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Scope and Purpose-Heuristic search procedures that aspire to find global optima usually require some
type of diversification strategy in order to overcome their myopic perspective of the solution space.
Traditionally, randomization has been used to accomplish this diversification. In this paper, we prt:sent
a deterministic approach to diversification that has proved to be much more powerful than silnple
randomization. This approach uses the solution method, solution history, and the problem structUJ:e to
move the search into unexplored regions of the solution space. We believe that the concepts presented
here can form the foundation for effective diversification strategies for many types of optimization problems.

Abstract-Diversification strategies can be used to enhance general heuristic search procedures such as
tabu search, genetic algorithms, and simulated annealing. These strategies are especially relevant to searches
that, starting from a particular point, explore a solution path until new exploitable regions are inaccessible,
and a new starting point becomes necessary. To date, no one has studied the effect of applying diversification
methods independently of other metastrategic components, to identify their power and limitations. In this
paper we develop diversification strategies and apply them to the quadratic assignment problem (QAP).
We show that these strategies alone succeed in finding high quality solutions to reasonably large (~AP
instances reported in the literature. We also describe how our diversification strategies can be e'isily
incorporated within general solution frameworks.

1. INTRODUCTION

Search methods based on local optimization often rely on diversification strategies to increase their
effectiveness in exploring the solution space defined by a combinatorial optimization problem. Some
of these strategies are designed with the chief purpose of preventing search processes from cycling,
i.e., from indefinitely executing the same sequence of moves. Others are introduced to impart
additional robustness or vigor to the search. In tabu search (TS), for example, the inclusion of long
term memory functions is generally regarded as a way of incorporating diversification. Genetic
algorithms use randomization in component processes such as combining population elements and
applying crossover (as well as occastional mutation), thus providing some diversifying power.
Simulated annealing likewise incorporates randomization to make diversification a function of
temperature, whose gradual reduction correspondingly diminishes the directional variation in the
objective function trajectory of solutions generated. Diversification in GRASP (Greedy Randomized
Adaptive Search Procedures) is achieved by means of controlled random sampling. In these
procedures parameters are adjusted to lower the probability that the construction phase generates
a solution that has already been used as a starting point, while keeping the set of starting solutions
within a desired quality level (in terms of the objective function value).
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Diversification strategies in TS methods are designed and used in a number oj' different ways,
as shown by the following examples from the literature. Gendreau et al. [1] designed a TS method
for the solution of the maximum clique problem that incorporates a random component for move
selection and a secondary tabu list to encode a number of previously visited solutions. The secondary
tabu list is used to avoid any move that would lead to a solution visited in the p~lst T iterations,
where T is a set to values as large as 150 for solution attempts of 300 iterations. In a parallel TS
method for large traveling salesman problems (with the number of cities rangirlg from 500 to
10,000), Fiechter [2] defines a "high-level" tabu search that operates with super-moves. These
super-moves correspond to reallocating key portions of the tour, and therefore modify the current
trial solution to such an extent that a re-starting mechanism is not necessary. Another approach
to diversification is taken by Woodruff and Spearman [3], who introduce the use of the diversification
parameter d. This parameter can be viewed as the reciprocal of a lagrangian multiplier in that
"low" values result in nearly infinite costs for constraint violation, while "high" values allow searching
through infeasible regions. The diversification parameter is also used to control the amount of
randomization in a probabilistic version of tabu search, assigning d a role similar to that taken by
temperature in simulated annealing.

A different form of diversification in TS procedures is implemented through fi"equency-based
long term memory functions. Skorin-Kapov [4] uses an n x n matrix to record the number of times
a pair of objects exchange locations in an adaptation of tabu search to the quadr~Ltic assignment
problem. The frequencies are weighted to modify the distances between every pair of locations and
force the construction of "diverse" solutions during a re-starting phase. In Laguna ~md Glover [5]
frequency counts are used to bias the selection of moves in TS solution states wherf: no improving
moves are available. Applied to single machine scheduling, the frequency count is multiplied by a
penalty parameter and added to the move value of every non-improving move. Then, the move
with the least penalized move value is selected. This strategy successfully avoids long term cycling
and allows the procedure to find improved solutions during late stages of the search process. A
long term memory function based on move frequencies is also used in Glover and Laguna [6] to
encourage non-improving moves with "low" frequency counts. The definition of low frequency is
a function of the total number of moves in the candidate list, the maximum tabu list size (since
dynamic sizes are used), and the current iteration number.

