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Abstract: We propose approaches for creating improved forms of 
constructive multi-start and strategic oscillation methods, based 
on the search principles of persistent attractiveness and 
marginal conditional validity. These approaches embody 
adaptive memory processes by drawing on combinations of 
recency and frequency information, which can be monitored to 
encompass varying ranges of the search history. In addition, we 
propose designs for investigating these approaches empirically, 
and indicate how a neglected but important kind of memory 
called conditional exclusion memory can be implemented within 
the context of these methods. 
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1.  BACKGROUND. 

1.1 Motivating Concerns and Multi-Start/Strategic 
Oscillation Links. 

Recent studies have confirmed that intelligent uses of adaptive memory 
can be valuable for creating improved forms of multi-start methods (Fleurent 
and Glover, 1998; Laguna and Marti, 1998; Rolland, Patterson and Pirkul, 
1998, Campos et al., 1999). 

From a perspective sometimes noted in the tabu search (TS) literature, a 
multi-start approach can be viewed as an extreme version of a one-sided 
strategic oscillation approach.  Applied to constructive neighborhoods, one-
sided strategic oscillation operates by alternating constructive and 
destructive phases, where each solution generated by a constructive phase is 
dismantled (to a variable degree) by the destructive phase, after which a new 
constructive phase builds the solution anew.  TS memory-based strategies 
can be applied in such settings to focus on deep oscillation patterns that 
destroy large parts of solutions during destructive phases (including the case 
where “large” = “all”).   

The observations of this paper are accordingly offered as a basis for 
strategies that can be used both in multi-start methods and in strategic 
oscillation approaches. The basic strategies can also be joined with target 
analysis (Glover and Laguna, 1997) to identify subsets of variables in 0-1 
problems that are sufficient to generate optimal solutions (or more precisely, 
sufficient to include all variables that receive values of 1).  Consequently, 
these ideas are relevant to strategies for solving large 0-1 problems by 
reducing them to smaller and more tractable problems. Our following 
development, which is tutorial in nature, demonstrates how well-established 
principles can be advantageously put to new uses. 

1.2 Classes of Problems. 

It is useful to distinguish between problems where large numbers of 
decisions are sequence independent and those where most (or all) of the 
decisions must be made in a prescribed order (and where the options 
available for these decisions are highly restricted by this order). Problems of 
the first type, in which decisions can be made with little or no concern for 
sequential restraints, are illustrated by covering, multidimensional 
knapsacks, partitioning, independent set problems, p-median problems and 
telecommunication tree-star problems.  Decisions can be made sequentially 
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for such problems (which is the essence of a constructive process), and 
earlier decisions can profoundly affect the legitimacy and conditional quality 
of later decisions, but large numbers of the decisions could equally well be 
made in many different orders.  Problems of the second type, which are 
governed by prior precedence restrictions, are illustrated by certain 
sequencing and scheduling problems where there is no way to evaluate some 
decisions until an appropriate prior set of decisions has been made. 

The ideas at the focus of this paper are developed within the context of 
the first type of problems, where decisions are largely free of sequencing 
constraints.  Nevertheless, with some added provisions they can be applied 
to the second type of problems also. For convenience, they will be discussed 
in relation to applications such as multi-dimensional knapsack and covering 
problems, where successive steps of a construction can be viewed as 

progressively making assignments of the form 1=x j  for selected 0-1 

variables x j , understanding all other variables to receive values of 0.  

2. NOTATION AND BASIC ASSUMPTIONS 

Consider the problem 
Maximize (or Minimize) f(x) :  Xx ∈  

and let N = {1,...,n} be the index set for X.  We assume the condition 

Xx ∈ includes the requirement 0=x j or 1 for all .Nj ∈ In addition, we 

define N(v) = },:{ vNj x j =∈  and call N(1) the In-Set and N(0) the Out-Set.  
Our terminology is motivated by the fact that many constructive processes 
can be visualized as successively adding elements (such as nodes or edges of 
a graph) to an In-Set to create a desired structure, corresponding to the 

mathematical representation of progressively setting 1=x j for selected 
variables. 

The methods we examine can be interpreted as beginning with all 
elements of N being placed in a set N(#) of "undecided"  elements (i.e., the 

assignment #=x j  does not commit x j  to be either 0 or 1).  Then, 
constructively, we select various elements of N(#) to be placed in the In-Set, 
N(1).  The consequence of selecting an element j of N(#) to add to N(1) may 
compel other elements of N(#) to be placed in N(0) or N(1) in order to take 
advantage of dominance considerations or to assure feasibility (including 
"objective function feasibility", which requires that a solution must be better 
than the best solution previously found). 
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2.1 The Assumption of Simple Dependency 

The particular form of a constructive method we consider is based on 
assuming that feasibility, defined by Xx ∈ , can be easily established by 
initially choosing any element Nj ∈  to add to N(1).  Following this, we 
assume that rules are known which make it possible to determine whether 
certain elements j are then compelled to go into N(0) or N(1).  For example, 
such rules may arise from a requirement that all members of the In-Set must 
be elements of a tree, or members of a clique, etc.  Moreover, at each step 
following the first, once compulsory assignments are made, we assume all 
elements remaining in N(#) are candidates to be chosen as the next j to add 
to N(1). (A number of methods of this type can also be “reversed” to choose 
a j to go into N(0) at each step, by flipping the variables so that N(0) and 
N(1) reverse roles.) 

This “simple dependency” assumption, where knowledge of N(1) 
immediately allows appropriate compulsory assignments to be identified so 
that all elements remaining in  N(#) are legitimate candidates to be added to 
N(1) (until a complete solution is obtained, allocating all remaining elements 
of N(#) to N(0)), leads to a Simple Difference Rule. 

