INFORMS Journal on Computing

Vol. 16, No. 3, Summer 2004, pp. 232-240
1ssN 0899-1499 | E1ssN 1526-5528 | 04 | 1603 | 0232

1orms})

Dpo110.1287 /ijoc.1030.0049
©2004 INFORMS

DNA Sequencing—Tabu and Scatter
Search Combined

Jacek Blazewicz

Institute of Computing Science, Poznan University of Technology, Piotrowo 3A, 60-965 Poznari, Poland, and
Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12, 61-704 Poznari, Poland, blazewic@put.poznan.pl

Fred Glover

Leeds School of Business, University of Colorado, Boulder, Colorado 80309-0419,
USA, fred.glover@colorado.edu

Marta Kasprzak

Institute of Computing Science, Poznari University of Technology, Piotrowo 3A, 60-965 Poznan, Poland, and
Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12, 61-704 Poznari, Poland, marta@cs.put.poznan.pl

In this paper, a tabu-search algorithm enhanced by scatter search is presented. The algorithm solves the DNA
sequencing problem with negative and positive errors, yielding outcomes of high quality. We compare the
new method with two other metaheuristic approaches: a previous tabu-search method and a hybrid genetic
algorithm, and also with an old branch-and-bound approach.

Key words: heuristics; integer programming; computational molecular biology
History: Accepted by Michel Gendreau; received April 2001; revised April 2002, December 2002, May 2003;

accepted July 2003.

1. Biochemical Preliminaries and

Problem Formulation

DNA sequencing is one of the most important prob-
lems in computational molecular biology. The goal
is to determine a sequence of nucleotides of a DNA
fragment. Such a fragment is usually written as a
sequence of the letters A, C, G, and T, represent-
ing four nucleotides composing the fragment, i.e.,
adenine, cytosine, guanine, and thymine, respectively.
A short sequence of nucleotides is called an oligo-
nucleotide. The sequencing process uses as input data
a set of oligonucleotides of equal length, which are
subsequences of one strand of the examined DNA
fragment, and are derived from a hybridization exper-
iment. Next, an original sequence of a known length
is reconstructed, taking advantage of the fact that the
oligonucleotides overlap one another.

In the hybridization experiment (Bains and Smith
1988, Lysov et al. 1988, Southern 1988, Drmanac et al.
1989), a complete oligonucleotide library is compared
with many copies of one strand of the examined DNA
fragment. The library consists of all (4') short one-
strand DNA fragments of length I. In order to use
the library, fragments are constructed in a special
way on a DNA chip (Southern 1988, Fodor et al.
1991, Pease et al. 1994), where each element of the
library has unique coordinates of the chip. During the
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hybridization reaction, copies of the longer DNA frag-
ment join to oligonucleotides from the library in their
complementary locations. Then, as a result of reading
a fluorescent image of the chip, one obtains a set of
oligonucleotides that are subfragments of the exam-
ined DNA fragment. This set is named the spectrum.

If the hybridization experiment were executed
without errors, then the spectrum would be ideal, i.e.,
it would contain only all subsequences of length [
of the original sequence of the known length n. In
this case, the spectrum consists of n — [+ 1 elements
and to reconstruct the original sequence one must
find an order of spectrum elements such that neigh-
boring elements always overlap on [ — 1 nucleotides
(see Example 1). There are several exact methods for
solving the DNA sequencing problem with the ideal
spectrum, described for example in Bains and Smith
(1988), Lysov et al. (1988), or in Drmanac et al. (1989),
but only the one proposed in Pevzner (1989) works in
polynomial time.

ExaMPLE 1. Suppose the original sequence to be
found is ACTCTGG, n = 7. In the hybridization
experiment one can use, for example, the complete
library of oligonucleotides of length [ =3, composed
of the following 4° = 64 oligonucleotides: {AAA,
AAC, AAG, AAT, ACA, ..., TTG, TTT}. As a result of
the experiment performed without errors one obtains
the ideal spectrum for this sequence, containing all



Btazewicz, Kasprzak, and Glover: DNA Sequencing—Tabu and Scatter Search Combined

INFORMS Journal on Computing 16(3), pp. 232-240, ©2004 INFORMS

233

Figure 1 The Reconstruction of the Original Sequence from the Ideal

Spectrum

three-letter substrings of the original sequence: {ACT,
CTC, CTG, TCT, TGG}. The reconstruction of the
sequence consists of finding such an order of the
spectrum elements, where each pair of neighboring
elements overlaps on | —1 =2 letters. The only possi-
ble solution for the example is presented in Figure 1.
The overlapping letters of all the neighboring pairs
have been framed. O

