
Peqptmon 030~.0~IS(93)E0023-M

Computers Ops Res. Vol. 22, No. 1, pp. 111-134, 1995
Copyright ~ 1994 Elsevier Science Ltd

Printed in Great Britain. All rights re.reed
0305-0548/95 $7.00 +0.00

GENETIC ALGORITHMS A N D TABU SEARCH:
HYBRIDS FOR OPTIMIZATION

FRED GLOVER,~f JAMES P. KELLY~ a n d MANUEL LAGUNA§

Graduate School of Business, CB 419, University of Colorado, Boulder, CO 80309, U.S.A.

Scope and Purpo~--The development of hybrid procedures for optimization focuses on enhancing the
strengths and compensating for the weaknesses of two or more complementary approaches. The goal is
to intelligently combine the key elements of competing methodologies to create a superior solution
procedure. Our paper explores the marriage between tabu search and genetic algorithms in the context
of solving difficult optimization problems. Among other ideas, the procedure known as scatter search is
revisited to create a unifying environment where tabu search and genetic algorithms can co-exist. Overall,
our objective is to demonstrate that it is possible to establish useful connections between methods whose
search principles may superficially appear unrelated.

Abstract--Genetic algorithms and tabu search have a number of significant differences. They also have
some common bonds, often unrecognized. We explore the nature of the connections between the methods,
and show that a variety of opportunities exist for creating hybrid approaches to take advantage of their
complementary features. Tabu search has pioneered the systematic exploration of memory functions in
search processes, while genetic algorithms have pioneered the implementation of methods that exploit the
idea of combining solutions. There is also another approach, related to both of these, that is frequently
overlooked. The procedure called scatter search, whose origins overlap with those of tabu search (and
roughly coincide with the emergence of genetic algorithms) also proposes mechanisms for combining
solutions, with useful features that offer a bridge between tabu search and genetic algorithms. Recent
generalizations of scatter search concepts, embodied in notions of structured combinations and path relinkino,
have produced effective strategies that provide a further basis for integrating GA and "IS approaches. A
prominent TS component called strategic oscillation is susceptible to exploitation by GA processes as a
means of creating useful degrees of diversity and of allowing effective transitions between feasible and
infeasible regions. The independent success of genetic algorithms and tabu search in a variety of applications
suggests that each has features that are valuable for solving complex problems. The thesis of this paper
is that the study of methods that may be created from their union can provide useful benefits in diverse
settings.

1. I N T R O D U C T I O N

Genetic algorithms (GAs) and tabu search (TS) methods are customarily viewed as based on different
foundations and perspectives. Although significant differences between the methods exist, the two
approaches share certain elements in common that often have been overlooked and left unexploited.
The theme of this paper is to identify connections and contrasts between the methods that offer a
fertile means for creating hybrid procedures.

?Fred Glover is the US West Chaired Professor in Systems Science at the University of Colorado, Boulder. He has
authored or co-authored more than two hundred published articles in the fields of mathematical optimization, computer
science and artificial intelligence, with particular emphasis on practical applications in industry and government. In
addition to holding editorial posts for journals in the U.S. and abroad. He is co-founder of Optimization Technologies,
Inc., Analysis and Research and Computation, Inc., and the nonprofit research organization Decision Analysis and
Research Institute.

:~James P. Kelly is an Assistant Professor of Management Science in the College of Business and Administration and
Graduate School of Business Administration at the University of Colorado in Boulder. He received his doctoral degree
in Applied Mathematics and Operations Research from the University of Maryland in 1990. His current research
interests are in the area of heuristic combinatorial optimization. Dr Kelly has published several papers on topics such
as tabu search and simulated annealing in various journals such as Operations Research and the ORSA Journal on
Computing. Currently, he is attempting to use tabu search to construct neural networks for pattern classification.

§Manuel Laguna is an Assistant Professor of Operations Management in the College of Business and Administration and
Graduate School of Business Administration of the University of Colorado at Boulder. He received master's and
doctoral degrees in Operations Research and Industrial Engineering from the University of Texas at Austin. He was
the first U S WEST postdoctoral fellow in the Graduate School of Business at the University of Colorado. He has
done extensive research in the interface between artificial intelligence and operations research to develop solution
methods for problems in the areas of production scheduling, telecommunications, and facility layout. Dr Laguna
co-edited the Tabu Search volume of Annals of Operations Research.

111

112 FRED GLOVER et al.

The development of GA/TS hybrids offers an almost untapped area for empirical research. The
numerous successful applications of both GA and TS approaches strongly argue for the merit of
investigating unified procedures. We suggest ways that the differing frameworks of genetic algorithms
and tabu search can be advantageously reconciled, inviting research and computational studies to
identify the most effective ways to integrate these methods.

The plan of this paper is as follows. We begin by sketching basic components of tabu search in
Section 2, and give an overview of basic genetic algorithm ideas in Section 3. Our goal in these
sections is to provide a simplified characterization of the two methods, giving a sufficient background
to demonstrate some of their key features and to lay a foundation for subsequent discussions.
Section 4 then describes scatter search ideas that establish a link between early TS and early GA
ideas. In Section 5 we identify recent generalizations embodied in the notion of structured
combinations, which enable combined solutions to take account of problem structure and satisfy
properties such as feasibility. Section 6 examines the strategic oscillation component of tabu search
and notes its relevance for incorporation within GA processes. Section 7 gives additional strategies
for integrating solutions derived from scatter search, called path relinkino, and Section 8 introduces
attribute creation approaches, both with significant applications for integrating GA and TS
approaches. Finally, Section 9 elaborates on the strategies that differentiate and link tabu search
and genetic algorithms, and suggets additional means for their unification.

2. TABU SEARCH IN OVERVIEW

Tabu search is based on introducing flexible memory structures in conjunction with strategic
restrictions and aspiration levels as a means for exploiting search spaces. Its modern form and
terminology are introduced in Glover [1,2], and also owe a debt to related ideas introduced by
Hansen [3]. Many researchers have made contributions to advance the field in the past several
years. Table 1 identifies some of these contributions and indicates specific applications that have
benefited from them.

In diverse settings, such as those represented in the table, tabu search has demonstrated the
ability to generate solutions of notably high quality. For problems that are small enough or tractable
enough to allow "finitely convergent' algorithms to obtain and verify optimal solutions, tabu search
also typically produces solutions that are optimal or within a fraction of a percent of optimality,
while requiring much less effort (in some cases, on the order of minutes versus days
of computer time).

For larger and more difficult problems, of the type customarily encountered in practical settings,
tabu search obtains solutions that rival and often surpass the best solutions previously found by
other approaches. The applications of Table 1 include comparative studies of a number of important
classes of problems where tabu search performs significantly more effectively than all other methods
tested. For example, in some of the more difficult applications in scheduling, quadratic
assignment and vehicle routing, tabu search has set new records for best known solutions in the
literature.

To provide a starting point for subsequent discussions, we sketch some of the basic ideas of tabu
search in simplified form. The following example is abridged and adapted for our present purposes
from Glover and Lagnna [4].

An illustrative example
Permutation problems are an important class of combinatorial optimization problems whose

applications include classical traveling salesman problems, quadratic assignment problems,
production sequencing problems, and a variety of design problems. As a basis for illustration,
consider the problem of designing a material consisting of a number of modules to insulate against
specified forms of radiation. The order in which these modules are arranged determines the overall
insulating property of the resulting material, as shown in Fig. 1.

The problem is to find the ordering of modules that maximizes the overall insulating property
of the composite material. Assume that seven modules are required, and that it is computationally
expensive to evaluate the overall insulating property of a particular ordering. We want to find an
optimal or near-optimal solution by examining only a small subset of the total possible permutations

113

Transportation

Area Brief description Reference

Scheduling Employee scheduling
Flow shop scheduling

Layout and Circuit
Design

Telecommunications

Graphs

Probabilistic Logic"
Expert Sys tems

Neural Networks

Others

Material

Job shop scheduling with tooling constraints
Convoy scheduling
Single machine schedulin 8
Just-in-time scheduling
Multiple-machine weighted flow time problem
Flexible-resource job shop scheduling
Job shop scheduling
Single machine scheduling (target analysis)
Resource scheduling
Sequencing jobs with deadlines and setup times

Traveling salesman problem

Vehicle routing problem

Quadratic assignment problem

Electronic circuit design

Path assignment

Bandwidth packing

Clustering

Graph coloring

Stable set in large graphs
Maximum clique problem

Maximum satisfiability problem
Probabilistic logic
Probabilistic logic/expert systems

Learning in an associative memory
Nonconvex optimization problems

Multiconstraint 0-1 knapsack problem
Large-scale controlled rounding
Generalized fixed charge problem

Giover and McMilinn [5]
Widmer and Hertz [6]
Taillard [7]

Widmer [8]
Bovet et al. [9]
Lasuna et al. [10]
Laguna and Gonzalez-Velarde [11]
Barnes and Lagnna [12]
Danieh and Mazzola [13]
Dell'Amico and Trubian [14]
Lagnna and Glover [15]
Mooney and Rardin [16]
Woodruff and Spearman [17]

Malek et al. [18]
Glover [19]
Gendreau et al. [20]
Osman [21]
Semet and Taillard [22]

Skorin-Kapov [23]
Taillard [24]
Chakrapani and Skorin-Kapov [25]
Bland and Dawson [26]

Oliveira and Stroud [27]
Anderson et al. [28]
Glover and Laguna [29]

Olover et al. [30]
Harmen et al. [31]
Dorndorf and Pesch [32]
Hertz and de Werra [33]
Hertz er al. [34]
Friden et al. [35]
Gendreau et al. [36]

Hansen and Jaumard [37]
Jaumard ez al. [38]
Hansen et al. [39]

de Werra and Hertz [40]
Beyer and Osier [41]

Dammeyer and Voss [42]
Kelly et al. [43]
Sun and McKeown [44]

odules

Genetic algorithms and tabu search

Table I. Some applications of tabu search [4]

Fig. 1. Modules in an insulating material.

(which in many practical applications can be astronomical, and for this example equals 7!,
i.e. 5040). Job sequencing, signal screening and chemical filtering problems also fit in this same mold.

To introduce and illustrate the basic components of tabu search, we first assume that an initial
solution for this problem can be constructed in some intelligent fashion, i.e. by taking advantage
of some problem-specific structure. Suppose the initial solution to our problem is the one shown
in Fig. 2.