Briefly stated, the rule says that to make x" different from x', we must 
simply choose at least one j from the Out-Set for x' to go into the In-Set for 
x", and such a choice exists and is valid at the first step of constructing x", 
and at each consecutive step until the moment when no elements of the Out-
Set for x' remain in )(#"N or a complete solution is obtained.  More 
formally, the rule can be expressed as follows. 

 
Simple Difference Rule: Let )(' vN  and )(" vN  represent N(v) defined 

relative to x' and x", respectively, where x' is generated on a given 
constructive pass, and a new constructive pass is then initiated to generate 
the solution x".  Then, to assure x" differs from x': 

(1) It is necessary and sufficient to choose at least one element j ∈  
N″(#)∩N′(0) to be added to N″(1). 

(2) A choice of the form of (1) is always available and legitimate on the 
first step of constructing x", and continues to be available and legitimate at 
each step until the set )(#"N  no longer contains an element of )0('N  (or 
until a complete solution is obtained). 

 
This rule can be compounded to give conditions for x" to differ from all 

previously generated solutions that lie in a specified set 'X , although 
memory structures are needed to determine differences in this case.  The 
kinds of recency and frequency memory structures used in tabu search allow 
the general form of the Simple Difference Rule to be exploited in a 
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convenient manner, while taking advantage of certain principles that the 
more rigid memory structures of branch and bound methods are unable to 
exploit.  We identify a particularly useful type of such memory, called 
conditional exclusion memory, in section 6. 

3. EVALUATIONS BASED ON PERSISTENT 
ATTRACTIVENESS. 

The Principle of Persistent Attractiveness says that good choices derive 
from making decisions that have often appeared attractive, but that have not 
previously been made within a particular region or phase of search. That is, 
persistent attractiveness also carries with it the connotation of being 
“persistently unselected” within a specified domain or interval. (Illustrations 
of this principle are given in Chapter 5 of Glover and Laguna, 1997.) We 
take advantage of this principle in the present setting by creating measures of 
attractiveness for the purpose of modifying customary evaluations of 
constructive moves, i.e., evaluations used to select elements to add to the In-
Set during a constructive solution pass.  We first develop the basic ideas in a 
context that only uses memory in a rudimentary way.  Later we introduce 
extended uses of memory to create a more advanced approach. 

The attractiveness measures derive from a preliminary operation of 
creating a component evaluator E(s,r), where s is the current step of 
construction and r ranges over the ranks of the elements j chosen to be added 
to the In-Set on step s.  The rank r of each such element is obtained by using 
a customary evaluation procedure.  For example, if the evaluation procedure 
uses a “bang-for-buck” ratio as in a heuristic surrogate constraint strategy 
(Glover, 1965, 1977), then  r = 1 corresponds to the best bang-for-buck ratio, 
r = 2 corresponds to the second best, and so forth. (In this setting, “bang” = 
the objective function coefficient taken as a numerator, and “buck” = the 
surrogate constraint coefficient taken as a denominator.)  More simply, the 
ranks may be determined by ordering objective function changes produced 
by choosing the elements.  We examine ranks r only up to a limit r* which is 
somewhat less than n.  

Likewise, we number the steps s = 1, ..., s*, where s* is the final step of 
adding an element j from N(#) to the In-Set, to result in creating a complete 
solution. 
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3.1 Illustration for Creating a Measure of Persistent 

Attractiveness. 

We show how to use E(s,r) to create a Persistent Attractiveness Measure 

PAMj for each element j by means of a concrete example. We also 

demonstrate how the resulting measure PAMj  can be used to modify an 
ordinary evaluator, to allow a constructive pass that makes choices that 
would not be proposed by the evaluator under normal circumstances. 

Assume for convenience that N is reindexed immediately after the first 
(or an arbitrary) constructive pass so that the sequence in which elements 
have been added to the In-Set on this pass is given by 1, 2, 3, ..., s*. In other 
words, on each step s = 1 to s*, the element j added to the In-Set is indexed 
so that j = s.  

For our illustration, the evaluator E(s,r) will take the simple form 
 

E(s,r) = E′(s) + E"(r). 
 
It is reasonable to suppose that early steps of the construction should 

influence the value of a persistent attractiveness measure more heavily than 
later steps (a supposition that will be clarified in subsequent observations).  
We embody such a “declining influence” effect in our example by 
stipulating that E'(1) starts at 26, and then for each successive step s after the 
first, the value E′(s) drops by 2 until reaching E′(13)  = 2.  In other words, 
we identify s* = 13 as the number of steps required to obtain a complete 
solution (on the pass considered) and stipulate that E′(s) = 28 − 2s for each 
step s from 1 to 13. 

For simplicity in our example, we will limit  r* to 4, so that evaluations 
are created only for the 4 highest ranked choices on each step.  Then we 
stipulate that the rank 1 choice is worth 4 points, the rank 2 choice is worth 3 
points, etc., which yields E"(r) = 5 − r. 

Thus the combined evaluator function E(s,r) = E′(s) + E"(r) is given by 

E(s,r) = 33 - 2s - r 

Alternative forms for E(s,r) will be considered later. 
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3.2 Creating a Persistent Attractiveness Measure PAMj 

from E(s,r). 

To show how E(s,r) can be used to create a Persistent Attractiveness 

Measure PAMj , we depict the steps of a constructive pass in the Initial 
Table that appears below. We imagine n = 20, i.e., there are 20 0-1 variables 
whose best values we seek to approximate by a constructive solution 
process. Each row of the table corresponds to a step s of the constructive 
pass, and identifies the top ranked elements j that are candidates to be added 
to the In-Set at this step.  In parenthesis beside each element j appears the 
E(s,r) value that corresponds to this element on the current step. Because of 
the assumed indexing of the variables, the index j = s is the best ranked 
choice (with rank = 1) at step s. 

