, and L2 = max{L(α) : 0 ≤ α ≤ C/2}. This
bound can be computed in O(n) time, once all items are sorted in non-increasing
order of their weights.

A function u : [0, 1] → [0, 1] is called dual feasible if
∑

w∈S w ≤ 1 ⇒ ∑
w∈S u(w) ≤

1 for any finite set S of nonnegative real numbers. This term refers to the fact that
for any dual feasible function u and for any instance of the bin packing problem
with item weights w1, . . . , wn, then (u(w1), . . . , u(wn)) is a feasible solution for the
dual of the corresponding fractional bin packing problem [8, 18]. Fekete and Schep-
ers [8] presented a simple and fast approach for obtaining a class of lower bounds
based on dual feasible functions. The use of several dual feasible functions make
it possible to improve the bounds obtained when a single function is used. They
introduced a particular class of bounds L

(p)
∗ that can be computed in time O(n) for

any p ≥ 2, provided that all items are previously sorted in non-increasing order of
their weights. The bound L

(p)
∗ with p = 20 is used in this work.

The reduction procedure described in Section 2 was used by Martello and Toth [20,
21] to compute a lower bound L3 as follows. Let I be the original problem instance,
b1 the number of bins reduced after the application of MTRP to I, and I1 the cor-
responding residual instance. The application of lower bound L2 to I1 provides
a lower bound L′

1 = b1 + L2(I1) to I. Next, I1 is relaxed by the removal of the
lightest item and MTRP is applied to this relaxed instance, yielding b2 fixed bins

4 A.C. ALVIM, C.C. RIBEIRO, F. GLOVER, AND D.J. ALOISE

and the new residual problem I2. Thus, L′
2 = b1 + b2 + L2(I2) is a lower bound to

the original problem. This process is repeated until the residual instance is empty.
A lower bound L′

k = b1 + b2 + . . . + bk + L2(Ik) is produced at each iteration k.
Then, L3 = max{L′

1, L
′
2, . . . , L

′
kmax

} is a valid lower bound to the original instance,
where kmax is the iteration counter for which the residual instance becomes empty.
This procedure to compute the bound L3 can also be used to further improve the
reduction obtained by the application of MTRP to the original instance. At any of
its iterations, if all items previously removed can be assigned to the bins fixed by
MTRP, then this reduction is also valid for the original problem. In particular, if
all the removed items have been assigned at the end, then this solution is optimal.
Since MTRP runs in O(n2) time, the complexity of the computation of L3 is O(n3).
The lower bound L3 dominates L2.

We propose in this work a new destructive bound [24], based on the work of
Dell’Amico and Martello [3] for the multiprocessor scheduling problem (P||Cmax)
and on the yet unpublished work of Schoenfield [22]. We assume that the items
are sorted in non-increasing order of their weights. Given a lower bound m to
the number of bins in a feasible solution, we attempt to establish that no feasible
solution using m bins exist, in which case this bound can be increased by one. Let

θ = max
q=1,...,n

{q :
n∑

i=n−q+1

wi ≤ C}

be an upper bound to the number of items in any bin of a feasible solution to BP.

Proposition 1. If θ < �n/m� for some integer m, then any feasible solution to
BP uses at least m + 1 bins.

Proof. We suppose the existence of a solution using m bins. Any feasible solution
to BP has at most θ items in each bin. The average number of items by bin is n/m.
Then, at least one bin contains �n/m� items or more. Thus, if θ < �n/m� there is
no feasible solution using m bins. �
Proposition 2. Given an integer σ ≤ �n/m�, if C(σ) =

⌈∑n
i=σ

wi

m−1

⌉
> C, then

any feasible solution with m bins has at least σ items in each bin.

Proof. For any integer value of σ ≤ �n/m�, we attempt to build a feasible solution
with m bins in which any of them contains at most σ − 1 items. Without loss of
generality, suppose the first bin contains σ− 1 or fewer items. Then, the remaining
n − (σ − 1) items should be packed in m − 1 bins. Let C(σ) =

⌈∑n
i=σ

wi

m−1

⌉
be

a lower bound to the smallest bin capacity capable of packing the smallest items,
indexed by σ, σ + 1, . . . , n, in m − 1 bins. If C(σ) > C, then every bin will contain
σ or more items. �
Proposition 3. Given an integer σ ≤ �n/m�, if

∑σ
i=1 wi ≤ C then there exists an

optimal solution using m bins having at least σ items in each bin.

Proof. cf. [3, page 194, Proposition 4]. �
The next theorem follows directly from Propositions 2 and 3:

Theorem 1.

ϑ = max{ max
σ=1,...,�n/m�

{σ : C(σ) > C}, max
σ=1,...,�n/m�

{σ :
σ∑

i=1

wi ≤ C}}

A HYBRID HEURISTIC FOR THE BIN PACKING PROBLEM 5

is a lower bound to the number of items in any bin of a feasible solution using m
bins.

The next two propositions show how the lower bound ϑ and the upper bound
θ to the number of items in any bin of any solution with m bins can be used to
improve the lower bound to the number of bins.

Proposition 4. Let mϑ = max{m− (n−ϑ ·m), 0} be a lower bound to the number
of bins with exactly ϑ items. If �∑n

i=mϑ·ϑ+1
wi

(m−mϑ)� > C, then m + 1 is a valid
lower bound to the number of bins in the optimal solution.

Proof. A feasible solution using m bins has at least mϑ bins with exactly ϑ items in
each of them. We now consider any solution in which the mϑ · ϑ heaviest items are
accommodated in the first mϑ bins. If �∑n

i=mϑ·ϑ+1
wi

(m−mϑ)� > C, the remaining
n − mϑ · ϑ items cannot be accommodated in the remaining m − mϑ bins and
the lower bound to the number of bins in a feasible solution may be increased by
one. �

If θ = ϑ + 1, each bin has either ϑ or θ items. If this is the case, the number of
mϑ of bins with exactly ϑ items and the number mθ of bins with exactly θ items
may be computed as the solution of the system

m = mθ + mϑ

n = θ · mθ + ϑ · mϑ,

yielding mϑ = (ϑ + 1) · m − n and mθ = n − ϑ · m. Then, a lower bound to the
capacity needed to accommodate the n items in m bins is given by

Cϑ(m) = max
{⌈ n∑

i=n−ϑ·mϑ+1

wi/mϑ

⌉
,

⌈ n∑
i=n−θ·mθ+1

wi/mθ

⌉}
.

Proposition 5. If θ = ϑ + 1 and Cϑ(m) > C, then m + 1 is a valid lower bound
to the number of bins in the optimal solution.

Proof. We consider any solution with mθ bins with exactly θ items in each of them
and with mϑ bins with exactly ϑ items in each of them. If the bin capacity needed
to accommodate the mθ · θ lightest items in mθ bins is larger than C or if the
bin capacity needed to accommodate the mϑ · ϑ lightest items in mϑ bins is larger
than C, then there is no feasible solution using m bins and the lower bound to the
number of bins in a feasible solution may be increased by one. �

The next theorem follows directly from Propositions 1, 4, and 5:

Theorem 2. Let m be a lower bound to the number of bins. Then,

Lϑ(m) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m + 1, if any of the conditions (a), (b), or (c) below holds:
(a) θ < �n/m�
(b)

⌈ ∑n
i=mϑϑ+1

wi

(m−mϑ) > C
⌉

(c) θ = ϑ + 1 and Cϑ(m) > C;
m, otherwise

is an improved valid lower bound to the number of bins in a feasible solution.

