
Computers & Operations Research 33 (2006) 2449–2494
www.elsevier.com/locate/cor

Parametric tabu-search for mixed integer programs
Fred Glover

Leeds School of Business, University of Colorado, Boulder, CO 80309-0419, USA

Available online 10 October 2005

Abstract

A parametric form of tabu-search is proposed for solving mixed integer programming (MIP) problems that creates
and solves a series of linear programming (LP) problems embodying branching inequalities as weighted terms in
the objective function. The approach extends and modifies a parametric branch and bound procedure of Glover
[Parametic branch and bound. OMEGA, The International Journal of Management Science 1978;6:1–9], replacing
its tree search memory by the adaptive memory framework of tabu-search and introducing new associated strategies
that are more flexible than the mechanisms of branch and bound.

We also introduce new types of intensification and diversification procedures based on scatter search and fre-
quency analysis, and also based on a variant of adaptive memory called model embedded memory. In one form this
approach incorporates recency and frequency memory within the objective function structure of the parameterized
LP formulations. In another form it generates valid inequalities from the optimized objective of the parameterized
LP problem, and uses these as a supplement to traditional types of tabu memory. The integrated parametric approach
affords a spectrum of variations that include useful simplifications for pure 0-1 MIP problems and problems with
special structures, such as GUB constraints. The approach exploits both spatial and logical relationships, and is
appropriate for discovering feasible solutions, as in the case of satisfiability problems. It is particularly designed
to provide adaptive strategies for problems that are difficult for branch and bound and for branch and cut proce-
dures, as opposed to problems these latter methods can handle effectively, and hence can be used to complement or
supplement these more traditional types of methods.
� 2005 Elsevier Ltd. All rights reserved.

Keywords: Mixed integer programming; Tabu search; Metaheuristics; Adaptive memory

E-mail address: fred.glover@colorado.edu.

0305-0548/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2005.07.009

http://www.elsevier.com/locate/cor
mailto:fred.glover@colorado.edu

2450 F. Glover / Computers & Operations Research 33 (2006) 2449–2494

0. Introduction

This paper gives a general design for a parametric tabu-search method for mixed integer programming
(MIP) problems. The approach embraces a collection of interlinking components that can be varied to
provide a range of tradeoffs between strategic sophistication and ease of implementation. The method
therefore constitutes a framework for comparative studies to determine the relative efficacy of different
strategic options, each emerging from the same fundamental blueprint. To clarify the interplay of basic
ideas, a series of numerical examples is provided to show their operation. In addition, several new types
of strategies are proposed for uncovering feasible and high-quality solutions to MIP problems, making
use of spatial and logical interdependencies.

1. Notation and problem formulation

We represent the MIP problem in the form

(MIP) minimize xo = cx + dy

subject to (x, y) ∈ Z,

x ∈ X,

where

Z = {(x, y) : Ax + Dy�b, U �x�0},
X = {x : U �x�0 and x integer}.

The vector U is permitted to have infinite components and in the case of pure integer programming
problems the vector y of continuous variables can have 0 dimension. The foregoing slightly unorthodox
representation, where the sets X and Z both impose the bounds U �x�0, facilitates the description of the
method subsequently introduced. We also assume the inequality constraints summarized by Ax +Dy > b

include an objective function constraint cx +dy�x∗
o − � (written in � form), where x∗

o is the xo value for
the currently best-known solution to (MIP) and � is a small positive number. We therefore assume the set
Z is successively modified by updating the objective function constraint as new incumbent solutions are
found. Our approach is compatible with a strategy of choosing � to be somewhat larger than necessary,
followed by reducing its value if no feasible solutions are generated within a chosen number of iterations.
We also subsequently introduce modifications of the set X that incorporate additional restrictions on x
that are contained in or implied by (x, y) ∈ Z.

The linear programming (LP) relaxation of (MIP), which contains only the restriction (x, y) ∈ Z, will
be denoted by (LP). We say a vector (x, y) is LP feasible if it is feasible for (LP) but not necessarily for
(MIP), hence if it satisfies (x, y) ∈ Z but possibly not x ∈ X. We call x integer feasible if the components
of x are integers, and hence an (MIP) feasible solution is one that is LP feasible and integer feasible.

2. Foundations of parametric tabu-search

Our solution approach consists of a parametric form of tabu-search utilizing moves based on the
approach of parametric branch and bound [1]. The tabu-search framework amends parametric branch and

F. Glover / Computers & Operations Research 33 (2006) 2449–2494 2451

bound by replacing its tree search memory structure with an adaptive memory structure that provides
greater flexibility and facilitates the use of strategies outside the scope of tree search.

Let N+ and N− denote selected subsets of N={1, 2, . . . , n}, the index set for x. Also, let N ′=N+∪N−,
and let x′ denote an associated trial vector satisfying x′ ∈ X. For convenience of terminology we
understand the vector x′ to be the partial vector consisting of the components x′

j for j ∈ N ′, disregarding
components for j ∈ N − N ′. Parametric branch and bound uses a variant of L1 norm minimization to
maintain LP feasibility while seeking to enforce the following conditions:

(UP) xj �x′
j for j ∈ N+ (provided x′

j > 0),

(DN) xj �x′
j for j ∈ N− (provided x′

j < Uj).

Stipulating x′
j > 0 in (UP) and x′

j < Uj in (DN) avoids consideration of redundant inequalities. The
condition xj =x′

j is handled by allowing j to belong to both N+ and N−. A slight variation on the foregoing
representation introduces two different instances of x′

j , one for N+ and one for N−, thereby permitting
(UP) and (DN) to bracket xj between two different values. However, by our present formulation, j can
be an element of both N+ and N− only in the case where the preceding inequalities constrain xj to the
single value x′

j . By convention, throughout this paper we may speak of a variable belonging to a set as
shorthand for saying that its index belongs to the set (as in referring to xj as an element of some specified
subset of N ′).

We refer to (UP) and (DN) as goal conditions and call x′
j the goal value in these conditions, because

we do not seek to enforce (UP) and (DN) directly by imposing them as constraints in the manner of
customary branch and bound procedures but rather indirectly by incorporating them into the objective
function of the linear programming relaxation (LP).1 This can be done by means of the following linear
program, where M denotes a large positive number:

(LP′) minimize uo = cx + dy + M(�(uj : j ∈ N−) + �(vj : j ∈ N+))

subject to (x, y) ∈ Z,

xj = x′
j + uj − vj , uj , vj �0, j ∈ N ′.

We say that (LP′) targets the inequalities of (UP) and (DN). Evidently, the inequalities will be satisfied
in an optimal solution to (LP′) if and only if the problem (LP) has a feasible solution when expanded to
include these inequalities.

The representation of (LP′) simplifies in the special cases, where x′
j = U ′

j for j ∈ N+ and x′
j = 0

for j ∈ N− since we may then modify the objective by, respectively, replacing uj by xj , j ∈ N− and
replacing vj by Uj − xj , j ∈ N+, and do not need to introduce the constraints associated with uj and
vj . Thus, letting NU denote the subset of N+ such that xj = U ′

j , and N0 denote the subset of N− such
that xj = 0, (LP′) can be written more precisely in the form

(LP′) minimize uo = cx + dy + M(�(xj : j ∈ N0) + �(Uj − xj : j ∈ NU)

+�(uj : j ∈ N− − N0) + �(vj : j ∈ N+ − NU))

subject to (x, y) ∈ Z,

xj = x′
j + uj − vj , uj , vj �0, j ∈ N ′ − N0 − NU.

1 It is possible as in parametric branch and bound to maintain a memory of additional goal conditions apart from those that
define (LP′) which are currently superseded by those specified here.

2452 F. Glover / Computers & Operations Research 33 (2006) 2449–2494

The terms Uj in the objective can be removed by introducing a single constant term co = M�(Uj : j ∈
NU). Evidently, in the case of 0-1 MIP problems no uj or vj variables are required.

From an implementation standpoint, a two-phase approach can be used for optimizing (LP′) as an
option to using the explicit form of the objective. That is, the objective of (LP′) can be equivalently
handled by first creating a primary objective that sets M = 1 and disregards the cx + dy component.
Then, at optimality, all non-basic variables are held constant at their currently assigned (lower or upper)
bounds, removing them from further consideration. The second phase then is implemented by optimizing
cx + dy over the residual system. Such an implementation is useful to reduce computer round-off error,
and is relevant in special cases discussed later.

In fact, parametric branch and bound does not use a single “large M” value in the objective, but applies
varying weights M−

j and M+
j to different uj and vj (or xj and Uj −xj) variables, and successively adjusts

these weights as the method progresses. The approach also introduces a modification of the primal simplex
method that allows the problem to be solved without explicitly introducing the additional variables uj

and vj . Our present adaptation of this framework likewise takes advantage of different weights M−
j and

M+
j (handled either directly or in a two-phase approach), but employs these weights in a different way as

a means of incorporating the influence of tabu-search memory within the structure of (LP′). Our current
focus will not be concerned with the specialized processes for avoiding the explicit introduction of the
uj and vj variables, but we emphasize the value of being able to proceed from one instance of (LP′) to
another by post-optimizing with the primal simplex method, a feature that yields a considerable saving
in computational effort.2 Subsequently, we also describe a special variant of our approach that permits
its post-optimizing steps to be carried out by a dual LP method, thus permitting the use of the same types
of LP subroutines customarily used in today’s B&B approaches to MIP.

While parametric tabu-search makes reference to the same parameterized problem (LP′) as parametric
branch and bound, it exploits the problem in a different way, by introducing sets of strategies to take
advantage of the flexible forms of memory guidance available through tabu-search, in contrast to the
more rigid memory structures of branch and bound. To apply parametric TS we begin from a given
instance of (LP′) (that corresponds to the original LP relaxation of (MIP) if N ′ is empty), and denote its
optimal solution by (x′′, y′′). We will often be interested only in the values of the integer variables in this
solution, and in such cases we take the liberty of referring to x′′ as the solution to (LP′), understanding
y′′ to be implicit. (The values of uj and vj in the solution are automatically determined by x′′ and y′′, and
we consider them to be implicit as well.) If the solution is integer feasible (x′′ is a vector of integers), then
it qualifies as a new best solution since the objective function constraint is incorporated in the problem
formulation. Consequently the value of x∗

o is updated each time an integer feasible solution is obtained.
The parametric TS method then proceeds by using information from the solution to (LP′), including

the relationship between x′′ and x′ to determine a new x′ vector and an associated new problem (LP′).
Then the method repeats, continuing in this manner until reaching a chosen limit on the total number of
iterations. As the method progresses, TS memory concerning attributes of previous x′ vectors and their
associated (LP′) problems is used to shape the decisions for constructing new problems.

2 The ability to post-optimize with the primal method is evident in the case of 0-1 problems, since there are no changes of
variables and the two instances of (LP′) differ only in their objective function coefficients. In the general case, a substitution and
possible addition or deletion of variables suffices to go from one instance of (LP′) to another, and this can readily be done in a
manner to keep the current LP basis primal feasible by selecting which of uj and vj should be made basic.

F. Glover / Computers & Operations Research 33 (2006) 2449–2494 2453

2.1. (LP′) Transitions

Transitioning from one instance of (LP′) to another is based on rules of the following general form.
There are two kinds of transitions (T-UP) and (T-DN) to create the goal conditions (UP) and (DN), which
consist of defining (or re-defining) the goal value x′

j to be an integer value just above or just below the
LP solution value x′′

j . We also utilize a third type of transition (T-FREE) that frees the variable xj from
its goal conditions (UP) and/or (DN).

We express these transitions as follows:

(T-UP) Set x′
j := �x′′

j � + 1 and add j to N+ (to target xj �x′
j).

(T-DN) Set x′
j := �x′′

j � − 1 and add j to N− (to target xj �x′
j).

(T-FREE) Remove j from N ′ (to release xj from (UP) and (DN)).

The values �x′′
j � and �x′′

j � are the closest integers to x′′
j , such that �x′′

j ��x′
j and �x′′

j ��x′′
j (hence

�x′′
j � + 1 = �x′′

j � in (T-UP) and �x′′
j � − 1 = �x′′

j � in (T-DN) unless x′′
j is an integer). The operation of

adding j to N+ or N− does not change the indicated set if it already contains j, although the associated
goal condition will change as a result of re-defining the value of x′

j . The operation of removing j from N ′
implicitly removes the index from N+ and/or N−, and eliminates the associated goal condition(s).

The execution of these transitions for an appropriate set of variables rests on responding to two types
of conditions, goal infeasibility and integer infeasibility. We examine each of these in turn.

2.2. Goal infeasibility

We say that an optimal solution x = x′′ to (LP′) is goal infeasible if violates a current goal condition
(UP) or (DN), hence if one of the following holds:

(V-UP) for some j ∈ N+, x′′
j < x′

j

(V-DN) for some j ∈ N−, x′′
j > x′

j .

Correspondingly, we call a variable xj associated with a violation (V-UP) or (V-DN) a goal infeasible
variable, and let G = {j ∈ N ′ : xj is goal infeasible}. We specify the primary goal response to such an
infeasibility to consist of establishing a new goal in the opposite direction (changing the associated goal
condition from UP to DN, or vice versa). Thus, for the two preceding types of violations, we obtain the
respective (opposing) responses:

If (V-UP) holds, remove j from N+ and execute (T-DN).
If (V-DN) holds, remove j from N− and execute (T-UP).

Hence, in summary, these responses can be written in the form

Primary Goal Response for a selected subset GP of G

(R-DN) If x′′
j < x′

j for j ∈ N+, transfer j from N+ to N− and set x′
j := �x′′

j � + 1.
(R-UP) If x′′

j < x′
j for j ∈ N+, transfer j from N− to N+ and set x′

j := �x′′
j � − 1.

2454 F. Glover / Computers & Operations Research 33 (2006) 2449–2494

In addition to the primary goal responses, we consider a secondary goal response that consists of
freeing a goal infeasible variable. We call this response secondary (in the sense of subordinate) because
we only execute it if one or more primary goal responses are also made, i.e., only if the selected subset
GP is non-empty.

Secondary Goal Response for a selected subset GS of G

(R-FREE) If (V-UP) or (V-DN) holds, execute (T-FREE) (remove j from N ′).
We now consider how to evaluate the goal infeasible variables in order to choose which ones should

make up the composition of the primary goal set GP ={j ∈ G : response (R-UP) or (R-DN) is made}
and the secondary goal set GS = {j ∈ G : response (R-FREE) is made}.

2.2.1. Goal resistance
We create a measure based on the goal conditions in order to decide which responses from a collection

of available responses (R-UP), (R-DN) and (R-FREE) are preferable. This measure, called the goal
resistance GRj (UP) or GRj (DN) of variable xj , j ∈ G, represents the amount by which the violation
(V-UP) or (V-DN) resists the imposition of the corresponding goal condition (UP) or (DN), or more
generally the amount (positive or negative) by which the countering response (R-DN) or (R-UP) causes
the objective of (LP′) to improve. In particular, since (R-DN) and (R-UP), respectively, perform the
transitions (T-DN) and (T-UP) that impel xj to move counter to its goal condition, the resulting benefit
to (LP′) is a measure of xj ’s resistance to this goal condition. It is important to keep in mind that each
goal infeasible variable has a unique response (R-DN) or (R-UP) assigned to it, according to the nature of
its violation. Thus, we may speak of a single measure GRj applicable to each variable, since we always
know GRj = GRj (UP) if the violation takes the form of (V-UP), and GRj = GRj (DN) if the violation
takes the form of (V-DN).

At the simplest level, GRj can be the absolute value difference |x′′
j −x′

j | (identifying how distant the LP

solution value x′′
j is from its present goal value x′

j)3 and at a higher level GRj can be a post-optimization
estimate of the (positive or negative) improvement in the objective of (LP′) caused by executing the
response (R-DN) or (R-UP). Consequently, a larger goal resistance GRj (UP) or GRj (DN) indicates the
relatively greater value of the countering response (R-DN) or (R-UP). It also suggests the value of the
response (R-FREE), which involves a “partial counter move” that allows a subsequent determination of
whether the full move should be made.

Our designation of (R-DN) and (R-UP) as primary responses and of (R-FREE) as a secondary response
has the following significance: if two goal infeasible variables have been selected for consideration, with
the purpose of executing one primary response and one secondary response, then the variable xj with the
larger goal resistance GRj will be designated as the one to be handled by the primary response. More
specifically, if we choose to place gP goal infeasible variables in the primary goal set GP (to be treated
by the responses (R-DN) or (R-UP)) and to place gS variables in the secondary goal set GS (to be treated
by the response (R-FREE)), then the gP variables in GP will be those having the largest goal resistance
values over G and the gS variables in GS will have the next largest goal resistance values over G (i.e.,

3 The value will be GRj (UP) = x′
j

− x′′
j

> 0 (the resistance to moving xj up from x′′
j

to x′
j

) or GRj (DN) = x′′
j

− x′
j

> 0

(the resistance to moving xj down from x′′
j

to x′
j

) corresponding, respectively, to the violations (V-UP) and (V-DN).