For example, the entries in row 1 of the following table, corresponding to 
the step s = 1, indicate that the elements  j with the best ranks, in order from 
r = 1 to 4, are given by j = 1, 5, 8 and 2. Applying the formula E(s,r) = 33 − 
2s − r, the E(s,r) values shown in parentheses in this row start with E(1,1) = 
30 for the top ranked element (j = 1), followed by E(1,2) = 29 for the 2nd 
ranked  element  (j = 5),  then  by  E(1,3) = 28  for  the 3rd  ranked  element 
(j = 8), and so forth. 

In this illustration, proceeding from top to bottom in each column of the 
table, the successive values of E(s,r) decrease by 2 units, while proceeding 
from left to right in each row of the table, the successive values of E(s,r) 
decrease by 1 unit. (The reason for this behavior is evident from the formula 
for E(s,r), which gives s a multiple of −2 and r a multiple of −1.) 

 
 

Initial Table 
s(= j) Top r*  =  4  ranked indexes and E(s,r) values 

1 1(30) 5(29) 8(28) 2(27) 
2 2(28) 5(27) 3(26) 7(25) 
3 3(26) 6(25) 9(24) 5(23) 
4 4(24) 9(23) 14(22) 5(21) 
5 5(22) 14(21) 6(20) 8(19) 
6 6(20) 7(19) 8(18) 9(17) 
7 7(18) 9(17) 14(16) 8(15) 
8 8(16) 14(15) 16(14) 13(13) 
9 9(14) 10(13) 15(12) 12(11) 

10 10(12) 13(11) 15(10) 12(9) 
11 11(10) 13(9) 15(8) 16(7) 
12 12(8) 16(7) 13(6) 17(5) 
13 13(6) 16(5) 17(4) 20(2) 
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From the values in this Initial Table, we compute the Persitent 

Attractiveness Measure PAMj  for each element j by simply summing the 
E(s,r) values attached to j.  Thus, for example, since the index j = 1 has only 
the single E(s,r) value of 30 attached to it in the table, PAM1 = 30. Similarly, 
since j = 2 has the two E(s,r) values 27 and 28 attached to it, PAM2 = 55.  
Likewise, PAM3 = 26 + 26 = 52, PAM4 = 24, PAM5 = 29 + 27 + 23 + 21 + 22 
= 122, and so forth. 

The illustrative formula we have chosen for E(s,r) tends to produce 

higher PAMj  values for elements j that are among the top ranked choices 
in earlier steps of the construction.  This results from the -2 multiple for s in 
the formula for E(s,r), which causes E(s,r) to drop as s increases.  A positive 

multiple for s would have the opposite effect, producing higher PAMj  
values for elements j that are among the top ranked choices in later steps.  In 
all cases, the more often an element j appears with a top rank, the greater its 

persistent attractiveness. Thus the PAMj values constitute a combined form 
of recency and frequency information, weighted by attractiveness. 

3.3 Using Persistent Attractiveness to Assess the Value 
of Choices Not Made. 

For the purpose of analyzing the choices ― to see the attractiveness of 
choices not made at various steps ― we create a Persistent Attractiveness 
Table by duplicating the Initial Table, except that we replace the E(s,r) 

values by the PAMj  values.  (Thus, each time an element j appears, the 

same PAMj  value also appears.) A large PAMj  value, as noted, generally 
indicates that a variable was often one of the top choices.  The elements j 
from 14 to 20, which were never selected, also have associated measures of 
persistent attractiveness, since each was among the top four choices in at 
least one of the steps of construction. 

The resulting Persistent Attractiveness Table appears below.  In addition 
the table identifies two difference values D1 and D2 for each step s, where 

D1 = Max( PAMj ) – First( PAMj ) and D2 = 2ndMax( PAMj ) – 

First( PAMj ), defining Max( PAMj ) and 2ndMax( PAMj ) to be the two 

largest PAMj  values in the row, and First( PAMj ) to be the first PAMj  

value in the row (i.e., the PAMj  value for the element j with the top rank). 
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Thus, these difference values indicate the degree by which the persistent 
attractiveness of these Max and 2ndMax values exceeded the persistent 
attractiveness of the element actually chosen.  (When the element chosen 

also has the highest persistent attractiveness value PAMj , then D1 = 0 and 
D2 is negative.)  Such information can be used in choice rules based on 
“marginal value” determinations. 

Persistent Attractiveness Table 
s (= j) Top r* = ranked indexes and PAMj  values D1 D2 

1  1(30) 5(122)  8(96) 2(55)  92 66 
2  2(55) 5(122)  3(52) 7(62)  67 7 
3  3(52) 6(65)  9(95) 5(122)  70 43 
4  4(24) 9(95)  14(74) 5(122)  98 71 
5  5(122) 14(74)  6(65) 8(96)  0 -26 
6  6(65) 7(62)  8(96) 9(95)  31 30 
7  7(62) 9(25)  14(74) 8(96)  34 33 
8  8(96) 14(74)  16(33) 13(45)  0 -20 
9  9(95) 10(25)  15(30) 12(28)  0 -65 

10  10(25) 13(45)  15(30) 12(28)  20 5 
11  11(10) 13(45)  15(30) 16(33)  35 27 
12  12(28) 16(33)  13(45) 17(9)  17 5 
13  13(45) 16(33)  17(9) 20(2)  0 -12 

 

3.4 Analysis of the Table. 

In this section we raise a number of key issues about how to take 
advantage of the Persistent Attractiveness Table.  The sections that follow 
then provide a deeper look at considerations relevant to handling these 
issues. 