The purpose of our study is to measure the merit of diversification strategies independently of
more general metastrategies. We have selected the quadratic assignment problem (QAP) as a
platform to test our ideas. In Section 2, we briefly review the QAP formulation and some relevant
characteristics of this problem along with early solution efforts. The diversification strategies
developed here are presented in Section 3. Computational experiments are presentelj in Section 4.
Finally, Section 5 gives conclusions and some guidelines for integrating our findings within more
powerful search mechanisms, including those of simulated annealing, genetic algorithms, and tabu
search.

2. THE QUADRATIC ASSIGNMENT PROBLEM

Quadratic assignment problems are a class of combinatorial optimization problems with a number
of interesting practical applications, see e.g. Burckard [7]. The original formulation belongs to
Koopmans and Beckmann [8] who used it to model the location of indivisible economic activities.
Although many researchers have developed exact and heuristic methods for these problems, in this
section we only review those recently developed procedures that are capable of providing optimal
or near-optimal solutions to relatively large QAP instances. The QAP can be either formulated as
a 0-1 integer programming problem or simply viewed as a permutation problem with the following
objective function

.-1 .
Minimize L L hP1t(i)1tU).

i=1 j=i+l

In this function hj is the flow between objects i and j, d"(i)~U) is the distance between the locations
where objects i and j are placed, and n is the total number of objects (or locations). A feasible
solution is then given by n = {n(l), n(2), ..., n(n)}, where n(i) is the index of the location that



Diversification strategies for the QAP 887

contains object i. If the flows are all set to 1 and the term d"(It)"(l) is added to the objective function,
the problem is transformed to a traveling salesman problem. The QAP belongs to the class of
NP-hard problems, as shown by Sahni and Gonzalez [9].

In Skorin-Kapov [4] a TS application is used to solve QAPs. The method, called Tabu-Navigation,
uses swap moves (i.e., the exchange in the location of two objects) to search the solution space,
and a frequency-based long term memory function for a re-starting mechanism. Tabu-Navigation
was tested using both relatively small problems (with n ~ 36) reported in the literature and a newly
generated set with the number of objects ranging from 42 to 90. The "navigation" part of the
method refers to the user's active role during the search process. Every time a prespecified maximum
number of iterations is reached from a given starting point, the user has the choice of stopping the
search or re-starting with a new set of parameters. The method then relies on the "expert" choices
of the user, who needs to decide on a new size for the short term memory, whether or not to invoke
the long term memory, and the type of aspiration criteria to be applied.

In contrast to the Tabu-Navigation method, Taillard [10] developed a TS procedure with less
complexity for the user. Taillard's method also uses swap moves, which seem to be very well suited
for QAPs, but incorporates a quick update for the moves in the candidate list at ever:f' iteration.
This procedure allows the complete evaluation of the swap neighborhood to be performed in O(n2)
time, as shown by Frieze et al. [11]. Taillard refers to the method as a "robust" TS implementation,
based on the fact that the user only needs to provide a range for the size of the single tabu list.
The actual tabu list size is randomly selected from the given range and dynamically changed during
the search. Taillard identifies a tabu list size range of (0.9n, 1.ln) as very effective for Dlost of the
problems tested. The TS method employs the customary aspiration level criterion of allowing tabu
moves to be selected if they lead to solutions better than those previously found. Howevt:r a second
aspiration criterion, incorporating an additional parameter value, is invoked while solving large
problems or instances with large flow variance (i.e., individual flows between objects span a large
range and are not uniformly distributed). Taillard found this parameter to be "strongly dependent
on the problem instance," therefore making his method somewhat less robust. By using 30 randomly
generated starting solutions, Taillard was able to improve several of the best known solutions to
the set of problems generated in Skorin-Kapov [4].