F. Glover / Computers & Operations Research 33 (2006) 2449–2494 2455

Table 1

1 j= 1 2 3 4

2 x′
j
= 1 0 0 1

3 x′′
j
= 0.6 0.3 0.2 0.9

4 GRj= 0.4 0.3 0.2 0.1
New x′

j
= 0* 1* # 1

∗xj changes its goal condition (j ∈ GP = {1, 2}).
#xj is freed from its goal condition (j ∈ GS = {3}).

the largest over G − GP). In the presence of goal infeasibility we always choose gP �1, but may choose
gS = 0. These policies are motivated by the observation that if the goal resistance values successfully
reflect what they are intended to, then a change in a goal condition for a higher resistance value will have
a greater impact than for a lower resistance value.4

2.2.2. Illustrative examples
In this and subsequent sections we provide a series of examples to illustrate the various components

of our method. We assume for each that all integer variables are 0-1, and hence it suffices to indicate the
goal value x′

j for xj in order to know the associated goal condition, i.e., x′
j = 0 corresponds to the (DN)

goal condition xj �0, and x′
j = 1 corresponds to the (UP) goal condition xj �1. We also use the simple

measure of goal resistance given by |x′′
j − x′

j |, indicating how far the LP solution value x′′
j is from the

goal value x′
j . In all cases, the variables will be indexed so that those with higher goal resistance values

appear first.
Our first example, following, illustrates the allocation of variables to the sets GP and GS. Specific rules

for choosing the values gP = |GP| and gS = |GS| are given in Appendix A.

Example A. Consider the situation depicted in Table 1 , involving four goal infeasible variables x1, x2,
x3 and x4 (hence G = {1, 2, 3, 4}). The goal values x′

j on line 2 (corresponding, respectively, to the goal
conditions x1 �1, x2 �0, x3 �0 and x4 �1) are combined with the solution values x′′

j for (LP′) on line 3
to yield the goal resistance values GRj = |x′′

j − x′
j | on line 4. Thus, we note that GRj = GRj (UP) for

j = 1 and 4 (measuring the resistances to the (UP) conditions) and GRj = GRj (DN) for j = 2 and 3
(measuring the resistances to the (DN) conditions). Line 3 also confirms that the xj variables have been
indexed in decreasing order of the GRj values.

For this example we have chosen gP =2 and gS=1, allocating two variables to be in the primary goal set
GP and one variable to be in the secondary goal set GS. Since the variables are indexed so that the largest
goal resistance values come first, x1 and x2 are therefore selected to go in GP and x3 is selected to go in
GS (i.e., GP ={1, 2} and GS ={3}). To determine the handling of the elements of the primary set GP, we
see that x1 and x2, respectively, involve the violations (V-UP) and (V-DN), and the appropriate responses
are, respectively, (R-DN) and (R-UP). Thus the new goal conditions x1 �0 and x2 �1 are created to

4 More timid (lower impact) strategies may invert portions of the ranking order. These provide options for diversification.

2456 F. Glover / Computers & Operations Research 33 (2006) 2449–2494

replace the current conditions x1 �1 and x2 �0. (For 0-1 variables the proper response for elements of
the primary goal set GP is to replace xj �0 by xj �1 and vice versa.)5 For handling the secondary set
GS, the variable x3 is simply freed from its goalcondition. No action is taken for the remaining variable
x4, which retains its current goal condition.

The values on the bottom line of the table identify the appropriate new x′
j goal values to replace the

current x′
j values to create the next problem (LP′). The ∗ symbol indicates that the variable changes its

goal condition (hence the new x′
j value differs from the current x′

j value) and the # symbol indicates that
the variable is freed.

It may be noted that the responses indicated on the bottom line of the table remain unchanged if we
specify x′′

1 =1 instead of x′′
1 =0.6. In this case GR1 =1, and x1 continues to be the variable with the largest

goal resistance, illustrating the situation where a goal violation occurs for a variable assigned an integer
value by the LP solution. The example also shows that the use of the simple goal resistance measure given
by GRj = |x′′

j − x′
j | does not necessarily lead to a new x′

j goal value that is the nearest integer neighbor
of the LP solution value x′′

j . In the present case, the only new goal value that is a nearest integer neighbor
occurs for the variable x4, whose goal value did not change. (When the goal value changes, it will be a
nearest neighbor value only if the current x′

j is not the nearest integer neighbor of x′′
j , which is exactly

opposite to the outcome when the goal value does not change.)
As shown in Section 3.1, tabu restrictions for certain goal conditions can modify the determination of

GP and GS, by causing some variables to be excluded from membership in these sets.

2.2.3. Potential goal infeasibility
We expand the use of goal resistance measures by observing that goal infeasibility can be caused not

only by the existence of violated goal conditions, but also by the existence of other goal conditions whose
influence operates less overtly than through the violations (V-UP) and (V-DN). Specifically, if the value
of M applicable to some currently satisfied goal condition is slightly decreased, then this particular goal
condition may become violated and one or more presently violated goal conditions may instead become
satisfied. We say that a variable is potentially goal infeasible if a limited change in M (of a magnitude
specified either implicitly or explicitly) will drive xj goal infeasible. To emphasize the difference between
goal infeasible variables and potentially goal infeasible variables, we refer to the former as overtly goal
infeasible variables.

Potentially goal infeasible variables are handled by creating an extended measure of goal resistance,
denoted GRo

j , related to the decrease in M that would be required to make variable xj goal infeasible.
At the first level we set GRo

j = −RCj , where RCj is the LP reduced cost for the variable uj or vj (or
xj or Uj − xj) associated with an optimal solution to (LP′). By such a measure, smaller reduced costs
correspond to greater goal resistance. (At LP optimality, RCj �0 for all j ∈ N ′ and RCj = 0 holds for
all xj with overt goal resistance.)6 A more advanced measure can be based on primal post-optimization
to determine the change in goal infeasibility that occurs by changing the coefficient M for given goal
conditions embodied in (LP′).

5 For general integer variables the goal conditions xj �x′
j

and xj �x′
j

are, respectively, replaced by the conditions xj �x′
j
−h

and xj �x′
j

+ k, where h and k are positive integers not necessarily equal to 1.
6 A variable that is xj non-basic at its upper bound Uj has a non-positive reduced cost, but by convention we may refer to

the non-negative reduced cost for the complementary variable sj =Uj −xj , that is the slack variable relative to the upper bound.

F. Glover / Computers & Operations Research 33 (2006) 2449–2494 2457

Table 2

1 j= 1 2 3 4 5 6

2 x′
j
= 1 0 0 1 0 1

3 x′′
j
= 0.6 0.3 0.2 0.9 0 1

4 GRj= 0.4 0.3 0.2 0.1
5 GRo

j
= −4 −25

New x′
j
= 0* 1* 1* # # 1

∗xj changes its goal condition (j ∈ GP = {1, 2, 3}).
#xj is freed from its goal condition (j ∈ GS = {4, 5}).

The same primary and secondary goal responses for overtly goal infeasible variables apply to variables
that are potentially goal infeasible, by replacing the conditions (V-UP) and (V-DN) that signal overt
goal violations with alternative conditions (V -UPo) and (V -DNo) that signal potential violations. Let T o

denote a threshold value that determines when a goal resistance GRo
j is large enough to qualify xj as

potentially goal infeasible. Then we may identify (V -UPo) and (V -DNo) as follows:

(V -UPo) for some j ∈ N+, x′′
j = x′

j and GRo
j �T o

(V -DNo) for some j ∈ N−, x′′
j = x′

j and GRo
j = T o.

By convention, we consider a variable as relevant for inducing a potential goal violation only if it
exactly satisfies its goal condition (x′′

j = x′
j) as opposed to over-satisfying this condition (x′′

j > x′
j for

j ∈ N+ or x′′
j < x′

j for j ∈ N−).
It is possible to avoid specifying an explicit value for T o, since we may instead specify that a given

number of variables with the largest GRo
j values will be admitted to the category of potentially goal

infeasible variables, thereby implicitly establishing T o as the smallest GRo
j value for the variables admitted

(with an implied perturbation for eliminating tied values). Implicit and explicit uses of thresholds are
discussed in Appendix B.

We establish a hierarchy where overtly goal infeasible variables always rank higher in importance than
potentially goal infeasible variables. In any ordering of variables by the size of their resistance values, the
goal resistance values GRj for overtly goal infeasible variables are considered to be preemptively larger
than the GRo

j values for potentially goal infeasible variables. Thus, it is understood that GRp?GRo
q for

any two variables xp and xq that are overtly and potentially goal infeasible, respectively.
The inclusion of potentially goal infeasible variables is important for two reasons: first, as previously

illustrated we may select multiple goal infeasible variables on a given iteration to treat by the responses (R-
DN) and (R-UP), and it can be desirable to include some of the potentially goal infeasible variables among
those chosen; second, the use of tabu-search criteria to exclude some variables from being selected may
disallow the selection of some or all overtly goal infeasible variables, causing variables that are potentially
goal infeasible to move higher in the ranks of those considered for selection.

Example B. Consider the situation illustrated in Table 2, which enlarges Example A to include two
additional variables x5 and x6. In contrast to x1, x2, x3 and x4, the variables x5 and x6 satisfy their goal

2458 F. Glover / Computers & Operations Research 33 (2006) 2449–2494

conditions exactly. We measure the goal resistance values of these additional variables by the first-level
measure GRo

j = −RCj . As seen from line 5 of the table, the indicated reduced costs RCj are relatively
small compared to a “big M” value. Hence, a relatively small decrease in M would induce these variables
to become overtly goal infeasible by making their reduced costs negative. (We may imagine the presence
of variables with larger RCj values, which rank lower than those shown, but which are not included in
the table.)

In this example, we have selected gP = 3 and gS = 2. By the convention that the GRj values dominate
the GRo

j values, it may be verified that the variables are indexed in descending order of their resistance
measures. Therefore, we select the first three variables x1, x2 and x3 to compose the primary goal set GP
and the next two variables x4 and x5 to compose the secondary goal set GS. As indicated on the bottom
row of the table, the variables x1, x2 and x3 therefore change their goal conditions (replacing x1 �1, x2 �0
and x3 �0 by x1 = 0, x2 �1 and x3 �1), while variables x4 and x5 are freed from their goal conditions.
The variable x6 is unaffected and therefore retains its current goal condition.

Rules for choosing gP and gS for the case of potential goal infeasibility are likewise discussed in
Appendix A.

2.3. Integer infeasibility

Subordinate to goal infeasibility is the condition of integer infeasibility, which occurs if the solution
x = x′′ assigns a fractional (non-integer) value to some component of xj of x. Let F = {j ∈ N :
xj = x′′

j is fractional}. We call a variable xj an unrestricted fractional variable if xj is fractional but not

goal infeasible, hence such variables are represented by the index set D = F − G.7 (Just as G represents
the set of variables that fail to satisfy their Goal conditions, D is the set of variables, excluding those in
G, that fail to satisfy their Discrete conditions. D is also called the set of deviating variables.) A variable
xj can be an unrestricted fractional variable even if it is subject to a goal condition (j ∈ N ′), provided it
“over-satisfies” its goal condition. An exception occurs in the case of a 0-1 variable xj , which must be
goal infeasible if it is fractional and j ∈ N ′. For general MIP problems the option exists, as in parametric
branch and bound, to free those variables that are not currently restrained by their goal conditions, thereby
releasing them from their goal conditions and removing them from N ′.

In contrast to the case for a goal infeasible variable, overt or potential, there is no specific primary
response (R-DN) or (R-UP) for the case of integer infeasibility that pre-selects (T-DN) or (T-UP) as the
transition to perform. Instead we may freely choose between these two transitions for variables in D. We
now consider a basis for making such a choice.

2.3.1. Integer penalty and choice-preference measures
In order to select a preferred transition (T-UP) or (T-DN) for a unrestricted fractional variable, we create

integer penalty measures IPj (UP) and IPj (DN) corresponding to each of these possible transitions, which
(approximately) reflect the amount of deterioration in the objective of (LP′) that is induced by imposing
the corresponding constraint xj �x′

j or xj �x′
j , where x′

j is specified to be the integer value obtained by
rounding x′′

j up to �x′′
j � in the first case and rounding x′′

j down to �x′′
j � in the second.

7 The definition of D does not change if the set Go of potentially goal infeasible variables is included in G, since Go contains
no fractional variables.

F. Glover / Computers & Operations Research 33 (2006) 2449–2494 2459

Let f +
j =�x′′

j �−x′′
j and f −

j =x′′
j −�x′′

j �, identifying the positive fractions that represent the distances
of x′′

j from its two integer neighbors (measuring distance in an L1 sense). Then at the simplest level, we

can set IPj (UP)=f +
j and IPj (DN)=f −

j , conceiving the distance values to be proxies for the difficulty of
enforcing the associated goal conditions. At higher levels the values IPj (UP) and IPj (DN) can be based
on traditional MIP penalty calculations that perform one or more dual simplex method post-optimizing
pivots to impose xj ��x′′

j � or xj ��x′′
j �. (Integer programming pseudo-penalties can likewise be used.)

Then we choose the response that yields the smaller of these two penalties, thereby yielding x′
j = �x′′

j � if
IPj (DN) is smaller and yielding x′

j = �x′′
j � if IPj (UP) is smaller. These two outcomes are exactly those

given by the transitions (T-DN) and (T-UP) (since �x′′
j � = �x′′

j � − 1 and �x′′
j � = �x′′

j � + 1 when x′′
j is

fractional).
Consequently we may write the associated responses in the form

(R-DND) If IPj (DN)�IPj (UP), j ∈ D, execute (T-DN).
(R-UPD) If IPj (UP) < IPj (DN), j ∈ D, execute (T-UP).

To reflect the relative desirability of selecting the variable xj and making the response (R-DND)

or (R-UPD) we create a choice preference measure CPj . The preferred member of the two preceding
responses, whose penalty value is Min(IPj (UP), IPj (DN)), can be determined by a measure that is a
monotonically increasing function of the sum IPj (UP)+IPj (DN) and the absolute difference |IPj (UP)−
IPj (DN)|. Thus, for example, we may choose this function as the product

CPj = (IPj (UP) + IPj (DN))(|IPj (UP) − IPj (DN)| + w),

where w is a positive weight to give additional influence to the sum of the penalties (as is appropriate
when their absolute difference is 0).

For the simple case where the penalties are given by IPj (UP) = f +
j and IPj (DN) = f −

j , the sum of
the penalties is always 1, and hence the choice preference value reduces to just

CPj = |f +
j − f −

j |.

The responses (R-UPD) and (R-DND) in this situation result in assigning x′
j = [x′′

j], where [x′′
j] denotes

the nearest integer neighbor of x′′
j .

In general, we stipulate that the variables with the largest CPj values are preferred for making the
response (R-UPD) or (R-DND). Hence, just as we arrange the elements of the set G in descending order
of the GRj values, we arrange the elements of the set D in descending order of the CPj values. By means
of this ordering, the rule for choosing elements of D to handle by the responses (R-UPD) and (R-DND)

takes the same form as the rule for choosing elements of G to handle by the analogous responses (R-UP)
and (R-DN). In contrast to the handling of G, however, we are not concerned with an option of freeing
some of the variables, and hence instead of potentially extracting subsets corresponding to GP and GS of
G, we only extract a single subset of D which we denote by Do. By the notational conventions d = |D|
and do = |Do|, the construction of Do then results by choosing a number do satisfying 1�do �d, and

2460 F. Glover / Computers & Operations Research 33 (2006) 2449–2494

Table 3

1 j= 1 2 3 4

2 x′′
j
= 0.2 0.7 0.4 0.65

3 IPj (UP)= 0.8 0.3 0.6 0.55
4 IPj (DN)= 0.2 0.7 0.4 0.65
5 CPj= 0.6 0.4 0.2 0.1

New x′
j
= 0* 1*

∗xj is made subject to a new goal condition (j ∈ Do = {1, 2}).

specifying that Do consists of the first do elements of D. The same process for determining gP described
in Appendix A can be used to select do.8

Under normal conditions where integer infeasibility is subordinate to goal infeasibility, we do not
bother to identify D and generate Do unless there are no goal violations, i.e., unless G is empty. Again,
tabu criteria subsequently described may alter such conditions.

Example C. Assume the solution to (LP′) is integer infeasible, but not goal infeasible and the solution
values xj = x′′

j for j ∈ D = {1, 2, 3, 4} are as shown on line 2 of Table 3, below. (Other variables may
exist, which either do not violate their goal conditions or else do not belong to N ′. For example, Table 3
could depict the situation that arises upon solving the original problem (LP), when N ′ is empty.)

As before, our illustration involves 0-1 variables, and hence x1 to x4 are not subject to goal conditions (or
else, since they receive fractional values, they would violate these conditions). Consequently, in contrast
to Examples A and B, there is no line in the table to give current goal values x′

j .

The integer penalty values IPj (UP) and IPj (DN) shown on lines 3 and 4 are given by IPj (UP) = f +
j

and IPj (DN) = f −
j . For 0-1 variables it may be noted that f −

j = x′′
j , and hence the IPj (DN) values on

line 4 duplicate the x′′
j values on line 2. The choice preference values CPj shown on line 5 are given by

CPj = |f +
j − f −

j |. These values confirm that the elements of D are indexed so that larger CPj values
appear first.