3.4.1 Creating New Passes Guided by PAMj values. 

Information from the Persistent Attractiveness Table suggests a 
number of changes that might be made in the choices of the first pass, and 
thus suggests the merit of initiating a new constructive pass that implements 
such changes. The resulting altered sequence in which the elements j are 
added to the In-Set will also alter the evaluations and rankings of elements.  
These new rankings provide information in addition to the information 
provided by the Persistent Attractiveness Table which can be taken into 
account to give an enlarged basis for selecting the elements to be added to 
the In-Set at each step.  
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Moreover, as a new sequence of choices is produced, new E(s,r) values 
are also produced.  This affords an opportunity to combine information from 

these values with the previous E(s,r) and PAMj  values to produce a 
modified choice rule. We indicate two options for doing this (referring to the 
pass that generates the new E(s,r) values as the “current” pass): 

Option 1. Wait until the end of the current pass, so that all of the new 

E(s,r) and new PAMj  values are known, before undertaking to make use of 
these values (to influence the next pass that follows the current pass); 

Option 2. Keep partial (incomplete) new PAMj  values, which are 
updated at each step of the current pass, and use them to influence the 
choices made during the current pass. 

By a partial PAMj value we mean one that sums the E(s,r) values 
attached to j at each step up to the current step s, without waiting until the 
final step s = s* to compute such values. In fact, Option 2 is also available on 
the first pass (i.e., the one that precedes the current pass).  Accordingly, the 

partial PAMj  values, which are computed as the pass progresses, can be 
taken into account (in addition to rankings) for making choices at each step. 

3.4.2 Selecting Steps Where Changes Are to Be Made. 

There is also an issue of whether it can be useful to retain some portion 
of the previous constructive pass, and to make changes only after some 
“critical point” of the construction. From the standpoint of computation, a 
strategy that changes choices only at later steps (i.e., for larger values of s) 
has the advantage of reducing overall effort, since information from earlier 
steps remains unchanged, and fewer new steps need to be evaluated.  In 
addition, evaluations made at later steps to rank the elements are likely to be 
more accurate (given the choices already made) because they are derived 
from a smaller residual problem, where fewer decisions remain to be 
executed. 

On the other hand, changing choices at earlier steps allows the 
consequences of these changes to be considered throughout a larger range of 
decisions.  That is, the influence of these changed decisions, which alter the 
rankings of various elements, operates for a larger number of steps and 
applies to a larger range of elements (since more elements remain to be 
selected at earlier steps).  In considering the relevance of such tradeoffs, it is 
possible to take advantage of both early and late changes, designing a 
procedure that first changes only later choices (to gain the advantage of less 
effort), and then changes earlier choices (to gain the advantage of producing 
consequences that can be evaluated over a larger horizon). 
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3.4.3 Making Changes Independent of Previous Ordering 

Instead of undertaking to distinguish between choices made early and 
late, the issue can be shifted to consider which decisions to retain and which 
to replace. 

Specifically, if a given set of decisions is identified as “potentially 
replaceable” (hence, at least temporarily to be removed), while remaining 
decisions are to be retained on the next pass, then effort can be saved by 
treating the set of retained decisions as if they were made in a block before 
all other decisions.  The determination of new evaluations and rankings can 
thus be restricted to elements not among those retained.  In addition, by 
conceiving the retained decisions to precede all others, the consequences of 
such decisions are more fully represented than by an approach that amounts 
to “inserting” new decisions within some partially retained sequence. 

This approach of selectively retaining some block of decisions that are 
treated as if prior to all others in fact constitutes an instance of strategic 
oscillation, as will be elaborated more fully in the next section. 

3.4.4 Compensating for Incomplete Information. 

Evidently the information of the Persistent Attractiveness Table is 
incomplete, as a result of depending on the sequence in which elements are 
selected on a given pass.  More precisely, elements selected to be added to 
the In-Set during early steps are not present to be ranked over very many 
steps.  Consequently, these elements do not have an opportunity to have 
many E(s,r) values attached to them, and hence these elements may have 

smaller PAMj  values than elements added at later steps.  The effect of this 
is especially pronounced for the element chosen on the first step, since only 
the single E(s,r)  value attached to it on this step becomes incorporated into 

its PAMj  value. This fact provides a motivation for giving E(s,r) a form 
that assigns larger weight to choices at earlier steps.  In addition, it suggests 
the value of: (a) reordering the earlier decisions, even if they are retained; (b) 
using the construction approach with a sequential fan candidate list strategy 
(Chapter 3 of Glover and Laguna, 1997), which can generate E(s,r) values 
along different construction sequences, and thus provide additional 
information. 
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3.4.5 Alternative Parameters for Creating E(s,r) Values. 

The parameters used to create E(s,r) values (and hence the PAMj  
values) can clearly affect the analysis available from the Persistent 
Attractiveness Table.  To illustrate some simple options, using the formula 
E(s,r) = E′(s) + E"(r), we identify values for E′(s) and E"(r) as follows: 

(i) E′(s)  = C′ + M′(c' + s* − s), where C′ ≥  0, c' ≥  1 and the multiple M′ 
can have any nonzero value.  In the illustration of section 3.3, M′ = 2, C′ = 0 
and c′ = 1.  (The value 1 + s* − s, for c' = 1, reverses the indexing of s, to run 
from s* down to 1 as s runs from 1 to s*.  The constant c' can be chosen 
larger to make the values c′ + s* – s more similar to each other.)  
Equivalently, this may be written  E′(s) = D′ – M 's, which has the form for 
E′(s) used in the numerical illustration of section 3.3. However, intuition 
about choosing D' may be improved by considering the representation of 
E′(s) indicated here. 

(ii) E"(r) = C″ + M″(c" + r* − r), where C″ ≥  0, c″ ≥  1, and the multiple 
M″ is positive.  In the illustration of section 3.3, C″ = 0 and M″ = 1.  
Comments similar to those of (i) apply to this formula. 

To increase the differential effect produced by different values of s and r, 
the value c′ + s* − s and the value c″ + r* − r can each be raised to a power 
greater than 1. Allowing for changes in these parameters can produce the 
basis for a multi-start approach that is guided by progressively modified 

PAMj  values. However, these are not the only relevant concerns.  The 

value of r* also can influence the PAMj  values, and the choice of r* in the 
illustration of section 3.3 was somewhat arbitrary.  (Note that s*, in contrast 
to r*, is not subject to being selected, and hence does not have to be 
considered.) 