The ordering in Fig. 2 specifies that module 2 is placed in the first position, followed by module
5, etc. The resulting material has an insulating property of 10 units. (We assume this was found

114 FRED GLOVER et al.

Modules j - , , .
5 7 3 4 6 1

Fig. 2. Initial permutation.

5 7 3 I 1

Fig. 3. Swap of modules 5 and 6.

by an accompanying evaluation routine, e.g. a simulator package for estimating the properties of
a material without actually building a prototype.)

TS methods operate under the assumption that a neighborhood can be constructed to identify
adjacent solutions that can be reached from any current solution. Pairwise exchanges (or swaps)
are frequently used to define neighborhoods in permutation problems, identifying moves that lead
from one solution to the next. In our problem, a swap exchanges the position of two modules as
illustrated in Fig. 3. Therefore, disregarding other options such as insert moves, the complete
neighborhood of a given current solution consists of the 21 adjacent solutions that can be obtained
by such swaps.

Associated with each swap is a move value, which represents the change in the objective function
value as a result of the proposed exchange. Move values generally provide a fundamental basis for
evaluating the quality of a move, although other criteria can also be important. In large problems,
it is critical to use candidate lists to screen moves for examination, both to reduce computational
effort and to focus on more promising alternatives 1"45].

A chief way to exploit memory in tabu search is to classify a subset of the moves in a neighborhood
as forbidden (or tabu). The classification depends on the history of the search, and particularly on
the recency or frequency that certain move or solution components, called attributes, have
participated in generating past solutions. For example, one attribute of a swap is the identify of
the pair of elements that change positions (in this case, the two modules exchanged). To prevent
the search from repeating swap combinations tried in the recent past, which could potentially
reverse the effects of previous moves by interchanges that return to previous positions, we will
classify as tabu all swaps composed of any of the most recent pairs of such modules; in this case,
for illustrative purposes, the three most recent pairs. This means that a module pair will be kept
tabu for a duration (tenure) of three iterations. A data structure such as the one shown in Fig. 4
may be used.

Each cell of the structure in Fig. 4 contains the number of iterations remaining until the
corresponding modules are allowed to exchange positions again. Therefore, if the cell (3,5) has a
value of zero, then modules 3 and 5 are free to exchange positions. On the other hand, if cell (2,4)
has a value of 2, then modules 2 and 4 may not exchange positions for the next two iterations (i.e.
a swap that exchanges these modules is classified tabu).

The move attributes illustrated are not the only ones possible for defining tabu restrictions. For
example, we may refer to separate modules rather than module pairs, or to positions of modules,
or to links between their immediate predecessors (or successors), and so forth. (For guidelines about
good choices of attributes, see Glover and Laguna [29],)

Genetic algorithms and tabu search 115

2 3 4 5 6 7

Remaining Tabu T e n u r e / 4 3

for the module pair
2,5)

Fig. 4. Tabu data structure for attributes consisting of module pairs exchanged.

Iteration 0 (Starting Point)
Current solution

121,1,131,181il

Insulation Value = 10

Tabu structure

2 3 4

1

2

3

4

Scheme 1

5 6

Top 5 candidates
7 Swap

5 4

7 4

3 6

2 3

4 1

Value

6

4

2

0

-1

Tabu restrictions are subject to an important exception. When a tabu move has a sufficiently
attractive evaluation, as for example where it would result in a solution better than any visited so
far, then its tabu classification may be overridden. A condition that allows such an override to
occur is called an aspiration criterion. The following shows four iterations of the basic tabu procedure
that employs the paired module tabu restriction and the best solution aspiration criterion.

The starting solution has an insulation value of 10, and the tabu data structure is initially empty
(implicitly filled with zeros) indicating no moves are classified tabu at the beginning of the search.
After evaluating the candidate swap moves, the top five moves (in terms of move values) are shown
in the table for iteration 0 above. This information is provided by an independent evaluation
subroutine designed to identify move values for this particular problem.

To locally maximize the insulating property of the material, we swap the positions of modules
5 and 4, as indicated by the asterisk. The total gain of such a move equals six units, producing the
situation in the next table, labeled "Iteration 1."

The new current solution has an insulating value of 16 (i.e. the previous insulation value plus
the value of the selected move). The tabu structure now shows that swapping the positions of

Iteration 1

Current solution

0 0 0 0 0 1 3 0

Insulation Value = 1 6
q

Tabu structure

2 3 4

2

3

,~ 3

E

Scheme 2

5 6

Top 5 candidates
7 Swap Value

3 1 2

2 3 1

3 6 -1

7 1 -2

6 1 -4

6

0¢

116 FRED GtOVER et al.

Iteration 2

Current solution

I !,1,1,1 1 1 1

Insulation Value = 18

Tabu structure

2 3 4 6 6

1 3

2

3

4 2

Top 5 candidates

7 Swap Value

1 3 -2 T

2 4 -4 *

7 6 -6

4 5 -7 T

5 3 -9

Scheme 3

modules 4 and 5 is forbidden for three iterations. The most improving move at this step is to swap
3 and 1 for a gain of 2, giving the following outcome.

The new current solution becomes the best solution found so far with an insulating value of 18.
At this iteration, two exchanges are classified tabu, as indicated by the nonzero entries in the tabu
structure.

Note that entry (4,5) has been decreased from 3 to 2, indicating that its original tabu tenure of
3 now has two remaining iterations to go. This time, none of the candidates (including the top five
shown) has a positive move value. Therefore, a nonimproving move has to be made. The most
attractive nonimproving move is the reversal of the move performed in the previous iteration, but
since it is classified tabu, this move is not selected. Instead, the swap of modules 2 and 4 is chosen,
as indicated by the asterisk in the table for Iteration 2. This yields the following result.

Iteration 3

Current solution

Ouomsu=,u

Insulation Value = 14

Tabu structl~re

2 3 4

2

2 3

3

4 1

E

Scheme 4

5 6

Top 5 candidates
7 Swap

4 5

5 3

7 1

1 3

2 6

Value

6 T,

2

0

-3 T

-6

Insulation Value = 20

[12171,1,16131

Iteration 4
Current solution Tabu structure Top 5 candidates

2 3 4 5 6 7 Swap Value

1 7 1 0

2 2 4 3 -3

3 6 3 -5

4 3 5 4 -6

E 2 6 -8

6

Scheme 5

The new current solution has an insulation value inferior to the two values previously obtained,
as a result of executing a move with a negative move value. The tabu data structure now indicates
that three moves are classified tabu, with different remaining tabu tenures. At the top of the
candidate list, we find the swap of modules 4 and 5, which in effect represents the reversal of the
first move performed, and is classified tabu. However, performing this move produces a solution
with an objective function value that is superior to any previous insulation value. Therefore, we
make use of the aspiration criterion to override the tabu classification of this move and select it
as the best on this iteration.

Genetic algorithms and tabu search 117

The current solution becomes the incumbent new best solution and the process continues. Note
that the chosen tabu restriction and tabu tenure of three results in forbidding only three out of 21
possible swaps, since the module pair with a residual tenure of 1 always drops to a residual tenure
of 0 each time a new pair with tenure 3 is introduced. (By recording the iteration when a module
pair becomes tabu, and comparing this against the current iteration to determine the remaining
tabu tenure, it is not necessary to change these entities at each step as we do here.)

In some situations, it may be desirable to increase the percentage of available moves that receive
a tabu classification. This may be achieved either by increasing the tabu tenure or by changing the
tabu restriction. For example, a tabu restriction that forbids swaps containing at least one member
of a module pair will prevent a larger number of moves from being executed, even if the tenure
remains the same. (In our case, this restriction would forbid 15 out of 21 swaps if the tabu tenure
remains at 3.) Such a restriction is based on single module attributes instead of paired module
attributes, and can be implemented with much less memory, i.e. by an array that records a tabu
tenure for each module separately. Generally speaking, regardless of the type of restriction selected,
improved outcomes are obtained by tabu tenures that vary dynamically.

Complementary tabu memory structures. The accompaniment of recency based memory with
frequency based memory adds a component that operates over a longer horizon. To illustrate one
of the useful longer term applications of frequency based memory, suppose that 25 TS iterations
have been performed, and that the number of times each module pair has been exchanged is saved
in an expanded tabu data structure. The lower diagonal of this structure now contains the frequency
counts.

Iteration 26
Current solution

mnunnnnu

Insulat ion Value = 12

Tabu structure Top 5 candidates
Penal ized

1 2 3 4 5 6 7 Swap Value Value

2 4 -1 -6

2 3 7 -3 -3 *

1 1 6 -5 -5

- 1 - - - 6 5 - 4 - 6

2j 3 •
Frequency

Scheme 6

At the current iteration (iteration 26), the recency memory indicates that the last three module
pairs exchanged were (4,1), (6,3), and (7,4). The frequency counts show the distribution of moves
throughout the first 25 iterations. We use these counts to diversify the search, driving it into new
regions. This diversifying influence is restricted to operate only on particular occasions. In this
case, we select those occasions where no admissible improving moves exist. Our use of the frequency
information will penalize nonimproving moves by assigning a larger penalty to swaps of module
pairs with greater frequency counts. (Typically these counts would be normalized, as by dividing
by the total number of iterations or their maximum value.) We illustrate this in the present example
by simply subtracting a frequency count from the associated move value.

The list of top candidates for iteration 26 shows that the most improving move is to swap (1,4),
but since this module pair has a residual tabu tenure of 3, it is classified tabu. The move (2,4) has
a value of - 1, and it might otherwise be the one next preferred, except that its associated modules
have been exchanged frequently during the history of the search (in fact, more frequently than any
other module pair). Therefore, the move is heavily penalized and it loses its attractiveness. The
swap of modules 3 and 7 thus is selected as the best move on the current iteration.

The strategy of instituting penalties only under particular conditions is used to preserve the
aggressiveness of the search. Penalty functions in general are designed to account not only for
frequencies but also for move values and certain influence measures.

CAOR 22:1-I

118 FRED GLOVER et al.

In addition, frequencies defined over different subsets of past solutions, particularly subsets of
elite solutions consisting of high quality local optima, give rise to strategies from the class of
approaches that seek to exploit information from collections of good solutions. Such approaches
are called intensification approaches. Complementary procedures to drive the search into new
regions are called diversification approaches. Intensification and diversification strategies interact
to provide fundamental cornerstones of longer term memory in tabu search.