6 A.C. ALVIM, C.C. RIBEIRO, F. GLOVER, AND D.J. ALOISE

If θ > ϑ+1, the following reduction can still be used as an attempt to improve the
current lower bound. If ϑ < �n/m�, we attempt to show that no feasible solution
may have a bin with exactly only ϑ items, in which case ϑ can be increased by
one and the lower bound Lϑ can be recomputed. To do so, we accommodate the
heaviest ϑ items in a single bin. Next, we consider the reduced instance defined by
th n′ = n − ϑ items with weights wϑ+1, . . . , wn. In this situation, m′ = m − 1 is a
lower bound to the number of bins in any feasible solution of this reduced instance.
The bound Lϑ(m′) for this new instance can be computed following Theorem 2. If
Lϑ(m′) > m′, then there is no feasible solution for the original instance in which a
bin has exactly ϑ items. If this is the case, then ϑ can be increased by one and the
original bound Lϑ can be recomputed.

To illustrate the computation of Lϑ, we consider a bin packing instance with
n = 20, w = (54, 54, 53, 53, 53, 52, 51, 51, 51, 50, 50, 48, 48, 46, 46, 33, 32, 32, 32, 31),
and C = 120. We first compute the lower bound L1 = �920/120� = 8 and θ = 3
(maximum number of items in a bin). Next, Theorem 1 is applied with m = 8 and
we get ϑ = 2 (minimum number of items in a bin). Since θ = ϑ + 1, we obtain
mϑ = 4 and mθ = 4. Then,

Cϑ(8) = max
{⌈

20∑
i=13

wi/4
⌉
,

⌈
20∑

i=9

wi/4
⌉}

= 125 > C,

and, according with Proposition 5, Lϑ = m + 1 = 9 is a valid lower bound.

4. Initial solutions

Each iteration of our hybrid improvement heuristic starts by creating a feasible
solution to DBP using a fixed number of bins, then attempts to transform it so as
to find a feasible solution to BP using the same number of bins. We used three
deterministic construction procedures for building feasible solutions to DBP. All of
them start with LB open bins and investigate the items in non-increasing order of
their weights. The following bin selection rules are applied in each case:

• Dual Best-Fit Decreasing (DBFD): Select the bin with smallest sufficient
residual capacity; if none is available then select the lightest bin.

• Dual Subset Sum-Fit Decreasing (DSSFD): If there is an empty bin, then
insert the current item into this bin and perform an attempt to fill it by
solving a subset sum problem (using the polynomial-time approximation
scheme MTSS(3) of Martello and Toth [20]). Otherwise, the current item is
inserted into the lightest bin. DSSFD is similar to a variant of the Minimum
Bin Slack heuristic described in [9], which also attempts to fill a bin after
fixing the heaviest unselected item. It is also similar to a pseudopolynomial
heuristic [28] based on multiple solutions of the subset sum problem, as well
as to the procedure Fill Bin [31] and to the heuristic Multi-Subset [3].

• Dual Best 3-Fit Decreasing (DB3FD): If there is an empty bin, then select
it to place the current item. Otherwise, perform an attempt to fill exactly
each bin, by identifying a pair of yet unselected items whose sum of their
weights is equal to the residual capacity of the bin. For the remaining
unselected items, insert the current item into the heaviest nonsaturated
bin in which it fits; if none is available then the lightest bin is selected.

• Longest Processing Time (LPT): This strategy is derived from the LPT
scheduling heuristic [13]. The lightest bin is always selected.

A HYBRID HEURISTIC FOR THE BIN PACKING PROBLEM 7

5. Load redistribution

Whenever a feasible solution to DBP is not feasible to BP, load balancing and
load unbalancing substrategies are applied to improve bin usability by load redis-
tribution. Each substrategy is preceded by the application of an item dominance
rule.

5.1. Item dominance rule. A local item dominance rule is always applied before
the two first phases. We say that an item i3 dominates two items i1 and i2 in
another bin if wi3 = wi1 +wi2 . This rule is applied as follows. For every full bin Bi

and for every incomplete or violated bin Bj in the current solution, whenever there
exist two items i1, i2 ∈ Bi and one item i3 ∈ Bj such that wi1 + wi2 = wi3 , then
items i1 and i2 are exchanged with i3 in the current solution. Although the weights
of both bins involved in the exchange remain unchanged, increasing the number of
small items in the incomplete or violated bins will give more chance to the load
balancing and unbalancing phases to find a better solution.

The search for dominant items stops when no further improvement is possible,
after all possible pairs of bins have been evaluated. It does not change the weights
of the bins, but may help in reaching feasibility at a later step.

5.2. Load balancing by differencing. Given any pair of bins Bi and Bj of the
current infeasible solution S, a new solution S′ can be obtained by redistribut-
ing the items in these bins, so as to minimize the absolute value of the difference
of their weights. Since the latter amounts to a number partitioning problem, an
approximate algorithm provides a significant efficiency advantage for computing
a suboptimal redistribution of the items in these bins. The differencing method
of Karmarkar and Karp [17] begins by arranging the items in these bins into a
non-increasing ordered list. The method recursively takes the difference of the two
greatest values remaining in the ordered list and places this difference back into
the ordered list, as if it constituted a virtual item to be packed. The differencing
continues until only one value remains in the list. This remaining value represents
the difference of an implied partition of the original list into two bins. The new par-
tition is then constructed by backtracking through the recursion. This substrategy
continually seeks to knock down excess deviations, starting by the largest capacity
violation.

The above algorithm and its randomized version [4] are applied once each to all
pairs of bins of the current solution, in which one of them is violated and the other
is non-saturated. The first pair is that formed by the lightest and the heaviest bins.
The violated bins are investigated in non-increasing order of their weights, while
the nonsaturated ones are investigated in the opposite order. For each pair of bins
Bi and Bj , the best solution S′ among the two newly computed partitions replaces
the current one if |wS′(i) − wS′(j)| < |wS(i) − wS(j)|. The search stops when no
further improvement is possible.

5.3. Load unbalancing. Given a set N = {1, . . . , n} of items with weights wi, i =
1, . . . , n, and an integer C, the maximum subset sum problem consists of finding
a feasible subset of items whose sum of their weights is as close as possible to C.
For every pair of incomplete bins in the current solution S, the load unbalancing
substrategy attempts to redistribute their items without making them infeasible
and creating more available space in the bin which ends up as the lighter among

8 A.C. ALVIM, C.C. RIBEIRO, F. GLOVER, AND D.J. ALOISE

the two bins. We create a temporary set of available items, formed by all the items
in this pair of bins, and apply the polynomial-time approximation scheme MTSS of
Martello and Toth [20] with k = 3. If the sum of the weights of the subset found by
the above algorithm is greater than the weight of the heaviest bin originally in the
pair, then the composition of the two original bins is changed and a new solution S′

is obtained. One bin receives all items in the solution of the subset sum problem,
while the other receives the remaining items.

The search stops when no further improvement is possible, after all pairs of
incomplete bins have been evaluated. Although this procedure cannot make an
infeasible solution feasible, it makes the current solution more susceptible to im-
provement in the next phase by creating more available space for large items. We
give in Figure 1 a short description of the procedure that combines the item domi-
nance rule with the load balancing and unbalancing substrategies, which is applied
to the infeasible solution S built at the construction phase.

procedure Redistribution(S);
1 Apply the load balancing substrategy by differencing preceeded by the

item dominance rule;
2 if a feasible solution to BP was obtained then return S;
3 Apply the load unbalancing substrategy preceeded by the item dominance

rule;
4 if the current solution was not changed in step 3 then return S;
5 Go back to step 1;
end Redistribution.

