
 
 

Chapter 19 

ADAPTIVE MEMORY PROJECTION METHODS 
FOR INTEGER PROGRAMMING 

Fred Glover 
Leeds School of Business, University of Colorado, Boulder, CO 80309-0419, 
fred.glover@colorado.edu 

Abstract: Projection methods, which hold selected variables fixed while manipulating 
others, have a particularly useful role in metaheuristic procedures, especially in 
connection with large scale optimization and parallelization approaches. This 
role is enriched by adaptive memory processes of tabu search, which provide a 
collection of easily stated strategies to uncover improved solutions during the 
course of the search. Within the context of pure and mixed integer 
programming, we show that intensification and diversification processes for 
adaptive memory projection can be supported in several ways, including the 
introduction of pseudo-cut inequalities that additionally focus the search. We 
describe how the resulting procedures can be embedded in constructive multi-
start methods as well as in progressive improvement methods, and how they 
can benefit by the application of target analysis.  

Keywords: Adaptive Memory, Restricted Search Space, Cutting Planes, Tabu Search 

1. Introduction 
An old and recurring idea in optimization is to generate solutions by 

iteratively holding selected subsets of variables fixed at particular values 
while varying the values of other variables. The simplex method of linear 
programming is a familiar special case of this idea, where only a single 
independent variable, designated nonbasic, is allowed to vary at a time, to 
identify moves between adjacent vertices of the feasible solution polyhedron. 
The idea also surfaces in the area of cutting plane methods for integer 
programming by the strategy called lifting, which assigns the role of variables 



2 

 
to cutting plane coefficients. A common form of lifting approach, for 
example, successively identifies values to assign to coefficients that are free, 
given the values presently assigned to fixed coefficients, until a complete 
cutting plane is generated.  More generally, the underlying concept resides at 
the heart of projection mappings, which are pervasively used in nonlinear and 
mixed integer programming. 

The realm of metaheuristics affords an opportunity to apply this idea in 
new ways, invoking an enriched set of strategic considerations. Confronted 
with complex optimization problems where exact methods often fail, the 
issues of iteratively choosing fixed and free variables, and of controlling the 
processes for assigning values to variables that are free, become challenging 
on levels not encountered in more classical settings.   

This paper adopts the theme of basing such a solution approach on the 
principles of tabu search, to create an adaptive memory projection (AMP) 
method for pure and mixed integer programming. 

Three main concepts of tabu search provide the starting point for adaptive 
memory projection methods. 
(1) strongly determined and consistent variables 
(2) intensification/diversification tradeoffs 
(3) persistent attractiveness 

While the following discussion will be framed in terms of assigning 
values to variables, the concepts also apply directly to choosing moves in 
neighborhood spaces.  In this case, “values assigned” may be considered to be 
the same as attributes imparted to solutions as a consequence of selecting a 
move. The basic approach can be viewed from the perspective of 
decomposition, since each projection “breaks apart” the problem by 
partitioning the variables into the fixed and free classes. 

1.1 Strongly Determined and Consistent Variables 
The notion of strongly determined and consistent variables (Glover, 1977) 

is to keep track of variables that receive particular value assignments (or 
ranges of assignments) within some interval of frequency over high quality 
solutions.  The concept also applies to keeping track of such assignments in 
solutions where changing these assignments would significantly modify the 
structure or quality of the solutions.1 To identify and take advantage of such 
variables involves: 

 
1  We emphasize that in the metaheuristic context, a solution is defined relative to the 

neighborhoods employed. Infeasible solutions produced from neighborhoods that admit 
such alternatives are as relevant as any others. This is notably true in applications where 
solutions are produced by strategic oscillation (which may purposely construct 
infeasibilities) and by solving surrogate or Lagrangean or LP relaxations. 



Adaptive Memory Projection Methods for Integer Programming 3

 
(a) Segregating sets of good solutions over which the variables and their 

assignments are identified (including the use of clustering to achieve this 
segregation);  

(b) Applying measures of frequency to determine which variables quality as 
consistent (Such measures underlie the type of frequency memory used in 
intensification strategies in tabu search, noting that the meaning of 
“consistency” in the present case is determined by reference to a subset of 
good solutions.) 