In the following sections, we focus on the special subset of such strategies that consist of generating
new solutions by reference to "combining" previous solutions, and therefore provide a link to
genetic algorithm strategies. We acknowledge that in some respects the trend in this direction has
already begun, as several of the basic notions of intensification and diversification introduced in
tabu search are beginning to be examined in GA settings. However, we will show how it is possible
to go considerably farther, making more powerful use of strategies that have been neglected or
incompletely adapted to the GA setting, giving an extended bridge between TS and GA approaches.

3. GENETIC ALGORITHMS IN OVERVIEW

As described by Goldberg E46] and Davis [471 natural evolution has some general features that
motivated John Holland in the 1970's to start a research effort in an area that would eventually
become what is now known as genetic algorithms (GAs). These features are briefly itemized by
Davis as follows:

• Evolution is a process that operates on chromosomes rather than on the living
beings they encode.

• Processes of natural selection cause those chromosomes that encode successful
structures to reproduce more often that those that do not.

• Mutations may cause the chromosomes of biological children to be different from
those of their biological parents, and recombination processes may create quite
different chromosomes in the children by combining material from the chromosomes
of two parents.

• Biological evolution has no memory.

The guiding premise of GAs is that complex problems can be solved by simulating evolution
via a computer algorithm. In Holland's conception, this occurs by algorithms that manipulate
binary strings labeled chromosomes. As in biological evolution, the simulated evolution has the
goal of finding good chromosomes by a blind manipulation of their contents. The term blind refers
to the fact that the process does not have any information about the problem it is trying to solve.
In the original GA conception, the process is viewed as a black box that provides evaluations of
chromosomes. These evaluations are then used to bias the selection of chromosomes in a way that
superior chromosomes (i.e. those with higher evaluations) will reproduce more often than inferior
ones. Holland's early designs were simple, but were reported to be effective in solving a number
of problems considered to be difficult at the time. The field of genetic algorithms has since
evolved, chiefly as a result of innovations in the 1980's, to incorporate more elaborate designs
aimed at solving problems in a wide range of practical settings.

Goldberg [46] suggests that GAs characteristically are distinguished in four ways:

• GAs work with a coding of the parameter set, not the parameters themselves.
• GAs search from a population of points, not a single point.
• GAs use payoff (objective function) information, not derivatives or other auxilary

knowledge.
• GAs use probabilistic transition rules, not deterministic rules.

In the rest of this section, we discuss how these features have become incorporated in genetic
algorithms at various levels, and we also review some of the more recent trends and developments
in the field.

Holland's canonical GA is characterized by binary representatin of individual solutions, simple

Genetic algorithms and tabu search 119

Create and evaluate an initial population.

do {

Reproduce new strings.

Evaluate the fitness of the new offspring.

Replace strings of the old population with the new offspring.

} while (terminatiofi criteria are not met)

Fig. 5. A simple GA.

problem independent crossover operators, and a proportional selection rule. To understand these
concepts, consider the simple GA outlined in Fig. 5. The population members are strinos or
chromosomes, which as originally conceived are binary representations of solution vectors. GAs
undertake to select subsets (usually pairs) of solutions from a population, called parents, to combine
them to produce new solutions called children (or offspring). Rules of combination to yield children
are based on the genetic notion of crossover, which consists of interchanging solution values of
particular variables, together with occasional operations such as random value changes (called
mutations). Children produced by the mating of parents, and that pass a survivability test, are then
available to he chosen as parents of the next generation. The choice of parents to be matched in
each generation is based on a biased random sampling scheme, which in some (nonstandard) cases
is carried out in parallel over separate subpopulations whose best members are periodically
exchanged or shared.

The purpose of parent selection in GAs is to increase the probability of reproducing members
of the population that have higher evaluations. A popular way of implementing this process is
called roulette wheel parent selection. This technique may be viewed as a roulette wheel where each
member of the population is represented by a slice that is directly proportional to the member's
fitness. A selection step is then a spin of the wheel, which in the long run tends to eliminate the
least fit population members.

Crossover in nature is the phenomenon by which two parents exchange parts of their
corresponding chromosomes to create children. In genetic algorithms a crossover recombines the
genetic material encoded in two parent chromosomes to make two children. The original GA
operator, modeled after processes in nature, is called one-point crossover. This operator randomly
chooses a cutting point such that the genetic material beyond that point is exchanged between two
parents to create two children. An example of one-point crossover is as follows:

Parent 1: 0 1 0 [1 1 =~ Child 1: 0 I 0 0 1
Parent 2: 1 1 0 I 0 1 =~ Child 2: 1 1 0 1 1

Crossover is essential to genetic algorithms, and in fact many researchers feel that this component
characterizes an algorithm as genetic. As the GA field has developed, the one-point crossover has
been found to have restricted value, since occasions arise when it cannot combine certain features
encoded on chromosomes. A popular solution to this problem has been the use of two,point
crossover. In this case, two cutting points are selected at random and the genetic material that falls
within the two points is exchanged. Although this operator is more flexible than the one-point
crossover, it also is often unable to recombine parents to produce certain children that can carry
important information to the next generation. This motivated Ackley [48] to develop the operator
called uniform crossover. Starting with the first bit, a parent is selected at random to contribute its
bit to the first child, while the second child is assigned the bit from the other parent. The process
continues until all bits are examined.

120 FRED GLOVER et aL

Another important component of GAs is mutation, though it is usually conceived as a background
operator. Bit mutation is applied to binary strings by randomly replacing each bit with certain
probability. The probability value is known as the mutation rate, and many researchers advocate
that it should generally be low (e.g. 0.01 or less). There are basically two ways of implementing
mutation. The first variant always changes the bit for which the probability test has been passed.
That is, if the ith bit is orignally 1 and the probability test is passed, the new string will contain
a 0 in the ith position. In the second variant a new bit is randomly generated to substitute the bit
for which the probability test passed. Therefore, 50% of the time the new bit will not be different
than the old one, and the mutation rate will effectively be half of the one of the first variant.

The binary encoding was originally used by Holland to derive the schema theorem, which is
considered the mathematical foundation of genetic algorithms. (More recent GAs are not limited
to binary encoding, and in fact, as discussed later, other solution representations have proved
somewhat more effective in applications where binary representations are not "natural" to the
problem setting.) The schema theory is based on the idea that if a better understanding of the
problem domain is desired, it is essential to study the similarities among subsets of strings as well
as their fitness. In a sense the interest shifts from strings alone to groups of highly fit strings. As
pointed out by Goldberg [46], the framework of schemata provides the tools for answering questions
such as: how a string can be similar to its fellow strings? and in what ways is a string a representative
of the other string classes with similarities at certain positions? A schema is defined as a template
among strings. Over the binary alphabet, a schema is a string of the type:

(al, a2 a.), aie {0, 1, "k}

where the " 'k" symbol represents both 0 and 1. A schema represents a sub-space of strings that
match all locations i where the schema is specific. Therefore, the size of the sub-space increases
with the number of " 'k" symbols in the schema. The schema theorem changes the view of the
process from a search in a space of individual strings to a search through the set of schemata which
the strings instantiate [49]. Since each binary string is an instantiation of 2" possible schemata,
testing the survivability of a string discloses a great deal of implicit information regarding the
fitness of its corresponding schemata. This is one of the cornerstones of the idea called implicit
parallelism.

At each step in the evolution process strings are selected from the population with a probability
relative to their fitness. This selection has the effect of including in each generation representatives
of a particular schemata proportionate to their average fitness. (However, the average fitness of a
schemata only indicates which string templates are more promising to investigate.) Selection
processes with additional controls have been made the basis for a GA convergence theory by Aarts
et al. [50].

The schema theorem is sometimes interpreted to suggest that the implicit parallelism of GAs
may be exponential. However, this is not quite correct, because certain schemata do not survive
reproduction and the number of different schemata being considered depends on the population
size. More precisely, if a single hyperplane is present in the initial population and is consistently
above average fitness over time, then it will exponentially increase its representation over time.
Holland estimated that the number of schemata being processed at each evolution generation in
a population of n strings is O(na). Such processing is often interpreted to indicate that GAs make
a nearly optimal allocation of trials. Miihlenbein [51] has shown, however, that this is only true
for simple optimization problems. DeJong [52] has additionally characterized related limitations
when GAs take the role of function optimizers.

The binary encoding that is strongly coupled to the schemata idea has often been found unsuitable
for combinatorial optimization problems. In this context, the difficulty stems from finding a binary
representation such that substrings have a meaningful interpretation [53]. Therefore, there is a
group of GA researchers who use encodings that are more natural representations of solutions
[54-56]. Most of these encodings, however, do not support the idea of schemata. Some GA
researchers feel procedures that violate some of the principles in the original theory work,
"despite" their violations. In contrast, other members of the GA community suggest that the success
of these procedures is precisely based on the fact that they violate the original GA principles.
Regardless of how these encodings are perceived, their goal is to identify similarity features in the

Genetic algorithms and tabu search 121

solution space, while maintaining a natural connection with the solution vectors that originate
them. In general, different encodings give different perspectives and resolution for inspecting a
solution space.

Another relatively new trend in the GA arena is the use of local search strategies. After rather
disappointing results were obtained in early applications of simple GAs to combinatorial
optimization [571, researchers began to look for ways to extend GA approaches to produce better
results. A leading step in this direction was taken by Miihlenbein et al. [58] with the development
of Parallel Genetic Algorithms (PGAs) that allow individuals in the population to improve their
fitness by local improvement ("hill climbing"). (PGAs also allow individuals to select their own
mates by distributed processing.) Uses of local improvement operators are also introduced and
successfully applied in the work of Montana and Davis [59], Huntley and Brown [60] and Ulder
et al. [61] (who call their approach genetic local search).

In a sense, simple GAs with local search may be seen as sophisticated multi-start descent
methods. The re-starting process is in this case governed by genetic rules, and the descent phase
is performed as customary. The success of these methods may be attributed to their balance between
achieving fast search and sustaining diversity to avoid premature convergence. Another approach
to achieve a similar outcome within GAs is an iterative search strategy called delta coding [62].
Delta coding introduces diversity by generating an entirely new and random population, while
preserving information from past generations by basing new encodings on previous partial solutions.
The approach starts by performing an initial run of a simple GA and measuring the population
diversity on each generation. When the diversity of the population (measured for example by
calculating the hamming distance between parent strings) is exhausted or reduced, the best solution
is saved as starting point for the next delta iteration. Delta coding preserves hyperplane sampling
since each individual run is a single run of a genetic algorithm, where only the encoding strategy
has changed. Since the number of bits used to encode delta values is reduced at each iteration, the
solution space is reduced. Each new string, when decoded for fitness evaluation, is applied as a
delta value to the string saved from previous iteration. This process translates into a search on a
smaller solution space around the best initial solution.