For this example, we assume do is chosen to be 2, and consequently x1 and x2 are selected to be
subject to new goal conditions (which may be the first goal conditions for these variables, if they have not
been assigned such conditions previously and then freed by becoming members of GS). The appropriate
responses in these two cases are, respectively, (R-DND) and (R-UPD) (which by the measures IPj (UP)=
f +

j and IPj (DN) = f −
j yield the new goal value x′

j to be the integer closest to x′′
j), and thus provide the

entries shown on the bottom line of the table, corresponding to the goal conditions x1 �0 and x2 �1.
We point out that the CPj values also give an alternative basis for generating the GRj (UP) and GRj (DN)

goal resistance values. Since, only one of the two responses (R-UP) or (R-DN) is applicable to a goal

8 The illustrated definition of CPj should be amended for problems with special structure such as 0-1 MIP problems
containing generalized upper bound (GUB) constraints, where disjoint sets of integer variables must sum to 1. In this case, some
fractional-valued variable from a given GUB set must be chosen to receive a goal value of 1 and all others then automatically
receive goal values of 0. Thus, the CPj evaluation should be modified to replace the quantity IPj (DN) by Max(IPh(UP) : h ∈
J − {j}), where J is the GUB set that contains j. Rules based on modeling GUB sets as special ordered sets are also possible.

F. Glover / Computers & Operations Research 33 (2006) 2449–2494 2461

infeasible variable xj , only one of the two GRj (UP) and GRj (DN) values is relevant to consider. The
CPj values identify the relative attractiveness of the preferred member of the (UP) and (DN) conditions,
and hence a meaningful measure for the goal resistance value GRj (UP) is to set GRj (UP) = CPj if the
(UP) condition is preferred (IPj (UP) < IPj (DN)) and to set GRj (UP) = −CPj if the (DN) condition is
preferred (IPj (DN)�IPj (UP)). Likewise, a meaningful measure for the goal resistance value GRj (DN)

is to set GRj (DN) = CPj if the (DN) condition is preferred and to set GRj (DN) = −CPj if the (UP)
condition is preferred.

3. Tabu-search guidance

Various levels of tabu-search can be used to guide the foregoing processes. We begin by sketching the
elements of a basic approach and illustrate its application.

3.1. Tabu conditions

At an initial rudimentary level, we attach a tabu restriction to an (R-DN) or (R-UP) response for a
particular variable xj , thereby forbidding the response from being executed, if the opposing response
((R-UP) or (R-DN), respectively) was executed for xj within the most recent TabuTenure iterations.
(That is, we forbid a move in a direction that is contrary to the direction of a move made within the
selected span of TabuTenure iterations.) To simplify the discussion, we allow (R-DN) and (R-UP) to
refer also to the responses (R-DNo) and (R-UPo). The value of TabuTenure varies according to the
variable xj concerned and the history of the search. We represent this value as TabuTenurej (UP) and
TabuTenurej (DN) according to whether the tabu condition was launched by an (R-UP) or an (R-DN)
response. When such a response is made we use TabuTenurej (UP) or TabuTenurej (DN) and knowledge
of the current iteration, which we denote by Iter, to identify the iteration TabuEndj (UP) or TabuEndj (DN)

that marks the end of xj ’s tabu tenure. Specifically, when an (R-UP) response occurs, we set

TabuEndj (DN) = Iter + TabuTenurej (DN)

to forbid the opposing (R-DN) response from being made for the period of TabuTenurej (DN) iterations
in the future. Similarly, when an (R-DN) response occurs, we set

TabuEndj (UP) = Iter + TabuTenurej (UP)

to forbid the opposing (R-UP) response from being made for the period of TabuTenurej (UP) iterations
in the future.

By this means, an (R-DN) response is tabu for xj as long as the (updated) current iteration satisfies

Iter�TabuEndj (DN)

and an (R-UP) response is tabu for xj as long as the current iteration satisfies

Iter�TabuEndj (UP).

Initially, before any responses have been made and before associated tabu conditions have been created,
TabuEndj (UP) and TabuEndj (DN) are set equal to −1, causing this value to be smaller than every value
of Iter and hence assuring that no tabu restrictions will be in effect.

2462 F. Glover / Computers & Operations Research 33 (2006) 2449–2494

We refer to the values TabuEndj (UP)-Iter and TabuEndj (DN)-Iter as residual tabu tenures. Hence, a
response will be tabu as long as its residual tabu tenure is non-negative. (A negative residual tabu tenure
accordingly indicates the response is free from a tabu restriction.) By convention, we refer to the residual
tabu tenure of a variable xj by taking it to be the residual tabu tenure of the response that is selected
for this variable. We refer to the variable itself as being tabu when its associated response is tabu. (This
reference is unambiguous since each goal infeasible and potentially goal infeasible variable has a single
associated response.) Rules for generating the TabuTenurej (DN) and TabuTenurej (UP) values used to
determine TabuEndj (UP) and TabuEndj (DN) are given in the next section.

In the application of the tabu tenures, a simple form of probabilistic tabu search can be used that replaces
TabuTenurej (DN) and TabuTenurej (UP) in the formulas TabuEndj (DN)= Iter+TabuTenurej (DN) and
TabuEndj (DN) = Iter + TabuTenurej (UP) by values that are randomly selected from an interval around
the respective tabu tenure values. A fuller use of this type of randomizing effect occurs by making such
a replacement each time the inequalities Iter�TabuEndj (DN) and Iter�TabuEndj (UP) are checked.

By design, tabu restrictions are prohibitions against returning to a state previously occupied. We only
create these restrictions for states that seek to enforce a goal condition, hence that involve the responses
(R-UP) and (R-DN) (understanding these to include reference to the responses (R-UPo) and (R-DNo)).
Moreover, we only check tabu conditions when at least one variable is goal infeasible. In the case where
no explicit goal infeasibility exists, and hence the only responses to consider are those applicable to
unrestricted free variables, then no attention is paid to tabu restrictions. The situation where all goal
conditions are satisfied (no goal infeasibility exists) may be viewed as meeting the requirements of a
special type of aspiration criterion, which overrules all tabu conditions. We now examine the use of
criteria that operate when goal infeasibility is present.

3.2. Aspiration criteria

As is customary in tabu-search, we allow a tabu response to be released from a tabu restriction if the
response satisfies an auxiliary aspiration criterion that indicates the response has special merit or novelty
(i.e., exhibits a feature not often encountered). A common instance of such a criterion, called aspiration
by objective, permits the response to be made if it yields a better objective function evaluation than any
response previously executed. In the present setting, we find it convenient to additionally consider an
aspiration by resistance, based on the greatest resistance a particular response has generated in the past.

Specifically, let Aspirej (DN) and Aspirej (UP) denote the largest goal resistance values GRj (DN)

and GRj (UP) that have occurred for xj on any iteration, where xj was selected to execute an (R-DN) or
(R-UP) response, respectively. Then we disregard the tabu restriction for an (R-DN) response (identified
by Iter�TabuEndj (DN)) if

GRj (DN) > Aspirej (UP)

and disregard tabu restriction for an (R-UP) response (identified by Iter�TabuEndj (UP)) if

GRj (UP) > Aspirej (DN).

The rationale for these aspiration criteria is that a move can be allowed if its current resistance value,
measured by GRj (DN) or GRj (UP), exceeds the greatest resistance value previously identified for mov-
ing in the opposite direction (Aspirej (UP) or Aspirej (DN), respectively). We initially set Aspirej (UP)

and Aspirej (DN) to a large negative number, so that the first time a variable xj is evaluated for a potential

F. Glover / Computers & Operations Research 33 (2006) 2449–2494 2463

Table 4

1 J= 1 2 3 4 5 6

2 x′′
j
= 1 0 0 1 0 1

3 x′
j
= 0.6 0.3 0.2 0.9 0 1

4 GRj= 0.4 0.3 0.2 0.1
5 GRo

j
= −4 −25

6 Tabu status T T T T
7 Aspirej 0.5 0.3 0.1 0.4
8 Aspireo

j
−44 −69

New x′
j
= 1 1* 1* 1 0 #

T = Tabu.
∗xj changes its goal condition (j ∈ GP = {2, 3}).
#xj is freed from its goal condition (j ∈ GS = {6}).

response (R-UP) or (R-DN), the response will automatically be allowed, and it will continue to be allowed
until the opposing response is made, which establishes a resistance to be exceeded.

We call a response admissible if it is either not tabu or else satisfies the aspiration criterion, and call
it inadmissible otherwise. If the unique available response for a goal infeasible variable is inadmissible,
then the variable is not permitted to enter the sets GP and GS, even if this makes it impossible for
one or both of these sets to attain its targeted size gP or gS. The only exception to this rule is that
GP is not permitted to be empty in the case of goal infeasibility. Hence in the extreme case where no
variables would enter GP the typical aspiration by default rule is invoked that allows GP to contain a
variable with a smallest residual tabu tenure. (Probabilistic variations of the aspiration by default rule
can also be applied, by assigning larger probabilities to selecting variables with smaller residual tabu
tenures.)

As observed earlier, GRj = GRj (DN) or GRj (UP) may be treated as a 2-element vector, with a
dominant component for an overt goal infeasibility and a secondary GRo

j component for potential goal
infeasibility. The Aspirej values are treated in the same way, as 2-element vectors that include a secondary
component Aspireo

j for potential goal infeasibility. Since overt and potential goal infeasibility for a given
variable xj never occur simultaneously, and since overt goal infeasibility is the dominant component,
only a single component of the vector is relevant to consider—the overt component if it exists, and the
potential component otherwise.

It is to be emphasized that Aspirej (UP) and Aspirej (DN) do not record the greatest values of GRj (UP)

and GRj (DN) encountered over the history of the search, but only the greatest values that occurred in
the instances where xj was selected as a variable to be assigned a goal condition, and only in response to
overt or potential goal infeasibility (i.e., not in response to integer infeasibility, which occurs only when
xj is an unrestricted fractional variable).

Example D. Consider once again the situation of responding to goal infeasibility depicted in Example B,
which we expand to include reference to tabu restrictions and aspiration criteria. Responses that are tabu
are indicated by the T symbol in line 6 of Table 4, below, which is an extended form of the previ-
ous Table 2. As shown, the goal responses for the variables x1, x2, x4 and x5 are currently tabu. The

2464 F. Glover / Computers & Operations Research 33 (2006) 2449–2494

Aspirej (=Aspirej (UP) and Aspirej (DN)) values underlying the aspiration criteria are shown on lines
7 and 8, where line 7 identifies the component for overt goal infeasibility (simply labeled as Aspirej)
and line 8 identifies the component associated with potential goal infeasibility (labeled as Aspireo

j).
Since the dominant Aspirej component is the only one that is relevant if it exists (and thereby “erases”
any previous Aspireo

j component), only one entry, Aspirej on line 7 or Aspireo
j on line 8, appears for

each xj .

Recall that for 0-1 variables, as considered here, a goal value of 1 (x′
j = 1 on line 2) corresponds to

an (UP) condition and a goal value of 0 (x′
j = 0 on line 2) corresponds to a (DN) condition, respectively,

giving x′
j �1 and x′

j �0. Thus, we know that GRj = GRj (UP) for j = 1, 4 and 6 and GRj = GRj (DN)

for j = 2, 3 and 5, and by the reverse (UP)/(DN) association between GRj and Aspirej in the aspiration
criteria, we also know that the applicable Aspirej values are given by Aspirej = Aspirej (DN) for j = 1,
4 and 6 and Aspirej = Aspirej (UP) for j = 2, 3 and 5. (The same identities also hold for GRo

j and
Aspireo

j .)
In the present instance we seek to respond to goal infeasible and potentially goal infeasible vari-

ables by constructing a primary goal set GP of size gP = 2 and a secondary goal set GS of size
gS = 1. Consequently, we take GP to consist of the first two (highest ranking) admissible variables-
i.e., those whose responses are admissible. In particular, we look for the first two variables whose
responses are not tabu or else that satisfy the applicable aspiration criterion GRj (DN) > Aspirej (UP)

or GRj (UP) > Aspirej (DN). Similarly, we take GS to consist of the next admissible variable after those
assigned to GP.

Proceeding through the variables in the order of their ranking, we see that x1 is tabu. More precisely,
x1 currently violates its associated (UP) condition, and its associated counter response (R-DN) is tabu.
Moreover, the GRj value of .4 for x1 does not exceed its Aspirej value of .5. (The GR1 entry represents
GR1(UP), the amount that x1 resists the (UP) condition it currently is subject to, and the Aspire1 entry
represents Aspire1(DN), the largest amount that x1 previously resisted the (DN) condition that it now
would undertake to enforce.) Consequently, the aspiration criterion is not satisfied for x1 and the variable
is not admissible to enter GP.

Next we examine x2, which is likewise tabu, and we see in this case that its aspiration criterion is
satisfied, since the value GR2=.3 dominates the associated value Aspireo

j=−44. (There is no Aspire2 value
that offers a comparison on the same level as GR2.) The tabu status for x2 comes from a tabu restriction
placed upon an (R-UP) response, since x2 is currently subject to a (DN) condition. Consequently, GR2
represents GR2(DN) and Aspireo

2 represents Aspireo
2(UP). The latter condition indicates that the largest

GRo
2(UP) value previously applicable to x2, for resisting an (UP) condition, was −44. That is, on an

occasion when x2 was potentially goal infeasible, satisfying the (UP) condition x2 = 1, its resistance
measure was derived from a reduced cost of 44. Moreover, x2 was never overtly infeasible when it was
subject to an (UP) condition, and then selected to receive an (R-DN) response, or else it would have
an entry for GR2. (Since x2 currently is subject to a (DN) condition, it must have been selected for an
(R-DN) response when it was potentially goal infeasible.) The fact that x2 satisfies its aspiration criterion
shows that it is admissible to be selected, and hence it is placed in GP. If at this point no more variables
were admissible to be selected, we would terminate with GP = {2} and GS empty. (The fact that GP is
non-empty means that the construction is acceptable.)

The next variable x3 is not tabu and hence also is admissible to enter GP. The associated value
Aspireo

3 =−69 for x3 indicates that the variable had previously satisfied its (UP) condition as a potentially

F. Glover / Computers & Operations Research 33 (2006) 2449–2494 2465

goal infeasible variable, and was selected for an (R-DN) response (hence assigning x3 the (DN) condition
that currently applies to this variable). At this point, x3 would have acquired a tabu restriction preventing
an (R-UP) response. Since the variable is not currently tabu (i.e., its (R-UP) response is not tabu), we
know that the previous tabu restriction for (R-UP) has expired.

With the assignment of both x2 and x3 to GP, the primary goal set now receives its quota of gP = 2
variables, and now we look for a variable to be assigned to the secondary goal set GS. The variable x4 is
next in line to examine, and is tabu. The value GR4 = .1 does not exceed the value Aspire4 = .3, and so
the aspiration criterion is not satisfied. Thus, x4 does not qualify to enter GS.

Proceeding to x5, we encounter a tabu variable whose value GRo
5 = −4 is dominated by the associated

value Aspire5 = .1. Hence the aspiration criterion is not satisfied, and the variable is inadmissible to be
assigned to GS.

Finally, the variable x6 is not currently tabu, and so it is added to GS to complete the quota of gS = 1
variables for this set. The fact that x6 has an associated value Aspire6 = 0.4 indicates that x6 had once
overtly violated a (DN) condition with a resistance measure of GR6(DN)=0.4, and had at that point been
selected for an (R-UP) response (while at the same time placing a tabu restriction to forbid a subsequent
(R-DN) response). The fact that x6 is not currently subject to such a restriction discloses that its tabu
tenure has expired.

3.3. Determining the values of TabuTenurej (UP) and TabuTenurej (DN)

A variety of ways exist for creating tabu tenures, ranging from simple static tenures to more advanced
dynamic and adaptive tenures, and can be used in the present setting. (For a discussion of alterna-
tives, see for example, [2,3].) We suggest an approach for creating the values TabuTenurej (UP) and
TabuTenurej (DN) that offers a further option.

For convenience we use a shorthand notation, where the symbol � refers to either the condition UP or
DN and � refers to the opposite condition. Thus, for example, we note that an (R-�) response is made to
a (V -�) violation, for � = UP and DN and � = DN and UP, respectively. Then our suggested procedure
for creating the tabu tenure values can be expressed as follows.

Creating TabuTenurej(�) for � = UP and DN

(a) All TabuTenurej (�) values start at a selected minimum value MinTenure.
(b) Wheneverxj is subjected to an (R-�) response (because of a (V -�)violation), increase TabuTenurej (�)

by a specified increment �Tenure (setting TabuTenurej (�) := TabuTenurej (�) + �Tenure). An ex-
ception occurs if the response is tabu and executed because of satisfying the criterion of aspiration
by resistance, in which case TabuTenurej (�) is unchanged.

(c) After a selected number of iterations, and each time a new best solution is obtained, clean the slate by
re-setting all tabu tenures again to MinTenure, and also re-setting all Aspirej (�) values (for � = UP
and DN) to a large negative value.

MinTenure and �Tenure are parameters whose preferred values are to be determined by experimen-
tation. (A reasonable starting point is to begin by exploring small values, as by selecting MinTenure in
the range from 3 to 5 and �Tenure in the range from 1 to 3. The maximum value attained by any tabu
tenure should be limited by a pre-set upper bound.) We also note step (c) can optionally be executed by

2466 F. Glover / Computers & Operations Research 33 (2006) 2449–2494

performing a partial slate cleaning, where the tabu tenures and the Aspirej (�) values are simply reduced
without re-setting them all the way back to their initial values. The degree of this reduction can be con-
trolled by strategic oscillation (e.g., as a function of the smallest and average values previously assigned
to these parameters following their initialization).9

3.4. A core version of parametric tabu-search

We summarize a core version of parametric TS that results from applying the basic ideas sketched
in the preceding sections. The Core Method lies at the heart of the complete approach that incorporates
associated intensification and diversification procedures.