Dynamic tabu list sizes are also implemented by Skorin-Kapov [12] in the form of moving gaps,
an approach proposed by Glover and Hiibscher [13]. This improved TS method incorporates
intensification and diversification via fixing and freeing objects to and from given locations. As in
the case of the Tabu-Navigation, this method also assumes that the user is capable of making
intelligent choices for the different parameter values. The new method has the added (:omplexity
of requiring the selection of the number of objects to be fixed and the time period for which they
will remain fixed. Using this approach in an II-stage process, Skorin-Kapov was able to find two
new current best known solutions to the problems generated in her 1990 paper (for instances with
81 and 90 objects). The procedure involves 9 re-starts of 50,000 iterations each, resulting in a
total of 1.2 million iterations for each solution attempt. The study also includes a new set of 6
randomly generated QAP instances with n= 100, that are subjected only to limited computational
experiments.

Another recent study involving QAPs is due to Gavish [14]. A randomized version of his Manifold
Search was able to match the best solutions known for the original Skorin-Kapov's problems with
up to 72 objects. His method fails in finding the best known solutions to problems WJith 81 and
90 objects. Hcwever, this study reports new best known solutions for the set of problems with 100
objects generated by Skorin-Kapov [12].

In the next section, we describe the diversification strategies developed here that ar'~ designed
to be used in conjunction with search methods for QAPs.

3. DIVERSIFICATION STRATEGIES AND METHODS

As we have stressed, the heuristic approaches for solving the Quadratic Assignmewt Problem
(QAP) reported in the previous section require a diversification strategy to enable the search to
explore new regions of the solution space. Without this diversification, such methods can become
localized in a small area of the solution space, eliminating the possibility of finding a global optimum.
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To better understand the role of diversification, and the consequences of alternatives for defining
what "diversification" means, we present a method for solving the QAP that relies almost entirely
on diversification strategies. Although we do not propose that diversification strategies alone can
provide the most effective heuristics, we will show that the procedures we devise are competitive
with the best known techniques for solving the QAP, with the exception of the highly elaborated
tabu search procedure of Skorin-Kapov [12]. Even in this case, we tie the best known solutions
for 3 (out of 7) test problems involving up to 90 objects, and obtain solutions close to the best in
the remaining cases (e.g., the maximum deviation from the best is 0.05%). More significantly, our
approach uses only very rudimentary machinery, and is extremely easy to implement. Its ability to
generate such attractive solutions on its own suggests its potential added value as foundation for
procedures incorporating more intricate and advanced strategies.

A well-known procedure for finding a solution to the QAP is to generate an initial solution,
either randomly or by a constructive process, and then to use a swapping mechanism to exchange
objects until no exchanges remain that will improve the objective function. This approach is
extremely fast but seldom generates an optimal solution. The method we propose starts in the
same way, using a swapping procedure to find a local minimum, and then applies a diversification
strategy to incrementally restrict the set of allowed swaps in order to move away from the local
minimum. When the current solution is determined to be sufficiently far away from the previous
local minimum or if a new best solution is found during this stage, the diversifiction restrictions
are lifted and the descending swap procedure is activated once again. When th(: diversification
component is appropriately designed, the heuristic explores large regions of the solution space.

3.1. A tenet ofdiversification
It is appropriate to provide a word of background about the orientation underlying our approach.

Often there appears to be a hidden assumption that diversification is somehow tantamount to
randomization. Certainly the introduction of a random element to achieve a diversifying effect is
a widespread theme among search procedures, and is fundamental to the operation of simulated
annealing and genetic algorithms. From an abstract standpoint, there is clearly nothing wrong with
equating randomization and diversification, but to the extent that diversity connotes differences
among elements of a set, and to the extent that establishing such differences is relevant to an
effective search strategy, then the popular use of randomization is at best a convenient proxy (and
at worst a haphazard substitute) for something quite different.