A more intelligent way to determine r* is to allow it to vary during the 
constructive pass, so that it can be larger on earlier steps.  An example of 
such an approach is to set r* = s** + 1 − s on step s, where s** is an advance 
estimate of s*.  (An ample value for s** can be used, and then values of r 

greater than s* + 1 − s can be ignored at the later point when the PAMj  
values are computed.)  However, because work is involved in identifying the 
ranking of choices, an upper limit may be placed on r*, perhaps even as 
small as 8 or 16. A lower limit can also be placed on r*, such as r* ≥  3. 
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4. GENERAL CHARACTER OF THE PERSISTENT 

ATTRACTIVENESS MEASURE AND ITS 
ANALYSIS. 

We now examine issues raised in the preceding section from a broader 
perspective. Section 5 then examines underlying principles and more general 
concerns.  (Additional considerations relevant for varying levels of 
implementation are also described in the Appendix.) 

4.1 Notational Conventions and Structures for E(s,r) and 
PAMj. 

The notation used to define E(s,r) and PAMj  oversimplifies the general 
situation. For example, as noted in section 3.4.5, r* can vary depending on 
the step s. Also, independent of notation, the evaluation function that creates 
the rankings can change as the construction is applied. A familiar example 
occurs in the case of a multi-knapsack or covering problem, where on the 
last step (or last 2 steps, etc.) a bang-for-buck ratio may be amended to 
account for other factors, such as the greatest profit item that can maintain 
feasibility or the least cost item that can achieve feasibility. 

For reasons suggested in sections 3.4.4 and 3.4.5, it appears relevant to 
create E(s,r) to vary monotonically as a function of s.  That is, for a given r, 
we may generally stipulate 

E(1,r) ≥  E(2,r) ≥  ... ≥  E(s*,r). 

However, we may also consider a reverse type of monotonicity based on 
s, where the inequalities above go in the reverse direction. Such an ordering 
may be introduced periodically for diversification purposes.  In all cases it is 
appropriate to make E(s,r) monotonic in r, so that on a given step s, 

E(s,1) ≥  E(s,2) ≥  ... ≥  E(s,r*). 

Issues of ranking disclose another limitation of the notation employed. 
First, since ranks r = 1 to r* are based on an original evaluation, in some 
cases two consecutive ranks r and r+1 may correspond to identical original 
evaluations, and in this case we may let E(s,r) = E(s,r+1).  More generally, 
however, depending on the nature of the original evaluation, we may allow 
E(s,r) to take fuller consideration of the relative magnitude of this evaluation 
for successively ranked choices (which makes E(s,r) dependent upon step s, 
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as is also true in the case of possible tied evaluations). Nevertheless, we have 
used the current notation because often the ranking of choices is important in 
determining values to assign to our special evaluation E(s,r).   

4.2 Maintaining Updated PAMj Values. 

Section 3.4.1 raises the issue of keeping an updated record of PAMj  
values in the process of building the Initial Table, thus allowing these partial 
values to influence decisions even before completing the construction that 
provides a full solution.  Such an approach can be used immediately on the 
first pass, or can be delayed until a later pass. 

The calculation is simple.  PAMj  is initialized to 0 for each j at the 
beginning of each pass. At a given step s of the current pass, once the top r* 

choices are identified, then PAMj  is updated by identifying, for each r, the 
variable j that yields rank r, and then setting 

PAMj  := PAMj  + E(s,r). 

To combine this value with previous PAMj  values, several options are 
possible.  Among the simpler options are to keep a running sum, SumPAMj, 
which is initialized to 0 only at the start of the first pass (but not at the start 

of later passes), and then is updated exactly as PAMj  is updated, by 
identifying the matched j and r and setting 

SumPAMj   := SumPAMj + E(s,r). 

Then SumPAMj can be changed into a mean value by dividing by the 
number of passes, or by the number of steps (accumulated from the 
beginning of the first pass), and so forth.  A running value based on 
exponential smoothing can also be used.  
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5. CONDITIONAL EFFECTS OF CONSTRUCTIVE 

METHODS. 

5.1 Principles and Inferences. 

Since constructive methods make decisions sequentially, and the 
evaluation of potential decisions depends on those decisions made earlier, 
the effect of conditionality is one of the primary determinants of the 
effectiveness of such methods.  For this reason it is useful to begin by 
identifying a principle that applies to constructive search methods in many 
types of applications. 

 
Principle of Marginal Conditional Validity (MCV Principle).  ― As 

more decisions are made in a constructive approach (as by assigning values 
to an increasing number of variables), the information that allows these 
decisions to be evaluated becomes increasingly accurate, and hence the 
decisions become increasingly valid, conditional upon the decisions 
previously made. 

 
The justification for the MCV principle is simply that as more decisions 

are made, the consequences of imposing them cause the problem to be more 
and more restricted (e.g., reduced in dimensionality). Consequently, future 
decisions face less complexity and less ambiguity about which choices are 
likely to be preferable. 

This principle has long been known to apply to branch and bound 
methods, where variables are progressively assigned values by branching 
decisions.1  In particular, a branch and bound method can be viewed as a 
repeated constructive heuristic, where the multiple passes of the heuristic are 
compelled to operate within a tree structure.  The imposed tree structure has 
the advantage that all descendants of a given decision can be assured to 
inherit the restrictions that apply to their ancestors. On the other hand, this 
structure has the disadvantage of locking the search into a relatively rigid 
pattern, preventing flexible choices that might lead to good solutions much 
more readily. 

Two evident outcomes of the MCV Principle are as follows. 
Inference 1.  Early decisions are more likely to be bad ones. 