However, the hybridization experiment usually
produces errors in the spectrum. There are two
types of errors: negative ones, i.e., missing oligonu-
cleotides in the spectrum, and positive ones, which
are erroneous oligonucleotides. Every repetition of
an oligonucleotide within the sequence is treated as
a negative error, since the hybridization experiment
cannot detect the number of occurrences of oligonu-
cleotides in the sequence (it checks only for their
presence). The presence of negative errors forces over-
lapping between some neighboring oligonucleotides
in a sequence on fewer than [ — 1 letters. The pres-
ence of positive errors in the spectrum forces some
oligonucleotides to be rejected during the reconstruc-
tion process. The existence of errors in the DNA
sequencing results in strongly NP-hard combinatorial
problems (Blazewicz and Kasprzak 2003). There exist
exact and heuristic methods assuming errors in the
spectrum, but almost all of them consider a reduced
model of errors (Pevzner 1989, Drmanac et al. 1991,
Lipshutz 1993, Hagstrom et al. 1994, Blazewicz et al.
1997, Halperin et al. 2002). The only exact method
for the DNA-sequencing problem that allows for any
type of errors and requires no additional information
about the spectrum was presented in Blazewicz et al.
(1999b). It generates solutions composed of a maximal
number of spectrum elements (a version of the selec-
tive traveling-salesman problem), which leads to the
reconstruction of the original sequences (see Exam-
ple 2). The same criterion function has been used in
metaheuristic methods for the problem with the most
general model of errors (Btazewicz et al. 1999a, 2000,
2002). The problem can be formulated as follows.

DNA sequencing with negative and positive errors—
search version

Instance: Set S (spectrum) of words of equal length /
over the alphabet {A, C, G, T}, the length 7 of an orig-
inal sequence.

Goal: Find a sequence of length < n containing the
maximal number of elements of S.

The mathematical-programming formulation of the
problem is given below.

iisz"‘l 1
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where:

S = the spectrum,

s; =an element of the spectrum,

z = the cardinality of the spectrum,

n = the length of an original sequence,

I =the length of a spectrum element,

b; = a boolean variable equal to 1 if element s; is
the immediate predecessor of element s; in a solution;
otherwise it is equal to 0,

c; =a cost of a connection of element s; with ele-
ment s; equal to the difference between I and a num-
ber of letters of the common part of s; and s; coming
from their maximal overlapping.

The maximized criterion function (1) is equivalent
to the number of spectrum elements composing the
solution. Inequalities (2) and (3) guarantee that every
element of the spectrum will be joined in the solu-
tion with, respectively, at most one element from the
left side and at most one element from the right side.
The addition of equation (4) ensures that exactly two
elements connected from only one side with other ele-
ments will appear in the solution. These elements will
constitute the beginning and the end of the recon-
structed sequence. Supplying the above formulation
with (5) allows to eliminate the solutions includ-
ing subcycles of elements (when an element in the
solution is simultaneously a successor and the imme-
diate predecessor of another element from the solu-
tion). According to (6) the length of the reconstructed
sequence cannot exceed its known length (the length
can be shorter, for example, in case of negative errors
appearing at the end of the sequence).
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ExampPLE 2. To make the problem of the DNA
sequencing computationally hard (on the basis of the
spectrum from Example 1), we introduce some errors
into the spectrum. Let the negative error be CTC, and
the positive errors be CAA and TTG. Then the spec-
trum would have the following components: {ACT,
CAA, CTG, TCT, TGG, TTG}. The use of the criterion
function from Blazewicz et al. (1999b), i.e., the max-
imization of the number of spectrum elements com-
posing the solution of length not greater than n=7,
would produce here the following two orders of
oligonucleotides: (ACT, TCT, CTG, TGG) and (CAA,
ACT, CTG, TGQG), resulting in the two optimal solu-
tions: ACTCTGG and CAACTGG, respectively. One
of them is the original sequence. However, data com-
ing from real hybridization experiments usually allow
for a reconstruction of only one optimal solution. O

In this paper, we present a new metaheuristic algo-
rithm for the DNA-sequencing problem with neg-
ative and positive errors. The algorithm is based
on the tabu-search approach from Btazewicz et al.
(1999a) enhanced by scatter search. The computa-
tional outcomes have been compared with the results
of two other metaheuristic approaches: a previous
tabu-search method (Btazewicz et al. 1999a) and a
hybrid genetic algorithm (Blazewicz et al. 2002). The
new results provide notable improvements, yield-
ing sequences of very high similarity to the original
sequences, despite the fact that computationally hard
instances have been used in the tests, thus introduc-
ing a high percentage of errors.