(c) Applying criteria of change to determine which variables qualify as 
strongly determined. (This relates to the notion of influence in tabu search, 
which has an important role in diversification strategies.) 
The variables identified by the foregoing mechanisms are exploited by 

constraining them to receive their preferred values (or lie in their preferred 
ranges), and then searching more intensively over the remaining variables. As 
expressed in Glover (1977), the key premises underlying the approach are: 
• such variables are likely to receive their preferred values in other high 

quality solutions, including optimal and near-optimal solutions; 
• constraining the variables to their preferred values creates a 

"combinatorial implosion" effect that accelerates the solution of the 
remaining problem; 

• once selected variables are constrained in this manner, then other variables 
may also become strongly determined or consistent, allowing them to be 
exploited similarly. 

1.2 Intensification/Diversification Tradeoffs 
Although strongly determined and consistent variables were initially 

proposed for application in an intensification context, the tabu search 
emphasis on balancing intensification with diversification suggests the 
possibility of augmenting the use of these variables by periodically imposing 
restrictions or incentives to drive the solution into new regions.  A 
coordinated treatment of such considerations is crucial for an adaptive 
memory projection method, and we subsequently discuss key elements for 
doing this in detail. It is to be noted that the idea of generating solutions by 
iteratively holding subsets of variables fixed at particular values while 
varying the values of other variables is also known in the constraint 
programming community as “Large Neighborhood Search” (LNS), whose 
terminology was introduced in Shaw (1998). Still more recently, the theme of 
identifying and exploiting variables by the criteria of being strongly 
determined and/or consistent, although again making use of different 
terminology, appears as a fundamental component of the framework proposed 
in Ahuja et al. (2002) for large scale neighborhood search, and also appears in 



4 

 
the innovative metaheuristic design proposed by Danna et al. (2003) for 
mixed integer programming problems. 

1.3 Persistent Attractiveness 
The notion of persistent attractiveness (e.g., Glover, 2000) underscores the 

utility of identifying assignments of values to variables that receive high 
evaluations, but which are not executed by a search method (as where, for 
example, other assignments may receive still higher evaluations). 
Assignments that often receive high evaluations are persistently attractive, 
and deserve to be the focus of strategies that impose such assignments just as 
if the variables qualified as “consistent” in the sense identified earlier. It is 
also relevant to keep track of variables that are conditionally attractive, i.e., 
that may rarely receive high evaluations, but that receive very high 
evaluations at critical points. These represent a form of strongly determined 
variables, because the fact that they rapidly became less attractive is a sign 
that, had they been given their high-evaluation assignments, they would have 
been disposed to change the structure of the solution in a significant way. 

2. Fundamentals of an Adaptive Memory Projection 
Method 

Adaptive Memory Projection Methods have several versions. We begin by 
examining a version that is easy to implement, and that employs the proposal 
of coordinating TS with the application of exact optimization procedures over 
sub-problems that are kept small enough that such problems can be solved 
efficiently by these procedures. An outline of the AMP method is as follows. 

2.1 Overview of an Adaptive Memory Projection 
Approach 

Step1. (Initiation) Generate a starting solution. (Alternatives for doing this 
are discussed later.) 

Step2.  (Search Phase) Apply a heuristic search for some limited number 
of iterations.  Keep track of the variables whose values are changed, and also 
keep track of variables (and their assignments) that qualify as persistently and 
conditionally attractive. (Changes in assignments may be accomplished by 
multiple types of moves.)   



Adaptive Memory Projection Methods for Integer Programming 5

 
Step3. (Referent-Optimization Phase)2 Choose a subset of the variables 

recorded in Step 2 that were changed or that qualified as persistently or 
conditionally attractive. Apply an exact method to solve the referent-problem 
that allows these variables to be free, while remaining problem variables are 
held fixed at the values they received in the best solution found by the search 
in Step 2. 

Step4.  (Re-launch the Search) Using recency and frequency memory, and 
imposing associated restrictions (as subsequently identified), perform a new 
heuristic search starting from the solution obtained in Step 3.  

Step5. (Diversification and Renewed Solution Pass) Drive the search into 
a new region, using longer term memory and standard TS diversification 
processes, and repeat Steps 2-4. 