Figure 1. Pseudo-code of the load redistribution phase

6. Infeasibility reduction

We apply a tabu search strategy to reduce capacity violations in the current
solution. For any solution S, we denote by ES =

∑z(S)
j=1 max{0, wS(j) − C} the

sum of all bin capacity violations. ES = 0 if S is feasible to BP. Starting from an
infeasible solution S, we investigate neighborhoods defined by swap moves which
exchange pairs of items, one of them always from a violated bin. For any item
i = 1, . . . , n, we denote by S(i) the index of the bin were this item is currently
placed in solution S. Each move i ↔ k is defined by an ordered pair (i, k) of
items from different bins. The first element in the pair is always an item in the
target violated bin, whose excess deviation we want to reduce. The solution S′

resulting from applying this move to solution S is characterized by S′(i) = S(k),
S′(k) = S(i), S′(�) = S(�) ∀� �= i, k.

Since the ultimate goal of the search is to make an infeasible solution feasible,
every violated bin has to be made feasible. Therefore, we only consider moves
that decrease the excess deviation of the target violated bin. By this filtering
process, each iteration will consider exclusively swap moves for which wi > wk.
The value ∆(i, k) = max{wS′(S′(i)) − C, 0} + max{wS′(S′(k)) − C, 0} gives the
excess violation associated exclusively with the bins where these items are placed
after their exchange.

A HYBRID HEURISTIC FOR THE BIN PACKING PROBLEM 9

Table 1 shows all possible situations for a move i ↔ k involving bins S(i) and
S(k): the move type, the status of each bin after the move, the associated move
value ∆(i, k), the number of violated bins in the pair after the move, the number
of complete bins in the pair after the move, and an associated level value. We
now discuss what qualifies a candidate move as being better than another. In
principle, moves leading to pairs with less violated bins are preferable. Although
less important, moves leading to pairs with more complete bins are also preferable.
The proposed strategy categorizes each move type by a “level” or “priority”. For
a given target violated bin whose neighborhood is being investigated, one chooses
the move with the smaller level (higher priority), breaking ties in favor of the bin
with the smaller excess deviation ∆(i, k). Inasmuch as it may not be possible to
establish a total order over all move types (since one move type may be better
than another with respect to one criterion, but not with respect to the other), two
different potential level values are assigned to some move types and one of them is
randomly selected with probability 1/2 at each iteration. Such rules allow different
choices at different iterations, avoiding inflexible preferences that could exclude
some search paths. These rules are particularly useful in the context of a solution
method which accepts moves leading to infeasible solutions that may eventually be
made feasible at a later step.

Type Status of the bins after move i ↔ k ∆(i, k) Violated Complete Level
1 complete, complete 0 0 2 1
2 complete, incomplete 0 0 1 2
3 incomplete, incomplete 0 0 0 3
4 complete, violated > 0 1 1 4,2
5 incomplete, violated > 0 1 0 5,4
6 violated, violated > 0 2 0 6,5

Table 1. Move types

Whenever a move i ↔ k is performed, we forbid for a duration of TabuTenure
iterations all moves that would reinsert either item k into bin S(k) or item i into
bin S(i). In our implementation, the value of TabuTenure is randomly chosen from
a discrete uniform distribution in the interval [0.8 · √n, 1.2 · √n].

Tabu search proposes the use of logical restructuring based on anticipatory anal-
ysis. In this context, logical restructuring seeks to answer the following questions:
“What conditions assure the existence of a trajectory that will lead to an improved
solution?” and “What intermediate moves can create such conditions?” Interme-
diate moves may be generated either by modifying the evaluations used to select
transitions between solutions or by modifying the neighborhood structure that de-
termines these transitions [12]. Moves of type 1 are the most attractive, since they
result in two complete bins. Although moves of types 4, 5, and 6 are bad in princi-
ple, they may be effective in some situations. This will be the case, for example, if
there is a move of type 1 associated with one of the resulting violated bins. Then,
performing these two subsequent moves at once as a combined move will generate
a new solution with more complete bins. To implement this idea, we store the
temporary solution S generated by each move of type 4, 5, and 6. Let Bj be the
violated bin in case the move type is 4 or 5, otherwise let Bj be the current target

10 A.C. ALVIM, C.C. RIBEIRO, F. GLOVER, AND D.J. ALOISE

bin. If there exists a move of type 1 involving an item from bin Bj of the temporary
solution S, then the two combined moves are performed.

We summarize in Figure 2 the procedure MoveSelect, which computes and re-
turns the best move to be applied to a target violated bin Bj of the current solution
S. We denote by S′ = S(i, k) the solution derived from S by swapping items i and
k from the bins where they are currently placed. Feasible(S′) returns .TRUE.
if S′ is feasible, .FALSE. otherwise. Tabu(i, k) returns .TRUE. if the swap move
i ↔ k is forbidden, .FALSE. otherwise. Variables associated with the best move
are initialized in lines 1-2. The nested loops in lines 3-27 and 4-26 enumerate all
candidate moves, defined by pairs formed by each item in bin Bj and every item
with a smaller weight in any other bin. Line 5 determines if move i ↔ k is of type 1
or leads to a feasible solution, in which case it is immediately selected and returned
in lines 7-8. Otherwise, we check in line 10 if the move type is either 4, 5, or 6,
and if the total capacity violation ∆(i, k) of bins S(i) and S(k) in the new solution
is less than a certain threshold MaxDelta. In this case, we search in lines 11-23 if
there exists a move of type 1 to be combined with i ↔ k. A temporary solution S
derived from the current solution S by the application of move i ↔ k is computed
in line 12. The target bin Bj for the next move is determined in line 13. The
nested loops in lines 14-22 and 15-21 play the same roles as those in lines 3-27 and
4-26, generating all moves involving an item i from bin Bj and every item k from
another bin. Line 16 determines if move i ↔ k applied to the temporary solution S
is of type 1 or leads to a feasible solution, in which case it is immediately selected
and returned in lines 18-19 together with the first move. Line 24 handles the unfor-
bidden moves which do not fall in the previous cases. If move i ↔ k improves the
best move already found, then all information about the incumbent is updated in
line 25. In case neither a feasible solution nor a type 1 move has been identified by
the selection procedure, the best move or an indication that no unforbidden move
exists is returned in line 28.

The overall tabu search procedure for infeasibility reduction starting from the
current solution S is summarized in Figure 3. Initializations are performed in lines
1-2. The bins are sorted in non-increasing order of their weights in line 3. The target
bin is initialized in line 4. Iterations are performed along the loop in lines 5-29 until
a feasible solution is found or some stopping criterion is attained. At each iteration,
the algorithm determines in line 6 the best move (single or combined) associated
with the target bin Bj (if one exists). This move is applied to the current solution
in lines 7-20. If all moves associated with the target bin were forbidden or if the
latter was made feasible after the selected move, then the target bin is incremented
by one in line 21. Line 22 detects if all violated bins have been investigated and the
current solution is still infeasible, in which case the bins are reordered according
to their current weights and the target bin is reset to 1 in lines 23-26. The target
bin and the number of tabu search iterations are updated in lines 27-28 and a new
iteration starts. The infeasibility reduction phase stops if a feasible solution is found
or if a total of MaxIterations tabu search iterations have been performed without
improvement in the total excess violation.