Accordingly, the diversification approach presented here is completely deterministic, with no
reliance on a randomizing component. Such a component sometimes can be construed as a
replacement for memory, and we provide two extremely simple memory devices to establish a more
systematic diversifying process. Following a theme introduced in tabu search (but at a more
rudimentary level than customarily applied), one is a recency-based memory that achieves a first
order form of diversification, and the other is a frequency-based memory that achieves a second
order form of diversification. To start the procedure, we need only to generate an initial solution.
The manner in which this is done, and the ways that the two memory structures carry out the
diversification process, are detailed in the following sections.

3.2. Generating a starting solution
The initial solution is constructed by solving a linear assignment problem which assigns objects

to locations to minimize a linear cost function. We generate the cost coefficients Cij of this function
to be lower bounds on the costs of assigning object i to location j, thus providing a .lower bound
on the optimal solution as well as a starting solution.

To determine the cost coefficients for the linear assignment problem, define the flow matrix as
F=(fJ=(fl' f2,..., fi, ..., fn) and the distance matrix as D=(dij)=(d1, d2, ..., dj, ...,. dn) where fi
and dj are vectors of n nonnegative integers. Column fi consists of the flows between object i and
the n objects in the problem. Similarly, column dj consists of the distances between location j and
the n locations in the problem. The cost of assigning object i to location j can be bounded from
below by Cij = f; * djT, where r; and dj are vectors of n -1 nonnegative integers. r; is formed by
removing the ith element (zero) from fi and reordering the remaining elements in ascending order.
Likewise, dj is formed by removing the jth element (zero) from dj and reordering th,~ remaining
elements in descending order.
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3.3. First order diversification

Following the initial construction, and the succeeding series of pair-wise exchanges that lead to
a local optimum, the algorithm enters the first order diversification stage. This stage in our approach
is designed to take the search to a solution that is "maximally diverse" with respect to the local
minimum most recently visited. Our notion of diversity in the recency-based context employs two
concepts. One is a form of distance concept that characterizes two solutions as being increasingly
diverse as their separation increases, where we define separation to be the minimum number of
moves to get from one to the other. (We assume the available moves are symmetric, i.e., bidirectional,
as in the case of the swap moves employed.)

The second concept is coupled with the first as a means of expressing the "difficulty' of getting
from one solution to the next, which we associate with an estimate of the probability that the
second solution will be encountered in the set of solutions equally separated from 1:he first. If
solutions are distributed so that those with the smallest objective function define a diminishing
tail, then the probability of encountering such solutions is relative small. Since we are using a
greedy descent procedure to find local minima, the probability of traversing between two solutions,
separated by a fixed number of swaps, decreases with the difference between their objective function
values. (On the other hand, if good solutions can be encountered with a high probability, then a
diversification component is less relevant. The treatment of these solutions as "improbable" is not
a liability in case they are more easily found.)

Thus, specifically, starting from a local optimum, we conceive another solution to be diverse in
relation to this point if it is distantly separated (relative to the minimum number of moves to reach
it) and has an objective function value close to or better than that of the first. Then we anticipate
that the probability of reaching the second point from the first is small, particularly by the application
of random moves that take the same number of steps.

In a fuller sense, diversity must depend on the relation between multiple solutions, and not just
on an association between separate pairs. However, this consideration is also treated to some extent
by the ideas at hand. That is, given a low probability of getting from one point to another, the
likelihood of returning to the region of an earlier point is also diminished. (Nevertheless, we treat
this consideration more fully by means of the second order diversificatin process.) Proceeding from
this foundation, our first order diversification strategy takes the following straightforward form.

Denote the most recent local minimum by the permutation llMIN = {nM'N(l), nMIJ2), ..., nMIN(n)}
and the current solution by permutation llCUR = {ncuR(l), ncuR(2), ..., nCUR(n)}. Consider all swaps,
nCUR(x)~nCUR(y) such that nCUR(x) = nMIJx) or nCUR(y) = nMIN<Y). Swaps of this type "'ill always
increase the separation from the local minimum. Then, from among the swaps in the indicated
category, we choose one that degrades the objective function the least (or improves it the most if
improving moves are available). This move may increase, decrease, or keep the objective value
constant.