We amplify the steps of the preceding outline by several key observations. 
(1) A restricted form of the heuristic search of Step 2 can be applied by 

keeping the number of iterations small enough that all variables recorded 
(changed or identified as attractive) can be selected to be free in Step 3.  If 
the heuristic search is performed for a larger number of iterations, then a 
screening step must be performed to select a preferred subset of variables 
to be treated as free. (The operation of holding certain variables fixed in 
Step 3 can of course be exploited by temporarily “reducing” the problem, 
i.e., by adjusting the constraint requirements and dropping the fixed 
variables from consideration.) 

(2) All variables changed in Step 2 are automatically included among 
candidates to become free variables in the next referent-optimization of  
Step 3; i.e., if a variable changes and then changes again to return to its 
original value, it still qualifies to be selected as a free variable of the next 
referent-optimization. 

(3) An advanced and intensive heuristic search may be performed to carry out 
Step 3 in place of an exact procedure. In such a process, and in successive 
applications of Step 3, such an approach may keep a longer term 
frequency memory )( jf that records how often each variable jx  is a free 
variable for the referent-optimization step.  Then the inclusion of jx as a 
free variable can be penalized according to the size of )( jf  (e.g., as 
compared to the average )( jf  value), to achieve greater diversification. 

(4) Each new application of the improving heuristic at Step 4, after running 
the exact method at Step 3, generates new evaluations for assigning the 
variables particular values.  Variables that receive the highest evaluations 
to be changed go on the list of variables to be considered as free variables 

 
2 This terminology comes from Glover and Laguna (1997), where this type of approach is 

viewed within a broader framework called “referent-domain optimization.” See also Mautor 
and Michelon (1997, 2001). 



6 

 
on the next execution of the exact method. These variables include both 
those that were selected to be changed and those that were not selected to 
be changed (but which nevertheless were strong candidates to be selected, 
e.g., that were strongly or persistently attractive).    
The policy of discouraging the selection of variables that were free on the 
most recent preceding referent-optimization should also affect the 
evaluations on the current heuristic solution step.  Thus, if a variable is 
tabu to change, its evaluation is considered to be unattractive, unless the 
associated move satisfies an aspiration criterion permitting its inclusion on 
the list of candidates to become free variables. 

(5) A diversification effect can be introduced within Step 3 by including one 
or more pseudo-cuts that assure a solution will be found that is different 
from the one found by the preceding heuristic solution effort.3   
To illustrate, consider just two solutions, the one that initiates the search 
of Step 2 (or Step 4) and the one that is the best solution found during this 
step.  (Subsequent comments address the situation where these solutions 
may be the same.) Let pxx ,...,1  be the variables whose values were 
increased, and let qyy ,...,1 be the variables whose values were decreased, 
in going from the initial solution to the best solution. Also, let ''

1,..., pxx  
and ''

1,..., qyy  be the values of these variables in the initial solution.   
Let Increase denote the amount by which the x  variables increased and 
let Decrease denote the amount by which the y variables decreased. (Both 
of these are positive numbers.) For the values given to x  and y  in the best 
solution found during the search, the variables therefore satisfied: 

increasexxxxxx pp =−++−+− )()()( ''
22

'
11 L  

and 

Decreaseyyyyyy qq =−++−+− )()()( '
2

'
21

'
1 L  

The pseudo-cut that compels these variables to produce a change at least 
k  less than the sum of Increase and Decrease is: 

 
3 Pseudo-cuts (inequalities that may not be satisfied by optimal solutions) are also used within 

tabu search methods for mixed integer programming as a basis for generating moves. The 
tabu search processes that allow the foundations of previous moves to be selectively 
discarded, and that accordingly allow invalid or unproductive inequalities to be removed, 
prove especially useful in this context. (See the references cited in Chapter 6 of Glover and 
Laguna, 1997, particularly in connection with tabu branching.) 