A HYBRID HEURISTIC FOR THE BIN PACKING PROBLEM 11

procedure MoveSelect(S, j);
1 BestLevel, BestValue ← ∞;
2 moves ← 0; BestMove, BestMove2 ← ∅;
3 forall i ∈ Bj do
4 forall k ∈ {1, . . . , n} \ Bj : wk < wi do
5 if Feasible(S(i, k)) or MoveType(i ↔ k) = 1
6 then do
7 BestMove ← i ↔ k; moves ← 1;
8 return moves, BestMove, BestMove2;
9 end;
10 if (MoveType(i ↔ k) = 4 or MoveType(i ↔ k) = 5 or

MoveType(i ↔ k) = 6) and ∆(i, k) < MaxDelta
11 then do
12 S ← S(i, k);
13 if wS(S(i)) > C then j ← S(i) else j ← S(k);
14 forall i ∈ Bj do
15 forall k ∈ {1, . . . , n} \ Bj : wk < wi do
16 if Feasible(S(i, k) or MoveType(i ↔ k) = 1
17 then do
18 BestMove ← i ↔ k; BestMove2 ← i ↔ k; moves ← 2;
19 return moves, BestMove, BestMove2;
20 end;
21 end;
22 end;
23 end;
24 if .NOT.Tabu(i ↔ k) and (MoveLevel(i ↔ k) < BestLevel or

(MoveLevel(i ↔ k) = BestLevel and ∆(i, k) < BestValue))
25 then do BestMove ← i ↔ k; BestValue ← ∆(i, k); moves ← 1; end;
26 end;
27 end;
28 return moves, BestMove, BestMove2;
end MoveSelect.

Figure 2. Move selection procedure

7. The hybrid improvement heuristic

The full hybrid solution improvement heuristic HI BP for the bin packing problem
is outlined in Figure 4, integrating all previously described phases. The preprocess-
ing phase is performed in lines 1-11. A feasible solution SBFD to BP is computed
in line 1 by the BFD greedy heuristic. The upper bound UB to the number of bins
is set in line 2 as the number of bins in SBFD. The bounds L1 and L2 are computed
respectively in lines 3 and 4. If any of them is equal to the upper bound UB, then
the optimal solution SBFD is returned. The lower bound L3 is computed in line
5 using the reduction procedure MTRP, which builds the partial solution SMTRP

with b bins. If the lower bound L3 is equal to the number of bins in SMTRP , then
the original instance was completely reduced and the optimal slution SMTRP is

12 A.C. ALVIM, C.C. RIBEIRO, F. GLOVER, AND D.J. ALOISE

procedure TabuSearch(S);
1 iterations ← 0;
2 TabuList ← ∅;
3 Sort the bins in non-increasing order of their weights, obtaining a sequence

of indices i1, . . . , iz(S) such that wS(ik) ≥ wS(ik+1), k = 1, . . . , z(S) − 1;
4 current ← 1; j ← icurrent;
5 while stopping criterion is not matched and S is infeasible do
6 (moves, i ↔ k, i ↔ k) ← MoveSelect(S, j);
7 if moves ≥ 1
8 then do
9 Compute TabuTenure ∈ U [0.8 · √n, 1.2 · √n];
10 Forbid the reinsertion of item i into bin S(i) for the next

TabuTenure iterations;
11 Forbid the reinsertion of item k into bin S(k) for the next

TabuTenure iterations;
12 Update the current solution S: a ← S(i), b ← S(k), S(i) ← b, and

S(k) ← a;
13 if moves = 2
14 then do
15 Compute TabuTenure ∈ U [0.8 · √n, 1.2 · √n];
16 Forbid the reinsertion of item i into bin S(i) for the next

TabuTenure iterations;
17 Forbid the reinsertion of item k into bin S(k) for the next

TabuTenure iterations;
18 Update the current solution S: a ← S(i), b ← S(k), S(i) ← b, and

S(k) ← a;
19 end;
20 end;
21 if wS(j) ≤ C or moves = 0 then current ← current + 1;
22 if current > z(S) or (current ≤ z(S) and wS(icurrent) ≤ C)
23 then do
24 Sort the bins in non-increasing order of their weights, obtaining a

new sequence of indices i1, . . . , iz(S) such that
wS(ik) ≥ wS(ik+1), k = 1, . . . , z(S) − 1;

25 current ← 1;
26 end;
27 j ← icurrent;
28 iterations ← iterations + 1;
29 end;
30 return S;
end TabuSearch.

Figure 3. Tabu search procedure for infeasibility reduction

returned in line 6. A new test involving the lower bound L3 is performed in line
7: if the latter is equal to the upper bound UB, then the optimal solution SBFD

is returned. The items accommodated in the partial solution SMTRP are removed

A HYBRID HEURISTIC FOR THE BIN PACKING PROBLEM 13

from the set N of items and the bounds L3 and UB to the reduced instance are
updated in line 9. In line 10, the lower bound LB and the tentative number of
bins nbins to be used are set as the best among bounds L3, L

(20)
∗ , and Lϑ (see

Section 3). If the newly recomputed lower bound allows the identification of an
optimal solution, then SBFD is returned in line 11.

The next steps correspond to the improvement heuristic itself. Variable infeasible
used for the implementation of the stopping criterion is initialized in line 12. The
loop in lines 13-32 searches for a feasible solution to BP using nbins bins. The
search stops if a feasible solution with nbins bins is found or if the lower bound
reaches the upper bound. The loop in lines 14-30 performs at most MaxTrials
attempts to generate a feasible solution using nbins bins. Each attempt starts
in line 15 by the selection of a still unused construction algorithm from the set
H = {DB3FD, DBFD, DSSFD, LPT} of available heuristics to DBP. As many at-
tempts as the number of heuristics in H are performed. The selected heuristic is
used to build a feasible solution S to DBP in line 16. The upper bound and the
feasibility flag are updated in lines 17-18 if this solution is feasible to BP. Otherwise,
the load redistribution procedure described in Section 5 and depicted in Figure 1
is applied in line 20. If the new solution is feasible to BP, the upper bound and the
feasibility flag are updated in lines 21-22. Otherwise, the tabu search procedure for
infeasibility reduction described in Section 6 and depicted in Figure 3 is applied in
line 24. If the new solution is feasible to BP, the upper bound and the feasibility
flag are updated in lines 25-26. The tentative number of bins nbins is incremented
by one in line 31 if the algorithm failed to generate a feasible solution to BP after
MaxTrials attempts. If the loop in lines 13-32 found a better solution to BP, then
the solution corresponding to the bins in S and those in the partial solution SMTRP

is returned in line 33, otherwise the initial solution SBFD is returned in line 34.
The following parameter settings have been used in our implementation:

• MaxTrials = 4 (number of attempts made by the solution improvement
heuristic HI BP to build a feasible solution to BP using a lower bound LB)

• MaxDelta = 0.2 × mini=1,...,n w(i) (threshold used by the selection proce-
dure MoveSelect to determine whether a combined move will be searched
for or not)

• MaxIterations = 4000 (maximum number of iterations without improve-
ment in the excess violation ES , used as a stopping criterion by the tabu
search procedure).

8. Computational experiments

We report in this section the computational experiments performed with the
hybrid improvement heuristic on a broad set of test problems. Heuristic HI BP was
coded in C and compiled with version 2.95.2 of gcc, using the optimization flag -O3.
The reduction procedure MTRP and the computation of the lower bound L3 were
also implemented in C, following as closely as possible the original Fortran code in
[20].