In its initial execution, the Core Method begins by specifying (LP′) to be the original relaxation (LP)
of (MIP), where no goal conditions exist and N ′ is empty. We assume the solution to (LP) is not (MIP)
feasible, or else the problem (MIP) is already solved. The method then proceeds as follows.

Core Method

1. Solve (LP′) to obtain an optimal solution (x′′, y′′). If this solution is (MIP) feasible, update x∗
o and

repeat this step to re-optimize (LP′). (If (LP′) has no feasible solution, the method stops and the best
solution is optimal.) Terminate the solution process if this step has been executed a chosen number
of times. Otherwise, continue to Step 2.

2. (a) If the solution to (LP′) is goal infeasible, create the sets GP and GS to consist of the gP and
gS highest ranking goal infeasible (and potentially goal infeasible) admissible variables from G,
defining admissibility in relation to the current tabu restrictions and aspiration criteria.

(b) If the solution to (LP′) is not goal infeasible, but is integer infeasible, Create the set Do to consist
of the do highest ranking unrestricted fractional variables from D.10

3. According to the outcome of Step 2, generate the new goal conditions and identify the new problem
(LP′). If the stipulations of Step 2(a) apply, update the associated tabu tenures and aspiration values.
Then return to Step 1.

The repetition of Step 1 in the case where the current solution to (LP′) is (MIP) feasible invites the
use of dual post-optimization to handle the updated objective function constraint cx + dy�x∗

o − �.
Alternatively, the objective function constraint may be temporarily maintained in the form cx + dy�x∗

o ,
which is satisfied by the current solution to (LP′). Although no variables are goal infeasible, the method
then proceeds to Step 2(a) to create the sets GP and GS by reference to the potentially goal infeasible
variables. Subsequently, the objective function constraint can be restored to the more restrictive form
cx +dy�x∗

o − � when the solution to (LP′) in Step 1 is feasible for this constraint. The restoration will be
possible immediately after the first re-execution of Step 1 if GP is made empty and if a sufficient number
of variables in G are is selected for inclusion GS. This approach could naturally be executed under the
policy where the slate-cleaning step of the preceding section is performed each time a new (MIP) feasible

9 A referee has also suggested the interesting possibility of partially cleaning the slate of each individual variable xj as soon
as its TabuTenure reaches MaxTenure.

10 Probabilistic TS rules can be employed to generate the composition of GP, GS and Do as a function of the rankings or
the underlying penalty measures.

F. Glover / Computers & Operations Research 33 (2006) 2449–2494 2467

solution is found. This option re-initializes the tabu tenures and aspiration values, essentially starting over
from the solution to the original (LP) relaxation, whose basis can be saved for this purpose. The new
determination of GP and GS can then be superimposed on this LP basis, by reference to the variables that
were potentially goal infeasible upon finding the new best solution and postponing the introduction of the
new goal conditions until recovering the solution to (LP). Another option is simply to post-optimize from
the most recent solution to (LP′), using the objective function of minimizing cx +dy (temporarily setting
all penalties to 0), and then interrupting the execution as soon as cx + dy becomes small enough to allow
the constraint cx + dy�x∗

o − � to be instated. Then the new (LP′) objective can be introduced, allowing
primal post-optimization to continue without having to revert all the way to the initial (LP) solution.

In the case of a pure IP problem where all variables are integer variables, the discovery of a new (MIP)
feasible solution can also launch a supplementary improvement method, using a classical neighborhood
that changes the values of selected variables by 1 at each iteration. If the supplementary method succeeds
in finding an improved solution, yielding a further improved value for x∗

o , dual post-optimization can
be avoided by same approaches previously noted. (Under the simple option of temporarily relaxing the
objective function constraint, the form of the constraint can be expressed as cx+dy�x′′

o , where x′′
o denotes

the xo value for the solution to (LP′); i.e., x′′
o gave the previous value of x∗

o before x∗
o was improved by

the supplementary procedure.)

3.5. Summary of the complete parametric TS procedure

The complete parametric TS method contains the Core Method as a subroutine, and extends it by
the inclusion of intensification and diversification strategies. We briefly sketch the form of the complete
method, and then describe the additional supporting strategies in Section 4.

Parametric TS Method

0. Initialize the TabuTenure and Aspire arrays. Identify (LP′) as the original relaxation (LP) of (MIP),
where no goal conditions exist and N ′ is empty.

1. Execute the Core Method.
2. (a) Terminate if the accumulated number of iterations from all executions of the Core Method exceeds

a chosen limit, or if a criterion of progressive improvement is not met. Otherwise:
(b) Apply an Intensification or Diversification Step to generate a new goal vector x′ and associated

sets N+ and N− to define a current problem (LP′). Then return to Step 1.

Step 2(b) is carried out by identifying a specific earlier instance of the problem (LP′) so that the current
one can be solved by primal post-optimization, starting from the optimal LP basis to the earlier problem.
The earlier (LP′) problem can be relaxed to be the original LP relaxation (LP), but other (LP′) problems
can be used instead.

We subsequently identify a variation of Step 2(b) utilizing model embedded memory that first generates
a problem (LPo) whose form differs from (LP′), but whose solution can be treated exactly as if it were
a solution to (LP′). Upon solving (LPo) the method returns to Step 1 to execute the Core Method in the
usual fashion.

We now examine the procedures that give substance to Step 2(b).

2468 F. Glover / Computers & Operations Research 33 (2006) 2449–2494

4. Intensification and diversification

The intensification and diversification methods treated in this section are divided into four main types:
(1) basic approaches founded on exploiting strongly determined and consistent variables; (2) approaches
derived from scatter search; (3) methods based on frequency analysis; and (4) procedures employing
ideas of model embedded memory. These approaches cover a broad spectrum of strategic considerations,
and invite empirical research to identify the ways they may best fit together in various settings.

4.1. Basic approaches

The simplest forms of intensification and diversification methods arise by manipulating the values gP,
gS and gD, choosing them to be small for intensification and large for diversification. Probabilistic choice
can be incorporated as an added factor to increase diversification. Similarly, the tabu tenure values can
be manipulated to favor intensification or diversification as in customary variants of tabu-search.

Such rudimentary considerations acquire greater scope by making use of basic types of frequency
memory, particularly as a foundation for identifying and exploiting strongly determined and consistent
variables. This calls for the creation of measures that differ from the measures used to identify resistance
and integer infeasibility, and hence departs from evaluations that have familiar counterparts in the context
of branch and bound.

Strongly determined and consistent variables are identified by reference to the phenomenon where some
variables receive particular values with greater tenacity or frequency than other variables, over subsets of
high quality solutions. The value a given variable is thus disposed to receive is called its preferred value.
Saying that a variable receives its preferred value with greater tenacity means that an attempt to change
the value of the variable causes a greater disruption in the objective function or in feasibility. (In this
respect, classical branch and bound penalty measures, that identify the deterioration in xo by performing
one or more dual pivots upon imposing a particular branch, can be one means of pinpointing strongly
determined variables, provided these measures are generated with respect to high-quality solutions.)

A key issue is to choose appropriate subsets of solutions over which tenacity and frequency are mea-
sured, by selecting subsets whose elements are related by exhibiting similar features in the case of
intensification and dissimilar features in the case of diversification. This issue surfaces again in the con-
text of strategies derived from scatter search, as discussed in the next sub-section. The link between these
sub-sections results from the fact that the notions underlying scatter search and those underlying strongly
determined and consistent variables come from the same source. Hence, the rules for isolating useful
subsets of high quality solutions subsequently described in connection with scatter search can also be
used within the present setting as a basis for identifying strongly determined and consistent variables.

By means of such rules, these variables can be exploited in the following manner drawing on the
proposal of Glover [4].

Exploitation of strongly determined and consistent variables

0. During an initial set of solution passes, save a collection X∗ of the highest quality solutions generated.
Let NC denote a subset of N identifying variables that are constrained to receive specific values, and
begin with NC empty.

1. Extract a subset S of high-quality solutions from X∗.

F. Glover / Computers & Operations Research 33 (2006) 2449–2494 2469

2. Identify a small number of variables xj , j ∈ N − NC, that have the highest evaluations for being
strongly determined and consistent over S. Constrain these variables to their preferred values and add
them (i.e., their indices) to NC.11

3. Perform an additional series of solution passes, allowing only the variables xj , j ∈ N − NC to
vary. Again save a collection X∗ of the highest-quality solutions generated, including those solutions
from the previous X∗ in which the constrained variables xj , j ∈ NC receive their associated preferred
values. If the best solution found has not improved over a specified number of consecutive applications
of this step, then stop. Otherwise, return to Step 1.

The rationale underlying the foregoing approach is that a process of progressively constraining strongly
determined and consistent variables to their preferred values will cause new variables from those remaining
to receive evaluations that qualify them more decisively as strongly determined or consistent, although
quite possibly with different preferred values than those that might have potentially been associated with
these variables on previous passes. After the first few executions of Step 1, the set S can be chosen to
be the same as X∗, so that the identification of strongly determined and consistent variables is affected
thereafter solely by the growing number of constrained variables in the set NC. The stopping rule in Step
3 can also terminate the procedure when NC contains a specified portion of the total number of variables
in N. Then, after terminating, the approach can be iterated by returning to an earlier stage when S was a
proper subset of X∗, and selecting a different subset S as a basis for the steps that follow. Tabu restrictions
can be used to assure that the additions to the set NC do not duplicate those of previous passes, except
where the preferred values of some of the variables added to NC differ from the values received earlier.

We assume an iterated version of the preceding approach is controlled so that only a few different subsets
S are permitted to be derived from a given set X∗, over successive iterations where X∗ is recovered at
Step 1. Then, if S is made to be the same as X∗ after only 1 or 2 successive visits to Step 1, the procedure
will avoid examining a large number of different sets of constrained assignments.

In the original proposal for exploiting this framework, the solution passes referred to in Steps 0 and
3 were conceived to be an application of any method or methods the implementer might customarily
use or devise for generating solutions. In the present setting, we refer to the approaches currently under
examination. In particular, the determination of X∗ and S can be made by equating these sets, respectively,
with the set R and its associated subsets R(k) described in the next sub-section.

4.2. Approaches derived from scatter search

Methods inspired by scatter search (e.g., [4,5]) create goal conditions for defining (LP′) by reference to
points dispersed throughout various sub-regions, where these sub-regions are implicitly defined by subsets
of previously generated solutions. The foundation for creating these subsets consists of maintaining a
reference set R = {x1, x2, . . . , xb} whose component solutions xi are composed of the b best (MIP)
solutions found,12 hence each xi , i = 1, . . . , b corresponds to a vector x′′ from a solution (x′′, y′′) to a
past problem (LP′). The value of b will usually be relatively small, e.g., in the range from 8 to 20, though
the analysis can be carried out for both larger and smaller numbers of solutions.

11 These variables may be constrained to lie in preferred ranges rather than be compelled to receive specific values.
12 The definition of “best” used to select solutions in R can include criteria of diversity, giving rise to a form of R that is

sometimes managed as two or three component sets.

2470 F. Glover / Computers & Operations Research 33 (2006) 2449–2494

It is to be emphasized that the solutions xi recorded in the reference set need not be (MIP) feasible,
but may be evaluated for inclusion in R by adopting a measure of quality that penalizes infeasibility.
This can be important in applications where the primary goal is to identify a feasible (MIP) solution,
as in settings where such solutions are difficult to find. Although, we may normally consider solutions
that are (LP) feasible but fractional, in the present case we suppose each recorded xi is integer feasible.
To ensure this, if the associated solution (x′′, y′′) to (LP′) does not yield an integer feasible vector x′′,
we apply nearest neighbor or generalized rounding to x′′ to achieve integer feasibility. In contrast to
the types of populations maintained in customary evolutionary approaches such as genetic algorithms, R
identifies a set in the strict meaning of the term, and hence no member of R duplicates any other. Since
the composition of R varies over time, we also employ a larger historical set R∗ composed of the union
of previously generated reference sets R. For simplicity, R∗ may be restricted by disregarding component
solutions that were dropped before executing the first intensification or diversification strategy in Step
2(a) of the parametric TS method. R∗ may also be further restricted, is space limitations are pressing, by
considering only the composition of those sets R existing at the time an intensification or diversification
step is executed, noting that some solutions that enter R may be displaced by others without having an
opportunity to be examined in Step 2(a).

Accompanying R∗ we also keep track of a set R′ that consists of each goal solution x′ that was used
to create an element x of R∗. Duplicate records of solutions are not needed, hence we do not bother to
add x′ to R′ if x = x′. The solutions xo ∈ R∗ ∪ R′ are then checked against a new candidate solution x′
that may be used to define a new (LP′). If x′ = xo then the solution of (LP′) will launch a phase of the
parametric TS method that re-produces solutions already found. Consequently, upon discovering that a
new goal vector x′ matches some xo ∈ R∗ ∪ R′ we disregard this current x′ and generate another in its
place. To facilitate the checking for matches between pairs xo and x′, we store a hash value with each
element of R∗ ∪ R′. Then it is only necessary to check for x′ = xo if the hash value of x′ is the same as
that recorded for xo.

Based on these conventions, we turn to the issue of generating a new candidate goal vector x′ and an
associated problem (LP′).

4.2.1. Intensification and diversification by generating x′ from centers
While scatter search normally generates multiple linear combinations of the points that define a par-

ticular sub-region of R, we will primarily focus on generating centers of these sub-regions, in accordance
with scatter search proposals that seek to economize the number of points examined. For this purpose,
we implicitly identify a convex sub-region spanned by R by selecting a subset R(k) consisting of k points
drawn from R, which by re-indexing we denote by R(k) = {x1, x2, . . . , xk}. The value of k will typically
be selected to be relatively small, e.g., between 2 and 9,13 and we further suggest that in many cases,
particularly for 0-1 integer variables, k should preferably be odd. The elements of R(k) are then chosen
one at a time from R, to produce successive sets R(1), R(2), . . . , R(k), thereby culminating in the creation
of R(k). We first describe the approach in overview, introducing relevant notation.

The point x1 to compose R(1) is selected as the best point in the set R, using the same evaluation
criterion used to generate R itself. Having generated the set R(i) for k > i�1, the choice of xi+1 to create

13 In many cases k can be restricted to be at most 5, and in any event need not exceed (|R| + 1)/2. However, larger values
of k can be relevant for generating subsets S = R(k) to be used for identifying strongly determined and consistent variables, as
discussed earlier.

F. Glover / Computers & Operations Research 33 (2006) 2449–2494 2471

R(i + 1) is based on selecting the element of R − R(i) that is closest to the center x(i) of R(i), defining
x(i) = (1/i)�(xh : h�i} (hence, x(1) = x1). Let D(x, x(i)) denote the distance of a point x from x(i).
(The L1 norm D(x, x(i)) = �|xj − xj (i)| : j ∈ J) is convenient for defining distance in this setting,
though other norms can also be used.) Then, in particular, we choose

xi+1 = argmin(D(x, x(i)) : x ∈ R − R(i)).

The generation of R(k) can be the foundation for both an intensification procedure and a diversification
procedure, because the center x(k) of R(k) embodies a greater intensification influence by choosing
smaller values of k and a greater diversification influence by choosing larger values of k. (Evidently,
choosing k = 1 would trivially produce the greatest possible form of intensification, by simply returning
the solution x1 as the point for initiating subsequent search.) A more extreme form of diversification is
produced (for k > 1) by replacing argmin by argmax in the preceding definition of xi+1.

4.2.2. Multiple executions and tabu guidance
The procedure of generating R(k) and launching a new search from its center x(k) is applied multiple

times, by performing multiple executions of Step 2(b) of the parametric TS method. Consequently, we
construct more than one set of the form R(k), generating a new set at each visit to Step 2(b). Variation is
induced in the resulting sets by excluding some elements of R from belonging to a currently generated
R(k), making use of two tabu sets, denoted Tabu1 and Tabu2. The manner in which this is done is as
follows.

Tabu1 is the union of all R(k) sets previously generated. We use this set to compel the first element x1

of the current R(k) to come from R - Tabu1, thus assuring the current R(k) cannot have a composition
that duplicates any previous R(k). Thus, prior to constructing the first instance of R(k), we begin with
Tabu1 = �, and then as each new R(k) is constructed we augment Tabu1 to incorporate its elements.

Tabu2 is constructed by keeping track of a value n(x) for each x ∈ R that identifies the number of
times the solution x has appeared in the sets R(k) generated on all previous executions of Step 2(b). (The
number n(x) may be accessed by an index assigned to x as a member of R.)

When a new solution x is added to R by displacing the current lowest quality solution, the value n(x)

for this solution begins at 0. Tabu2 is then composed by adding solution x to the set Tabu2 when n(x)

reaches 2. However, this condition is waived for the current best solution x∗ in R, which is not restricted
in the number of times it can be incorporated into the sets R(k). However, if x∗ becomes superseded as
the best member by a new solution that is added to R, and if n(x∗)�2, then x∗ enters Tabu2.14

The rule for creating R(k) then takes the following form:

Rule to generate R(k)

0. Begin with Tabu1 and Tabu2 inherited from generating previous sets R(k), where Tabu1 and
Tabu2 start empty before generating the first R(k).