The underlying principle of reinforcing the search in regions about high quality solutions, as
noted earlier, is an instance of what is called an intensification strategy in TS. Intensification
strategies in a TS context bear interesting connecting to their counterparts in GAs, illustrated by
the scatter search method for generating new solutions in regions determined in relation to previous
good solutions, and by the approach of reinforcing values applicable to strongly determined and
consistent variables [63]. We explore such connections between TS and GA methods, and their
implications for usefully blending these methods, in the following sections.

4. SCATTER SEARCH

Scatter search, which was introduced in roughly the same period as the early GA proposals, has
some interesting commanalities with GA ideas, although it also has a number of quite distinct
features. Several of these features, as we will show, have come to be incorporated into GA approaches
after an intervening period of approximately a decade, while others remain largely unexplored in
the GA context.

Scatter search is designed to operate on a set of points, called reference points, that constitute
good solutions obtained from previous solution efforts. The approach systematically generates
linear combinations of the reference points to create new points, each of which is mapped into an
associated point that yields integer values for discrete variables. As originally proposed [63], the
mapping consists of rounding or an associated generalized adjacency process, e.g. rounding a
selected discrete variable to an integer neighbor, then determining implied value changes for other
variables, and repeating.

This idea of using a systematic process to enable solution combinations to meet desired restrictions
embodies the principle that such combinations should be influenced by context. (Genetic algorithm
concepts proposed at this time, and advocated in some circles even today, instead embrace the
theme that combinations should be generated without reference to context.) The adaptive rounding
process of scatter search automatically satisfies simple constraints such as mutual exclusivity and

122 FRED GLOVER et al.

precedence relationships, since by standard updating, each rounding step yields only those remaining
options consistent with choices made earlier. (More complex constraints sometimes also can be
satisfied this way by updating a linear programming basis representation, as characteristically done
in integer programming implementations.)

The vectors that result from the rounded linear combinations of the chosen reference points in
turn are allowed to serve as inputs to accompanying heuristic processes. The heuristic procedures
then transform these inputs into improved outcomes, thereby bringing the approach full circle.
These outcomes accordingly are screened to provide a new set of reference points, and the process
starts again.

By this approach, linear combinations produced at each stage are dispersed across a region
whose form is biased by the distribution of reference points. Diagram 1 (from Glover [63]), illustrates
a simple version of the process. Each of the points numbered 1-16 in Diagram 1 is the central
point of an apparent subregion of the simplex A, B, C. The points A, B and C may or may not
constitute the original reference points. (For example, the original points may consist of 6, 7 and
11, or of 4, 5, 12 and 13.) Thus, new points may be created that are not convex combinations of
original points, and hence that may contain information that is not contained in these points, in
the sense of bits implicit in a solution representations. (At the same time, the original points are
also instances of such linear contributions, and hence they are likewise included among the candidate
outcomes.)

,/

/
/

/

, ® @
I

/
/

/

I / / 0 I /
I / /

I
/ I

/ I
/ I , ®

® ,

I
I
I
I
I

Diagram I. An illustration of scatter search. Reproduced with permission from Glover (1977) Decision
Science Vol. 8, pp. 156-166.

Genetic algorithms and tabu search 123

The mappings that progressively round the resulting linear combinations (modifying fractional
components that are required to be discrete), can introduce additional information derived from
relationships between problem variables, hence reflecting the influence of problem structures.
Problem structure exerts further influence by means of the heuristic processes that take these points
as inputs and produce new solutions from them.

Similarities are immediately evident between this early approach and the GA formulation of
Holland [64]. Both are instances of what are sometimes called "population based" approaches,
which start with some collection of elements and progressively evolve those elements to yield new
ones that are subjected to the same guiding process. Both also incorporate the idea that a key
aspect of producing the new elements is to generate some form of combination of the existing elements.

On the other hand, several contrasts between the methods also may be noted. The early GA
approaches were predicated on the idea of choosing parents randomly to produce offspring, and
further on introducing randomization to determine which components of the parents should be
combined (by genetic crossover operations). By contrast, no corresponding recourse to randomization
is made in the scatter search approach, although nothing excludes its use as a bias factor (i.e.
probabilistically favoring evaluation criteria that would otherwise be applied deterministically).
Attention is focused in scatter search on choosing good solutions as a basis for generating
combinations, in contrast to the more democratic GA policy of allowing solutions of all types to
be combined. This scatter search focus can enhance the generation of relevant outcomes without
losing the ability to produce diverse solutions, due to the way the generation process is implemented.
More recent "elitist" GA variants also give preference to combining good elements, but without a
corresponding ability to produce combinations beyond the region in which these elements lie (except
by resorting to auxiliary strategies to overcome this limitation). The different mechanisms used
by the two approaches to combine solutions, consisting of rounded linear combinations on one
hand and genetic crossover on the other, particularly invite examination.

Significance of rounded linear combinations

Linear combinations provide a somewhat more varied set of possibilities for creating new solutions
than crossover as initially introduced in GAs. They also avoid the artificiality of resorting to the
binary representations which were the foundation of the original genetic encoding and crossover
motions. To see the relevance of this, consider the goal of creating integer solutions that are
combinations of the two solutions x = 9 and x = 26. Rounded linear combinations can generate
every integer point from minus to plus infinity on the line joining x = 9 and x = 26, hence in this
case yielding every value x may feasibly be assigned. On the other hand, when these solutions are
given a binary representation, (1 0 0 1 0) for x=9, and (0 1 0 1 1) for x=26 (encoding x as a bit
string by the identity x = lx 1 -+-2x 2 +4X 3 + 8 X 4 + 16x s, where xl, x2 xs are zero-one integer
variables), then the possible outcomes are substantially more limited. In particular, the only ways
to create rounded linear combinations of the binary vectors (1 0 0 1 0) and (0 1 0 1 1) yield the
collection of binary vectors ('k "k" 0 1 "k') where the "~- elements" can be 0 or 1. Hence instead
of producing all possible integer points these combinations produce only the integer values of x
satisfying 8 ~< x ~< 11 and 24 ~< x ~< 27.

The possible outcomes are more limited still if classical forms of genetic crossover are used. The
only vectors that can be created by the proposals of Holland are the four vectors (0 0 0 1 0),
(0 1 0 1 0), (1 0 0 1 1), (1 1 0 1 1), corresponding to x=8, 10, 25, 27. When attention is restricted
to binary vectors, which clearly is inappropriate, rounded linear combinations in fact give the same
set of possibilities as the "uniform" crossover operator proposed 10 years later by Ackley [481
although the randomized means of generating these possibilities in the GA setting contrasts with
the strategic rounding theme of scatter search. By further employing generalized adjacency rounding,
where values of some variables may change as a result of modifying others, additional possibilities
result.

The significance of rounding to account for interactions between variables is illustrated by the
following example [65]. Consider the simple integer programming problem

Minimize

9xx + 4x2 + 8x3

124 FRED GLOVER et al.

subject to

9Xl - -8X2- - X3~>7

- 6 x l +7x2-2x3~>6

--X t - X2-t-5X3~>9

x~, x 2, x3>~0 and integer.

The linear programming (LP) solution to this problem, which disregards the integer requirement
for the variables, gives a solution vector x = (xl, x2, x3)= (24.43, 25.14, 11.71). Successive rounding
that respects interactions between the variables (implied by the inequality constraints above, and
manifested in the structure of the LP basis inverse), yields a solution vector x=(29, 30, 14), which
turns out to be optimal for this problem. Evidently, the integer values of this final vector could
not be anticipated without accounting for the interdependencies among the problem variables.
Advanced manifestations of such phenomena and processes for exploiting them are given in Glover
[66, 67], and represent the types of processes that are accommodated naturally within the scatter
search framework.

Without contradicting the importance of randomization in GA processes, the fact that scatter
search seeks to create new points strategically rather than randomly may represent a useful feature
in some settings. The points of Diagram 1, for example, may be generated and scanned in their
indicated numerical order, under the condition where this order reflects a ranking determined by
the objective function, or more generally by a feasible direction gradient. Scatter search does not
prespecify the number of points it will generate or retain, since this can be established adaptively
by considering the quality or structure of solutions produced in such a systematic generation.

Scatter search and early GA approaches may also be distinguished by the fact that the reference
points are supplied by and in turn supply another heuristic process. This is an orientation that has
lately gained strong proponents among a core of researchers in the area of optimization who are
seeking to modify GA proposals to make them more effective, particularly as advocated in the
PAG approach of Miihlenbein et al. 1-58] and the related genetic local search approach of Ulder
et al. [61].

Finally, we observe that the allowance for real-valued weights and vector components (for
variables or parameters that are not discrete) anticipates the developing trend in some parts of the
GA community to embrance "real-coded" (or floating-point) genes, as represented by the work of
Davis [47], B[ick et al. [68] and Eschelman and Schaffer [69]. Additional connections with current
GA developments are provided in the study of Michalewicz et al. [70], which introduces a
nonstandard GA approach using linear combinations in place of genetic crossover.

In this way, the philosophical themes of scatter search and genetic algorithms are being brought
closer together by modern efforts to create GA variants with an improved ability to solve
optimization problems. The potentially useful implications of this are compounded by the recent
introduction of advanced processes for combining solutions, as described in the next section.

5. STRUCTURED COMBINATIONS

Operations used to define linear combinations can be replaced with structured transformations
of vectors that preserve specified discrete relationships and associated feasibility conditions. This
approach is based on three properties of the reference vectors from which the weighted combinations
are created.

Property 1 (Representation property)

Each vector represents a set of votes for particular decisions (e.g. the decision of assigning a
specific value to a particular variable, or of assigning a specific facility to a particular location etc.).
Standard solution vectors for many problems can directly operate as such voting vectors, or can
be expanded in a natural way to create such vectors. For example, a solution vector for a job shop
scheduling problem can be interpreted as a set of 0-1 votes for predecessor decisions in scheduling
specific jobs on particular machines.

Genetic algorithms and tabu search 125

Property 2 (Trial solution property)

The set of votes prescribed by a vector translates into a trial solution to the problem of interest
by a well defined process. A set of votes for items to include in a knapsack, for example, can be
translated into a trial solution by processing the votes sequentially in terms of benefit-to-':, eight
ratios for votes in particular intervals, until either the knapsack is full or votes at all intervals are
considered. (Note that the vectors may not represent feasible solutions to the problems c ~nsidered,
or even represent solutions in a customary sense at all.)