Diversifying moves are made until no moves exist that belong to the indicated set. At that point
the algorithm switches back to selecting improving exchanges until reaching a local optimum, and
then the procedure is repeated. However, if a new best solution is found during first order
diversification, then the algorithm switches immediately to the improving phase.

3.4. Second order diversification

The first order diversification component, as noted, only directly serves the goal of characterizing
diversity over larger collections of solutions. Thus in addition to maintaining the simple
recency-based memory embodied in the vector llMIN, we keep a frequency-based memory in a matrix
M, where mij counts the number of times that object i occupies location j in the local minima
encountered throughout the search history. A recency-based memory is only concerned with
remembering the characteristics of the most recent occurrence of a particular event (e.g., the
composition of the most recently found local minimum), whereas a frequency-based memory records
these characteristics in an accumulative fashion at every occurrence of the event. Our frequency-based
memory is extremely simple to maintain and update (i.e., by referring to each llMIN vector employed
in the recency-based memory). By keeping track of the total number m* of local optima encountered,
we may infer from M the matrix M* whose entries mU=mij/m* represent the relative number of
times an item i occurs in a location j over the set of local optima.
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Although more sophisticated uses of M and M* are possible, we apply them in the second order
diversification process in just two alternative ways:

( J) Re-starting. Allow each first order diversification phase to be terminated by a selected cutoff
rule, and generate a new starting solution by solving a linear assignment problem with cost
coefficients given by Cij = mit Once this new solution is generated, the first order diversification
resumes until again meeting the conditions of the cutoff rule.

(2) Periodic Second-Order Evaluation. After a selected number of local optima are generated during
the first order phase, the next sequence of moves (away from the last local optimum) replaces the
objective function evaluation with an evaluation that minimizes miy + mkx, or more generally a
convex combination of this term and Max(miy, mkx), where i = llCUR(X) and k = llCUR(Y)' (An
incremental version of this rule replaces miy with miy-mky and mkx with mkx-mi., thus favoring
exchanges that move objects out of high-frequency locations or into locations that have corresponding
low frequencies.) The sequence of moves is continued by the same rules applied in the first order
diversification phase, and after visiting a chosen number of local optima (one, in this study) the
process then reverts to the standard first order process, initiating the seq uence of phases once again.

Although we have not tested it, we note that a penalty variant of (2) results by re:placing M with
M*, whereon, the contribution of the second-order evaluation can be weighted by a penalty factor
p and added to the objective function evaluation used in the first order process. (C:onsideration of
such a variant is motivated by the success of penalty methods for diversification in the approaches
cited in earlier sections.)

To allow the simplest types of implementations, however, we have elected to avoid variants or
advanced calibration alternatives for such rules, and instead investigate only a small number of
choices that are context independent (i.e., that do not make use of information about distributions).
Details of these choices and their outcomes are given in the following sections.

4. EXPERIMENTAL DESIGN

For an initial test of the diversification method, which is the basis for the first :~et of outcomes
reported in this paper, we have coupled the first order diversification phase only with the re-starting
component of the second order phase. A cut-off rule is selected for the first order phase that gives
it a dominant role in the overall procedure, transferring to the second order re-start only if there
is evidence of potential repetition in the first order process. Specifically, during the first order phase
we record the objective function values at each local minimum, and if a sequence of objective values
of length at least 5 occurs twice in succession, then the second order phase tak~:s over and the
method is re-started. The first order diversification phase with the re-starting component by itself
yields remarkably good outcomes, as we now show.