All experiments were performed on a 1.7 GHz Pentium IV with 256 Mbytes of
RAM memory. The computation times reported in this section are given in seconds.
Moreover, given a proven optimal solution value (or the best lower bound in case
the latter is not available) x and the solution value (i.e., the number of bins) y

14 A.C. ALVIM, C.C. RIBEIRO, F. GLOVER, AND D.J. ALOISE

procedure HI BP
1 Compute the solution SBFD = {B1, . . . , Bz(SBF D)} using algorithm BFD;
2 Set UB ← z(SBFD);
3 if L1 = UB then return SBFD;
4 if L2 = UB then return SBFD;
5 Compute the lower bound L3 and let SMTRP = (B1, . . . , Bb) be the partial

solution with b bins created by the reduction procedure MTRP;
6 if L3 = b then return SMTRP ;
7 if L3 = UB then return SBFD;
8 Remove from N the items accommodated in the partial solution SMTRP ;
9 Update the bounds L3 ← L3 − b and UB ← UB − b;
10 Compute the lower bounds L

(20)
∗ and Lϑ and set LB, nbins ← max{L3, L

(20)
∗ , Lϑ};

11 if nbins = UB then do S ← SBFD; return S; end;
12 infeasible ← .TRUE.;
13 while nbins < UB do
14 for k = 1, . . . , MaxTrials and infeasible = .TRUE. do
15 Select a heuristic from H = {DB3FD, DBFD, DSSFD, LPT};
16 Build a solution S = {B1, . . . , Bz(S)} to DBP;
17 if S is feasible to BP then do
18 Set infeasible ← .FALSE. and UB ← z(S);
19 else do
20 S ← Redistribution(S)
21 if S is feasible to BP then do
22 Set infeasible ← .FALSE. and UB ← z(S);
23 else do
24 S ← TabuSearch(S)
25 if S is feasible to BP then do
26 Set infeasible ← .FALSE. and UB ← z(S);
27 end;
28 end;
29 end;
30 end;
31 if infeasible = .TRUE. then set nbins ← nbins + 1;
32 end;
33 if .NOT.infeasible then return S ∪ SMTRP ;
34 else return SBFD;
end HI BP.

Figure 4. Pseudo-code of the hybrid improvement procedure for
the bin packing problem

obtained by heuristic HI BP, we define their absolute difference as y − x and their
relative diference as (y − x)/x.

8.1. Test problems. We first considered two classes of test problems introduced
by Falkenauer [7]:

A HYBRID HEURISTIC FOR THE BIN PACKING PROBLEM 15

• uniform: formed by 80 instances with bin capacity C = 150 and randomly
generated weights between 20 and 100. There are 20 instances for each
value of n = 120 (u 120), n = 250 (u 250), n = 500 (u 500), and n = 1000
(u 1000). The optimal solutions of all these instances are known, see Valério
de Carvalho [30] and Gent [11]. Their optimal values coincide with the
simple lower bound L1 for 79 instances.

• triplets: harder problems in which each bin of the optimal solution is
completely filled with exactly three items. Their optimal values also co-
incide with the lower bound L1. Item weights are drawn from the range
(250,500) with bins of capacity C = 1000. There are 20 instances for each
value of n = 60 (t 60), n = 120 (t 120), n = 249 (t 249), and n = 501
(t 501).

We also used three classes of test problems from Scholl et al. [24]:

• set 1: formed by 720 instances with n = 50, 100, 200, 500, bin capacity
C = 100, 120, 150, and weights uniformly generated from different intervals
[1, 100], [20, 100], and [30, 100], constructed in a similar way to some of those
proposed by Martello and Toth [20].

• set 2: formed by 480 instances with n = 50, 100, 200, 500 and bin capacity
C = 1000, generated to accommodate more items (three to nine items per
bin in the average) in their optimal solutions than those in set 1.

• set 3: formed by ten difficult instances with n = 200, bin capacity C =
100000, and item weights drawn from the range [20000, 35000].

Reference [23] reports 704 proven optimal values for the instances of set 1, 477
for the instances of set 2, and three for the instances of set 3. The optimal values
of the 26 open instances in [23] were identified by using the new lower bound Lϑ

proposed in Section 3 or the cutting stock lower bound LCS (previously used by
Schwerin and Wäscher [27]). With the exception of the four last instances of set
set 1, all optimal values coincide with the reported upper bounds.

Three other test sets were also used:

• was 1: 100 instances from file sch wae1.bpp with bin capacity C = 1000,
n = 100, minimum item weight equal to 150, and maximum item weight
equal to 200.

• was 2: 100 instances from file sch wae2.bpp with bin capacity C = 1000,
n = 120, minimum item weight equal to 150, and maximum item weight
equal to 200.

• gau 1: 17 instances from file wae gau1.bpp

Instances from sets was 1 and was 2 were collected from [26, 27]. Set gau 1 is
formed by residual problems collected from [32] and reported by their authors as
difficult. All instances in these sets are available from [29].

Schwerin and Wäscher [26] described a problem generator and new classes of
test instances, characterized by four parameters: the bin capacity C, the number
of items n, a lower bound v1 · C to the item weights, and an upper bound v2 · C
to the item weights. Different combinations of these parameter values lead to 440
different classes of test problems. They generated 100 instances in each class. For
a given class, let p denote the number of instances from this class which were
solved to optimality by heuristic FFD. The authors defined that a class is said
to be extremely-ffd-hard if p < 20, ffd-hard if 20 ≤ p < 80, or ffd-easy if

16 A.C. ALVIM, C.C. RIBEIRO, F. GLOVER, AND D.J. ALOISE

p ≥ 80. We used the instance generator BPPGEN available in [29] to create 100
hard instances (i.e., instances for which the value of the solution obtained by FFD
is different from LCS) of each of the 145 ffd-hard or extremely-ffd-hard classes
and used them in the final part of our computational experiments, as reported in
Section 8.3.

8.2. Phases of HI BP. We now investigate the effectiveness of the different phases
of HI BP. To do so, we created three different variants of our heuristic. Variant C
performs only the construction phase. Variant C+R is an extension of the latter,
which also performs the redistribution phase. Finally, variant C+R+I corresponds
to the full algorithm HI BP and includes all phases (construction, redistribution,
improvement). Each variant may perform up to four attempts to build a feasible
solution to BP using the same lower bound. For this experiment, we consider the
subset formed by the 581 instances from sets uniform, triplets, set 1, set 2, and
set 3, for which the solution found by HI BP was not found directly by algorithm
BFD (line 2) or by MTRP (line 1).

The main results are summarized in Table 2. For each class, we first indicate
the number of instances. Next, we give the results observed by each variant: the
number of optimal solutions found and the total computation time in seconds over
all instances. We also give the percentage of the total time taken exclusively by
the last phase (improvement). The construction phase alone is very weak and the
optimal solutions for many instances are missed. Only 58% of the latter are solved
to optimality. The redistribution phase contributed to significantly increase the
number of instances solved to optimality, as well as to reduce the computation
times (since fewer attempts to find a feasible solution are performed). However,
no optimal solution was found for any of the particularly difficult triplet instances.
The two first phases combined were able to find the optimal solutions for 472 out of
the remaining (i.e., non-triplet) 501 instances (94%). The final improvement phase
is essential to solve the harder triplets class, whose optimal solutions have all
their bins completely full. The execution of the improvement phase improved upon
both the number of optimal solutions found and the computation times. Together,
the three phases of heuristic HI BP have been able to found the optimal solutions
to all 581 test instances in this set.

C C+R C+R+I
Class inst. opt. time (s) opt. time (s) opt. time (s) time (%)
uniform 74 41 42.30 68 1.92 74 2.65 87.17
triplets 80 0 144.97 0 123.39 80 78.36 99.06
set 1 173 111 5.28 154 2.94 173 122.00 98.25
set 2 244 185 171.99 240 44.56 244 6.09 71.59
set 3 10 0 4.39 10 1.73 10 46.00 96.48
Total 581 337 472 581

Table 2. Results after each phase of the hybrid improvement heuristic

8.3. Comparison with other approaches. We now compare the results ob-
tained by the hybrid improvement procedure with those obtained by other ap-
proaches reported in the literature. Heuristic HI BP was applied only once for each
instance, using the initial seed set to 1.