Property 3 (Update property)

If a decision is made according to the votes of a given vector, a clearly defined rule exists to
update all vectors for the residual problem so that Properties 1 and 2 continue to hold. (For
example, upon assigning a specific value to a particular variable, all votes for assigning different
values to this variable are cancelled, and the remaining updated votes of each vector retain the
ability to be translated into a trial solution for the residual problem in which the assignment has
been made.)

The three preceding properties allow a constructive method to create structured combinations
of vectors l71]. Voting schemes for evaluation in related contexts have been proposed by Glover
and McMillan [5, 72] and Ackley [48], though in a less general form and without a rigorous design
for exploiting and preserving the three fundamental properties. The properties imply that the
decisions voted upon can be made in a sequential order, which is established either a priori, or as
a function of the decision theory. Decision steps also may be linked by solving associated
optimization problems. (For example, an assignment problem to initiate the decision steps for a
traveling salesman tour can be created by combining the votes of permutation vectors with original
distance data.) This type of linking is often performed effectively in settings that do not provide
for generating combined solutions, and the ability to incorporate it as part of the process of creating
new solutions from combinations of others is a useful feature.

The sequential decision structure implied by the preceding properties is sufficiently comprehensive
to apply to optimization problems of nearly unlimited generality, and can directly incorporate
standard neighborhood processes for transforming one solution into another. Going a step farther,
it is possible to specify processes to score and evaluate vectors, taking account of different types
of objectives, that enable reference points (or "parents" in GA terminology) to be combined
according to any desired emphasis on their relative contributions. For example, motivated by the
concept of weighting solutions as in scatter search, two solutions can be combined in various mixes
such as 70-30, 60-40 or 50-50, to produce new outcomes that embody different degrees of
contributions of the original solutions. This can be done either probabilistically or deterministically
by employing appropriate mechanisms to exploit Properties 1-3.

Specific rules make it possible to generate a variety of such combined solutions that represent
different relative emphasis on the parents, while simultaneously satisfying problem constraints.
This may be conveniently illustrated for a permutation problem (which has very simple constraints
embodied in sequential restrictions). Consider starting with the following two permutations:

1 2 3 4 5 6 7 8 9

1 8 6 4 9 3 5 2 7

Placing a two to one emphasis on favoring the first permutation over the second, the following
three permutations are generated by rules identified in Glover [71]:

I 2 7 8 9 3 4 5 6

1 2 8 3 4 6 5 7 9

1 2 6 4 5 7 3 8 9

The differences in these three permutations do not result by changing their rules of combination,
but simply by applying the rules to different objectives, respectively associated with traveling
salesman problems, scheduling problems and facility location problems. (The indicated permutations
are not the only ones generated by the rules for these three cases.)

126 FRED GLOVER et al.

The analogy to the application of different types of nongenetic crossover is apparent in this
example. However, in addition to allowing different relative weights on the parents, there are two
key distinctions. First, the rules follow directly from a general framework that yields these varied
outcomes, each responsive to a particular objective, without having to invent different types of
nonstandard crossover operations for each separate case. Second, and more importantly, the rules
apply to problems with many different kinds of constraint structures, allowing feasibility to be
handled automatically. A special class of transformations, called adaptive structured combinations,
further enhances the process by allowing the problem objective to determine the relative mix as
well as the priority system for combining solutions.

The structured combination ideas provide a useful extension of the linear combination ideas of
scatter search along several dimensions. In creating structured combinations, additional opportunities
for design and control are provided as the process unfolds. We will argue later for the importance
of this reference to structure (from which these types of combinations derive their name), in the
context of identifying additional connections to recent trends in GA methods.

6. S T R A T E G I C O S C I L L A T I O N AND G E N E T I C A L G O R I T H M L I N K A G E S

In the tabu search framework, strategic oscillation is a process used to vary the direction of
search and the region visited by controlling the admissibility or evaluations of moves in some
neighborhood of the current solution. One of its more useful applications is to create expanded
search processes that can admit infeasible solutions during the search. Infeasible solutions are
permitted, but they are penalized for their infeasibility. The "oscillation" component of the procedure
varies this penalty over time. A typical oscillation may be in the form of a sine curve, although
many other types of oscillation patterns have been successfully used. The common theme among
all of the oscillation patterns used is that the penalty alternates between values that encourage or
discourage infeasible solutions (in the latter case, sometimes seeking to drive deeper within a feasible
region).

There are at least three reasons for considering the use of this form of stragetic oscillation when
solving optimization problems [43, 451. One, if the feasible solution space of a problem consists of
nonconvex or disjoint components, then strategic oscillation provides a mechanism for crossing
regions of infeasibility in the course of searching for the optimal solution. In some problems, where
in fact the feasible region may be connected, an attempt to reach an optimal solution may require
a long tortuous path through feasible space, while if a solution path is allowed to enter infeasible
regions, then an optimum may be easily found.

A second reason for using strategic oscillation is that in some problems the goal of obtaining a
feasible solution is as hard as obtaining an optimal solution--i.e, from the standpoint of theoretical
complexity, both pose models that are NP-complete. For this class of problems, strategic oscillation
can be used to locate high quality, feasible solutions in a way that is analogous to primal-dual
optimization approaches, and in fact can be used to coordinate alternating relaxation and restriction
phases in an optimization setting.

A third desirable attribute of strategic oscillation is an indirect effect. As we have noted, any
heuristic search that aspires to find optimal solutions must ensure sufficient diversity in the search.
Strategic oscillation provides diversity by emphasizing different parts of the problem over time,
and thus improves the robustness of the method.

Typically, genetic algorithms do not allow cross-over operations that would produce infeasible
solutions. In restricted instances where infeasible solutions are permitted, they are usually
transformed into feasible solutions before they are placed back into the population. Strategic
oscillation provides a means to allow infeasible offspring to exist in the population. By enriching
the population with infeasible solutions, a genetic algorithm coupled with strategic oscillation gains
the power to operate with increased diversity, which may improve its chances of finding optimal
solutions.

A straightforward way to incorporate strategic oscillation into a genetic algorithm is as follows.
First, a cross-over operation that admits infeasible solutions is employed. Second, a feasibility
measure is introduced. Typically, this measure quantifies the amount by which a solution violates
its constraints. For example, a heuristic for a Traveling Salesman Problem that produces a solution

Genetic algorithms and tabu search 127

with four subtours may be assigned an infeasibility measure of three (4 - 1), perhaps refined by
weighting each subtour as an inverse function of its size. Third, a suitable set of penalty factors
must be obtained, to scale the infeasibility measure relative to the objective function. The fitness
of a solution may then be calculated as follows:

Fitness = Objective Value + Penalty(t)~clnfeasibility Measure.

The penalty and infeasibility measure terms may be conceived as vectors, hence producing a weighted
sum of values, whose component terms are either linear or nonlinear. If the problem is a minimization
problem, then "better" fitness levels are given by smaller Fitness values. Penalty(t) is controlled by
strategic oscillation as a sequence of penalty factors that oscillate between large and small values
(where t denotes the control parameter for the oscillation). The best strategy for manipulating t is
probably problem dependent, although as in tabu search, general strategies may emerge that are
relevant for special classes of problems. As changes to t cause Penalty(t) to decrease, infeasible
solutions are permitted to enter the population, which then may in turn be gradually driven out
by changes that cause Penalty(t) to increase. In this way the population will alternate between
populations with different mixes of feasible and infeasible members.

We emphasize that other ways of incorporating the strategic oscillation approach within genetic
algorithms are also possible. For example, such an approach has been applied in tabu search to
control alternation between constructive and destructive steps for graph problems, and in general
the feasibility-infeasibility dichotomy can be replaced by a variety of other dichotomies to induce
the search to oscillate relative to a selected strategic framework. The usefulness of strategic oscillation
as a component of tabu search suggests that its incorporation within genetic algorithms warrants
examination.

Next we identify a type of strategy from tabu search founded on a spatial analogy and guided
by reference to attributes of solutions, as normally used to define tabu restrictions in TS procedures.
Our description in the next two sections parallels that of Glover and Laguna [29].

7. PATH RELINKING

Path relinking is an approach for pursuing both intensification and diversification concerns in
tabu search. Employing the generalized concept of combination implicit in our preceding discussions,
this approach also can be viewed as a way of combining solutions.

The process of path relinking is initiated by selecting two solutions x' and x" from a collection
of eilite solutions (high quality local optima produced during previous search phases). A path is
then generated from x' to x", producing a solution sequence x' = x(1), x(2) x(r) = x". A standard
neighborhood structure is used to define available moves for transitioning from one solution to
the next, and x(i+ l) is created from x(i) at each step by choosing a move that leaves the fewest
number of moves remaining to reach x", or an approximation to this criterion. The path generation
process may be applied to various choices of pairs, and as in scatter search. Upon completion one
or more of the solutions x(i) is selected to initiate a new search phase with a chosen heuristic
procedure.

It may or may not be the case that x' and x" were previously joined by a search trajectory as
a result of some sequence of moves applied at an earlier stage. If they were joined in this manner,
however, the new trajectory produced by path relinking is likely to be somewhat different,
representing a "more direct" route between these solutions. An illustration of this is provided in
Diagram 2.

A number of alternative moves typically will qualify to produce a next solution from x(i) at each
step by variations of the "fewest remaining moves" criterion, consequently allowing a variety of
possible paths from x' to x". Let c(x) denote an objective function which is to be minimized (by
picking an appropriate x over some feasible region). Selecting unattractive moves, relative to c(xt
at each step will tend to produce a final series of strongly improving moves, while selecting attractive
moves will tend to produce lower quality moves at the end. (The last move, however, will be
improving, or leave c(x) unchanged, since x" is a local optimum.) Thus, choosing best, worst or
average moves, provide options that produce contrasting effects in generating the indicated sequence.
(An aspiration criterion may be used to override choices in the last two cases if a sufficiently

128 FRED (]LOVER et al.

X' O....- " ' ' ' ' O "

Diagram 2. Path relinking.

X,,

attractive solution is available. In general, it appears reasonable to select best moves at each step,
and then repeat the process by interchanging x' and x".)