2. The Algorithm

2.1. General Remarks

The algorithm proposed in this paper uses the same
criterion function as the previous methods (Btazewicz
et al. 1999a, b, 2002) for solving the DNA-sequencing
problem with negative and positive errors. The goal is
to maximize the number of elements from a spectrum,
composing a solution being a sequence of nucleotides
not longer than 7 (it can be shorter in the case of
negative errors at the end). The criterion function
is justified by the fact that most of the information
from the hybridization experiment is correct. Other-
wise, it would be impossible to reconstruct an origi-
nal sequence without additional information, which is
hard to obtain. The algorithm also accepts the general
model of errors, i.e., it assumes that any types of errors
are possible in a spectrum. Thus, as the input to the
algorithm we have only a spectrum (an arbitrary set
of words of equal length I) and a value of n. The
main scheme of the algorithm is based on tabu search
(Glover and Laguna 1997), utilizing scatter search
(Glover 1977, 1999) as a part of the diversification
strategy.

In our approach the spectrum is represented by two
data structures: an ordered list of oligonucleotides
composing a current solution, and an unordered set
of remaining oligonucleotides, called a trash set. At
each stage of the computation, the number of ele-
ments from the list cannot be greater than the one that
would produce a sequence of at most n nucleotides
(with maximal possible overlapping of the neighbors
on the list). To satisfy this constraint, only the moves
that do not lead to sequences of length greater than n
are considered. Such moves are called feasible. After
restricting our attention to such moves, each solution
generated during the computation is acceptable. Of
course, oligonucleotides never appear more than once
on the list representing the solution.

At the beginning, an initial solution is created by
the greedy heuristic from Blazewicz et al. (1999b). The
first oligonucleotide on the list is chosen at ran-
dom, and successive elements are added according
to the following rule. For each candidate oligonu-
cleotide, consider the sum of numbers of overlap-
ping letters (assuming maximal possible overlaps):
(a) between the last element on the list and the consid-
ered oligonucleotide, and (b) between the considered
oligonucleotide and its best possible successor. Then
we choose the candidate to add next that gives a max-
imum value across all such pairs. Of course, in every
step only oligonucleotides not yet used are taken into
account. This heuristic, although simple, often gen-
erates solutions whose criterion function values are
close to the optimum. On the other hand, a num-
ber of cases exists where the greedy heuristic does
not do so well. In addition, most methods can get
answers of similar quality, but the advantage of get-
ting answers that remove the last gap between “good”
and “extremely good” is very important, and thus the
need for more powerful procedures arises.

Three basic types of moves are used: an insertion
(a move transferring an oligonucleotide from the trash
set to the solution), a deletion (a move transferring
an oligonucleotide from the solution to the trash set),
and a shift (a move within the solution). Actions
on single oligonucleotides are seldom sufficient, so
we have added moves using clusters. A cluster is
a group of neighboring elements from the solution,
linked together with overlaps on [ —1 letters in each
case. Because insertion, deletion, or shift can change
the composition of a cluster, the list of clusters is
updated after every move. They are remembered as
pairs of positions within the current solution: The
first position identifies the beginning of a cluster,
the second one identifies its end. Clusters exist only
within the solution; they are broken into separate ele-
ments once transferred to the trash set. In sum, the
set of moves is defined specifically as follows: inser-
tion of an oligonucleotide, deletion of an oligonu-
cleotide or a cluster, and shift of an oligonucleotide or
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a cluster. The following rules, limiting the application
of the moves, have been established:

* A cluster may be shifted only if it does not break
another cluster.

¢ Only an oligonucleotide outside a cluster may be
shifted, provided it does not break any cluster.

¢ Only an oligonucleotide outside a cluster or con-
stituting one of the cluster’s ends may be deleted.
These rules avoid moves that would entail an exten-
sion of the computation time without affording an
appreciable gain in solution quality.