A HYBRID HEURISTIC FOR THE BIN PACKING PROBLEM 17

HI BP compares favorably with other approaches. We solved to optimality all in-
stances in the uniform and triplets classes solved by the exact method proposed
by Valério de Carvalho [30]. In the following, we compare our results with those
obtained by BISON [24] and by the best strategy Perturbation MBS’ + VNS among
those recently proposed by Fleszar and Hindi [9], considering the same classes of
instances used in these references. We first report in Table 3 the results obtained
by HI BP and Perturbation MBS’ + VNS. For each class, we give the number of
instances and, for each heuristic, the number of instances for which the optimal
solution was found, the maximum absolute deviation, the maximum relative devi-
ation, and the average and maximum computation times in seconds. The results
reported for Perturbation MBS’ + VNS were obtained on a 400 MHz Pentium and
extracted from Table VIII of [9]. Similar statistics are reported in Table 4, concern-
ing the comparison between HI BP and BISON. The results obtained for BISON, with
the processing time limited at 1000 seconds, were obtained on a PC 80486 DX2-66
and extracted from Tables 4, 5, and 6 of [24].

HI BP found optimal solutions for all instances of sets set 1, set 2, and set 3,
including the four instances from set 1 for which Alvim et al. [2] and Fleszar
and Hindi [9] improved the best known solutions. HI BP found optimal solutions
for 41 additional instances with respect to Perturbation MBS’ + VNS and for 37
additional instances with respect to BISON.

HI BP Perturbation MBS’ + VNS
max max time max max time

Class instances opt. abs. rel. (%) avg max opt. abs. rel. (%) avg max
u 120 20 20 0 0 0.00 0.01 20 0 0.00 0.02 0.04
u 250 20 20 0 0 0.12 2.20 19 1 0.95 0.03 0.16
u 500 20 20 0 0 0.00 0.01 20 0 0.00 0.04 0.14
u 1000 20 20 0 0 0.01 0.02 20 0 0.00 0.07 0.27
t 60 20 20 0 0 0.37 1.65 20 0 0.00 0.01 0.01
t 120 20 20 0 0 0.85 4.53 20 0 0.00 0.02 0.04
t 249 20 20 0 0 0.22 0.51 20 0 0.00 0.02 0.04
t 501 20 20 0 0 2.49 19.26 20 0 0.00 0.06 0.10
set 1 720 720 0 0 0.19 19.23 694 2 2.44 0.15 1.78
set 2 480 480 0 0 0.01 1.19 474 1 2.94 0.10 4.57
set 3 10 10 0 0 4.60 44.76 2 1 1.85 3.74 5.05
Total 1370 1370 1329

Table 3. HI BP vs. Perturbation MBS’ + VNS [9]

We also compared the results found by HI BP with those reported in [29], ob-
tained by heuristic MTPCS [27] with the backtracking limit set at 500, for the in-
stances of sets was 1, was 2, and gau 1. Table 5 reports the solution values found
by HI BP for 11 instances for which it improved the best results reported in [29].
HI BP missed the optimal solution for only five instances from gau 1 out of the 217
instances from was 1, was 2, and gau 1.

Finally, we compared the results obtained by HI BP for the 145 ffd-hard and
extremely-ffd-hard classes with those obtained by procedure MTPCS for the same
classes, with the time limit set at 1000 seconds, extracted from Table 1 of [27].

18 A.C. ALVIM, C.C. RIBEIRO, F. GLOVER, AND D.J. ALOISE

HI BP BISON
max max time max max time

Class instances opt. abs. rel. (%) avg max opt. abs. rel. (%) avg
set 1 720 720 0 0 0.19 19.23 697 2 2.38 32.4
set 2 480 480 0 0 0.01 1.19 473 1 2.94 16.3
set 3 10 10 0 0 4.60 44.76 3 1 1.85 700.2
Total 1210 1210 1173

Table 4. HI BP vs. BISON [24]

Class instance new value time
was 1 BPP81 18 0.07
was 2 BPP56 21 0.16

BPP71 21 0.26
TEST0097 12 0.01
TEST0055 15 0.00
TEST0049 11 0.00

gau 1 TEST0075 13 0.01
TEST0054 14 0.00
TEST0044 14 0.01
TEST0095 16 0.01
TEST0055 20 0.01

Table 5. Improved solutions for instances in sets was 1, was 2,
and gau 1

Tables 6, 7, 8, and 9 report the number of optimal solutions obtained by MTPCS
and the number of optimal solutions and the processing time (in seconds) of HI BP
for the 145 classes cited above. There are 100 instances in each of these classes,
which are characterized by different values of v1, v2, and n (the value of C = 1000
is fixed). HI BP obtained better results (i.e., more optimal solutions) than MTPCS
for the instances in 95 out of the 145 classes: all 15 classes in Table 6; 33 out of the
37 classes in Table 7; 38 out of the 58 classes in Table 8; and 9 out of the 35 classses
in Table 9. The superiority of HI BP over MTPCS is striking for some of these hard
classes of test problems. Considering e.g. the class defined by v1 = 0.15, v2 = 0.5,
and n = 200 in Table 8, HI BP found the optimal solutions for all 100 instances,
while MTPCS obtained only one of them. MTPCS performed slightly better than HI BP
for only four out of the 145 classes of instances in these tables. Table 10 summarizes
these results. HI BP performed consistently better than MTPCS, solving to optimality
97.9% of the instances in the 145 classes ffd-hard and extremely-ffd-hard, while
the latter found the optimal solutions for only 84.2% of the instances. The largest
average processing time of HI BP over all 145 classes was 5.54 seconds.

8.4. Robustness. We first give in Table 11 some statistics obtained over five runs
of each instance from u 120, u 250, u 500, u 1000, t 60, 120, t 249, t 501, set 1,
set 2, set 3, gau 1, was 1, and was 2 (7935 runs), with five consecutive seeds
starting from 1. For each class, we first report the number of instances, the total
number of runs, the number of runs for which the optimal solution was found,

A HYBRID HEURISTIC FOR THE BIN PACKING PROBLEM 19

n
v1 v2 80 100 120 140 160 180 200

MTPCS 93
0.5 HI BP 100

time (s) 0.01
MTPCS 87 79 75 83 41

0.6 HI BP 95 96 99 99 99
0.001 time (s) 0.08 0.08 0.02 0.04 0.03

MTPCS 78 70 74 71 51 53
0.7 HI BP 91 88 90 92 92 91

time (s) 0.16 0.23 0.25 0.22 0.24 0.29
MTPCS 50 58 49

0.8 HI BP 80 84 79
time (s) 0.74 0.76 0.93

Table 6. HI BP vs. MTPCS [27] (v1 = 0.001)

n
v1 v2 40 60 80 100 120 140 160 180 200

MTPCS 100 99 99 99
0.1 HI BP 100 100 100 100

time (s) 0.00 0.00 0.00 0.00
MTPCS 100

0.2 HI BP 100
time (s) 0.00
MTPCS 99 96

0.3 HI BP 100 100
time (s) 0.00 0.00
MTPCS 93 88

0.4 HI BP 100 100
0.05 time (s) 0.00 0.00

MTPCS 97 71 77 81 73 44 31
0.5 HI BP 99 100 100 99 100 100 100

time (s) 0.01 0.00 0.00 0.03 0.01 0.00 0.00
MTPCS 99 91 86 82 75 80 70 75 61

0.6 HI BP 99 98 95 98 98 98 100 99 99
time (s) 0.03 0.04 0.07 0.04 0.04 0.05 0.03 0.04 0.04
MTPCS 97 84 67 70 54 31 59

0.7 HI BP 95 92 91 94 88 84 94
time (s) 0.08 0.19 0.21 0.19 0.37 0.50 0.25
MTPCS 85 68 65 52 55

0.8 HI BP 94 86 89 91 88
time (s) 0.47 0.63 0.79 0.74 0.89

Table 7. HI BP vs. MTPCS [27] (v1 = 0.05)

the maximum absolute deviation from the optimal value, and the average and the
maximum computation times in seconds.