A FORTRAN 77 implementation of the method was used to validate the usefulness of our
diversification strategies. For all of our experimentation (performed on a DecStation 5000/200),
we have used the randomly generated set of problems found in Skorin-Kapov [4,12]. Our primary
goal is to show that the proposed diversification scheme alone represents a competitive method
for the solution of QAPs. Furthermore, we contend that the method proposed here is considerably
less complex than those discussed in Skorin-Kapov [4, 12] and Taillard [10]. Skorin-Kapov's
problems allow us to directly compare the quality of the solutions obtained in four previous research
efforts with the solutions found by our approach. Table 1 shows the best solutions found by each
of the methods reviewed in Section 2 and the ones obtained using our diversification procedure.
An asterisk in this table denotes that the method from the corresponding column was able to
improve upon or match the best known solution to a particular problem instance. Solutions to
the 100-object instances are not available for the first two TS methods, i.e., Skorin-Kapov [4] and
Taillard [10]. Our results in Table 1 were obtained by allowing the diversification procedure to
perform a total of 1 million iterations, which roughly corresponds to the amount oj' computational
effort employed in finding the solutions reported in the other studies.

Table 1 shows the competitiveness of our method in terms of solution quality. For problems
with up to 90 objects, our approach is able to match 3 of the best known solutions. Our procedure
outperforms Gavish's method in problems of sizes 81 and 90. and Taillard's TS procedure in the
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problem with 90 items. Our solutions to problems of size 49 and 72 are inferior to those found by
the rest of the procedures with the exception of the ones reported in Skorin-Kapov [4], however
Skorin-Kapov's results were obtained with considerably less computational effort.

For the set of 6 problems with 100 objects, our approach succeeds in finding 5 new best known
solutions (for problems A, C, D, E and F). The solutions reported for these problems in Skorin- Kapov
[12] were found performing only approx. 1000 iterations, and therefore they cannot be directly
compared with either manifold search or our method. Partial comparison, however, is possible by
limiting the total number of iterations that our procedure is allowed to perform. The result of such
experiment is reported in form of a plot in Fig. 1. This figure shows the change on the percentage
deviation from best of the average objective function value over all100-item problems, during the
first 2500 iterations. The horizontal line represents the percentage deviation from the best known
solutions achieved by Skorin-Kapov's method. Figure 1 shows that our method is capable of
achieving the same level of deviation from best as Skorin-Kapov's TS procedure, in only 1750
iterations.

Table I. Best solutions found by different solution approaches

Problem
size

Tabu search
Skorin-Kapov [4]

Tabu search
Taillard [10]

Tabu search

Skorin-Kapov [12]

Manifold search
Gavish [14]

Kelly, Laguna
& Glover

42

49

56
64
72
81
90

lOO-A

100-8
lOO-C

lOO-D

lOO-E
lOO-F

7932
11,768
17,368
24,480
33,378
45,889
58.180

nja
nja
nja
nja
nja
nja

7906.
11,693.
17,229.
24,249.
33,128.
45,514
57,781

nIB
nIB
nIB
nIB
nIB
nIB

7906.
11,693.
17,229.
24,249.
33,128.
45,504.
57,771.
76,691
77,534
74,832
75,348
75,315
75,336

7906"
11,693"
17,229"
24,249"
33,128"
45,554
57,789
76,097
77,051"
74,056
75,107
74,894
74,719

7906*
11,699
17,229*
24,249*
33,134
45,517
57,778
76,048*
77,080
73,947*
74,94:J*
74,881.*
74,554*

.Best known solution
n/a = not available.

1.8

1.6

1.4-;~
.Q

g
-=
c
.2
"i:
">
~'a
~

1.2

.0

0.8

0.6

0.4
30001000 20000

iteration

Fig. I. Percentage deviation from best of the average objective function value over alllOO-item problems
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The TS procedures described in Taillard [10] and Skorin-Kapov [12] incorporate probabilistic
elements. Taillard's approach uses randomization to generate initial trial solutions, and to select
tabu list sizes (within a specified range) during the search. Skorin-Kapov's method adds a random
component to the "moving gap" strategy to gradually reduce the size of the initial tabu list. When
a random element is part of a procedure, the solutions obtained by repeated applications of the
method may vary. Therefore for these solution methods, it is important to compare the average
percentage deviation from the best known solutions. Table 2 contains the average percentage
deivation values for the methods developed in Taillard [10], Skorin-Kapov [12J, and here. The
best results reported in Gavish [14] are obtained by a random variant of manifold search, but the
average percentage deviations are not available.