2.2. Overview of the Tabu-Search and
Scatter-Search Procedures

We first give a general description of the tabu-search
and scatter-search components of our method, and
then provide a summarizing pseudo-code descrip-
tion. In our tabu-search method, inserted or shifted
oligonucleotides are remembered by storing them on
the tabu list for a given number of iterations. The list is
checked if an attempt to shift or to delete an oligonu-
cleotide is made, and these moves are prevented if the
oligonucleotide is on the list. It does not appear nec-
essary to remember clusters shifted in order to avoid
cycling, since clusters often change after a move. An
element found on the tabu list may be deleted or
shifted together with the cluster containing it. The ele-
ment also may be deleted if there is no other feasible
move. In such a case, an element that has been on
the tabu list for the greatest number of iterations is
chosen.

The global criterion function to be maximized is the
number of spectrum elements composing the solu-
tion. On the other hand, a function that is able to
compare all kinds of moves is a condensation, defined
for each solution to be the ratio of the number of
oligonucleotides from the spectrum in the solution
to the number of nucleotides in the solution. If the
moves were compared by the global criterion func-
tion, deletions or shifts would be used very rarely.
Maximizing the condensation causes the initial solu-
tion to be transformed into a series of collections of
well-matched oligonucleotides. (If a maximal value of
the condensation is achieved by more than one move,
the method selects the move resulting in the greatest
number of elements in the solution. Consequently,
insertion is the most preferred move with shifts, with
deletion of an oligonucleotide and deletion of a clus-
ter being next.) Obviously, using the condensation as
the only criterion for choosing a move would lead
after a number of iterations to creating a single clus-
ter of length (in nucleotides) much less than n. This
is why we decided to use both functions simultane-
ously (the global one and the condensation) during
the search for a solution: The first one lengthens the
current solution, and the second one condenses it. The

formal dependence of these functions is shown in
the pseudo-code description of the algorithm (§2.3).
The above process of improving the current solution
is the intensification part of the algorithm. The diversi-
fication strategy is described in the next subsections,
and its elements are extending moves and restarts
based on the scatter search.

22.1. Uses of Frequency Memory. Extending
moves are feasible moves selected by the use of
frequency-based memory instead of the condensation
function. They are executed after a given number of
condensing moves without improvement to the value
of the global criterion function. The frequency-based
memory is a tabu-search structure that remembers
the number of times each element from the spectrum
appears in solutions. Thus, for example, an element
contained in all solutions generated so far has its fre-
quency value equal to the number of iterations of
the algorithm, and an element never used for con-
structing solutions has the frequency value equal to 0.
There are two types of extending moves: the inser-
tion of an oligonucleotide and the deletion of an
oligonucleotide. The more highly preferred move is
the insertion, and the oligonucleotide with the lowest
frequency value is chosen. If no insertion is possible,
the oligonucleotide of the highest frequency value is
deleted from the solution.

After the execution of extending moves, the algo-
rithm returns to the normal scheme with the conden-
sation as the criterion function. Such a combination
of condensing and extending the solution guarantees
that the number of oligonucleotides will increase from
some value in the initial solution to a near-optimal
or even optimal value in the final one. The use
of frequency-based memory forces the inclusion of
elements that are not well-matched into the solution,
which would be impossible using the condensation
function only. Several forms of frequency-based mem-
ory are elements of more general tabu-search formu-
lations (see, e.g., Glover and Laguna 1997), and we
have used only one of them. Our choice in this case is
to provide a diversification strategy for the algorithm
that operates through a series of extending moves.

Diversification is also present in the procedure of
restarting the algorithm, based on the scatter-search
approach, described below.

2.2.2. The Scatter-Search Component. During a
given number of cycles of condensing and extend-
ing moves, our scatter-search approach constructs a
reference set by remembering a selected number of the
best generated solutions. The reference set is used in
our present method as a source to generate a new ini-
tial solution within the restart procedure. This use of
scatter search to guide the restarting process is dif-
ferent from its customary role, which operates within
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the main body of the algorithm. (In this regard, our
present approach embodies elements of the structured
combination processes proposed in Glover 1994.)

A solution is a candidate to enter the reference set
if it is better than one of the solutions in the set, i.e.,
it has a greater value of the global criterion func-
tion. The worst solution from the set is then deleted.
To avoid the situation where a number of highly sim-
ilar good solutions (e.g., differing by only one move)
fill the set, the set can be updated only if at least ten
moves have been executed after the last update. The
greater the difference between solutions in the set, the
greater the possibility of a good restart for the next
intensification cycle. This restriction is not used when
considering a solution better than all the solutions
present in the set. (An alternative strategy for main-
taining a diversifying influence within the reference
set, which has proved highly effective in other set-
tings, divides the set into two tiers, where solutions
are evaluated for membership in the second tier based
on their diversification properties; see, e.g., Glover
et al. 2000.)