Adaptive Memory Projection Methods for Integer Programming 7

 

kDecreaseIncrease

yyyyxxxx qqpp

−+

≤−++−+−++− )()()()( '
1

'
1

''
11 LL

           (A) 

A possible value for k  can be 2/)( DecreaseIncrease+ , for example, 
although k  should normally be restricted from being very large.) In the 0-
1 context, pIncrease = and qDecrease = . 
This same idea can be applied to include additional variables in (A), by 
allowing variables whose values do not change to be classified either as 
producing a 0 increase or a 0 decrease. Assigning a “no-change” variable 
to the Increase set (treating it as an x variable) tends to strengthen (A), 
while assigning it to the Decrease set (treating it as a y  variable) tends to 
weaken (A). In either case, the expanded inequality is binding so long as 
k   is positive.4  
The pseudo-cut (A) can also be used in additional strategic ways. 
Specifically, even without first applying a search to change the initial 
solution, we can hypothesize that a selected subset of values may increase 
(or stay the same) and another may decrease (or stay the same), to identify 
the x and y variables. Then, an inequality for guiding the search can be 
generated by postulating values for Increase and Decrease, and choosing 
an associated value for k . More simply, we can directly choose a value 

kDecreaseIncreasek −+=*  that represents the constant term (right 
hand side) of (A). An extreme example of this occurs for the case of 0-1 
variables by specifying the x  variables to be those for which 0' =jx  
and the y  variables to be those for which 1' =jy  . Then the inequality for 
a chosen value of *k  becomes the same as the “local branching” 
inequality of Fischetti and Lodi (2002).  The AMP framework that 
includes (A) therefore offers a set of strategies that subsume the local 
branching scheme, and suggests the merit of integrating adaptive memory 
projection with local branching ideas.5 

(6) In the situation where the heuristic search of Step 2 (or Step 4) does not 
identify a solution that is better than the starting solution for this step, the 
following approach can be used to introduce one or more pseudo-cuts in 
Step 3 to achieve a diversification effect. This type of approach is useful 
as well for the case where the starting and best solutions found in Step 3 
are the same, and applies particularly to 0-1 problems.   

 
4 The use of weakened versions of (A) provide interesting possibilities for making the search 

more flexible. 
5  A more general approach that goes beyond local branching, and that likewise invites 

integration with adaptive memory projection, is provided by Surrogate Branching, as 
described in Glover, Fischetti and Lodi (2003). 



8 

 
Redefine pxx ,...,1  to be variables equal to their lower bounds (0), and 

qyy ,...,1  to be variables at their upper bounds (1) in the starting solution, 
where we now restrict consideration to those variables that did not change 
their values, i.e., whose values are the same in the starting solution and in 
the best solution obtained. (Hence, if the best solution obtained is no 
different from the starting solution, all variables are candidates to be 
considered.) We further restrict attention to variables that are included 
among the free variables for the next referent-optimization iteration. (For 
example, these can consist of variables that looked attractive to change at 
some point, although they were not changed. Or they could have been 
changed but then were changed back.)  
Then choose small positive integer values of Increase and Decrease 
(where pIncrease <  and qDecrease < ) and impose one or both of the 
pseudo-cuts  

Increasexxx p ≥+++ L21                                                       (B1) 

Decreaseyyy q ≥−++−+− )1()1()1( 21 L                            (B2) 

An alternative is to impose the pseudo-cut inequality 

DecreaseIncrease

yyyxxx qp

+

≥−++−+−++++ )1()1()1( 2121 LL
                                                                     

(B3) 

The upper bound of 1 in these inequalities can be replaced by a more 
general upper bound value jU applicable to the associated variable.   
We can expand the range of variables included in the foregoing 
inequalities by incorporating those whose values change, analogous to the 
previously indicated expansion of (A). We can similarly use these 
inequalities in additional strategies, by allowing alternative interpretations 
of the x and y variables. 
These same ideas can also be used to assure that new solutions generated 
in Step 3 are driven away from other solutions previously found, not just 
those of the immediately preceding execution of Step 2 (or 4).6 

 
6 We add a brief comment to amplify on the use of “persistently attractive” 

variables in the situation where Step 2 (or Step 4) fails to find an improved solution.  
In this case, free variables will be chosen from among those that had attractive 



Adaptive Memory Projection Methods for Integer Programming 9

 
(7) To apply Step 4 by re-launching the search, a natural strategy is to apply 

tabu restrictions to insure that at least one of the variables whose value is 
changed on any of the first several moves of the search must come from 
outside the set of variables that were free in the referent-optimization 
phase of Step 3.  In other words, all free variables from this immediately 
preceding phase are treated as "tabu attributes" whose tenure lasts for a 
specified number of iterations.  (This tenure may be as small as 2-4 
iterations, or may be somewhat larger, e.g., 8 – 10 iterations, in a more 
strongly diversifying approach.  Periodic shifts between tenure sizes are 
relevant, as in an adaptive tenure design.) A move is designated tabu if all 
of the variables it changes are tabu.  A stronger tabu restriction can be 
imposed for the first few iterations (e.g., 1 to 3 iterations) by designating a 
move to be tabu if any of the variables it changes are tabu. 