The average percentage deviations in Table 2 were calculated using the best solutions obtained
after n2 iterations from every random re-start of the TS method in Taillard [10:], and for every
long-term memory re-start of the Skorin-Kapov's [4] procedure. For our procedure, average
percentage deviations are not required. Instead, the values reported in Table 2 are the exact
deviations of the best solutions found after n2 iterations. These exact deviations show the ability
of our approach to obtain solutions that are better, in 4 out of 7 cases, than the estimated expected
value of the solutions generated by the methods with random components.

The final set of experiments consist of comparing our results in Table 1 with the results obtained
by coupling the first order diversification phase with the periodic second-order evaluation (applied
when a potential cycle is detected). Additionally, we compare these results with the popular form
of diversification that consists of finding local optima from random starting points. The outcomes
of these experiments are reported in Table 3. The method with periodic second-,order evaluation
was not used for problems with n>81, since the first order diversification does not cycle within
1 million iterations. This method is able to match the best known solutions to the 42 and 49 object
problems. This simple random approach to diversification is clearly inferior in terms of solution

quality.
The results in Table 3 show the merit of introducing diversification into a search mechanism by

means of a systematic set of rules (or strategies). The common approach of achieving diversification
by incorporating a random element is dominated by the deterministic approaches.

Table 2. Average percentage deviation from the best known solutions after n2 iterations

Problem size

72 81 9042 49 56 64Approach

0.20
0.50
0.55

0.50
0.29
0.84

0.40
0.28
0.25

0.40
0.39
0.13

0.40
0.36
0.80

0.40
0.34
0.15

Taillard [10]
Skorin-Kapov [12]
Kelly, Laguna and Glover

0.40
0.26
0.00

Table 3. Best solutions found by diversification approaches

Re-start second
order component

Periodic second
order evaluation

Random
fe-starting

Problem

size

7935

11,737
17,310
24,425
33,356
45,698
58,239
76,481
77,396
74,344
75,211
75,060
75,119

7906
11,699
17,229
24,249
33,134
45,517
57,778
76,048
77,080
73,947
74,943
74,881
74,554

7906
11,693
17,235
24,250
33,137
45,517

"'"'""

t
:~

42

56
64
72
81

90
IOO-A

1000B
IOO-C

100-0
IOO-E

1000F
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S. CONCLUSIONS AND APPLICATIONS

The operational procedure we have applied to implement our concept of first order diversity
may be perceived as corresponding to the execution of a "stringent and unforgetting" application
of tabu search, in the sense that the restriction imposed on the choice of swaps is equivalent to a
tabu restriction that disallows the exchange of objects i and j if both are currently placed in locations
different from the ones they occupied in the most recent local minimum. This restriction is not
lifted until either no more moves are possible or a solution is found that is better than the best
visited so far. Given the determination of this restricted set, our implementation of first order
diversification may be interpreted in the context of simulated annealing as assigning a zero
probability of selection to all those moves that qualify as members. Our procedure can readily be
embedded in simulated annealing by resorting the normal probability evaluations once .the
diversification stage terminates. Similarly, it can be embedded within a genetic algorithm approach
by starting from a selected parent solution and generating new solutions from the diversification
approach as candidates to enrich the gene pool. Embedding our procedure in tabu search is
straightforward, by activating the approach at a point where the progress of the TS method otherwise
begins to diminish (e.g., initiating the diversification procedure relative to some subset of best
solutions generated since the last time it was applied).

The straightforward nature and ease of implementation of the diversification approach, and the
attractive outcomes it obtains on its own, suggest the potential value of integrating this procedure
with other methods.
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Authors' note-During the course of this study we have become aware of contemporaneous new studies by C:hakrapani
and Skorin-Kapov, Taillard, and Gavish which extend their previous designs to yield improved performance. We again
stress that progressive refinement ultimately must provide the best results, and that the power of the straightfof'~ard ideas
presented here suggests the value of their role in such refinement.
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