After that, we generate a solution using the greedy
heuristic, in the same way as at the beginning of
the algorithm. This solution replaces the worst one
from the reference set, because it usually has a large
global criterion-function value and differs from the
ones present in the set (a next element of the diversifi-
cation strategy). Then we generate on the basis of the
reference set a new solution, again using the greedy
heuristic. However, this time the heuristic does not
operate on all possible connections between oligonu-
cleotides from the spectrum but takes into account
only the connections that are present within the solu-
tions from the set. (An exception occurs when the
current element has no successors. Then the method
chooses as its successor some not-yet-used oligonu-
cleotide.) Hence, the graph representing the con-
nections becomes rather sparse, as opposed to the
complete graph in the previous application of the
heuristic. Now, as the first oligonucleotide in the solu-
tion we consider in turn all spectrum elements, and
the solution having the greatest value of the global
criterion function is chosen as the new initial solution
for the next cycle of condensing and extending moves.
At the end, all algorithm variables are set to initial
values (except for the variables remembering the best
solution found so far), and the next search process can
start, independently of the previous ones. The num-
ber of restarts is a parameter of the algorithm and, at
the end, the solution containing the largest number of
oligonucleotides from the spectrum, found so far, is
returned by the algorithm.

The scatter-search component succesfully enhances
the previous tabu-search algorithm (Blazewicz et al.

1999a) by an evolutionary design, generating new ini-
tial solutions in the restart procedure on the basis of
a population of very good solutions found between
restarts. The greedy heuristic composing a new initial
solution from the population is quite deterministic,
in contradiction to the analogous procedure from the
hybrid genetic algorithm (Blazewicz et al. 2002), and it
results in better final solutions, as demonstrated in §3.

2.3. A Pseudo-Code Description
The algorithm is presented below in pseudo-code
description.
e generate an initial solution
e while not all intensification stages
performed do
e while not all cycles of condensing and
extending moves performed do
e while not all condensing moves without
improvement to the global criterion
function value performed do
e execute a feasible move of the
greatest condensation value
e if new solution is the best one
generated so far according to
global criterion function then
store it
e while not all extending moves
performed do
e execute insertion of an
oligonucleotide with smallest
frequency value; if not possible,
execute deletion of an
oligonucleotide with largest
frequency value
e if new solution is the best one
generated so far according to
global criterion function then
store it
e restart the search process using scatter
search
e return the solution of maximum value of the
global criterion function

3. Computational Testing and Results
In the computational experiments, the proposed algo-
rithm has been compared with the two other meta-
heuristic approaches: a previous tabu-search method
described in Blazewicz et al. (1999a), using only the
greedy procedure to generate initial solutions, and a
hybrid genetic algorithm from Btazewicz et al. (2002).
Below we cite results from Blazewicz et al. (2002),
comparing the two previous metaheuristics (Tables 1
and 2), and we add results of the new algorithm for
the same instances, on the same computer. We addi-
tionally tested the old branch-and-bound algorithm
for the same problem (Btazewicz et al. 1999b).
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Table 1 Results of the Previous Tabu-Search Algorithm

Spectrum size 100 200 300 400 500
Average quality 80.0 158.6 2355 313.8 391.1
Optimal quality 80 160 240 320 400
Optimum number 40 24 11 6 2
Average similarity score (points) 108.4 1841 196.6 229.5 2351
Average similarity score (%) 99.7 940 818 781 731

Average computation time (sec) 141 608 177.7 2583 4715

The experiment was performed on a PC with a
Pentium II 300 MHz processor, 256 MB RAM, and the
Linux operating system. All spectra used in the exper-
iment were derived from DNA sequences coding
human proteins (taken from GenBank, National
Institutes of Health, USA). The spectra contain 20%
random negative errors and 20% random positive
errors. Because cardinalities of the spectra vary from
100 to 500 oligonucleotides, they contain from 40
to 200 errors (in the latter case 100 randomly cho-
sen oligonucleotides are missing and in addition 100
oligonucleotides in a spectrum are erroneous). The
spectra have been sorted alphabetically, thus no infor-
mation about an original order of oligonucleotides
in the sequences has been kept. The size of oligonu-
cleotides is in all cases equal to 10. The lengths of orig-
inal sequences (109 < n < 509) and of oligonucleotides
(I =10) were chosen on the basis of real hybridization
experiments (cf. Pease et al. 1994). However, all algo-
rithms accept any values of n and /, provided [ <n.