(8) For 0-1 mixed integer programming problems, a strategy to establish 
greater diversification by Step 4 occurs by using "diversity thresholds." 
Let Freejx j ∈,  identify the set of variables that were free in the 
execution of Step 3 that immediately precedes the execution of Step 4, and 
let Fixedjx j ∈, , identify the associated set of fixed variables. Also, let 

*
jx  denote the values of these variables in the optimal solution obtained by 

Step 3 (where *
jx  is simply the fixed value of jx  in the case of a fixed 

variable). 

Diversity Threshold Procedure 1  

Let }1:{)1( * =∈= jxFreejFree and }0:{)0( * =∈= jxFreejFree .  

 

                                                                        
evaluations during the pass (or that belonged to moves having attractive evaluations).  
Once the method reaches an improving phase, whether or not a solution better than 
the starting solution is obtained, the moves from this phase may be considered as 
sources for new free variables.  Typically, not all moves that receive high evaluations 
(relative to alternative moves) will be chosen during an improving phase. 
Consequently, there can be more variables that qualify as "attractive" than those that 
belonged to moves that were chosen.  (Some of these may have belonged to more 
than one move on the same iteration, and some may have belonged to different moves 
on different iterations.) The attractiveness of a variable may be measured by 
reference to the attractiveness of the moves that contain it.  A variable that belongs to 
one of the most highly attractive moves at a given iteration, but then which vanishes 
from the attractive category, is also important to consider.   
 



10 

 
Record ∑

∈

=
)1(

)1(
Freej

jxFreeSum   and ∑
∈

=
)0(

)0(
Freej

jxFreeSum .7 

To generate a solution that departs from the solution of Step 3 we seek to 
avoid the situation where )1()1( FreeFreeSum =  and 0)0( =FreeSum . 
Define )0()1()1( FreeSumFreeSumFreeitySumFreeDivers +−=  
Identifying the number of variables Freejx j ∈, , such that *

jj xx ≠ . Then 
we want to assure ldityThreshoFreeDiversitySumFreeDivers ≥  
where 2=ldityThreshoFreeDivers or 3, etc. (larger for more 
diversification). This can be done by defining a move to be tabu if it will 
make itySumFreeDivers  fall below ldityThreshoFreeDivers (For 
most simple types of moves, the condition only needs to be checked 
when itySumFreeDivers  drops as low as 1+ldityThreshoFreeDivers .) 

Diversity Threshold Procedure 2 

     Let  

}1:{)1( * =∈= jxFixedjFixed  
  

}0:{)0( * =∈= jxFixedjFixed . 

 Define )1(FixedSum  and  )0(FixedSum  in the apparent way, and then     
 define sitySumFixedDiver  relative to these preceding values, also in the    
 apparent way.  We seek to assure  

oldsityThreshFixedDiversitySumFixedDiver ≥  

for a suitable (relatively small) value of oldsityThreshFixedDiver . 
 

This second approach is implicitly the basis for the tabu rule discussed in 
(7). That is, the tabu rule of (7) insures that sitySumFixedDiver  grows 
by at least 1 on each iteration, for some beginning number of iterations. 
Variants of these approaches can readily be constructed for problems 
involving integer variables other than 0-1 variables. 

 
7These sums can be easily updated at each move by checking if a variable 

changed by the move is in Free(1) or Free(0). For example, to facilitate the update, 
keep an array FreeMember(j) that receives the value 1 for j ∈ Free(1), the value 0 for 
j ∈ Free(0) and the value -1 for j ∈ Fixed.  
 