The choice of one or more solutions x(/) to launch a new search phase preferably should depend
not only on c[x(i)] but also on the values c(x) of those solutions x that can be reached by a move
from x(i). In particular, when x(i) is examined to move to x(i+ 1), a number of candidates for
x = x (i + 1) will be presented for consideration. The process additionally may be varied to allow
solutions to be evaluated other than those that yield x(i+ 1) closer to x".

Let x*(i) denote a neighbor of x(i) that yields a minimum c(x) value during an evaluation step,
excluding x*(i) = x(i + 1). [If the choice rules do not automatically eliminate the possibility x*(i) = x(h)
for h < i, then a simple tabu restriction can be used to do this.] Then the method selects a solution
x*(i) that yields a minimum value for c(x*(i)] as a new point to launch the search. If only a limited
set of neighbors of x(i) are examined to identify x*(i), then a superior least cost solution x(i),
excluding x' and x", may be selected instead. Early termination may be elected upon encountering
an x*(i) that yields c[x*(i)] <min[c(x'), c(x"), c[x(p)], where x(p) is the minimum cost x(h) for all
h ~< i. [The procedure continues without stopping if x(i), in contrast to x*(i), yields a smaller c(x)
value than x' and x", since x(i) effectively adopts the role of x'.]

Variation and tunnelino

A variant of the path relinking approach starts at both endpoints x' and x" simultaneously,
producing two sequences x' = x'(1) x'(r) and x" = x"(1) , x"(s). The choices are designed to yield
x'(r) = x"(s), for final values of r and s. To progress toward this outcome when x'(r)~ x"(s), either
x'(r) is selected to create x'(r+ 1), by the criterion of minimizing the number of moves remaining
to reach x"(s), or x'(s) is chosen to create x"(s+ 1), by the criterion of minimizing the number of
moves remaining to reach x'(r). From these options, the move is selected that produces the smallest
c(x) value, thus also determining which of r or s is incremented on the next step.

The path relinking approach can benefit by a tunneling strategy that allows a different
neighborhood structure to be used than in the standard search phase. In particular, it can be
desirable to periodically allow moves for path relinking that normally would be excluded due to
creating infeasibility. Such a practice is less susceptible to becoming "lost" in an infeasible region
than other ways of allowing periodic infeasibility, since feasibility evidently must be recovered by
the time x" is reached. This tunneling effect therefore offers a chance to reach solutions that might
otherwise be bypassed. In the variant that starts from both x' and x", at least one of x'(r) and x"(s)
may be kept feasible.

Greater emphasis on intensification or diversification is achieved in this approach by choosing
x' and x" to share more or fewer attributes in common. For example, choosing x' and x" from a
clustered set of elite solutions will stimulate intensification, while choosing them from two widely
separated sets will stimulate diversification.

Genetic algorithms and tabu search 129

Extrapolated relinkin#
The path relinking approach extends naturally beyond consideration of points "between" x' and

x" in the same way that linear combinations extend beyond points that are expressed as convex
combinations of two endpoints. For simplicity, suppose we begin at x' and seek a path that continues
beyond x". The ability to go beyond this endpoint results by a method for approximating the
criterion of choosing a move that leaves the fewest moves remaining to reach x". Specifically, let
A(x) denote the set of solution attributes associated with ("contained in") x, and let A_drop denote
the set of solution attributes that are dropped by moves performed to reach the current solution
x'(i). Such attributes may actually be components of the x vectors themselves, or may be related
to these components of the x vectors themselves, or may be related to these components by
appropriately defined mappings [41.

Define a to-attribute of a move to be an attribute of the solution produced by the move, but not
an attribute of the solution that initiates the move. Similarly, define a from-attribute to be an
attribute of the initating solution but not of the new solution produced. Then we seek a move at
each step to maximize the number of to.attributes that blong to A(x")- A[x(i)], and subject to this
to minimize the number that belong to A_drop-A(x"). Such a rule generally can be implemented
very efficiently by appropriate data structures.

Once x(r)= x" is reached, the process continues by modifying the choice rule as follows. The
criterion now selects a move to maximize the number of its to-attributes not in A_drop minus the
number of its to-attributes that are in A_drop, and subject to this to minimize the number of its
from-attributes that belong to A(x"). (The combination of these criteria establishes an effect analogous
to that achieved by the standard algebraic formula for extending a line segment beyond an endpoint.
However, the secondary minimization criterion is probably less important.) The path then stops
whenever no choice remains that permits the maximization criterion to be positive.

For neighborhoods that allow relatively unrestricted choices of moves, this approach yields an
extension beyond x" that introduces new attributes, without reincorporating any old attributes,
until no move remains that satisfies this condition. The ability to go beyond the limiting points x'
and x" creates a form of diversification not available to the path that "lies between" these points.
At the same time the exterior points are influenced by the trajectory that links x' and x".

8. C R E A T I N G NEW A T T R I B U T E S

The last concept from tabu search we will discuss involves the creation of new attributes out of
others. We focus on creating new attributes by reference to a process called vocabulary building,
related to concept formation.

Vocabulary building is based on analyzing a chosen set S of solutions to discover attribute
combinations its members share in common with each other and with various feasible solutions
in general. Attribute combinations that emerge as significant enough to qualify as units of
vocabulary, by a process to be described below, are treated as new attributes capable of being
incorporated into tabu restrictions and aspiration conditions of the type illustrated in Section 2,
and of additional more general types illustrated in tabu search references previously cited. In
addition, the combination can be directly assembled into larger units as a basis for constructing
new solutions.

Collections of attributes may be represented for our present purposes by encoding them as
assignments of values to variables, which we denote by yj = p, to differentiate the vector y from the
solution vector x which possibly may have a different dimension and encoding. Normally we
suppose a y vector contains enough information to be transformed into a unique x, to which it
corresponds, but this assumption can be relaxed to allow more than one x to yield the same y.

Let Y(S) denote the collection of y vectors corresponding to the chosen set S of x vectors. In
addition to assignments of the form yj=p which define attributes, we allow each yj to receive the
value yj=,R, in order to generate subvectors that identify specific attribute combinations. Such a
value represents an attribute clash, as contrasted with a wild card for an element of a bit string, as
in the case of a "'~¢ value" in GAs. In the present setting, an attribute combination will be implictly
determined by the non--A- values of y.

The approach to generate vocabulary units will be to compare vectors y' and y" by an intersection

130 FRED GLOVER et al.

operator, lnt(y', y"), to yield a vector z = Int(y', y") by the rule: zj = y) if y)= y)', and z I = ~- if yj # y~.
By this definition we also obtain z~=~r if either Y)= 'k or y)' = ' k . lnt is associative, and the
intersection lnt(y: ye Y), for an arbitrary Y, yields a z in which zj=yj if all Yl have the same value
for y e Y, and zj =-A- otherwise.

Accompanying the intersection operator, we also define a relation of containment, by the
stipulation that y" contains y' if yj = , k for all j such that y~ # y~. Accompanying this relation, we
identify the enclosure of y' (relative to S) to be the set Y(S: y')= {ye Y(S): y contains y'}, and define
the enclosure value of y', enc_value(y'), to be the number of elements in this set. Finally, we refer
to the number of non-~r components of y' as the size of the vector, denoted size(y'). [If y~ Y(S),
the size of y is the same as its dimension.]

As a general tendency, with some exceptions, the greater size(y) to becomes, the smaller
enc_value(y') becomes. Thus for a given size s, we seek to identify vectors y' with size(y')>~s that
maximize enc_value(y'), and for a given enclosure value v to identify vectors y' with enc_value(y') >1 v
that maximize size(y'). Such vectors are included among those regarded to quality as vocaculary
units.

Similarly we include reference to weighted enclosure values, where each y ~ Y(S) is weighted by
a measure of attractiveness [such as the value c(x) of an associated solution x e S], to yield
enc_value(y') as a sum of the weights over Y(S: y'). Particular attribute values likewise may be
weighted to yield a weighted value for size(y'), equal to the sum of weights over non-~r components
of y'.

At a higher level, we seek vectors as vocabulary units that give rise to aggregate units called
phrases and sentences with certain properties of consistency and meaning, characterized as follows.
Each yj is allowed to receive one additinal value, yj = blank, which may be interpreted as an empty
space free to be filled by another value (in contrast to y~ = ~1", which may be interpreted as a space
occupied by two conflicting values). We begin with the collection of vectors created by the
intersection operator lnt, and replace the ~- value with blank values in these vectors. We then
define an extended intersection operator E_lnt, where z = E_lnt(y', y") is given by the rules defining
1nt if y) and y] are not blank. Otherwise z~ = y) if y~ = blank, and z~ = y~ if yj = blank. E_lnt likewise
is associative. The vector z = E_lnt(y: y ~ Y) yields z i= ~t" if any two y E Y have different non-blank
values y~, or if some y has yj = ~-. Otherwise z~ is the common yj value for all y with yj non-blank
(where z~ = blank if yj = blank for all y).

The y vectors created by E_Int are those we call phrases. A sentence is a phrase that has no blank
values. We call a phrase or sentence orammatical (logically consistent) if it has no "k values.
Grammatical sentences thus are y vectors lacking both blank values and ~r values, constructed
from attribute combinations (subvectors) derived from the original elements of Y(S). Finally we
call a grammatical sentence y meaningful if it corresponds to, or maps into, a feasible solution x.
(Sentences that are not grammatical do not have a form that permits them to be translated into
an x vector, and hence cannot be meaningful.)

The elements of Y(S) are all meaningful sentences, assuming they are obtained from feasible x
vectors, and the goal is to find other meaningful sentences obtained from grammatical phrases and
sentences constructed as indicated. More precisely, we are interested in generating meaningful
sentences (hence feasible solutions) that are not limited to those that can be obtained from Y(S),
but that also can be obtained by one of the following strategies:

(S1) Translate a grammatical phrase into a sentence by filling in the blanks (by the
use of neighborhoods that incorporate constructive moves);

($2) Identify some set of existing meaningful sentences (e.g. derived from current
feasible x vectors not in S), and identify one or more phrases, generated by E_lnt
over S, that lie in each of these sentences. Then, by a succession of moves from
neighborhoods that preserve feasibility, transform each of these sentences into
new meaningful sentences that retain as much of the identified phrases as possible;

($3) Identify portions of existing meaningful sentences that are contained in
grammatical phrases, and transform these sentences into new meaningful
sentences (using feasibility-preserving neighborhoods) by seeking to incorporated
additional components of the indicated phrases.