The sequences produced by the methods were
compared with original sequences using a classical
pairwise alignment algorithm (Waterman 1995). The
algorithm was called with the following parameters:
a match (the same nucleotides at a given position
in strings) brings a profit of 1 point, a mismatch
(different nucleotides) brings a penalty of 1 point
(i.e., —1) and a gap (a nucleotide against a space at
the same position in the second string) also brings
a penalty of 1 point. Therefore, the highest score
(similarity) would equal the number of nucleotides in
the sequences (in case the two sequences are identical)
and the lowest score would equal the number of
nucleotides in the longer sequence multiplied by —1
(in case the two sequences are completely different).

Parameters of the previous tabu-search algorithm
were set to values resulting in computation times

Table 2 Results of the Hybrid Genetic Algorithm

Spectrum size 100 200 300 400 500
Average quality 80.0 1594 237.6 3159 393.2
Optimal quality 80 160 240 320 400
Optimum number 40 31 20 9 5
Average similarity score (points) 108.4 199.3 2741 301.7 326.0
Average similarity score (%) 99.7 977 943 869 820

Average computation time (sec) 135 634 1549 2634 4379

similar to those used by the hybrid genetic algo-
rithm. The parameters of the new algorithm keep the
same values to enable improvements caused by the
changed restart procedure to be observed. The only
new parameter is the cardinality of the reference set
for scatter search. The parameters and their values are
listed here:

¢ the number of condensing moves performed
without improvement of the value of the global crite-
rion function: 2;

¢ the number of extending moves: 4;

¢ the number of the cycles of condensing and
extending moves: 300;

¢ the number of intensification stages (i.e., the
number of restarts +1): 15 for spectra of cardinalities
100, 200, and 300 and 10 for spectra of cardinalities
400 and 500 (these values were used to obtain similar
computation times for the new method and the older
ones);

e the tabu tenure (a length of the tabu list): 10;

¢ the cardinality of the reference set used in the
restarts: 8.

In Tables 1 and 2, computational results of the pre-
vious tabu-search algorithm and the hybrid genetic
algorithm are presented, respectively. All entries with
average values have been calculated for 40 instances,
derived from 40 different sequences. The quality
means the number of spectrum elements compos-
ing a solution. For the given instances, a value of
the criterion function reached by the algorithm can-
not exceed the optimal quality, which is the number
of proper oligonucleotides in a spectrum. Below the
qualities, the numbers of optimal solutions returned
by the algorithm, out of 40, are shown (i.e., the num-
bers of instances solved optimally). Similarity scores,
summed as described above, are shown as numbers of
points (with maximal values from 109 to 509, respec-
tively) and in percentages (with a maximum of 100%
when the two sequences are equal).

As we see, both methods produce solutions of very
high quality. However, the hybrid genetic algorithm
is better than the previous tabu-search algorithm
that excludes the scatter-search diversification com-
ponent. For instances of cardinality 100, the algo-
rithms returned only original sequences. Similarity
values smaller than 100% are caused in that case by
missing information about the last nucleotides in the
sequences (negative errors). Even for large spectra
with many errors of both types, the algorithms yield
very good sequences. The solutions obtained have
average qualities that range from 97.8% to 100% of the
optimum values in Table 1 and from 98.3% to 100% of
the optimum values in Table 2. Sometimes an instance
has more than one optimal solution. In that case, an
optimal solution returned by an algorithm can dif-
fer from the original one. Thus, similarities presented
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Table 3 Results of the New Tabu-Search Algorithm Table 4 How the Quality Improves with a Growing Number of Restarts
Spectrum size 100 200 300 400 500 400 500
Average quality 80.0 159.9 239.2 3181 396.4 Spectrum Optimum Optimum
Optimal quality 80 160 240 320 400 Size Average quality number Average quality number
Optimum number 40 38 31 21 18
Average similarity score (points) 1084 207.6 273.7 3239 3614  Stage#1 306.2 0 384.1 0
Average similarity score (%) 99.7 997 943 896 855  Stage#2 313.5 3 390.6 7
Average computation time (sec)  14.6 617 1783 2657 4745  Stage#3 314.7 7 393.4 12
Stage #4 315.9 10 394.2 13
Stage #5 316.6 12 394.7 14
in the tables are in fact lower bounds on the qual-  Stage #6 317.0 13 394.8 15
ity measure of the algorithms. For the hybrid genetic g:ggg % 31;2 12 ggg? 1?
algo.rlthm, the similarities of genera}ted sequences t0 g, 00 49 317.9 20 3961 18
original ones are much larger than in the case of the  gage #10 318.1 21 396.4 18

earlier tabu-search method.