Adaptive Memory Projection Methods for Integer Programming 11

 
Combined Diversity Threshold Procedure 

The two foregoing procedures can be combined to give a less restrictive 
approach. The combined procedure defines  

sitySumFixedDiveritySumFreeDiversumDiversityS +=  

Then it is only necessary to select a (relatively small) value 
hresholdDiversityT   and require that every move assures  

hresholdDiversityTumDiversityS ≥  

    We can also stipulate that initial moves of the method are tabu unless they 
increase umDiversityS  by at least 1 at each iteration – i.e., requiring that 
the initial moves must increase umDiversityS  by at least 1 
until umDiversityS  reaches some minimum value (for example, 1 or 2 
more than hresholdDiversityT ).  This approach offers an alternative to 
the tabu rule of (7) that may possibly yield better results. 

(9) The re-launched heuristic search of Step 4 may not find any improving 
moves to begin, and should operate by the usual tabu search design of 
selecting best admissible (non-tabu) moves from an intelligently generated 
candidate list, even if the selected moves cause the solution to deteriorate.  
The heuristic must be run for enough iterations to give a basis for 
selecting a proper number of new free variables for the next referent-
optimization.  As it proceeds, the heuristic continues to create new tabu 
restrictions in a standard way, to avoid cycling.   
If the method is in an improving sequence at the point where enough new 
free variables can be selected for the next referent-optimization phase, the 
sequence is allowed to continue its improvement until reaching a new 
local optimum. (This may be viewed as a special aspiration criterion that 
accepts all improving moves at this point.) 

(10) To spur additional diversification, a “weak tabu condition” can be 
implemented whenever improving moves exist by discouraging (but not 
preventing) the choice of improving moves that change the value of some 
variable to a value it had in the referent-solution. Other tabu restrictions 
continue to operate normally in this phase.  When a non-improving stage 
is entered during the search, then the weak tabu condition can be 
strengthened for a small number of iterations (2-4) to prevent moves that 
change the value of any variable back to the value it received in the 
referent-solution. 



12 

 
(11) The preceding approach can be applied by eliminating the use of the 

heuristic method in Steps 1 and 4.  In other words, the procedure can 
simply use an adaptive memory design from a variant of TS that 
progressively selects different subsets of variables to be free, and then 
immediately undertakes the next referent-optimization phase in Step 3.  In 
essence, the heuristic approach is not precisely discarded, but it only 
identifies variables that may be considered conditionally attractive as a 
basis for constituting the new set of free variables.  (These variables are 
evaluated as candidates to receive new assignments, but no steps are 
performed to actually execute such assignments.) The conditionally 
attractive evaluation can be made from information provided by the exact 
method itself. For example, if the exact method solves linear 
programming sub-problems, as in a B&B approach, then a form of 
sensitivity or post-optimizing “look-ahead” analysis may be performed to 
help identify new candidates to constitute the next set of free variables. 
More general TS diversification approaches can of course also be 
incorporated into Step 5. An adaptive memory projection approach can 
readily be embedded within a constructive method for generating a 
solution, for the case of diversification methods based on re-starting.  
Consequently, such a projection method can be used to drive a multi-start 
method, and can also be used (as above) as part of a process that 
progressively amends a current solution rather than constructing (or re-
constructing) a solution from scratch. 

3. Constructive Variant of an Adaptive Memory 
Projection Method 

A constructive variant of an adaptive memory projection method, to be 
incorporated in a multi-start procedure, can be briefly sketched as follows by 
making use of ideas already discussed. 

3.1 Constructive (Multi-Start) Procedure 
Step 1.  Generate a solution constructively (as by a strategy for 

successively choosing values to assign to variables), keeping track of 
persistently and conditionally attractive value assignments, as well as 
assignments actually made. 

Step 2.  Select a subset of variables that include some of those selected to 
receive specific values during the construction process and also some of those 
that were persistently and conditionally attractive.  Then apply an exact 
method to solve the sub-problem that allows these selected variables to be 
free, while remaining problem variables are held fixed.   



Adaptive Memory Projection Methods for Integer Programming 13

 
Step 3.  Using an adaptive memory design to avoid duplicating sets of 

variables recently chosen, return to Step 3 to select a new subset of variables 
and again apply an exact method with these variables treated as free. 

Early stages of such an approach can select subsets of variables in Step 2 
that were chosen successively to receive their assigned values, and that first 
became attractive (if they qualify as persistently or conditionally attractive) 
during this sequence of assignments. Later applications of the step can 
reasonably mix the subsets to include variables assigned in non-consecutive 
orders.  Once enough values are changed, the method reverts to become the 
same as the method originally described (which does not specifically make 
reference to constructive processes). 