 
1 Implications of the principle for creating dynamic branch and bound strategies are 

examined, for example, in Glover and Tangedahl, 1976. 
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Inference 2.  Early decisions are likely to look better than they should, 
once later decisions have been made. 

Inference 1 is an immediate consequence of the MCV Principle. 
Inference 2 results from the fact that later decisions which are chosen for 
their apparent quality manifest that quality in relation to the structure 
imposed by earlier decisions.  Consequently, they are designed to “fit 
around” the earlier decisions, and thus are disposed to create a completed 
solution where the earlier decisions appear in harmony with those made 
later.  (If, given later decisions, an earlier decision looks bad, then almost 
certainly it is bad.  However, since later decisions are chosen to make the 
best of conditions created by earlier ones, if an earlier decision manages to 
look good in conjunction with those made subsequently, there is no 
assurance that it truly is good.) 

These observations lead to the following additional inferences about 
constructive methods. 

Inference 3.  The outcome of a constructive method can often be 
improved by examining the resulting complete solution, where all decisions 
have been made, and seeing whether one of the decisions can now be 
advantageously replaced with a different one. 

This inference is directly reinforced by the MCV Principle, because the 
outcome of changing a given decision ― after a complete solution is 
obtained ― has the benefit of being evaluated in the situation where all other 
decisions have been made.  Therefore, in a conditional sense, the validity of 
this changed decision is likely to be greater (i.e., its evaluation is likely to be 
more accurate) than that of the decision it replaces ― since the replaced 
decision was made at a point where only some subset of the full set of 
decisions had been made.  Nevertheless, the scope of Inference 3 is inhibited 
by Inference 2.  That is, the influence of conditional choices will tend to 
make decisions embodied in the current solution look better than they really 
are, given the other decisions made that tend to “support” them. 

Inference 4.  As a basis for doing better than standard types of 
improvement methods, it is useful to identify clusters of decisions that 
mutually reinforce each other and to find which of these decisions becomes 
less attractive when the reinforcement of its partners is removed. 

Inference 4 motivates strategies for improvement methods that exploit 
clustering and conditional analysis (see Chapter 10 of Glover and Laguna, 
1997).  However, this inference can also be exploited within the context of a 
constructive method.  It is particularly relevant to applying the Principle of 
Persistent Attractiveness. 



1. Multi-Start and Strategic Oscillation Methods – Principles to 
Exploit Adaptive Memory 

17 

 
5.2 Indicators of Persistent Attractiveness. 

We can distinguish between two different indicators of persistent 
attractiveness in the conditional setting of constructive methods. 

Indicator 1.  A decision appears attractive for some number of decision 
steps, but is not made until a step that occurs somewhat after it first appears 
to be attractive. 

Indicator 2.  A decision appears attractive for some number of decision 
steps, but is never made. 

In the case of Indicator 1, selecting the specified decision results in 
making a choice that is ultimately made anyway, but reinforces the focus on 
this “good choice” so that its implications can be generated, and hence 
exploited, at an earlier stage.  Consequently, this creates an intensification 
effect relative to such attractive, but repositioned, decisions.  By contrast, 
Indicator 2 clearly provides a foundation for diversification strategies, which 
drive the solutions to incorporate entirely new elements.  However, while 
Indicator 1 may be useful to consider in strategic designs, the Simple 
Difference Rule implies Indicator 2 is more crucial to rely on. The following 
observations elaborate the relevance of these indicators and the manner in 
which they may be exploited. 

5.3 Rationale for Using PAMj Values to Generate 
Modified Decisions. 

Any decision made at a later stage of a previous pass may change the 
appearance of attractiveness of other decisions if it is made earlier on the 
new pass. Given that the decision is part of the solution produced on the 
previous pass, if it is also part of the solution produced on the new pass (by 
making the decision earlier), then it also has a chance to influence the choice 
of other parts of the new solution. This opportunity was denied on the 
previous pass because the decision did not occur until a later point, and thus 
the resulting change affords an opportunity for the new solution to be better. 

In addition, if the decision has been persistently attractive, there is an 
increased likelihood that it is a valid decision (i.e., a component of a high 
quality solution). Therefore, such a decision will offer additional advantages 
by being placed earlier, so that its consequences for evaluating other 
decisions can be appropriately taken into account. 

From the standpoint of Indicator 2, the earlier that an “unmade decision” 
appeared attractive, the more likely it is that the decision should be 
considered attractive in an unconditional sense (since decisions that did not 
appear attractive until a later step acquired their attractiveness as a result of 
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the decisions that preceded).  This fact is relevant to defining the E(s,r) 
values, or alternately to defining how they should be used to define the 

PAMj  values (as where the PAMj  values are produced by a rule other 
than by simple summing). 

5.4 Additional Diversification. 

Another principle derived from tabu search advocates the merit of 
making moves that are “influential”, i.e., that cause significant changes. The 
characteristic of being influential is not sufficient in itself to warrant a move, 
however, because moves that are merely influential have no necessary virtue 
unless they are also linked in some way to solution quality.2 This leads to 
considering the following indicator. 

Influence/Quality Indicator.  Identify a decision that appears attractive at 
some point during a given constructive pass especially during earlier steps of 
the pass.  The decision should receive increased emphasis if its 
implementation would also change the attractiveness of other decisions, 
according to the degree that it changes such evaluations of attractiveness. 

Evidently, a decision that rates highly by reference to such an indicator is 
one that that can create significant diversification in the solutions produced, 
by offering a chance to obtain a good solution that has a substantially 
different composition than the one obtained on the previous pass. Applying 
this type of indicator, however, may require somewhat more work than 
applying Indicators 1 and 2.  Specifically, to know whether a given decision 
will change the attractiveness of other decisions requires that the decision 
tentatively be made, and then making the effort to examine its consequences. 