1. Choose x1 to be the best element of R - Tabu1.
2. For i = 1, . . . , k − 1, let xi+1 = argmin(D(x, x(i)) : x ∈ R − R(i) − Tabu2).

14 The limit of 2 for n(x) is of course not mandatory, and an alternative is to allow the limit to vary according to the rank of x
in R, as where n(x)= 5 (instead of infinity) for the best solution, n(x)= 4 for the second best solution, etc. These considerations
are amplified in the next sub-section.

2472 F. Glover / Computers & Operations Research 33 (2006) 2449–2494

3. Set Tabu1 := Tabu1 ∪ R(k). For i = 1, . . . , k set n(xi) := n(xi) + 1, and if n(xi)�2, add xi to
Tabu2.

We observe that R can change in the interval between generating one set R(k) and another, since each
R(k) generated can be used as the source of a goal solution x′ (derived from x(k)) that launches an
additional iteration of the parametric TS method. Consequently, the composition of Tabu2 will alter by
removing reference to solutions that have been dropped from R and by keeping track of the value n(xi)

for new solutions xi that are added to R.
Upon generating R(k) and identifying its center x(k), we create the goal vector x′ to define (LP′) by

rounding the fractional components of x(k) to integer values, hence setting15

x′ = [x(k)].
The last step is to identify the sets N+ and N− to complete the definition of the problem (LP′). For

this we may start from any solution (x′′, y′′) to a previous (LP′), and in particular we choose (x′′, y′′) to
be the solution to the original LP relaxation (LP). However, the goal vector x′ is determined as indicated
above, rather than choosing x′ to be the vector associated with the earlier problem (LP′).

Then we produce (LP′) by creating N+ and N− according to the following rule.

Constructing (LP′) from x′ and the solution x′′ to a previous (LP′)

If x′′
j > x′′

j or x′′
j = x′

j = 0, add j to N−.
If x′′

j < x′
j or x′′

j = x′
j = Uj , add j to N+.

If 0 < x′′
j = x′

j < Uj , add j to both N+ and N−.

The new problem (LP′) then becomes the one associated with Step 2(b) of the parametric TS method,
and this problem may be solved upon returning to Step 1 by post-optimizing from the solution (x′′, y′′) to
the selected previous problem (LP′). In this regard, different choices of (x′′, y′′) can change the trajectory
of responding to the goal vector and goal conditions, and thus lead to possibly different candidate solutions
to (MIP). As previously noted, the method can be used to emphasize either intensification or diversification,
by choosing smaller or larger values of k, and achieving further emphasis on diversification by replacing
argmin by argmax in the definition of xi+1 in Step 2 of the rule for generating R(k).

4.2.3. Additional uses of scatter search
To rely more heavily on mechanisms derived from scatter search, as a means of generating a greater

variety of combined solutions to yield goal vectors x′, we may undertake to produce a greater variety
of subsets R(k) of R, thus giving rise to additional centers x(k) and hence additional goal vectors x′.
We indicate prescriptions for doing this that can also be used in other contexts where scatter search is
employed. Our approach can of course be accompanied by generating additional combinations of the
component solutions within a given set R(k), rather than referring solely to the point x(k). Additional

15 As earlier, we use the square brackets to denote nearest neighbor rounding (i.e., [x] = ([x1], [x2], . . . , [x|J |])). The
recommendation to choose k odd gives a natural tie breaking feature for setting x′ = [x(k)], since in this way, no component x′

j

of x′ can equal .5.

F. Glover / Computers & Operations Research 33 (2006) 2449–2494 2473

variation can result by allowing the number of different solutions contained within the subsets R(k) to
range over values that are not restricted to the intervals previously indicated.

The key idea is as follows. By reference to a chosen indexing of the solutions in R, we create an
implicit matrix Match(p, q) where Match(p, q) = 1 if the solutions xp and xq in R have previously
been matched, i.e., have appeared together as elements of a previously generated subset R(k), and where
Match(p, q)= 0 otherwise. By convention we define Match(p, p)= 1. (This matrix representation is for
descriptive convenience only, and can be replaced by the use of linked lists, as a means to take advantage
of symmetry and sparsity.)

We then use Match(p, q) to identify tabu conditions governing the choice of solutions xp admitted to
the subset R(k) as follows. Define

TabuMatch = {xp ∈ R : Match(p, q) = 1 for all xq ∈ R},
i.e., TabuMatch is the set of solutions in R that have been matched with every other solution in R over the
collection of subsets R(k) previously generated. As we undertake to generate a new R(k), we exclude
consideration of any solution x that belongs to TabuMatch.

Moreover, relative to a given set R(i) being constructed in the process of generating a current R(k)

(by the construction sequence R(1), . . . , R(i), . . . , R(k)), and relative to any solution xp ∈ R − R(i)

(in the role of a candidate to be added to R(i) to produce R(i + 1)), define

n(i : p) = �(Match(p, q) : xq ∈ R(i)),

i.e., n(i : p) is the number of solutions xq ∈ R(i) that have been matched with xp as a result of the
situation where both xp and xq belonged to some previously generated set R(k). In this case, we want
to prevent xp from being added to R(i) if xp matches with more than a specified fraction f |R(i)| of the
elements of R(i), hence if n(i : p) > f |R(i)| (where, for example, f = .5 or .7).16 Thus, we define

Tabu(i) = {xp ∈ R − R(i) : n(i : p) > f |R(i)|}
to identify the set of solutions that are excluded from being added to R(i) to generate R(i + 1).

Finally, we refine the earlier criterion for defining membership in the set Tabu2 by replacing n(xi)�2
with n(xi)�v(i), where the v(i) values are integers, such that v(p)�v(q) if xp has a higher evaluation
that xq (by the evaluation criterion used to determine membership in R). It is reasonable to restrict all
v(i) values to be relatively small, e.g., not more than 5.

By these conventions we now consider an alternative to our earlier rule for generating the set R(k). In
addition to giving a role to the new sets TabuMatch and Tabu(i), and to the values v(i), we effectively
replace Tabu1 by Tabu2 ∪ TabuMatch.

Alternative Rule to generate R(k):

0. Begin with TabuMatch and Tabu2 inherited from generating previous sets R(k), where Tabu-
Match and Tabu2 start empty before generating the first R(k). Likewise, Match(p, q) used in
updating TabuMatch and Tabu(i) is inherited from generating previous sets R(k), beginning with
Match(p, q) = 0 for all pairs of solutions xp and xq in R.

1. Choose x1 to be the best element of R - (Tabu2 ∪ TabuMatch).

16 By our indexing convention that gives R(i) = {x1, . . . , xi}, we note that |R(i)| = i.

2474 F. Glover / Computers & Operations Research 33 (2006) 2449–2494

2. For i = 1, . . . , k − 1, let

xi+1 = argmin(D(x, x(i)) : x ∈ R − R(i) − (Tabu2 ∪ Tabu(i)).

3. For i = 1, . . . , k, set n(xi) := n(xi) + 1, and if n(xi)�v(i), add xi to Tabu2.

As noted earlier R can change in the time interval between generating one set R(k) and another, and
consequently we understand that when a new element xp of R replaces an old one, the values Match(p, q)

and Match(q, p) become 0 for all xq in R, q 	= p.
Although we have specified the foregoing rules as a way to flexibly generate a variety of differing

subsets of a given set, we remark that these rules can also be adapted to provide tabu conditions for
flexibly controlling the generation of solutions within tabu-search methods.

4.2.4. Diversification by complementation
A stronger emphasis on diversification can be achieved by creating new goal vectors x′ by comple-

menting chosen solutions x ∈ R. This approach can also be applied by first generating x′ as in the Section
4.2.2 or 4.2.3, and then treating x′ as the vector x to be complemented. We now indicate more precisely
what we mean by the complement of a vector.

For the 0-1 case the complement of x is identified in the usual manner by setting x′
j =1−xj for j ∈ N .

For the general integer variable case, we define the complement by once again making reference to an
earlier problem (LP′), such as the initial relaxation (LP), and its solution (x′′, y′′). In the following we
refer to an inequality x′′

j �xj or x′′
j �xj as restrictive if this inequality is either a goal condition used to

define (LP′) or else xj is 0 or Uj , respectively.

Generalized Complementation Rule (to Create a Complement x′ of x)

If x′′
j < xj , set x′′

j := �x′′
j � and put j ∈ N−

If x′′
j > xj , set x′

j := �x′′
j � and put j ∈ N+

If x′′
j = xj and x′′

j �xj is restrictive, set x′
j := xj − 1 and put j ∈ N−

If x′′
j = xj and x′′

j �xj is restrictive, set x′
j := xj + 1 and put j ∈ N+

In all other cases, execute either of the two preceding assignments

The foregoing rule again defines a new (LP′) that becomes the basis for executing Step 2(b) of the
parametric TS method.

4.2.5. Path relin king variant
The foregoing strategies based on scatter search also provide a foundation for related path relinking

strategies. This can be done by first generating the solution x′ = [x(k)] from a center x(k) of R(k) as
in Section 4.2.2 or 4.2.3, or by using complementation to generate x′ as in Section 4.2.4. We may in
fact choose x′ to be any solution in the reference set R, and then identify the solution (x′′, y′′) as in the
previous sections to be one whose vector x′′ is another solution in R.

In contrast to the scatter search designs previously described, however, the path relinking approach does
not create a fully determined set of goal conditions from the new goal vector x′ as a means identifying
a new problem (LP′) for executing Step 2(b) of the parametric TS method. Instead, x′ is treated as a

F. Glover / Computers & Operations Research 33 (2006) 2449–2494 2475

guiding solution for a process that begins from the solution (x′′, y′′) and then moves toward x′ along
a path created by a series of transitions that introduce only one or a very small number of new goal
conditions at each step. We allow x′ itself to change in the process, whenever the currently activated goal
conditions are found to be unattainable. In this situation, we allow x′ to be modified exactly as in the
Core Method when goal infeasibility is detected. This approach departs from the customary form of path
relinking, where a guiding solution is usually assumed to be feasible. In the present case, x′ typically is
not a component of a feasible (MIP) solution, and hence the guiding solution may appropriately become
modified in the process of moving toward it. On the other hand, in the situation where x′ is part of a
feasible (MIP) solution, as by choosing it as an element of R rather than as a center or complemented
solution, then the steps of moving toward x′ may be discontinued after some portion of the total number of
goal conditions are activated, permitting the method to transition directly from Step 2(b) back to the Core
Method.

The fundamental procedure can be sketched as follows. The problem (LP′) identified below may
implicitly carry forward an old set of goal conditions with it. Although these conditions define the form
of (LP′), they are ignored for the purpose of identifying goal infeasibility. In other words, we allow for
(LP′) to be defined by including reference to an “old goal vector” and associated goal inequalities, but
such inequalities are disregarded in the step that checks for the presence of goal infeasibility. Old goal
conditions are automatically replaced by new one as new x′

j values are activated, i.e., as these explicit
new values are generated and their associated j indices are added to N ′ to define the updated form of
(LP′).

Path Relinking Subroutine (Inserted in Step 2(b))

0. Start with the solution (x′′, y′′) to a previous problem (LP′), which may have an old associated N ′
and x′, and designate the current N ′ to begin empty.

1. If N ′ = N , and hence all goal values x′
j have been activated, then return from Step 2(b) to Step 1 of

the parametric TS method. Otherwise, execute (a) or (b) below, as appropriate.

(a) If any assignment xj = x′′
j from the current solution is goal infeasible, treat the variable exactly

as in the Core Method to create a new goal value x′
j . (No variables will be goal infeasible on the

initial iteration when the current N ′ is empty, although the residual part of an old N ′ that shares
in defining (LP′) may not be empty.)

(b) If no assignments are goal infeasible, but not all components x′
j of the current goal vector are

activated (hence the index j does not belong to the current N ′), then choose some such x′
j and

apply the following response:
If x′′

j > x′
j then activate x′

j and add j to N−.
If x′′

j < x′
j then activate x′

j and add j to N+.
2. Solve the current (LP′) and return to Step 1 of the path relinking subroutine.

We observe that the foregoing method actually returns from Step 2(b) to Step 1 of the parametric TS
method with (LP′) already solved, and hence it is not necessary to re-solve (LP′) at the point where this
return step is executed. As previously noted, we allow the path relinking method to return to terminate
even before N ′ = N , as when |N ′| reaches a certain proportion of |N |, in the situation where x′ is taken
directly from R and corresponds to a known (MIP) feasible solution. When x′ instead comes from the

2476 F. Glover / Computers & Operations Research 33 (2006) 2449–2494

generation of centers or complements as in Sections 4.2.2 to 4.2.4, then the old N ′ is empty and the
foregoing method simplifies.

As a basis for the choice of x′
j in Step 1(b) above, we may choose the variable with the highest rank

using the simple relative choice measure RCj given by RCj = |x′′
j − x′

j |. More than one of the highest
ranking variables (with the largest RCj values) can be selected in this step, but by the path relinking
orientation we generally add only one new variable to N− or N+ at a time.

4.2.6. Solution intensified neighborhood spaces
We may consider the use of Solution Intensified Neighborhood (SIN) Spaces as a direct extension of

the path relinking approach. Path relinking implicitly involves a specialized (constrained) search over an
intensified neighborhood ND* of a given neighborhood ND. The neighborhood ND* is defined in relation
to ND by starting from a specified parent solution (designated as the focal solution) and considering those
moves that allow a given current solution to incorporate attributes of other parent solutions (designated
as guiding solutions). Since the choice of the focal solution is made arbitrarily among the parents, and the
relinking process typically allows a focal solution to exchange roles with any of the guiding solutions, the
intensified neighborhood ND* in general is independent of any particular way of partitioning the parents
into focal and guiding solutions.

The intensified neighborhood ND* is a bit more complex than suggested by the foregoing description,
however, for two primary reasons: (i) the original neighborhood ND may consist of moves that do not
always allow a current solution to directly incorporate attributes of other specified solutions, but may
require intermediate moves in order to make such attributes susceptible to being incorporated (or may
require intermediate moves that introduce a mix of such attributes and other attributes); (ii) aspiration
criteria may be used that permit the selection of moves that are highly attractive even if they depart from
the narrower objective of introducing attributes of one or more guiding solutions.

Nevertheless, we can consider an approach that is dedicated to a search over an intensified neighborhood
ND*, without necessarily invoking the rules customarily adopted by path relinking, thus creating more
latitude for exploring ND*, in line with the classical notion of an intensification approach. By its nature,
path relinking traces out paths in ND* that tend to be relatively direct, avoiding trajectories that may
be thought of as wildly zigzagging or tending to double back on themselves. Consequently, the manner
in which path relinking searches ND* may cause it to bypass attractive solutions that might potentially
be uncovered by an alternative form of search such as, for example, a standard form of tabu-search. Of
course, the chance to find additional solutions of interest within ND* by such a search approach may
not ultimately produce an advantage over path relinking, first because path relinking may tend to locate
most of the solutions that are worth discovering and second because the method operates by initiating
a further search of the larger neighborhood ND from chosen solutions encountered along its trajectory
(or trajectories) through ND*. Yet, from a conceptual standpoint, the notion of flexibly searching various
intensified neighborhoods ND*, which we give the label of “SIN Space Optimization,” may be considered
a natural extension of path relinking that opens up additional strategies worthy of investigation.

Within the framework that gives rise to these strategies, the following questions emerge as critical for
identifying how to best exploit SIN spaces.

(1) What criteria should be applied for selecting the composition of a particular set of parents to define
a SIN space? (And how many parents should be allowed to contribute to generating the space?)

F. Glover / Computers & Operations Research 33 (2006) 2449–2494 2477

(2) What neighborhoods should be employed to search the space? (A broad type of classification, for
example, could be founded on a three-part division of neighborhoods into constructive, destructive
and transition neighborhoods. More refined classifications can then result as variations within these,
as augmented by approaches such as strategic oscillation. Finally, processes designed to exploit
specific problem structure can be used as a source of additional forms of classification)

(3) Where should the search of a SIN space be launched? (What constitutes a good “starting point” for
searching the space?)

(4) Where should the search exit the space? (What solutions encountered during the search should be
subjected to a more thorough Improvement Method, carried out by reference to a neighborhood more
encompassing than the one defined by ND*?)

We may call the approach for generating a subset of parent solutions from the Reference Set by the name
“Sub-Clustering,” and refer to each such subset of solutions produced as a sub-cluster. Sub-clustering
therefore constitutes a process for identifying sub-clusters sets of restricted sizes whose component
solutions are related as by a criterion for clustering. Although such sub-clusters can intersect, the collection
of all those to be examined contains no duplications, following the usual approach used by scatter search
and path relinking. The rules previously identified for generating the sets R(k) constitute an example of
one form of sub-clustering that can be used in the context of SIN space optimization, where each such
R(k) identifies an intensified neighborhood ND* for solving the problem (MIP).

More particularly, a collection of solutions such as embodied in a set R(k) directly creates an associated
neighborhood ND* for branching by considering the branches available to any current problem (LP′)
with solution (x′′, y′′) to be those given by

xj ��x′′
j � + 1 if xi

j > x′′
j for at least one solution xi in R(k).

xj ��x′′
j � − 1 if xi

j < x′′
j for at least one solution xi in R(k).