Heuristic HI BP may find an optimal solution at four different points. We also
report in this table the number of runs for which the optimal solution was found by
preprocessing, reductions, or algorithm BFD (P0), at some time along the construc-
tion phase (P1), at some time along the redistribution phase (P2), or during the
improvement phase (P3). As already observed by Scholl et al. [24], many instances
from classes set 1 and set 2 are easily solved by phase (P0) alone. Once again,
we notice that the tabu search algorithm used for infeasibility reduction in the im-
provement phase (P3) is absolutely necessary and was the only strategy which led
to the optimal solutions of the triplets class.

The four last columns in Table 11 indicate the number of runs for which the op-
timal solution originated from an initial solution constructed by DB3FD (H1), DBFD
(H2), DSSFD (H3), or LPT (H4), indicating the importance of using different strate-
gies to build the initial solutions. We performed some preliminary computational

20 A.C. ALVIM, C.C. RIBEIRO, F. GLOVER, AND D.J. ALOISE

n
v1 v2 20 40 60 80 100 120 140 160 180 200

MTPCS 100 100 100 100 100 100 100 100 100
0.2 HI BP 100 100 100 100 100 100 100 100 100

time (s) 0.01 0.00 0.02 0.02 0.15 0.04 0.09 0.08 0.07
MTPCS 100 100 97 94 87 82 63 27 15

0.3 HI BP 100 100 100 100 100 100 100 100 100
time (s) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MTPCS 100 99 100 98 97 96 95 90 90

0.4 HI BP 100 100 100 100 100 100 100 100 100
time (s) 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01
MTPCS 100 100 98 91 90 74 57 33 9 1

0.15 0.5 HI BP 99 100 99 100 100 100 100 100 100 100
time (s) 0.00 0.01 0.03 0.00 0.05 0.08 0.08 0.03 0.04 0.07
MTPCS 100 100 98 93 83 79 78 72 74

0.6 HI BP 100 98 100 98 100 97 98 96 100
time (s) 0.01 0.03 0.05 0.05 0.09 0.11 0.17 0.27 0.15
MTPCS 100 100 98 96 90 75 82 69 68

0.7 HI BP 100 100 98 99 96 100 91 96 92
time (s) 0.00 0.03 0.11 0.15 0.44 0.40 1.24 0.95 1.63
MTPCS 98 96 98

0.8 HI BP 99 98 96
time (s) 0.28 0.50 0.74

Table 8. HI BP vs. MTPCS [27] (v1 = 0.15)

n
v1 v2 20 40 60 80 100 120 140 160 180 200

MTPCS 100 100 100 100 100 100 100 99 99 97
0.4 HI BP 100 100 100 100 100 100 100 100 100 100

time (s) 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00
MTPCS 100 100 100 100 100 100 99 98 89 59

0.5 HI BP 100 100 100 100 100 100 100 100 100 100
0.25 time (s) 0.00 0.00 0.06 0.05 0.10 0.50 1.14 2.44 2.77 5.54

MTPCS 100 100 100 100 100 100 99 100 100
0.6 HI BP 100 100 100 100 100 100 100 100 100

time (s) 0.00 0.01 0.03 0.06 0.05 0.09 0.13 0.14 0.17
MTPCS 100 100 74 100 100 100

0.7 HI BP 100 100 100 100 100 100
time (s) 0.00 0.05 0.04 0.12 0.12 0.10

Table 9. HI BP vs. MTPS [27] (v1 = 0.25)

MTPCS HI BP
classes v1 instances opt. % opt. %

extremely-ffd-hard 0.250 1900 1839 96.8 1900 100.0
0.150 3600 2759 76.6 3567 99.1

ffd-hard 0.250 1600 1574 98.4 1600 100.0
0.150 2200 2171 98.7 2183 99.2
0.050 3700 2853 77.1 3568 96.4
0.001 1500 1012 67.5 1375 91.7

Total 14500 12208 84.2 14193 97.9
Table 10. HI BP vs. MTPCS [27]

experiments using each time only a randomized version of each of these four heuris-
tics. We noted that even if more than Maxtrials = 4 attempts were allowed, none
of them was able to build initial solutions capable of leading to optimal solutions
for all instances. Diversity in the construction heuristics was necessary and the four

A HYBRID HEURISTIC FOR THE BIN PACKING PROBLEM 21

Time Phase Construction heur.

Class runs opt. Dev. avg max. P0 P1 P2 P3 H1 H2 H3 H4

u 120 100 100 0 0.00 0.01 30 40 0 30 70 0 0 0
u 250 100 100 0 0.15 3.19 0 55 10 35 100 0 0 0
u 500 100 100 0 0.00 0.01 0 20 75 5 100 0 0 0
u 1000 100 100 0 0.01 0.03 0 0 90 10 100 0 0 0

t 60 100 100 0 0.33 2.53 0 0 0 100 89 9 2 0
t 120 100 100 0 1.14 6.88 0 0 0 100 88 9 3 0
t 249 100 100 0 0.29 2.91 0 0 0 100 100 0 0 0
t 501 100 100 0 1.24 19.26 0 0 0 100 99 1 0 0

set 1 3600 3596 1 0.20 23.89 2735 340 230 291 833 22 4 2
set 2 2400 2400 0 0.01 1.89 1180 300 760 160 1215 0 5 0
set 3 50 50 0 4.71 50.61 0 0 40 10 50 0 0 0

gau 1 85 60 1 0.60 2.40 10 0 50 0 50 0 0 0

was 1 500 500 0 0.02 0.14 0 0 415 85 500 0 0 0

was 2 500 500 0 0.02 3.58 0 0 480 20 500 0 0 0

Total 7935 7906

Table 11. Run statistics for HI BP with five different seeds each

algorithms were instrumental to lead to optimal solutions for all instances. It is
worth noting that optimal solutions were found in 7906 runs out of a total of 7935
(five runs for each of the 1587 test instances). The 29 exceptions occurred in four
runs of class set 1 and in 25 runs of gau 1.

These results illustrate the robustness of the hybrid improvement heuristic. We
also notice that the lower bound computed by HI BP does not coincide with the
optimal value for only 47 out of the 1587 instances considered in Table 11 (one
instance from u 250, 43 instances from set 1, one instance from set 3, and two
instances from gau 1). These are also precisely the same instances were the largest
computation times were observed.

9. Concluding remarks

Our hybrid improvement procedure for the bin packing problem has several
features: the incorporation of lower bounding strategies; the generation of initial
solutions by reference to the dual min-max problem; the use of load redistribution
based on dominance, differencing, and unbalancing; and an improvement process
utilizing tabu search. The move selection strategy used by the tabu search improve-
ment procedure is a major contribution of this work and very likely can be applied
to other problems in similar situations.