On the other hand, this added effort may be avoided if an indirect 
strategy is used to indicate whether a decision is likely to change the 
evaluation of others.  Such a strategy is based on the following analysis. 

It is often likely that if making Decision A causes Decision B to become 
less attractive, then making Decision B will also cause Decision A to become 
less attractive.  Thus, suppose Decision A appears attractive at a particular 
point, but upon making Decision B instead, Decision A now becomes 
significantly less attractive.  Then Decision A may be considered an 
influential one (at least relative to Decision B). Consequently, an indirect 
way to identify potentially influential (yet potentially good) decisions is to 
look for those that were attractive at some (not-very-late) point on the 
previous pass, but were not selected, and which then later became 
significantly unattractive on this pass. These decisions have a notably 

 
2 Chapter 5, sections 5.1.1 and 5.1.2, of Glover and Laguna, 1997, discusses tradeoffs 

between influence and quality. 



1. Multi-Start and Strategic Oscillation Methods – Principles to 
Exploit Adaptive Memory 

19 

 
different effect than the decisions sought by the Indicators 1 and 2, and can 
be important for longer term diversification. 

6. CONDITIONAL EXCLUSION MEMORY 

An useful component of a memory design for search methods, especially 
for 0-1 problems, is a “conditional exclusion memory”, which has generally 
been overlooked in the literature.  Conditional EXclusion (CEX) memory is 
a combination of frequency memory and recency memory, that allows the 
effects of frequency to be isolated in a more intelligent way than in more 
primitive types of memory.3 

The purpose of CEX memory is to allow a constructive procedure to 

generate a new solution by choosing 1=x j  at each step (hence adding j to 
the In-Set) so that the resulting solution will not duplicate any solution 
previously generated, where for pragmatic and strategic purposes we restrict 
attention to solutions generated on the p most recent passes. (The value p is 
chosen to be a conveniently manageable but nevertheless effective number, 
based on the problem dimension and experience. E.g., p = 20 to 50 may 
work in a variety of applications.) Denote these p solutions by x[1], ..., x[p], 
from newest to oldest.  The approach for using this memory is as follows. 

 
CEX Method. 

1. Keep a frequency record FR j  of the number of times the assignment 

1=x j  occurs in the solutions x[1] to x[p]. (Hence, the FR vector is just 
the sum of these p solutions and can be updated at each step by setting 
FR := FR + x[1] − x[p+1].) 

2. Select a variable xj to receive an assignment 1=x j  by biasing its 

evaluation to favor a small frequency value FR j .  For example, if EV j  

is a standard evaluation for 1=x j , pick j to maximize EV j   subject to 

FR j  ≤  MinFR + Δ, where MinFR is the minimum of the FR j  values 

 
3 This type of memory could also appropriately be called “Sequential EXclusion” memory, 

which provides a more interesting acronym.  Observing that exclusion always implies 
inclusion, which results in an associated “Sequential INclusion” memory, leads 
inescapably to the conclusion that SEX is impossible without SIN. 
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and Δ is small. (Or choose j to maximize EV j /(1 + FR j ), etc.)  Then set 

1=x j . 

3. If FR j  = 0, a sufficient set of assignments 1=x j  has been identified to 
assure that no solution from the collection x[1] to x[p] will be duplicated 
by the new solution. All remaining assignments can be made by any rule 
desired. 

4. If FR j  > 0, redefine FR to be the sum of the solutions x[h] whose jth 

component ][hx j  = 1.  (If FR j  > p/2, the new sum can be computed 

more quickly by subtracting from FR the solutions x[h] such that ][hx j  = 
0.) Then return to step 2. 

 
The CEX approach can be applied as well to special classes of solutions 

other than the p most recent solutions (such as the p most recent local optima 
or the p best solutions found within some chosen span of time).  The 
approach clearly generates and exploits more refined information than a 

procedure designed to set 1=x j  by giving preference to small frequency 

values FR j  of a single unadjusted FR vector. 
The approach can also be generalized in several natural ways. For 

example, instead of representing the p most recent solutions, some of the 
vectors x[h] can themselves be frequency vectors created by summing other 
solutions.  Specifically, we may suppose x[1] to x[p1] consists of the p1 most 
recent solutions, but the vectors x[p1+1] to x[p] represent summed solutions, 
where p is allowed to vary to permit adjustments over time. E.g., x[p] may 
be the sum of the first k solutions generated, x[p–1] may be the sum of next k 
solutions generated, etc.  Then as more solutions are generated, to keep p 
from growing too large, x[p] is changed to be the sum of x[p] and x[p–1], 
and the other x[h] vectors, excluding x[p–1], are reindexed appropriately. 
Subsequent steps similarly merge other x[h] vectors. (The rule for choosing 
which pair to merge next provides variation in the approach.) In this manner, 
the number of vectors recorded and manipulated can remain manageable, 
with a total effort on the same order as keeping track of p distinct solutions.   

This generalized form of the CEX method, applying the same rules (steps 
1-4) previously indicated, will still guarantee that no previous solution will 
be duplicated from the collection embodied in x[1] to x[p] under easily 
identified conditions.  Specifically, the guarantee holds if some subset of 

x[1] to x[p1] has been removed and *FR j  = 0, where FR* is the 
modification of the original FR that results by removing only this subset 
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(hence, not using the update to remove vectors x[h] for h > p1).  However, it 
is possible that these conditions will never be met, yet a few steps after 
removing all of x[1] to x[p1] from FR may still result in avoiding 
duplications. This fact enhances the utility of CEX memory in the general 
case. 

7. CONCLUSION 

The principles described in this paper, and the strategies proposed for 
exploiting them, offer a chance to create forms of multi-start methods that 
differ significantly from those considered in the past.  Features that 
distinguish such methods from previous multi-start methods include the 
creation of measures to capture information about recency, frequency and 
attractiveness, which can be monitored and updated in adaptive memory 
structures, as used in tabu search.  Thus, instead of simply resorting to 
randomized re-starting processes, in which current decisions derives no 
benefit from knowledge accumulated during prior search, specific types of 
information are identified that provide a foundation for systematically 
exploiting history. 