Table 3 presents results of tests done with the new
tabu-search method. The outcomes are much better
than those obtained by the previous metaheuristic
approaches, which is somewhat remarkable in view
of the high quality of the previous solutions, even
for the computationally hardest instances. The dif-
ference is entirely due to incorporating the scatter-
search approach within the restart procedure, which
is the only part where the tabu-search methods dif-
fer. During a short computation time the new algo-
rithm generated optimal solutions surprisingly often.
All remaining solutions are very close to optimal, and
their similarities to the original sequences are very
high. The average quality varies from 99.1% (in the
case of spectra of cardinalities 500, with 100 negative
errors and 100 positive ones) to 100% of the optimum
values.

From a practical standpoint, it is highly important
that the proposed algorithm returns many more opti-
mal solutions (the row “optimum number”) than the
previous methods. It can happen that a biochemical
user, who would like to get a sequence recon-
structed on the basis of his experiment, is inter-
ested only in obtaining the exact solution. Because
the DNA sequencing problem with errors is highly
complex (i.e., strongly NP-hard), this would nor-
mally be impossible using exact, exponential-time
algorithms. Thus, a method that runs in polynomial
time, and that often returns optimal solutions, is
very valuable. In the experiment, almost all solutions
being optimal as measured by the global criterion
function appear to be optimal also for biochemists,
because they are identical to the original sequences
that provide the data (sometimes missing up to three
nucleotides at the end because of negative errors).
The only exceptions were two instances of cardinal-
ity 300, where the constructed sequences composed
of 240 oligonucleotides differed substantially from
the original sequences. The potential ambiguity of
results (where two or more optimal solutions are pos-
sible) cannot be resolved without additional informa-
tion about original sequences, which is not contained

within spectra. Therefore, the choice of the criterion
function in the algorithm has been proved to give
an appropriate evaluation for the given information
(which consists of only a spectrum and the length of
a sequence).

Table 4 shows how the quality of solutions returned
by the new algorithm improves with a growing num-
ber of restarts. This table presents results for the spec-
tra of cardinalities 400 and 500, and for ten intensifi-
cation stages, that are set for these instances. Values
in the row “stage #i” refer to the quality of the best
solutions generated until the ith restart of the algo-
rithm. Values from the row “stage #10” are the final
ones, the same as in Table 3.

The average qualities from Table 4 change with
each restart executed by the algorithm. The most
significant stage is the first one, where the greedy
heuristic generates very good initial solutions, and
they are further improved in the following inten-
sification phase. Also, the first restart considerably
improves the quality, yielding new solutions that are
good starting points for the succeeding intensification
procedure. Every next restart returns a solution not
worse than in the previous restart, because the best
solution found so far is remembered in the algorithm.
Similar results can be observed for spectra of cardi-
nalities 100, 200, and 300. Figure 2 shows how the
numbers of optimal solutions (for 40 instances in each
case) change with a growing number of restarts.

In general, the larger the number of restarts exe-
cuted by the algorithm, the better the quality of
the solutions generated. Therefore, another series of
tests was done to determine how the method works
when longer computation times are allowed. Only the
hardest instances were chosen in order to allow the
possibility of observing potential improvements. The
time was set to about 40 minutes (in order to com-
pare the results with the previous ones). It required
the change of the number of intensification stages
from ten to 50. The results of these tests are presented
in Table 5 (the third column). For comparison, we



Btazewicz, Kasprzak, and Glover: DNA Sequencing—Tabu and Scatter Search Combined

INFORMS Journal on Computing 16(3), pp. 232-240, ©2004 INFORMS 239
Optimum # Table 6 Results of the 0ld Branch-and-Bound Algorithm
0 MM Spectrum size 100 200
[spectrum| Number of instances tested 40 40
30 Number of instances solved within 1 hour 29 1
—+—100 Optimal quality 80 160
—a—200 Average quality for solved instances 80.0 160.0
20 X —a—300 Average quality for all tested instances 77.2 151.3
Average computation time for solved instances (sec) ~ 891.2 1,273.0
—%—400
—%— 500
10 was solved within the time limit. Of course, all unbro-
ken runs of the algorithm returned exact solutions.
I —. However, we also counted the average quality over
1 23 45 6 7 8 9 10111213 1415 the 40 instances, which is the mean value of the
Stage # number of oligonucleotides used in building the best

Figure 2 Number of Optimal Solutions at Given Intensification Stage

of the Algorithm

also include results cited from Blazewicz et al. (2002)
for the previous tabu-search approach (the first col-
umn) and the hybrid genetic algorithm (the second
column).