Encouraging results have been obtained for different sets of benchmark instances,
clearly showing the robustness of the algorithm. We improved the best known
solution for 11 instances from [29]. Procedure HI BP also improved the best solutions
found by a recent VNS procedure [9] for 41 instances. Also, HI BP performed much
better than MTPCS [27] for a quite large set of difficult instances. We note that the
best results previously reported in the literature were not all of them obtained by
a single heuristic. Although other heuristics were able to find similar results for
some classes of test problems, our algorithm is the only one that has succeeded in
finding the best known results for all instances.

22 A.C. ALVIM, C.C. RIBEIRO, F. GLOVER, AND D.J. ALOISE

An extension of heuristic HI BP was recently applied to the multiprocessor sched-
uling problem. Promising computational results will be reported elsewhere.

Acknowledgments: We thank two anonymous referees for several valuable com-
ments that contributed to improve the final presentation of this paper. Work of
A. Alvim was supported by doctorate scholarships of CAPES and CNPq and was
partially done while she was visiting the Laboratory PRiSM at the University of
Versailles, France. The first author is grateful to E. Uchoa for fruitful discussions.

References

[1] A.C.F. Alvim, F. Glover, C.C. Ribeiro, and D.J. Aloise, “Local search for the bin
packing problem”, Extended Abstracts of the 3rd Metaheuristics International Conference,
7–12, Angra dos Reis, 1999.

[2] A.C.F. Alvim, D.J. Aloise, F. Glover, and C.C. Ribeiro, “A hybrid improvement heuris-
tic for the bin packing problem”, Extended Abstracts of the 4th Metaheuristics International
Conference, 63–68, Porto, 2001.

[3] M. Dell’Amico and S. Martello, “Optimal scheduling of tasks on identical parallel pro-
cessors”, ORSA Journal on Computing 7 (1995), 191–200.

[4] M.F. Argüello, T.A. Feo, and O. Goldschmidt, “Randomized methods for the number
partitioning problem”, Computers and Operations Research 23 (1996), 103–111.

[5] E.G. Coffman, Jr., M.R. Garey, and D.S. Johnson, “Approximation algorithms for bin
packing: A survey”, in Approximation Algorithms for NP-Hard Problems (D. Hochbaum,
ed.), 46–93, PWS Publishing, 1997.

[6] H. Dyckhoff, “A typology of cutting and packing problems”, European Journal of Opera-
tional Research 44 (1990), 145–159.

[7] E. Falkenauer, “A hybrid grouping genetic algorithm for bin packing”, Journal of Heuris-
tics 2 (1996), 5–30.

[8] S.P. Fekete and J. Schepers, “New classes of fast lower bounds for bin packing problems”,
Mathematical Programming 91 (2001) 1, 11–31.

[9] K. Fleszar and K. Hindi, “New heuristics for one-dimensional bin packing”, Computers
and Operations Research 29 (2002) 7, 821–839.

[10] M.R. Garey and D.S. Johnson, Computers and intractability: A guide to the theory of
NP-completeness, W.H. Freeman and Company, 1979.

[11] I. Gent, “Heuristic solution of open bin packing problems”, Journal of Heuristics 3 (1998),
299-304.

[12] F. Glover and M. Laguna, Tabu search, Kluwer Academic Publishers, 1997.
[13] R. L. Graham, “Bounds on multiprocessing timing anomalies”, SIAM Journal of Applied

Mathematics 17 (1969), 416–429.
[14] S.T. Hackman, M. Magazine, and T. Wee, “Fast, effective algorithms for simple assembly

line balancing problems”, Operations Research 37 (1989), 916–924.
[15] P. Hansen and N. Mladenović, “An introduction to variable neighbourhood search”, in

Metaheuristics: Advances and Trends in Local Search Procedures for Optimization (S. Voss,
S. Martello, I.H. Osman, and C. Roucairol, eds.), 433–458, Kluwer, 1999.

[16] R. Hübscher and F. Glover, “Applying tabu search with influential diversification to
multiprocessor scheduling”, Computers and Operations Research 21 (1994), 877–884.

[17] N. Karmarkar and R.M. Karp, “The differencing method of set partitioning”, Report
UCB/CSD 82/113, Computer Science Division, University of California, Berkeley, 1982.

[18] N. Karmarkar and R.M. Karp, “An efficient approximation scheme for the one-

dimensional bin packing problem”, in Proceedings of the 23rd. Symposium on Foundations
of Computer Science, 312–320, IEEE Computer Society, 1982.

[19] R.M. Karp, “Reducibility among combinatorial problems”, in Complexity of Computer
Computations (R.E. Miller and J.M. Thatcher, eds.), 85–103, Plenum Press, 1972.

[20] S. Martello and P. Toth, Knapsack problems: Algorithms and computer implementa-

tions, Wiley, 1990.
[21] S. Martello and P. Toth, “Lower bounds and reduction procedures for the bin packing

problem”, Discrete Applied Mathematics 28 (1990), 59–70.

A HYBRID HEURISTIC FOR THE BIN PACKING PROBLEM 23

[22] J. E. Schoenfield, “Fast, exact solution of open bin packing problems without linear
programming”, Working paper, 2002.

[23] A. Scholl, online document at

http://www.bwl.tu-darmstadt.de/bwl3/forsch/projekte/binpp/index.htm, last visited
on April 13, 2003.

[24] A. Scholl, R. Klein, and C. Jürgens, “BISON: A fast hybrid procedure for exactly solving
the one-dimensional bin packing problem”, Computers and Operations Research 24 (1997),
627–645.

[25] A. Scholl and S. Voss, “Simple assembly line balancing - Heuristic approaches”,Journal
of Heuristics 2 (1996), 217–244.

[26] P. Schwerin and G. Wäscher, “The bin-packing problem: A problem generator and some
numerical experiments with FFD packing and MTP”, International Transactions in Oper-
ational Research 4 (1997), 377–389.

[27] P. Schwerin and G. Wäscher, “A new lower bound for the bin-packing problem and its
integration into MTP”, Pesquisa Operacional 19 (1999), 111–129.

[28] N.Y. Soma, H.H. Yanasse, and N. Maculan, “A heuristic for the bin packing problem”,
presented at the IFORS Triennial Conference, Beijing, 1999.

[29] Special Interest Group on Cutting and Packing, online document at

http://www.apdio.pt/sicup/Sicuphomepage/research.htm, last visited on April 13,
2003.

[30] J.M. Valério de Carvalho, “Exact solution of bin-packing problems using column gener-
ation and branch-and-bound”, Annals of Operations Research 86 (1999), 629–659.

[31] F. Vanderbeck, “Computational study of a column generation algorithm for bin packing
and cutting stock problems”, Mathematical Programming 86 (1999), 565–594.

[32] G. Wäscher and T. Gau, “Heuristics for the integer one-dimensional cutting stock problem:
A computational study”, OR Spektrum 18 (1996), 131–144.

(A.C. Alvim) Department of Computer Science, Catholic University of Rio de Janeiro,

Rua Marquês de São Vicente 225, Rio de Janeiro, 22453-900, Brazil.

E-mail address, A.C. Alvim: alvim@inf.puc-rio.br

(C.C. Ribeiro) Department of Computer Science, Catholic University of Rio de Janeiro,

Rua Marquês de São Vicente 225, Rio de Janeiro, 22453-900, Brazil.

E-mail address, C.C. Ribeiro: celso@inf.puc-rio.br

(F. Glover) Leeds School of Business, University of Colorado at Boulder, Boulder,

CO 80309-0419, United States.

E-mail address, F. Glover: Fred.Glover@colorado.edu

(D.J. Aloise) Universidade Federal do Rio Grande do Norte, Department of Computer

Science and Applied Mathematics, Natal, RN 59078-970, Brazil.

E-mail address, D.J. Aloise: dario@digi.com.br