The concept of persistent attractiveness plays a key role in deriving 
appropriate measures, and acquires particular relevance in consideration of 
conditional effects.  In turn, these effects lead to inferences about the nature 
effective responses, which become translated into strategies that draw on 
associated indicators of quality and influence, and that take advantage of 
conditional exclusion memory. 

The potential value of embedding such knowledge in multi-start methods 
is suggested by recent studies in which adaptive memory strategies have 
demonstrated the ability to create superior versions of multi-start methods.  
The observations of this paper are offered as a basis for developing more 
advanced forms of such memory-based strategies. 
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APPENDIX ― Considerations Relevant for Implementation 

We examine alternatives for implementing the solution principles discussed in this paper 
organized around a design of the following type: 

(A) Initially, create a method to be as powerful as possible without concern for speed.  
(Seek to produce a method that obtains the highest quality solutions in the least number of 
iterations, without concern for how long an iteration takes.) 

(B) Once a good approach is identified, determine how its speed may be improved. 
(C) As a special exception, if an exceedingly simple variant of an approach emerges that is 

easy to implement, and if its outcomes offer a chance to gain insights into the design of a 
more complex approach, then the simple variant may be tested at once. 

The type of implementation philosophy embodied in (A) clearly requires common sense in 
its interpretation.  (For example, an iteration can always be defined to embody the execution 
of a complete solution method, hence reducing the number of iterations to 1!) Nevertheless, as 
a general principle (when "iteration" is defined in an appropriate way), the preceding design is 
useful for focusing effort on identifying the considerations that have the greatest impact 
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before worrying about those that are subsidiary.  It also has the utility of establishing limits 
and targets.  If the "most powerful" version of an approach does not work well (regardless of 
allowing its iterations to consume more time than would be tolerated in practice), then there is 
no sense wasting time trying to develop an efficient version of the approach. (Look for a 
different approach instead.) On the other hand, if the most powerful version effectively finds 
its way to good solutions, then it provides a goal to be reached by more efficient versions (and 
a general foundation for developing such versions). 

The exception of (C) is in recognition that the ultimate goal of any design is to gain as 
much information as possible as soon as possible about the nature of good decisions in order 
to exploit this information in the subsequent development process.  Insights produced by a 
simple method may yield information that can be used in creating improved evaluations for a 
more advanced approach (i.e., the simple approach can become a "subroutine" of the 
advanced approach). However, (C) must be applied with extreme care, because it is always 
possible to see “easy alternatives”, and when one of these alternatives is implemented there is 
a great temptation to keep making marginal adjustments (in the hope of creating a version that 
works a little better). Such a process can become a costly detour. 

In the case of constructive solution processes, invoking (A) and (B) as way of organizing 
an investigation of alternative methods suggests the following design: 

(D1) Decisions gauged to be best (to change decisions that have gone before) should be 
placed early in the construction sequence so that their effects on other decisions can be 
identified. 

(D2) The Simple Difference Rule should be relied on to compel changes that are 
necessary. 

When considering (C), a naive (but interesting) way to apply (D2) immediately surfaces.  
This is simply to reverse the sequence obtained on a given pass, adopting the perspective that 
if the latest decisions are going to made anyway, then they may as well be sequenced first to 
see if the earlier decisions still receive evaluations that warrant including the same elements in 
the new pass.  With high probability, this radically changed sequence will quickly yield very 
poor evaluations for next elements of the sequence (following the reverse order). When a 
"relative evaluation threshold" is exceeded ― where the next element to be added looks bad 
enough compared to others available, using the standard evaluation ― then the imposed 
reverse sequence should then be scuttled and the remainder of the sequence constructed using 
the standard evaluation.  Upon obtaining the new sequence, the process can be completed. 

Such an exceedingly simple approach, run for a number of passes, can be accompanied by 
monitoring to identify E(s,r) values as a foundation for creating PAMj  values.  But the 
apparent weakness of the approach is that the elements chosen at the end of a construction 
sequence are very likely to be "crack fillers" ― elements that plug up the last holes in a 
solution structure left by the decisions preceding.  In general, of course, the greater the 
number of preceding decisions, the greater the chance that the current decisions have little 
relevance except as a result of these antecedents, and hence a sequence reversal strategy is 
likely to be ineffective. 

On the other hand, the PAMj  values give a way to modify such a strategy to become 
more effective.  For example, if the component E′(s) of E(s,r) is changed so that its values are 
in ascending order, then the PAMj  values will tend to increase the attractiveness of 
elements assigned later in the sequence.  Placing these later “attractive elements” first in the 
new sequence tends to follow the philosophy of reversing the sequence, but in a more subtle 
way. 

Still simpler (in the spirit of (C)) is to go through the preceding sequence (just created) in 
reverse order, and choose an element to be next in the new sequence if its evaluation in this 
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new sequence passes a threshold of desirability.  (The threshold may be adaptive, taking into 
account the goal of not progressing too far before selecting an element to include.)  
Alternatively, the sequence can be divided into k segments, each containing n/k elements 
(rounded appropriately).  Then, while progressing through these segments in reverse, pick the 
element from the segment that has the highest current evaluation in the new sequence.  The 
selected element becomes the next element of that sequence (allowing a segment to be 
skipped if all its elements are sufficiently bad).  The method will therefore tend to include k 
elements from the old sequence, in reverse order, to populate the new sequence. 

In all such simplified variants, the process of monitoring E(s,r) values continues, for the 
purpose of generating more advanced decision alternatives.  Thus, these variants can be 
envisioned as a basis for creating subroutines to become part of a more advanced procedure.  
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