The branching possibilities correspond exactly to those stipulated by (T-UP) and (T-DN) for creating a
new (LP′) problem, though we note that those available depend entirely on the composition of R(k). (We
use the notation R(k) here to encompass sets that may be generated by different rules than those specified
above.) Consequently, in the setting where the original neighborhood ND consists of ordinary branching
possibilities for (MIP), the determination of ND* is completely straightforward. Still more simply, the
neighborhood ND* corresponds to replacing (MIP) by a more constrained problem (MIP(k)) in which
each variable xj is required to satisfy

Min(xi
j : xi in R(k))�xj �Max(xi

j : xi in R(k)).

Consequently, SIN space optimization can be carried in this setting by applying Parametric TS (or any
other method) to solve collections of problems of the form (MIP(k)). These problems are effectively the
same as those proposed to be solved in the treatment of strongly determined and consistent variables, as
discussed Section 4.1. However, in the context of SIN spaces we have given more specific proposals for
identifying the sets denoted here by R(k), and replenish the reference set R (and hence provide new sets
R(k)) from solutions derived in the course of examining the SIN spaces. We also emphasize the relevance
of using aspiration criteria for allowing the search to go outside the bounds stipulated above for the xj

variables.

2478 F. Glover / Computers & Operations Research 33 (2006) 2449–2494

4.3. Tabu-search intensification by frequency analysis

We propose a form of intensification for parametric tabu-search that makes use of a frequency analysis
applied to the same reference set R used in the procedures based on scatter search. We first describe the
form of the analysis for 0-1 MIP problems and then indicate the form for more general MIP problems.

In the 0-1 setting, we consider a frequency matrix that contains two rows and two columns for each
variable xj , j ∈ N , representing the rows for a given variable xj by

xj (0) = (xjq(0, 0), xjq(0, 1) : q ∈ N) and xj (1) = (xjq(1, 0), xjq(1, 1) : q ∈ N).

The term xjq(�, �) counts the number of solutions (from the b best) in which xj = � and xq = �, as � and
� take the values 0 and 1. Thus, these values give the frequency that the assignments xq = 0 and xq = 1
occur in the b recorded solutions for each of the two cases where xj = 0 and 1. (It is sufficient to simply
count the number of times these assignments occur, since b is the same for each variable.)

By reference to this matrix and any assignment of values xj = xo
j , j ∈ S to a subset of the variables

identified by the index set S, we can create Intensification Scores InScoreh(0) and InScoreh(1) for as-
signing the values 0 and 1 to selected variables xh, h ∈ H , where the set H consists of variables whose
(UP) and (DN) responses we wish to evaluate. (H may or may not intersect with S, and we identify the
composition of these sets more explicitly later on.) In particular, we define

InScoreh(�) = �(xhj (�, x
o
j) : j ∈ S − {h}), h ∈ H .

Hence, InScoreh(0) is the sum of the frequency matrix entries for which xh = 0 and xj = xo
j , and

InScoreh(1) is the sum of the entries for which xh = 1 and xj = xo
j , thus counting the number of times

the assignments of the form xj = xo
j , for j ∈ S − {h} occur in the b best solutions in the two cases

where xh = 0 and xh = 1. The frequency matrix of course need not be constructed explicitly, since
we can always calculate the indicated quantities from their definitions, but the existence of the matrix
permits these quantities to be generated more rapidly. A further refinement may be introduced by defining
xjq(�, �) to be a weighted count of the solutions, attaching larger weights to solutions of higher quality.
The representation of InScoreh(�) does not change, but the component terms refer to weighted quantities.

We make use of these scores in an intensification strategy as follows. The subset of variables identified
by S consists of those that are currently subject to goal conditions, and xo

j identifies the targeted value
for xj previously denoted by x′

j . (We introduce an variant in the next sub-section that modifies this
value, and therefore refer to the variable here by a notation that differentiates it from x′

j .) To evaluate
the possible responses for xh in the case of integer infeasibility, we have H = D, the set of unrestricted
fractional variables. Instead of generating IPh(UP) and IPh(DN) values from penalty calculations from
the current solution to (LP′), we make use of the historical information of the frequency matrix to set
IPh(�

′)=−InScoreh(�), where �′ =UP when �=1 and �′ =DN when �=0. In other words, the greater the
intensification score is for selecting xh =1 (or xh =0), the smaller will be the penalty IPh(UP) for an (UP)
goal condition (or IPh(DN) for a (DN) goal condition), allowing penalties to take negative values. Then
the ordering of the CPh values over h ∈ H ranks the variables according to the relative attractiveness of
setting xh = 0 versus xh = 1, in terms of the negatives of the InScoreh(�) frequency measure rather than
in terms of the customary penalty measure.

F. Glover / Computers & Operations Research 33 (2006) 2449–2494 2479

Similarly, to evaluate the response for xh in the case of goal infeasibility, where H =G, we replace the
goal resistance measures GRh(UP) and GRh(DN) by −InScoreh(1) and −InScoreh(0). Alternatively,
we may use the CPj or −CPj measures derived from the intensification scores, by the rationale indicated
at the end of Section 3.3. A simple example of this occurs by setting

GRh(DN) = InScoreh(1) − InScoreh(0) and GRj (UP) = InScoreh(0) − InScoreh(1).

4.3.1. An iterative variant
An iterative approach allows the evaluation of responses for the variables to be taken to another level.

The first step applies the evaluations previously indicated, taking xo
j to be the currently targeted value

x′
j for xj , for each j ∈ S. Then each variable xh, h ∈ H is assigned a value xo

h derived from this first
evaluation. (This can change the value of xo

h to differ from the value x′
h if xh is among the variables

that are subject to a goal condition.) In particular, the two responses xh = 1 and 0 are evaluated for goal
infeasible variables as well for unrestricted fractional variables, and the response that receives the higher
evaluation is the one that identifies the new value xo

h. If xh is not subject to a goal condition, this value
becomes the first xo

h value for xh. The set S is accordingly now enlarged to include all variables that are
now associated with such a value.

Given the current S and the new xo
h values we may now once again apply the intensification score

formula to derive still another round of xo
h values, and the process may thus repeat, either until the xo

h

values cease to change or until a limit on the number of iterations is reached. (Such a limit can be as
small as 3 or 4.) This approach can also be used as a procedure for dynamically determining the number
of variables to receive new goal conditions, by choosing a subset of variables whose assigned xo

h values
receive higher evaluations (and in the case of goal infeasible variables, correspond to the uniquely targeted
new values for x′

j), with added consideration given to variables whose xo
h values are more consistently

assigned over successive iterations.17

4.3.2. A diversification counterpart
The intensification scores can be used in a diversification strategy by defining IPh(�

′)=InScoreh(�) and
GRh(�

′) = InScoreh(�) for �′ = UP and DN and � = 1 and 0, respectively. Then, by using the InScoreh(�)
values directly instead of their negatives, the lowest intensification scores for choosing xh = 1 (or xh = 0)
give the lowest penalty and resistance measures for an (UP) (or (DN)) condition. This drives the procedure
to select conditions for the variables that are least strongly correlated in past solutions. Consequently, for
a diversification approach, the solutions used to generate the frequency analysis may be selected to be a
collection of solutions whose quality is average or below average, rather than of highest quality. Also,
among variables whose preferred responses have close to the same diversification evaluation, a preference
should be given to the variable (and response) that receives the highest evaluation relative to the measures
of earlier sections, independent of the InScoreh(�) values. Finally, rather than submitting all variables in
G or in D to an evaluation by a diversification criterion, it is appropriate to restrict such an evaluation a
limited number of variables and to apply a customary evaluation (or an intensification evaluation) to the
rest of the variables. Such a strategy reflects the fact that diversification procedures work best when they
include a component that seeks to reinforce quality.

17 A further refinement of this frequency analysis can make use of clustering and decomposition as illustrated in Chapter 10
of Glover and Laguna [2].

2480 F. Glover / Computers & Operations Research 33 (2006) 2449–2494

4.3.3. General integer variables
The application of the foregoing types of frequency analysis to MIP problems containing general

integer variables (other than 0-1 variables) is straightforward. For any given variable xh, h ∈ H , to be
evaluated, there are just two adjacent integer values v and v + 1 bracketing the current value of xh that
are relevant to become a possible new value for a goal condition, i.e., to become the next value denoted
by x′

h. (A potentially goal infeasible variable may already receive one of these values in the current LP
solution.) We then interpret the quantity xjq(�, �) to be the count of the solutions in which xj �� or xj ��
according to whether � = v or v + 1, and similarly in which xq �� or xq �� according to whether � = v

or v + 1.
To be precise, we specify the quantity xhj (�, x

o
j) in the definition of InScore(�) to be the count of

solutions such thatxh�� orxh�� andxh�xo
j orxh=xo

j according to whether �=v orv+1, and according to
whether xo

j is the targeted value for a (DN) or an (UP) condition. Then the previous observations relating
to 0-1 variables apply as well to general integer variables. The xhj (�, x

o
j) values can be generated as

needed, sincere there is no merit in attempting to pre-compute such values in the general case.

4.4. Model embedded tabu memory

We propose a framework for implementing both simple and advanced TS strategies that departs from
the customary approach of relying on externally imposed tabu restrictions and instead makes use of an
internal model embedded memory. We accomplish this by taking advantage of the nature of the parametric
process that defines (LP′).

4.4.1. Embedding tabu memory in the objective function
We first consider how recency-based TS memory can be embedded in the model via the objective

function. As in parametric branch and bound, we replace M in the objective with varying weights M−
j for

the uj variables and M+
j for the vj variables. In the simplest case, we vary these weights as a function of

the iteration when the associated goal conditions are created, choosing these weights to be larger for recent
iterations than for earlier iterations. Then the bounding conditions (UP) and (DN) that these weights seek
to impose are more strongly induced for recently targeted conditions than for those generated farther in
the past.

An illustration of the process can be given by considering a rule that assigns each weight M−
j and M+

j

at iteration i a weight of Mi , where we let Mo denote a minimum value of M for iteration i = 0. (Iteration
i = 0 coincides with the initial iteration when N ′ is empty.) Then we may specify that the value of Mi is
given by

Mi = (1 + r)iMo.

The larger the value chosen for r, the smaller will be the relative emphasis placed on imposing targets
that were introduced in the past.18

As new targets replace older ones, there will be an automatic “cleaning out” of earlier M−
j and M+

j

weights. However, some of these weights may remain, and we remove weights (along with their associated

18 Experiments to determine values of r that work best may reasonably begin by examining values in the interval from
0.10 – 0.20.

F. Glover / Computers & Operations Research 33 (2006) 2449–2494 2481

uj and vj variables) that remain after a chosen lapse of time, just as we remove tabu restrictions after their
tabu tenures expire. The approach can be reinforced by combining it with the imposition of tabu status as
sketched in Section 3.1. This removal of old weights allows the remaining Mi values to be scaled back
to prevent them from reaching a size that may cause overflow problems.

In addition, from an implementation standpoint, it is not necessary to choose Mo (and hence the other
Mi values) to be large. In accordance with the observations of Section 2, it is possible to set Mo = 1 by
using a two-phase approach for optimizing (LP′). It does not matter that the M−

j and M+
j values are not

all the same.
As a variation, rather than starting from Mo as a basis for generating the successive Mi values, a

maximum value of M can be selected to be applicable to the current iteration, and the values applicable
to preceding iterations can be determined by dividing by the quantity (1 + r)h for an appropriate value
of h. This variation makes it possible to create more varied patterns of values for the weights, though it
requires slightly more effort per iteration. To illustrate, the division by (1 + r) can be implemented by
selecting r = .4 for the two most recent iterations, followed by selecting r = .2 for the six next most
recent iterations, and then selecting r = .1 for all iterations remaining until reaching the cut-off number of
iterations where M is effectively set to 0. Alternatively, r can be continuously decreased over successive
iterations until reaching a minimum value, or a completely independent pattern of M values applicable
to successive previous iterations can be used. The determination of patterns of M values that work most
effectively affords an area for experimentation.

Within this process, the weights M−
j and M+

j may be normalized by dividing by a positive monotone
increasing function of the (LP′) solution value x′′

j , for the value of x′′
j at the time the weights were created.

Such a normalization compensates for the fact that xj will be induced to reach an integer value x′
j adjacent

to x′
j , and the relative change in xj from x′′

j to x′
j will be smaller as x′′

j becomes larger. As shown later,

there can be advantages to replacing these M−
j and M+

j values by their closest integers, as a basis for
exploiting another kind of model embedded tabu memory.

Finally, we may go beyond the simple illustrated approach for incorporating recency memory by
permitting frequency memory likewise to be incorporated into the model. For example, at a rudimentary
level we may bias the weights M−

j and M+
j to be larger if xj has changed its goal value more frequently,

or if the current x′
j value has occurred in higher-quality solutions a larger number of times.

4.4.2. Embedding tabu memory in the problem inequalities
A form of model embedded memory can also be created by taking advantage of the fact that the

parametric tabu method automatically gives rise to a valid inequality each time (LP′) is solved. Consider
the portion of the objective uo of (LP′) associated with M, i.e., the portion

M(�(xj : j ∈ N0) + �(Uj − xj : j ∈ NU) + �(uj : j ∈ N− − N0) + �(vj : j ∈ N+ − NU)).

When a single “big M” value is used, as in the preceding expression, then the solution to (LP′) minimizes
the term

zo = �(xj : j ∈ N0) + �(Uj − xj : j ∈ NU) + �(uj : j ∈ N− − N0) + �(vj : j ∈ N+ − NU)

2482 F. Glover / Computers & Operations Research 33 (2006) 2449–2494

to give a value zo = z′′
o associated with a solution x = x′′ to (LP′). We then may write zo ��z′′

o�, or

�(xj : j ∈ N0) + �(Uj − xj : j ∈ NU) + �(uj : j ∈ N− − N0)

+ �(vj : j ∈ N+ − NU)��z′′
o�. (A)

The inequality (A) is clearly valid for all MIP feasible solutions, and if it is generated from a solution that
is goal infeasible, then it excludes the solution x = x′′ that produced this goal infeasibility. Consequently,
it is relevant to consider a procedure that generates and maintains a collection of such inequalities from
the solutions to successive (LP′) problems when goal infeasibility is encountered.

To do this, we apply a two-phase process to solve (LP′) as sketched in Section 2, applying the first
phase to minimize zo. The resulting solution gives the inequality (A) directly. Moreover, this inequality
can be tightened by dropping each variable that has a reduced cost greater than 1 in the optimal Phase 1
solution (or a reduced cost greater than M in the optimal solution using the “big M” objective).19

In the case where the solution to (LP′) yields a feasible (MIP) solution, and hence z′′
o is an integer, the

resulting inequality (A) can be strengthened by replacing �z′′
o� with �z′′

o� + 1. If all goal conditions are
satisfied exactly (x′

j = x′′
j) then the associated value of z′′

o is 0. In the case where no new MIP feasible
solution is found, but where all current goal conditions are satisfied, we exclude consideration of the
associated inequality (A). Such an excluded inequality yields no useful information.

The foregoing accumulation of a collection of inequalities of the form of (A) encounters a serious
limitation, however. Each such inequality involving a uj or vj variable must be accompanied by the
associated equations xj = x′

j + uj − vj , j ∈ N ′ − N0 − NU , and the changing identities of the uj and vj

variables (as the values x′
j change from problem to problem) cause the number of variables embodied in

the formulation to grow.
To avoid having to include a growing collection of uj and vj variables and their associated equations

xj = x′
j + uj − vj , we replace uj by xj − x′

j and replace vj by x′
j − xj . Since x′

j = 0 for j ∈ N0 and
x′
j = Uj for j ∈ NU , the resulting inequality can be summarized by

�(xj − x′
j : j ∈ N−) + �(x′

j − xj : j ∈ N+)��zo�. (B)

For the 0-1 problem, N− = {j : x′
j = 0} and N+ = {j : x′

j = 1}, and the inequality (B) is the same
as (A) and the sets N− and N+ are disjoint. In the case of integer variables that are not 0-1, if the same
variable belongs to both N− and N+ then we only include a single instance of the variable—the instance
associated with the variable uj or vj that is binding in the solution to (LP′). (We may assume that (B)
is obtained from (A) after first dropping variables having sufficiently large reduced costs, as indicated
previously.) While (B) is not the same as (A) when the sets N0 and NU do not compose all of N ′, (B)
nevertheless implies (A) and we can make strategic use of the inequality in the context of tabu-search.
Just as in the case of (A), when the solution to (LP′) gives a feasible MIP solution, we may tighten the
inequality by replacing �z′′

o� with �z′′
o�+1, since this replacement is necessary and sufficient to remove the

MIP solution from future consideration. Similarly, apart from this special case, we exclude consideration
of inequalities (B) that otherwise result when no goal conditions are violated.

The usefulness of a collection of non-excluded inequalities (B) derives from the following fact. These
inequalities will not permit a previously assigned set of goal conditions to be reassigned, provided the
responses (R-UP) and (R-DN) are employed in the presence of goal infeasibility as previously specified

19 These variables can take any if the forms xj , j ∈ N0 or Uj − xj , j ∈ NU or uj , j ∈ N− − N0 or vj : j ∈ N+ − NU .

F. Glover / Computers & Operations Research 33 (2006) 2449–2494 2483

in the rules of the parametric TS method. Thus these inequalities may operate as supplementary forms
of tabu restrictions that are adjoined to the problem constraints as the method progresses. In the same
way that tabu restrictions are allowed to expire, we place a cut-off limit on the number of inequalities
(B) incorporated within (LP′). Accompanying this, we adopt an aspiration criterion that assigns higher
value to non-redundant inequalities than to currently redundant inequalities, and hence when the cut-off
limit is reached we first drop the most redundant inequality and otherwise drop the oldest non-redundant
inequality. Inequalities that become and remain redundant for a chosen duration can be dropped even
if the cut-off limit is not presently attained. Should the collection of inequalities result in the situation
where no LP feasible solution exists, then again the oldest non-redundant inequality is dropped, or else
this may be used as an indication to terminate the search, which is a valid termination condition for 0-1
MIP problems.