Genetic algorithms and tabu search 131

The foregoing strategies can be implemented by incorporating standard tabu search incentive
and penalty mechanisms for choosing moves. We assume in these strategies that neighborhood
operations on x vectors are directly translated into associated changes in y vectors. In the case of
(S1) there is no assurance that a meaningful sentence can be achieved unless the initial phrase itself
is meaningful (i.e. is contained in at least one meaningful sentence) and unless the constructive
process is capable of generating an appropriate completion. Also, in ($3) more than one grammatical
phrase can contain a given path (subvector) of a meaningful sentence, and it may be appropriate
to allow the targeted phrase to change according to possibilities consistent with available moves.

Specific instances of vocabulary building processes can profit from special algorithms for linking
vocabulary units into sentences that are both meaningful and attractive, in the sense of creating
good c(x) values. An example of this is provided by vocabulary building approaches for the traveling
salesman problem described in [19], where vocabulary units can be transformed into tours
by specialized shortest path procedures. A number of combinatorial optimization problems are
implicit in generating good sentences by these approaches, and the derivation of effective methods
for handing these problems in various settings, as in the case of the traveling salesman problem,
may provide a valuable contribution to search procedures generally.

9. GA COMPARISONS AND FOUNDATIONS FOR HYBRIDS

We have already intimated several ways that ideas from tabu search share a kindred philosophy
with certain ideas from genetic algorithms. We expand these observations with comments about
fundamental mechanisms, and their embodiment in strategies previously described, that give
additional possibilities to establish useful links between the methods.

Starting at a very basic level, the alleles of genetic algorithms, which correspond to values of
variables in a binary solution vector, may be compared at a first level of approximation to attributes
in tabu search. Introducing memory in GAs to track the history of alleles over subpopulations
therefore would provide an immediate and natural way to create a hybrid with TS. Miihlenbein
[51] has similarly observed the relevance of applying TS memory structures in GAs.

Some important differences between alleles and attributes are worth noting, however.
Differentiation of attributes into from and to components, each having different memory functions,
does not have a counterpart in genetic algorithms. This results because of the GA tradition of
operating without reference to neighborhood structures and associated moves (although, strictly
speaking, combination by crossover can be viewed as a special type of move). Another distinction
derives from differences in the use of coding conventions. Although an attribute change in tabu
search, from a state to its complement, can be encoded in a zero-one variable, such a variable
does not necessarily provide a convenient or useful representation for the transformations provided
by moves. We have already noted limitations of binary representations in Sections 3 and 4. Tabu
restrictions and aspiration criteria handle the binary aspects of complementarity without requiring
explicit reference to a zero-one x vector or two-valued functions. Adopting a similar orientation
(relative to the special class of moves embodied in crossover) might yield benefits for genetic
algorithms in dealing with issues of genetic representation, which currently pose difficult
questions [73"].

Another contrast between genetic algorithms and tabu search that deserves further emphasis
occurs in the treatment of context, i.e. in the consideration given to structure inherent in different
problem classes. For tabu search, context is fundamental, embodied in the interplay of attribute
definitions and the determination of move neighborhoods, and in the choice of conditions to define
tabu restrictions. Context is also implicit in the identification of amended evaluations created in
association with longer term memory.

At the opposite end of the spectrum, GA methods have customarily stressed the freedom of their
rules from the influence of context. Crossover, by this view, is a context neutral operation, which
assumes no reliance on conditions that solutions must obey in a particular problem setting, just
as genes make no reference to the environment as they follow their instructions for recombination.
As noted in Section 3, however, practical application generally renders this an inconvenient
assumption, making solutions of interest difficult to find. Consequently, a good deal of effort in
GA implementation is devoted to developing "special crossover" operations that compensate for
the difficulties created by context, effectively reintroducing it on a case by case basis.

132 FRED GLOVER et al.

The chief method by which modern genetic algorithms handle structure is by relegating its
treatment to some other method, as in the case of PGAs and genetic local search. Genetic algorithms
of this type combine solutions by their parent-children processes at one level, and then a descent
method takes over to operate on the resulting solutions to produce new solutions. These new
solutions in turn are submitted to be recombined by the GA processes. Viewed from a slightly
different perspective, GAs that rely on other processes to exploit structure already are hybrid
methods, and can just as well make use of tabu search designs for such exploitation, hence giving
a natural basis for marrying GA and TS procedures. But genetic algorithms and tabu search also
can be joined in a more fundamental way.

Specifically, tabu search strategies for intensification and diversification are based on the question:
how can information be extracted from a set of good solutions to help uncover additional (and
better) solutions? From one point of view, GAs provide an approach for answering this question,
consisting of putting solutions together and interchanging components (in some loosely defined
sense, if traditional crossover is not strictly enforced). Tabu search, by contrast, seeks an answer
by utilizing processes that specifically focus on problem structure and that incorporate it as fully
as possible into their design.

Augmented by historical information, properties of solution neighborhoods are used in tabu
search as a basis for applying penalties and incentives to induce attributes of good solutions to
become incorporated into current solutions. Consequently, although it may be meaningless to
interchange or otherwise incorporate a set of attributes from one solution into another in a wholesale
fashion, as attempted in recombination operations, a stepwise approach to this goal through the
use of neighborhood structures is entirely practicable. This concept is transformed into explicit
formulations for achieving meaningful combinations of solutions by the derivation of structured
combinations, as described in Section 5, and by the introduction of path relinking, as described in
Section 7. Instead of being compelled to create new types of crossover to remove deficiencies of
standard operators upon being confronted by changing contexts, this approach addressed context
directly and makes it an essential part of the design for generating combinations. Proposals
advanced by Miihlenbein [-16] characterize a segment of the GA field that is increasingly compatible
to adopting such an approach, and this could provide a basis for a signficant hybrid combination
of genetic algorithm and tabu search ideas.

Finally, we observe that the realm of attribute creation, making use of vocabulary building
processes as described in Section 8, offers the possibility for an analogous genetic interpretation.
Vocabulary units may suggestively be given the alternate name of "genetic material". By this means,
such units may be viewed as substrings of genes, created by a process that selectively extracts them
to establish a substring pool. (This suggests a natural connection with schemata, although as
previously noted, the components of an attribute vector in vocabulary building are somewhat
different than the components of schemata.) As elements are accumulated from different sources
within such a pool, and progressively reintegrated to form phrases and sentences by vacabulary
processes, a genetic parallel may be conceived of incorporating substring templates to guide
construction of new genes.

Perhaps the use of such evolving substring pools, as opposed to the exclusive focus on parents
and children which supposedly allow substrings to evolve indirectly, would prove useful in genetic
algorithms. A step in this direction has been initiated with the "messy" genetic algorithms of
Goldberg et al. [74]. But there are limiting factors, since the TS processes for creating vocabulary
are based on conscious and strategic reconstruction, and hence from this standpoint do not much
resemble genetic processes. To preserve the genetic metaphor, one may imagine relying on intelligent
enzymes, operating as special subroutines to cut out appropriate components and then recombine
them according to systematic principles. If this is not stretching analogy too far, the outcome may
qualify as an interesting hybrid of the GA and TS approaches.

The fundamental concept of attribute based memory in tabu search, whether applied to attributes
that are created or that are determined by prior analysis, yields a means of controlling search by
rules that take advantage of interdependencies among subsets of elements. This theme of exploiting
memory in relation to structure, which is characteristic of organisms that respond to their
surroundings at higher levels than manifested in simple genetic recombination, provides a promising
avenue for integrating tabu search and genetic algorithms. The relevance of this possibility has also
been observed by Miihlenbein [51].

Genetic algorithms and tabu search 133

The foregoing opportunities for harmonizing what may at first appear to be somewhat disparate
approaches, and to take advantage of features that may be mutually reinforcing, offer stimulating
possibilities for future research. If the GA emphasis on the value of "combination" as a basis for
improvement is valid, then we may look forward to new advances by linking the ideas of these
two fields.

Acknowledgement--This research is supported in part by the Joint Air Force Office of Scientific Research and Office of
Naval Research Contract No. F49620-90-C-0033, at the University of Colorado.

R E F E R E N C E S

1. F. Gl~ ver` Future paths f~r integer pr~gramming and links t~ arti~cial intellig~nce. C~mputers ~ps Res. ~ 5 3 3-549 (~ 986).
2. F. Gtover, Tabu search--part 1. ORS,4 Jl Comput. 1, 190-206.
3. P. Hansen, The steepest ascent mildest descent heuristic for combinatorial programming. Numerical Methods in

Combinatorial Optimization, Capri, Italy (1986).
4. F. Glover and M. Laguna, Tabu search. In Modern Heuristic Techniques for CombinatorialProblems (Edited by C. Reeves).

Blackwell Scientific, Oxford (1993).
5. F. Glover and C. McMillan, The general employee scheduling problem: an integration of management science and

artificial intelligence. Computers Ops Res. 15, 563-593 (1986).
6. M. Widmer and A. Hertz, A new method for the flow sequendng problem. Eur. J. Ops Res. 41, 186-193 (1989).
7. E. Taillard, Some efficient heuristic methods for the flowshop sequencing problem. Eur. J. Ops Res. 47, 65-74 (1990)
8. M. Widmer, Job shop scheduling with tooling constraints: a tabu search approach. J. Opl Res. Soc. 24, 75-82 (1991).
9. J. Bovet, C. Constantin and D. de Werra, A convoy scheduling problems. Discrete Appl. Math. (in press).

10. M. J. Laguna, W. Barnes and F. Glover, Tabu search methods for a single machine scheduling problem. J. lntell.
Manufac. 2, 63-74 (1991).

11. M. Laguna and J. L. Gonzalez-Verlarde, A search heuristic for just-in-time scheduling in parallel machines'. J. Intell.
Manufac. 2, 253-260 (1991).

12. J. W. Barnes and M, Laguna, Solving the multiple-machine weighted flow time problem using tabu search. IIE Trans.
25, 121-130 (1993).

13. R. L. Daniels and J. B. Mazzola, A tabu search heuristic for the flexible-resource flow shop scheduling problem. Ann.
Ops Res. 41, 207-230 (1993).

14. M. DelrAmico and M. Trubian, Applying tabu search to the job-shop scheduling problem. Ann. Ops Res. 41, 231-252
(1993).

15. M. Laguna and F. Glover, Integrating target analysis and tabu search for improved scheduling systems. Expert Systems
Applic. 6, 287-298 (1993).