Again, the new algorithm performs very effectively.
The number of optimal solutions generated by the
algorithm is much greater than for the previous algo-
rithms, and the average quality equals 99.6% of the
optimal value. We also observe that the average qual-
ity provided by increasing the run time for the new
method grew to 398.3 compared to 396.4 for the
shorter length of execution, which itself is superior to
the quality of 396.0 produced by the longer execution
of the hybrid GA approach.

At the end, the old branch-and-bound algorithm
from Btazewicz et al. (1999b) was tested on the cur-
rent sets of 40 instances. The computations were done
on the same computer and—as in the above tests—
without knowledge of the oligonucleotide beginning
the original sequences (as opposed to the tests from
Btazewicz et al. 1999b). The results are presented in
Table 6.

The time limit of the computations was set to one
hour for every instance. As we can see, even for small
instances—when spectrum size is equal to 200—the
computation time of this exact, exponential-time algo-
rithm is very high; only one instance from the set of 40

Table 5 Results for Spectra of Cardinality 500, with Computation Time
Set to 40 Minutes

Previous TS Hybrid GA  TS+SS
Average quality 394.1 396.0 398.3
Optimal quality 400 400 400
Optimum number 4 9 23
Average similarity score (points) 286.0 393.1 410.0
Average similarity score (%) 781 88.6 90.3

solutions found within the time limit. The average
computation times were calculated only for instances
solved within one hour (i.e., for 29 and one instances,
respectively). The results from Table 6 show that
the exact algorithm for the DNA-sequencing problem
with both types of error returns much worse average
results than do all the heuristics presented here, and
in much longer computation time. The heuristics for
spectrum size equal to 100 returned average quality
equal to 80 in all cases (the exact algorithm returned
77.2), and for spectrum size equal to 200 they returned
average qualities of 158.6, 159.4, and 159.9 (as com-
pared with 151.3 for the branch-and-bound method).
These outcomes clearly establish the high quality of
the heuristic method presented here.

4. Conclusion

In the paper, we have presented a tabu-search algo-
rithm enhanced by a diversification process that
embeds scatter search in the restart procedure. The
algorithm solves the DNA-sequencing problem for
instances that contain a large percentage of both neg-
ative and positive errors, yielding solutions of sur-
prisingly high quality. Computational experiments
were performed to compare the algorithm with two
other metaheuristic approaches: a previous tabu-
search method and a hybrid genetic algorithm. The
new results are much better than the previous ones.
During a short computation time the new algorithm
often generates optimal solutions. All remaining solu-
tions are very close to the optimum, and their simi-
larities to original sequences are very high. Our tests
also demonstrate the merit of the criterion function
used in the algorithm, which measures the degree to
which solutions match the original sequences.

In spite of the high quality of our results, they
could be further improved. For example, one appar-
ent opportunity would be to use an advanced
multi-start method in place of the greedy heuris-
tic as a way of generating starting solutions for the
method. Moreover, the proposed method has not used
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any additional information about spectra or origi-
nal sequences, which could be derived from bio-
chemical experiments. For example, one could assume
that the first (or last) oligonucleotide of an original
sequence is known, based on the knowledge about
primers used by biochemists to amplify an exam-
ined molecule in PCR reaction before sequencing.
Then, sequences obtained could be made to match
original ones more closely. Other information might
come from databases, such as a probabilistic analy-
sis of existing characteristic subsequences in particu-
lar genes, which could exclude several low-probable
orders of oligonucleotides. However, given that such
additional information is not always accessible, we
have proposed a more general algorithm of wider
applicability. Currently, the ratio of errors to proper
oligonucleotides in the problem data is rather large.
In experimental data from real applications one could
expect a smaller number of errors and then the algo-
rithm would provide even better results in these prac-
tical settings.
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