The approach can be extended by maintaining a record of some set D of discarded inequalities, without
explicitly adding them as constraints to (LP′). In this case, a single surrogate constraint inequality, created
as a non-negative linear combination of the inequalities of D, is added to (LP′) in place of the members
of D.

4.4.3. Differential weights on the variables
The same approach can be used to generate inequalities when different weights M−

j and M+
j are used

instead of a single weight M. These weights may be controlled to fall within a reasonable range, as in
solving (LP′) with the two-phase approach. A natural way to do this is provided by the method of Section
4.3.1 that embeds TS memory within the objective function.

Then, letting [M−
j] and [M+

j] denote the integer values closest to M−
j and M+

j , we solve (LP′) with

the parameterized Phase 1 objective given by20

zo = �[M−
j](xj : j ∈ N0) + �[M+

j](Uj − xj : j ∈ NU) + �[M−
j](uj : j ∈ N− − N0)

+ �[M+
j](vj : j ∈ N+ − NU).

Defining z′′
o as before (relative to the new representation of zo), and replacing the uj and vj variables by

xj − x′
j and by x′

j − xj , we now obtain the inequality

�[M−
j](xj − x′

j : j ∈ N−) + �[M+
j](x′

j − xj : j ∈ N+)��z′′
o�. (C)

In this case a variable xj −x′
j , j ∈ N− or x′

j −xj , j ∈ N+ can be dropped from (C) if it has a reduced cost

greater than [M−
j] or [M+

j], respectively, in an optimal LP solution to the problem of minimizing zo. The
resulting inequalities can be accumulated and adjoined in the same manner indicated for accumulating
and adjoining inequalities of the simpler form (B). In the case where a feasible MIP solution is obtained,
we can still make use of the earlier form of (B) and replace �z′′

o� by �z′′
o� + 1.

4.4.4. An intensification method using embedded tabu memory
The set of goal conditions defining (LP′) is uniquely determined by the sets N− and N+ that compose

N ′ and the associated vector x′. Upon identifying an optimal LP solution to (LP′) and the resulting value

20 Fuller differentiation can be obtained by multiplying M−
j

and M+
j

by a factor of 10 before identifying the values [M−
j

]
and [M+

j
].

2484 F. Glover / Computers & Operations Research 33 (2006) 2449–2494

z′′
o we have all the information required to generate the inequalities (B) and (C). We represent a collection

of such inequalities, indexed over a set P, and associated with sets N ′(p) (N−(p) and N+(p)) and goal
solutions x′(p), p ∈ P , by

�(�pjXj : j ∈ N ′(p))��po, p ∈ P (D)

The constant term �po results by transferring the x′
j values in (B) and (C) to the right side of the

inequality. All coefficients �po and �pj , j ∈ N ′(p), are integers, and may be both positive and negative.
For the purpose of the intensification strategy that makes use of (D), we base the inequalities indexed

by P on a collection of high quality solutions, consisting of either MIP feasible solutions (where �z′′
o� has

been replaced by �z′′
o�+ 1) or of goal infeasible solutions that are close to MIP feasible. In each case, the

inequalities over P eliminate such solutions from the LP feasible set.
Our goal for exploiting (D) is to find a new solution that is close to those in the collection of high

quality solutions that give rise to (D). We introduce slack variables sp, p ∈ P , to permit the system (D)
to be expressed equivalently as

�(�pjxj : j ∈ Np) − sp = �po, sp �0, p ∈ P (E)

We then create an Intensified LP Relaxation (LP-Int) of (MIP) is then created by modifying the original
relaxation (LP) to include the system (E) and replacing the objective function of (LP) by the new objective

Minimize so = �(wpsp : p ∈ P).

where the weights wp for the variables sp are selected to be positive integers.21 We also stipulate that
(LP-Int) includes the currently updated objective function constraint cx + dy�x∗

o− ∈.
The Intensified LP Relaxation then serves as a starting point for launching a new phase of the parametric

TS method. Specifically, (LP-Int) becomes the problem (LPo) mentioned in Section 3.5 that is solved in
place of problem (LP′) in Step 2(b) of the parametric TS method, thereby launching an Intensification
Phase based on the new objective. In this case, no goal conditions are enforced and N ′ begins empty.
However, in subsequent steps of the method, as such goal conditions are produced, the inequalities of
(D) that underlie (E) can be carried forward and incorporated into (LP′), and updated exactly in the way
previously specified for updating (B).22

The Intensified LP Relaxation can appropriately be varied by selecting P by reference to different
subsets of the best solutions found. This can have an important influence, given that the best solutions
may come from different regions. For the purpose of intensification it is more meaningful to choose subsets
of solutions that come from a common region than from regions whose solutions bear little resemblance
to each other. A useful way to capture a regional influence is to generate subsets of the best solutions by
a clustering procedure, where the members of a common cluster are conceived to belong (by definition)
to a common region. In fact, the rule for generating a collection of subsets R(k) of the reference set R in
Section 4.2.2 provides a means for producing such clusters.

21 We can similarly create an objective to minimize the maximum deviation between the left- and right-hand sides of any
inequality of (D).

22 A separate collection of inequalities of the form of (B) or (C) can also be embedded in (LP-Int) and carried forward into
(LP′). For example, the record of best solutions from which the collection (D) is derived may include members that are not all
embodied in a collection (B) or (C) previously used to guide the method, and members of such a previous collection may also
be carried forward.

F. Glover / Computers & Operations Research 33 (2006) 2449–2494 2485

Once a collection of relevant solution subsets has thus been used to generate associated problems
(LP-Int) to launch one or more Intensification Phases, then the initiation of subsequent Intensification
Phases must await the generation of additional high-quality solutions. To accentuate the influence of these
additional solutions, larger weights wp can be given to their associated sp variables.23

4.4.5. A diversification analog of the system (E)
To create a diversification procedure for generating new starting solutions for the parametric TS method,

we seek an objective function to replace that of (LP-Int) to drive the search to a vicinity close to a collection
of solutions that complement the goal solutions underlying the system (E).

For any given set of goal conditions, determined by sets N+ and N− and goal values x′
j , j ∈ N ′ =

N+ ∪ N−, we define a complementary set of goal conditions and associated complementary goal values
as follows:

Complementary Goal Rule

If j ∈ N+, replace the (UP) condition xj �x′
j by xj �x′

j − 1 and move j to N−.

If j ∈ N−, replace the (DN) condition xj �x′
j by xj �x′

j + 1 and move j to N+.

The operations above that move j from one set to another are to be interpreted so that the net effect is
interchange the composition of the sets N+ and N−.

The objective function to replace that of (LP-Int) may now be determined as follows. Starting from an
original system (D) (equivalently, (E)) defined relative to the goal values x′

j (p), p ∈ P , we determine
new complementary x′

j (p) values and sets N+(p) and N−(p) for each p ∈ P by the Complementary
Goal Rule. For the case where (E) was derived from inequalities of the form of (B), and making reference
to the complemented values and goal conditions, we define

sp = �(xj − x′
j (p) : j ∈ N−(p)) + �(x′

j (p) − xj : j ∈ N+(p)).

The variable sp is unrestricted in sign, although it will automatically be non-negative for 0-1 MIP prob-
lems. In the case where (E) is derived from inequalities of the form of (C), we re-express sp by attaching
coefficients to the terms of the summations, but retain the unique correspondence between these coeffi-
cients and the associated j indices. Hence, for example, a coefficient [M−

j (p)] attaches to j in the new
set N+(p). Thus in both cases, for appropriately defined coefficients �pj and constant term �po we can
write sp in the form

sp = �(�pjxj : j ∈ N) − �po.

Relative to the foregoing modified definition of sp we define a Diversified LP Relaxation (LP-Div) to
result by minimizing so in the same form as before. Hence, we select positive integers wp and replace
the objective of (LP) by the objective

Minimize so = �(wpsp : p ∈ P).

23 (E) can be used to generate still other inequalities. Specifically, if the optimal LP solution value s′′
o for minimizing so is

fractional, the inequality so ��s′′
o � may be incorporated into subsequent (LP′) problems.

2486 F. Glover / Computers & Operations Research 33 (2006) 2449–2494

In contrast to (LP-Int), however, we do not adjoin (E), since the sp variables are no longer defined by
reference to this system. In fact the sp variables in the objective for (LP-Div) are unrestricted and hence
can be removed from the problem by replacing each sp in the objective by its defining equation. The
resulting equivalent objective may be written as

Minimize so = �(�j xj : j ∈ N) − �o,

where �j = �(wp�pj : p ∈ P) and �o = �(wp�po : p ∈ P).
By reference to this objective, we may execute Diversification Phases of the parametric TS method in

a manner exactly analogous to the execution of Intensification Phases, treating (LP-Div) as the problem
(LPo) that is solved in Step 2(b) of the parametric TS method instead of (LP′).

5. A dual post-optimizing version of parametric TS

Current state-of-the-art software for solving MIP problems by branch and bound and by branch and cut
is primarily adapted for using dual post-optimization. Consequently, it is useful to observe how the ideas
underlying parametric tabu-search can be applied in conjunction with the dual simplex method rather
than the primal method for carrying out post-optimizing steps.

To use dual post-optimization we do not embody goal conditions in the objective function, but rather
impose such conditions as explicit branching constraints. However, these constraints must be managed
to allow the identification of variables that are to be subjected to goal responses in this new setting.

To do this, we observe that goal infeasibility now corresponds to true LP infeasibility, where the current
problem (LP′) based on the use of explicit branching constraints discloses the absence of a continuous
feasible solution. The class of potentially goal infeasible variables becomes irrelevant and is eliminated.
Infeasibility is recognized during the execution of the dual simplex method by encountering a pivot row,
corresponding to a violated upper or lower bound for a current basic variable that contains no admissible
pivot element. More precisely, we may write the pivot row equation in the form

zi + �(aij xj : j ∈ NB(x)) + �(dij yj : j ∈ NB(y)) = bi, i ∈ B,

where NB(x) and NB(y) denote the index sets for the current non-basic x variables and y variables, B
denotes the index set for the current basic variables, and the basic variable zi can represent either an x
variable or a y variable. The coefficients aij , dij and bi are derived from the current basis representation,
and do not correspond to coefficients of the original A and D matrices or b vector. Moreover, given that
the solution process currently incorporates a set of branching inequalities of the form of (UP) and (DN)
(i.e., xj �x′

j for j ∈ N+ and xj �x′
j for j ∈ N−), we will understand that the xj variables in the pivot row

equation can refer to slack variables sj for such associated inequalities (i.e., sj =xj −x′
j for j ∈ N+ and

sj =x′
j −xj for j ∈ N−). We suppose, as in the case of these slack variables, all non-basic variables in the

pivot row equation refer to variables that are non-basic at their lower bounds, since we may complement
variables that are non-basic at their upper bounds to assure this. Similarly we suppose that the bound
violation for zi refers to violating a lower bound of 0.

By these conventions, the coefficients of the pivot row equation signal the absence of a feasible LP
solution by the following conditions:

bi < 0, aij �0, j ∈ NB(x), dij �0, j ∈ NB(y).

F. Glover / Computers & Operations Research 33 (2006) 2449–2494 2487

We seek to identify a set of branching inequalities, and their associated variables, that have a role in
producing the infeasibility identified by the pivot row equation. These inequalities and variables may be
tagged by an index set G analogous to the one that identifies the set of goal infeasible variables in the
case of the goal infeasibility for the parameterized form of (LP′).

If the variable zi corresponds to a slack variable for a branching inequality, then the index i belongs to
G. In addition, G includes the indices of all variables xj , j ∈ NB(x), such that xj corresponds to a slack
variable sj and such that aij > 0. (As before, for convenience we will refer to G as a set of xj variables
as well as a set of indices for these variables.)

By reference to this determination of G, we then seek as earlier to identify primary and secondary subsets
GP and GS of G consisting of variables whose branching inequalities will be reversed and discarded,
respectively. This can proceed exactly as in Sections 2.2.1 and 2.2.2, by creating measures GRj that
indicate the degree to which a branching inequality currently associated with a variable xj is resisted by
the solution to (LP′)- or, inversely, the degree to which a reversal of such a branching inequality would
ameliorate the state of this solution to (LP′). This can be done by observing that reversing a branch
inequality corresponds to replacing a current slack sj by a new slack tj = −sj − 1, which replaces x′

j by
x′
j − 1 or x′

j + 1 depending on whether j ∈ N+ or j ∈ N−. If this reversal is done for a variable xj that
represents a slack variable sj in the pivot row equation, then by substitution the row equation changes its
form relative to this variable (where xj now represents tj) by setting

bi := bi − aij and aij := −aij .

Consequently, the negative bi value becomes more negative and the positive aij reverses its sign. This
change in aij removes the immediate indication of infeasibility. However, the new xj also receives a new
coefficient cj in the current objective function representation that is the negative of its previous coefficient.
Consequently, to identify the full effect of allowing xj to represent tj , by reference to a dual feasible
representation, unless cj = 0 we must recapture the dual feasibility condition cj �0 by complementing
xj relative to its current upper bound. (This bound is Uj − x′

j for j ∈ N+ and x′
j for j ∈ N−, relative to

the new x′
j value and the new composition of N+ and N− created by the branch reversal.) Undertaking

to trace the full effects of this change can be computationally onerous, and hence we may use the simpler
measure GRj of resistance by setting GRj = |aij | (or the negative of this value). However, the preceding
steps are required if the branch is actually selected to be reversed as a result of assigning xj to the primary
set GP.

A slight complication results in the case where a slack for a branching inequality has a 0 upper bound,
as results when the branch compels xj to equal Uj or 0. In this situation, which occurs for branches
involving a 0-1 variables, MIP codes will typically drop the 0-constrained slack variable as soon as it is
non-basic, and hence such a variable may not be explicitly included in the current pivot row equation.
The form of the variable in the pivot equation must then be recovered by an operation of the basis inverse
in order to apply the preceding analysis. A variable sj that has been dropped in this manner may have
a negative aij coefficient when it is recovered. In this case complementing the variable has the effect of
increasing bi , though for simplicity we may still take the GRj measure to be a function of the value |aij |.

Finally, if the basic variable zi corresponds to a slack variable si , then replacing si by ti results in a
new zi whose representation is given by setting

bi := −bi − 1 and aij := −aij , j ∈ NB(x), dij := −dij , j ∈ NB(y).

2488 F. Glover / Computers & Operations Research 33 (2006) 2449–2494

If the resulting value of bi is non-negative, then the infeasibility condition is removed. In any case
the reversed signs of the coefficients in the pivot row equation permit feasibility to be re-established.
Moreover, if bi < 0 by this change, we may immediately evaluate the effect on xo of a single dual pivot
on the pivot row equation by simply computing ratios relative to the objective function, and this may be
used as a basis for creating a measure GRi applicable to reversing the branch for zi .

Other methods can be used to determine GRj values, referring to pseudo-penalties or making use
of tabu-search memory—as, for example, by referring to prior evaluations associated with
identifying strongly determined and consistent variables. Regardless of how the GRj values are gene-
rated, however, all other components of the parametric TS method remain the same as previously
described.

6. Conclusions

Parametric tabu-search for mixed integer programming (MIP) involves a collection of strategies that
provide significantly greater flexibility than the branching strategies of branch and bound methods. The
ability to rely on adaptive tabu memory in place of more rigid tree search memory opens up a wide
domain of strategic variations embodying alternative forms of recency and frequency memory and various
associated types of intensification and diversification procedures.

The application of tabu-search to the MIP setting affords a broad range of new possibilities for ex-
ploration. In terms of both implementation and testing, TS applications in MIP are at approximately the
same stage of development as the primitive applications of branch and bound that first emerged four
decades ago. Yet the potential strategic variation available for applying TS to MIP is substantially richer
than available with branch and bound. A good deal of experimentation lies ahead to identify combi-
nations of elements within this potential variation that yield the best results. The ideas and procedures
described in this paper are offered in the hope that they may provide a useful blueprint to guide such
exploration.

Acknowledgements

This research was partially supported by the Office of Naval Research Contract N00014-01-1-0917 in
connection with the Hearin Center of Enterprise Science at the University of Mississippi.

Appendix A

A.1. Choosing the values gP = |GP| and gS = |GS|.

Using Example A as a source of motivation, we examine the issue of choosing the values gP and gS
that give the cardinalities of the primary and secondary goal sets GP and GS. A straightforward rule is
to specify that these values are some fractions fP and fS(�1) of the cardinality of the set G of goal
infeasible variables, subject to requiring gP �gPmin and gS �gSmin, for minimum values gPmin and gSmin
selected for gP and gS which are desired to apply regardless of the size of G. (By the policy indicated for

F. Glover / Computers & Operations Research 33 (2006) 2449–2494 2489

handling goal infeasibilities, gPmin must always be at least 1 if G is not empty, but gSmin can be 0.) Thus
the rules take the form

gP = Max([fP|G|], gPmin) and gS = Max([fS||G|], gSmin),

where [v] represents the nearest integer neighbor of v. If the resulting value of gP exceeds |G|, then gP
will instead be given by |G| (yielding gS = 0), and the value of gS will be limited in any case to |G|− gP.