16. E. L. Mooney and R. L. Rardin, Tabu search for a class of scheduling problems. Ann. Ops Res. 41, 253-278 (1993).
17. D. L. Woodruff and M. L. Spearman, Sequencing and batching for two classes of jobs with deadlines and setup times.

Prod. Ops Mangmnt 1, 87-102 (1992).
18. M. Malek, M. Guruswamy, M. Pandya and H. Owens, Serial and parallel simulated annealing and tabu search algorithms

for the travelling salesman problem. Ann. Ops Res. 21, 59-84 (1989).
19. F. Glover, Ejection chains, reference structures, and alternating path methods for the traveling salesman problem.

Graduate School of Business and Administration, University of Colorado at Boulder (1992).
20. M. Gendreau, A. Hertz and G. Laporte, A tabu search heuristic for the vehicle routing problem. Mangmnt Sci. (in press).
21. I. H. Osman, Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem. Ann. Ops

Res. 41, 421-452 (1993).
22. F. Semet and E. Taillard, Solving real-life vehicle routing problems efficiently using taboo search. Ann. Ops Res. 41,

469-488 (1993).
23. J. Skorin-Kapov, Tabu search applied to the quadratic assignment problem. ORSA J. Comp. 2, 33-45 (1990).
24. E. Taillard, Taboo search for the quadratic assignment problem. Parallel Comput. 17, 443-455 (1991).
25. J. Chakrapani and J. Skorin-Kapov, Massively parallel tabu search for the quadratic assignment problem. Ann. Ops

Res. 41, 327-342 (1993).
26. J. A. Bland and G. P. Dawson, Tabu search and design optimization. Computer-Aided Des. 23, 195-202 (1991).
27. S. Oliveira and G. Stroud, A parallel version of tabu search and the path assignment problem. Heuristics Combinat.

Optimiz. 4, 1-24 (1989).
28. C. A. Anderson, K. F. Jones, M. Parker and J. Ryan, Path assignment for call routing: an application of tabu search.

Ann. Ops Res. 41, 301-312 (1993).
29. F. Glover and M. Laguna, Bandwidth packing: a tabu search approach. Mangmnt ScL 39, 492-500 (1993).
30. F. Glover, C. McMillan and B. Novick, Interactive decision software and computer graphics for architectual and space

planning. Ann. Ops. Res. 5, 557-573 (1985).
31. P. Hansen, B. Jaumard and Da Silva, Average linkage divisive hierarchical clustering. J. Classif. (in press).
32. U. Dorndorf and E. Pesch, Fast clustering algorithms. ORSA J. Comput. 6, 141-153 (1994).
33. A. Hertz, D. de Werra, Using tabu search techniques for graph coloring. Computing 29, 345-351 (1987).
34. A. Hertz, B. Jaumard and M. Poggi di Aragao, Topology of local optima for the K-coloring problem. Discrete Appl.

Math. 49, 257-280 (1994).
35. C. Friden, A. Hertz and D. de Werra, Stabulus: a technique for finding stable sets in large graphs with tabu search.

Computing 42, 35-44 (1989).
36. M. Gendreau, P. Soriano and L. Salvail, Solving the maximum clique problem using a tabu search approach. Ann. Ops

Res. 41, 385-404 (1993).
37. P. Hansen and B. Jaumard, Algorithms for the maximum satisfiability problem. Computing 44, 279-303 (1990).
38. B. Jaumard, P. Hansen and M. Poggi di Aragao, Column generation methods for probabilistic logic. ORSA J. Comput.

3, 135-148 (1991).

CAOR 22: l-J

134 FReo GLOVeR et al.

39. P. Hansen, B. Jaumard and M. Poggi di Aragao, Mixed integer column generation algorithms and the probabilistic
maximum satisfiability problem. Prec. 2nd lnteoer Programming and Combinatorial Optimization Conf. Carnegie Mellon
(1992).

40. D. de Werra and A. Hertz, Tabu search technique: a tutorial and an applications to neural networks. OR Spectrum 11,
131-141 (1989).

41. D. Beyer and R. Ogier, Tabu learning: a neural network search method for solving nonconvex optimization problems.
Prec. Int. Joint Conf. Neural Networks. IEEE and INNS, Singapore (1991).

42. F. Dammeyer and S. Voss, Dynamic tabu list management using the reverse elimination method. Ann. Ops Res. 41,
31-46 (1993).

43. J. P. Kelly, B. L. Golden and A. A. Assad, Large-scale controlled rounding using tabu search with strategic oscillation.
Ann. Ops Res. 41, 69-84 (1993).

44. M. Sun and P. G. McKeown, Tabu search applied to the general fixed charge problem. Ann. Ops Res. 41,405-420 (1993).
45. F. Glover, E. Taillard and D. de Werra, A user's guide to tabu search. Ann. Ops Res. 41, 3-28 (1993).
46. D. E• Go•dberg• Genetic Alg•rithms in Sarach• •ptimizati•n• and Machine Learuing. Addison••es•ey• Rcading. MA (• 989).
47. L. Davis (Editor), Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York (1991).
48. D. Ackley, A Connectionist Model for Genetic Hillclimbino. Kluwer Academic, London (1987).
49. Y. Davidor, An intuitive introduction to genetic algorithms as adaptive optimizing procedures. Technical Report CS90-07,

The Weizmann Institute of Science (1990).
50. E. H. L. Aarts, A. E. Eiben and K. M. van Hec, A general theory of genetic algorithms. Computing Science Notes, 89/8.

Eidenhoven University of Technology (1989).
51. H. Miihlenbein, Parallel genetic algorithms in combinatorial optimization. Computer Science and Operations Research

(Edited by Osman Balci), Pergamon Press, Oxford (in press).
52. K. A. DeJong, Genetic algorithms are NOT function optimizers. Computer Science Department, George Mason

University (1992).
53. U. Dorndoff and E. Pesch, Evolution based learning in a job shop scheduling environment. Technical Report, University

of Limberg, The Netherlands (1992).
54. L. Davis, Job shop scheduling with genetic algorithms. Conf. Genetic Algorithms, Carnegie Mellon University (1985).
55. H. Miihlenbein, M. Gorges-Schleuter and O. Krgmer, New solutions to the mapping problem of parallel systems--the

evolution approach. Parallel Comput. 6, 269-279 (1987).
56. D. Whitley, Starkweather and Fuquay, Scheduling problems and traveling salesmen: the genetic edge recombination

operator. ICGA, Morgan Kaufman (1989).
57. J. J. Grefenstette, R. Gopal, B. Rosmaita and D. Van Gucht, Genetic algorithms for the traveling salesman problem.

Proc. 1st Int. Conf. Genetic Aloorithm.~ and Their Applications, pp. 160-168. Lawrence Erlabum, Hillsdale, NJ (1985).
58. H. Miihlenbein, M. Gorges-Schleut¢ and O. KrLmer, Evolution algorithms in combinatorial optimization. Parallel

Comput. 7, 65-88 (1988).
59. D. J. Montana and L. Davis, Training feedforward neural networks using genetic algorithms. Proc. 1989 Int. Joint

Conf. Artificial lngellioence, San Mateo, CA, Morgan Kaufmann (1989).
60. C. L. Huntley and D. E. Brown, Parallel genetic algorithms with local search. The Institute for Parallel Computation

and The Department of Systems Engineering.
61. N. L. J. Uider, E. Pesch, P. J. M. van Laarhoven, H. J. Bander and E. H. L. Aarts, Genetic local search algorithm for

the traveling salesman problem. Parallel Problem Soivin 0 from Nature (Edited by R. Maenner and H. P. Schwefel),
Lectures in Computer Science, Vol. 496, pp. 109-116. Springer, Berlin.

62. D. Whitley, K. Mathias and P. Fitzhorn, Delta coding: an iterative search strategy for genetic algorithms. Proc. 1991
Int. Conf. Genetic Aloorithms (1991).

63. F. Glover, Heuristics for integer programming using surrogate constraints. Decision Sci. 8, 156-166 (1977).
64. J.H. Holland, Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor, MI (1975).
65. F. Glover, A bound escalation method for the solution of integer linear programs. Cahiers Rech. Op. 6,131-168 (1964).
66. F. Glover, Integer programming over a finite additive group. SIAM JI Control 7, 213-231 (1969).
67. F. Glover, Cut search methods in integer programming. Math. Progr. 3, 86-100 (1972).
68. T. B/ick, F. Hoffmeister and H. Schwefel, A survey of evolution strategies. Proc. 4th Int. Conf. Genetic Algorithms,

pp. 2-9. Morgan Kaufmann, San Mateo, CA (1991).
69. L. J. Eschelman and J. D. Schaffer, Real-coded genetic algorithms and interval-schemata. Technical Report, Phillips

Laboratories (1992).
70. Z. Michalewicz, G. A. Vignaux and M. Hobbs, A non-standard genetic algorithm for the nonlinear transportation

problem. ORSA Jl on Computing 3, 307-316 (1991).
71. F. Glover, Tabu search for nonlinear and parametric optimization (with links to genetic algorithms). Discrete Appl.

Math. 49, 231-256 (1994).
72. D. E. Goldberg, B. Korb and K. Deb, Messy genetic algorithms: motivation, analysis and first results. Complex Systems

3, 493-530 (1989).
73. G. Liepins and M. D. Vose, Representational issues in genetic optimization. J. Exp. Theoret. Artific. lnteU. 2, 101-105

(1990).
74. U. Faigle and W. Kern, Some convergence results for probabilistic tabu search. ORSA JI Comput. 4, 32-37 (1992).
75. J. P. Kelly, M. Laguna and F. Glover, A study of diversification strategies for the quadratic assignment problem.

Computers Ops Res. 21, (1994).
76. M. Laguna, J. P. Kelly, J. L. Gonzalez-Verlarde and F. Giover, Tabu search for the multilevel generalized assignment

problem. Graduate School of Business and Administration, Eur. J. Ops Res. (in press).
77. C. Reeves, Improving the efficiency of tabu search for machine sequencing problems. J. Ops Res. Soc. (in press).
78. G. Syswerda, Uniform crossover in genetic algorithms. (Edited by J. David Schaffer), Proc. 3rd Int. Conf. Genetic

Algorithms, San Mateo, CA, Morgan Kaufamann Publishers (1989).
79. D. Whitley, GENITOR: a different genetic algorithm. Proc. Rocky Mountain Conf. Artificial Intelligence, Denver,

Colorado (1988).
80. D. L. Woodruff and E. Zemel, Hashing vectors for tabu search. Ann. Ops Res. 41, 123-138 (1993).