To illustrate, we may suppose the rules used in Example A were given by

gP = Max([.3|G|], 2) and gS = Max([.2||G|], 0).

Thus for |G| = 4 we obtain gP = Max([1.2], 2) and gS = Max([.8], 0), yielding gP = 2 and gS = 1.
An alternative embodiment of this approach that may be more convenient is to select a value g repre-

senting the sum of gP and gS, using a corresponding rule

g = Max([f |G|], gmin).

We then use the same formula for gp as before, except that |G| is replaced by g. The value gs becomes
simply the remaining part of g after reducing it by gP, to give

gP = Max([fPg], gPmin) and gS = g − gP.

Illustrating again by reference to Example A, we may suppose the foregoing rules were given the form

g = Max(.[8|G|], 2) and gP = Max([.7g], 1).

Thus we obtain g = Max([3.2], 2) = 3, gP = Max([2.1], 1) = 2, and gS = 3 − 2 = 1.
In general, the parameters f , fP, gmin and gPmin may be set by a schedule that first assigns them larger

values and then decreases these values over time. This causes the values g, gP and gS correspondingly to
diminish over time, thereby reducing the number of goal conditions changed on a given iteration. Such a
strategy makes it possible to begin with a diffuse search that induces a relatively large number of changes
on each iteration, and to proceed to a more refined search that focuses on making a smaller number of key
changes at each step. The diffuse search has the function of quickly moving the search into a promising
region and the refined search has the function of driving the exploration from there to reach a solution of
somewhat higher quality. Because refined search is often essential for finding the best solutions, it can be
appropriate in some settings to rely exclusively on this type of search, compelling the values g, gP and
gS to be small, perhaps even at most 1, throughout all search phases.

Transitions between diffuse and refined levels can be controlled with a useful degree of flexibility
by means of the TS strategic oscillation approach. In this case, smaller parameter values are restored
periodically to larger values, according to a pattern influenced by transitions that produced past successes.
The best solutions are re-inserted into the process at various stages. Strategic oscillation permits the search
to operate with less reliance on other types of memory (typically permitting a smaller tabu tenure for
short-term memory) and provides a useful structure for managing the interplay between intensification
and diversification.

Finally, we observe that instead of choosing the elements of GP and GS sequentially from G, in the
decreasing order of their goal resistance values, we can apply the type of decision rule employed in

2490 F. Glover / Computers & Operations Research 33 (2006) 2449–2494

probabilistic tabu-search, as by assigning a probability Pj of selecting a given variable xj in G that is
proportional to a non-decreasing function of the evaluation GRj . The approach then chooses elements of
GP by sampling gP times without replacement from G according to the assigned probabilities, followed by
choosing the elements of GS in the same fashion. The introduction of tabu status modifies the probabilities
by the mechanism of changing the resistance measures GRj , as discussed in Section 3.2.

A.2. Choosing gP and gS for potential goal infeasibility

The foregoing ideas for choosing gP and gS can be applied directly to the situation that includes
potentially goal infeasible variables. It suffices simply to enlarge G to include the set Go, which we define
to consist of those variables that exactly satisfy their goal conditions and whose goal resistances satisfy
the threshold T o, i.e.,

Go = {j ∈ N ′ : x′′
j = x′

j and GRo
j = T o}.

As in Example B of Section 2.2.3, if we use the negative reduced cost measure GRo
j = −RCj , then we

may choose T o to be a relatively small fraction of −M (e.g., T o = −.1M). With such a provision, the
rules described above carry over unchanged.

In the case where G is relatively large without including Go, it can be reasonable to forego enlarging G
and to bypass the treatment of potentially goal infeasible variables. In general, we can place limits on the
number of elements admitted to Go independent of the determination given by T o. Such considerations
involving the use of thresholds are treated in [6].

We note that the starting point for the analysis, illustrated by the tables in Examples A and B, allows a
variety of different initial choices of G, and of GP and GS within G, to be investigated. Thus, for example,
in Example B the same initial information from Table 2 can be used to investigate the case of focusing
on just the first three variables, with the intent of giving two of them a new goal condition and freeing
the third (i.e., taking g = 3, gP = 2 and gS = 1). Thus, more than one scenario can be examined without
requiring new information to be generated at the beginning. Only the new (LP′) problem based on the
new x′ vector changes. This new problem is more nearly the same as the starting (LP′) problem when
GP and GS are small, hence entailing less computation when post-optimizing to solve the new (LP′)
problem. The added advantage that results for “small G” scenarios gives a motivation for devoting more
attention to stages of refined search versus stages of diffuse search involving changes in larger numbers of
elements—a motivation that is reinforced by the effects of conditionality. That is, when the best choices
for some goal conditions depend on the choices of others, a diffuse search that changes many conditions
simultaneously is less likely to be able to uncover the best solutions.

Appendix B

B.1. Deferred decisions: A deferred determination of freed variables

The penalties for handling integer infeasibility can be used in an additional way, to support a decision
process that determines the freed variables in a somewhat different manner than previously specified.

Instead of specifying a rule in advance for identifying the goal infeasible variables to be freed, such
as selecting them as the gS elements of the secondary goal set GS after first identifying the gP elements

F. Glover / Computers & Operations Research 33 (2006) 2449–2494 2491

of the primary goal set GP, a deferred determination of these variables can be made as follows. First, as
in Section 2.2.2, we choose g variables from the set of variables in G to be allocated to the sets GP and
GS, giving g = gP + gS. Call this set GPS, since it represents the union of the sets that will ultimately
be identified as GP and GS (hence g = |GPS|). Then we select a set Go of provisionally free variables,
consisting of some number go of these g variables having the highest goal resistance values, where go > gS
(thus assuring that these variables will include a positive number of the variables to be assigned to the set
GP). The goal response (R-UP) or (R-DN) applicable to each provisionally free variable in Go is noted,
but not executed.

We assume that G includes the set Go of potentially goal infeasible variables. For each xj in this G, we
differentiate the current goal value x′

j from the new one identified in the transition (T-UP) or (T-DN) by
denoting the latter by xo

j ; i.e., xj �xo
j identifies the inequality targeted by (T-UP) and xj �xo

j identifies
the inequality targeted by (T-DN). (For instance, Examples A and B identify the xo

j values over j ∈ GP
by the numbers marked with an asterisk in the bottom row.)

The customary determination of the primary and secondary responses partitions G into the three sets
GP, GS and G − GPS,24 which respectively involve the three decisions of (1) changing xj ’s current goal
condition, (2) freeing xj , and (3) leaving xj ’s goal condition unchanged. We select any subset G∗ of
G containing elements that are subjected to at least two of these decisions, i.e., G∗ has a non-empty
intersection with at least two of the three sets GP, GS and G − GPS. Following earlier conventions, we
treat G not simply as a set but as a vector whose elements are sequenced in descending order of the GRj

and GRo
j values (as illustrated in Example B). Then, we further stipulate that G∗ is a sub-vector of G,

i.e., G∗ is composed of consecutive elements of G. (This condition can be superseded by tabu criteria
and by implementing a TS diversification step.)

Then the deferred decision process operates as follows:
Deferred Decisions for Elements of G∗.

1. For the variables xj in G − G∗, implement the decisions (1)–(3) as specified in the determination of
the sets GP, GS and G − GPS.

2. Provisionally (temporarily) free the variables xj in G∗, but keep a record of the goal condition xj �xo
j

or xj �xo
j targeted for xj by its membership in G, and also keep a record of the values n(1), n(2) and

n(3), identifying the number of variables in G∗ that were prescribed to be treated by decisions (1)–(3)
in the partition of G. (Thus, n(1) = |G∗ ∩ GP|, n(2) = |G∗ ∩ GS|, n(3) = |G∗ ∩ GPS|. At most one
of these cardinalities can be 0.)

3. Solve the provisional (LP′) problem determined by steps 1 and 2.
4. By reference to the solution (x′, y′′) to the provisional (LP′) problem, identify the penalty IPo

j that
results for each xj in G∗ by enforcing the goal condition recorded in step 2. (If xj = x′′

j satisfies the
goal condition, IPo

j = 0. Otherwise, IPo
j is given by a standard penalty calculation for enforcing the

violated goal condition.)
5. Order the elements of G∗ in ascending order of theIPo

j values. (“Smaller is better.”) The first n(1)

elements of G∗ are assigned to GP and handled by the goal condition saved in step 2, the next
n(2) elements are freed from their goal conditions (i.e., changed from provisionally free to actually
free), and the final n(3) elements are handled by the original goal condition that applied to them

24 Of these sets, at least GP is non-empty. Recall that GPS is the union of GP and GS.

2492 F. Glover / Computers & Operations Research 33 (2006) 2449–2494

Table 5

1 J = 1 2 3 4 5 6

2 x′
j

= 1 0 0 1 0 1

3 x′′
j

= 0.6 0.3 0.2 0.9 0 1

4 GRj = 0.4 0.3 0.2 0.1
5 GRo

j
= −4 −25

New x′
j

= 0* 1* 1* # # 1

xo
j

= 0 1 1 0 1 0

Otherwise, xj retains its goal condition (type (3) decision).
∗ = xj changes its goal condition (type (1) decision).
= xj is freed from its goal condition (type (2) decision).

before implementing this procedure. These give the final form of (LP′) that completes the deferred
determination of the decisions applicable to the set G∗.

The penalty value IPo
j of step 4, for the simple case where penalties are measured by the L1 distance

measure is given by IPo
j = |xo

j − x′′
j | when x′′

j violates (or exactly satisfies) the goal condition associated

with xo
j . (This corresponds to the standard penalty measures illustrated earlier that yield IPj (UP) = f +

j

and IPj (DN) = f −
j .)

Example D. We illustrate the deferred decision approach by starting from the situation depicted in
Example B. We create Table 5 below by adding an additional row to Table 2 to indicate the xo

j values of
the new goal conditions (corresponding to the new x′

j values, which for the 0-1 case are the complements
of the original x′

j values).

We examine two cases, depicted in the two associated tables, Table 6—Case 1 and Table 6—Case 2
below. These two tables may be viewed as two extensions of Table 5, identifying the set of variables
G∗ by the @ symbol. Thus, the indicated xj variables are those that are provisionally freed, to yield the
new solution values x′′

j for these variables shown in the respective tables. (That is, these values are those
resulting from the solution of the provisional (LP′) problem. We do not bother to show the corresponding
x′′
j values for the other variables, because they do not enter into the current decision process.) To determine

the penalties for deviating from the xo
j values we use the L1 measure IPo

j =|xo
j −x′′

j |. The variables of G∗
are then ranked in ascending order of the IPo

j values to determine how to assign the appropriate decisions.
Table 6—Case 1 selects G∗ to consist of the variables x2, x3 and x4. From the preceding Table 6 we

see that these variables were assigned two type (1) decisions (indicated by the *’s in the “New x′
j ” row

of Table 6) and one type (2) decision (indicated by the #’s in the “New x′
j ” row of Table 6)—i.e., two of

these three variables were assigned to GP and one was assigned to GS. Sequencing the elements of G∗ in
ascending order of the IPo

j values gives the sequence x2, x4, x3. Hence the two type (1) decisions, which
are allocated first, go to x2 and x4, and the one type (2) decision goes to x3, as indicated by the *’s and
the # in the “New x′

j ” row in Table 6—Case 1.
Table 6—Case 2 selects G∗ to consist of the variables x3, x4, x5 and x6. From Table 6 we see that these

variables were assigned one type (1) decision (indicated by *), two type (2) decisions (indicated by #) and

F. Glover / Computers & Operations Research 33 (2006) 2449–2494 2493

Table 6

j = 1 2 3 4 5 6

Case 1
xo
j

= 0 1 1 0 1 0

G∗ = @ @ @
x′′
j

= 0.8 0.4 0.3

IPo
j

= 0.2 0.6 0.3

New x′
j

= 1* # 0*

Case 2
xo
j

= 0 1 1 0 1 0

G∗ = @ @ @ @
x′′
j

= 0.8 0 0 0.3

IPo
j

= 0.2 0 1 0.3

New x′
j

= # 0* 0 #

Based on allocating two type (I) decisions (*) and one type (2) decision (#) to the variables of G∗. Based on the allocating
one type (1) decisions (*), two type (2) decisions (#) and one type (3) decision (no * or # symbol) to the variables of G∗.

one type (3) decision (indicated by the absence of both * and #). Hence one of these four variables was
assigned to GP, two were assigned to GS and one was assigned to G − GPS. Sequencing the elements of
G∗ in ascending order of the IPo

j values gives the order x4, x3, x6, x5. Hence the type (1) decision goes
to x4, the type (2) decisions go to x3 and x6 and the type (3) decision goes to x5.

B.2. A conservative deferred decision strategy

A variant of the foregoing deferred decision approach does not automatically apply the decisions
indicated for the xj variables in G∗, but instead restricts attention to those xj that were assigned the
same decision in G∗ that they were assigned in the original determination of GP and GS. These decisions
determine the “true” GP and GS assignments, and all other goal conditions are left unchanged, as members
of G − GPS.

Both this approach and the ordinary deferred decision approach are likely to be more effective when
the sizes of GP and GS are small, as where only one or two variables are assigned a new goal condition
and a similar (or smaller) number are permitted to be freed. As in the case of Examples A and B, we note
that the starting point for the current analysis, illustrated by Table 4 above, allows a variety of different
initial choices of GP and GS to be investigated. Thus, for example, the same initial information can be
used to investigate the case for selecting just the first two or three variables (or different subsequences of
two or three variables) for analysis. Again, such investigation favors the use of “small G” scenarios that
are examined in refined search stages.

References

[1] Glover F. A template for scatter search and path relinking. Mathematical Programming 1998;8:161–88.
[2] Glover F, Laguna M. Tabu search. Dordrecht: Kluwer Academic Publishers; 1997.

2494 F. Glover / Computers & Operations Research 33 (2006) 2449–2494

[3] Gendreau M. An introduction to tabu-search. In: Kochenberger G, Glover F, editors, Handbook of metaheuristics.
Dordrecht: Kluwer Academic Publishers; 2003 [chapter 2].

[4] Glover F. Heuristics for integer programming using surrogate constraints. Decision Sciences 1977;8(1):156–66.
[5] Glover F, Laguna M, Marti R. Fundamentals of scatter search and path relinking. Control and Cybernetics 2000;29(3):

653–84.
[6] Tseng F, Glover F. Non-traditional sorting methods. Working paper, University of Colorado, Boulder, 2004.

Further Reading

[7] April J, Glover F, Kelly J, Laguna M. Practical introduction to simulation optimization. In: Chick S, Sanchez F, Ferrin D,
Morrice D, editors. Proceedings of the 2003 winter simulation conference, 2003.

[8] Blum C, Roli A. Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Computing
Surveys (CSUR) 2003;35(3):268–308.

[9] Crainic TG, Toulouse M. Parallel strategies for meta-heuristics. In: Kochenberger G, Glover F, editors. Handbook of
metaheuristics. Dordrecht: Kluwer Academic Publishers; 2003 [chapter 17].

[10] Glover F. Parametric branch and bound. OMEGA. The International Journal of Management Science 1978;6:1–9.
[11] Glover F. Tabu search—Part II. ORSA Journal on Computing 1990;2(1):4–32.
[12] Glover F. Scatter search and star paths: beyond the genetic metaphor. OR Spectrum 1995;17:125–37.
[13] Harder R. Open source tabu-search (OTS), 2004. www.coin-or.org.
[14] Pedroso JP. Tabu search for mixed integer programming. Working paper, University of Porto, Portugal.

http://www.coin-or.org

	Parametric tabu-search for mixed integer programs
	Introduction
	Notation and problem formulation
	Foundations of parametric tabu-search
	(LP) Transitions
	Goal infeasibility
	Goal resistance
	Illustrative examples
	Potential goal infeasibility

	Integer infeasibility
	Integer penalty and choice-preference measures

	Tabu-search guidance
	Tabu conditions
	Aspiration criteria
	Determining the values of =TabuTenurej(UP) and =TabuTenurej(DN)
	A core version of parametric tabu-search
	Summary of the complete parametric TS procedure

	Intensification and diversification
	Basic approaches
	Approaches derived from scatter search
	Intensification and diversification by generating x from centers
	Multiple executions and tabu guidance
	Additional uses of scatter search
	Diversification by complementation
	Path relin king variant
	Solution intensified neighborhood spaces

	Tabu-search intensification by frequency analysis
	An iterative variant
	A diversification counterpart
	General integer variables

	Model embedded tabu memory
	Embedding tabu memory in the objective function
	Embedding tabu memory in the problem inequalities
	Differential weights on the variables
	An intensification method using embedded tabu memory
	A diversification analog of the system (E)

	A dual post-optimizing version of parametric TS
	Conclusions
	Acknowledgements
	Appendix A
	Choosing the values gP=2pt="026A30C GP"026A30C and gS=2pt="026A30C GS"026A30C .
	Choosing gP and gS for potential goal infeasibility

	Appendix B
	Deferred decisions: A deferred determination of freed variables
	A conservative deferred decision strategy

	References
	Further Reading