The observations of Section 2 are relevant for the constructive multi-start 
variant as well. 

4. Adaptive Memory Projection and Target Analysis 
Some concluding comments are relevant for applying the AMP approach, 

when a basic heuristic is used to identify a particular region to explore, and 
then another more advanced solution procedure is used to examine this region 
in depth. 

 Consider the use of a search neighborhood in which the moves consist 
of flipping values of 0-1 variables. Assume we have a corresponding MIP 
formulation of the problem to be solved, so that an exact 0-1 MIP method can 
take the role of the advanced method. Then the AMP approach can be used in 
a couple of straightforward ways as follows. 
(1) First apply the current heuristic method. Maintain a record of k variables 

(e.g., 20=k )8 that have changed their values in the most recent moves 
prior to reaching a local optimum, or prior to reaching some other 
intervention point that seems useful. (Fewer than k moves may be 
involved in identifying such variables, if a move modifies more than a 
single variable at a time.) 
Also record an additional k variables that received high evaluations to 
change their assigned values, but not quite high enough to result in 
choosing the variables to receive such a changed assignment. Then apply 
the AMP approach by solving an MIP sub-problem over these 

k2 variables, which are allowed to be free while the other variables are 
fixed at the values assigned by the local optimum. This gives a solution at 
least as good as the one the heuristic found. (Instead of basing the process 
on a record of most recently changed variables, it can be based on a record 
of other critical changes following earlier suggestions.) 

 
8 In some applications, k may usefully be selected to be much larger, as illustrated by the work 

of Danna and Perron (2003). 



14 

 
(2) Further exploit the preceding strategy by means of target analysis 

(Chapter 9 of Glover and Laguna, 1997), to learn how to improve the 
basic heuristic. In this case the AMP approach is applied by allowing 
more variables to be included in the sub-problem solved by the MIP 
method than would normally be desirable to include in this problem. (For 
example, this might involve choosing up to k4  variables for the sub-
problem solved by the MIP method.)   
Then, target analysis can operate by examining the cases where the MIP 

gives a better solution than found by the heuristic. These cases yield 
information about how to improve the heuristic by changing its choice rules 
to make better decisions.   

To illustrate, it can be valuable to know if the variables that allow the MIP 
method to get better results are primarily those whose values were changed 
by the heuristic (a) multiple times, (b) at least once, or (c) never, but which 
received a high evaluation (or high average evaluation) in favor of receiving 
new value assignments in spite of not being selected for such a purpose. This 
knowledge provides a foundation for tests to further pinpoint the 
characteristics of the most important variables.  

It is similarly relevant to identify variables that receive different values in 
the MIP solution than in the heuristic solution, thereby making it possible to 
investigate whether the heuristic evaluations should be amended by reference 
to associated historical information.  

Such information may be embodied in the frequency that a variable 
receives an evaluation at a certain basic level in favor of being assigned a 
given value 0 or 1, and also embodied in the frequency that the variable 
receives an evaluation at a higher level in favor of such a value assignment. 
Target analysis is then used to identify whether some mix of these two types 
of frequencies supports the choice 0=jx or 1=jx . 

In the case where many alternative choices may exist to be evaluated, 
target analysis can be kept manageable by focusing on a selected subset of 
key variables. These may be a collection of variables that receive the highest 
evaluations according to particular decision rules to be analyzed, or they may 
be divided among variables whose evaluations by such rules predict 
appropriate values to be assigned and those whose evaluations predict 
inappropriate values. In this type of process multiple decision rules can be 
analyzed simultaneously, rather than requiring each one to be run separately. 
Thus, it may be discovered that one rule is more accurate under certain 
conditions and another is more accurate under other conditions – an outcome 
that would not be discovered except by the use of target analysis, since in 
standard testing only the quality of the final solution would be known, 
without providing an ability to assess the merit of component choices (and to 
do so in relation to the settings in which these choices arise).   



Adaptive Memory Projection Methods for Integer Programming 15

 
It is important to realize that clues of the type indicated only have to give 

approximate rules for identifying good values to be assigned to the variables. 
Suppose, for instance, the MIP solution method is applied to a larger sub-
problem than normally would be considered, as in the approach described in 
(1), and gives values to 10 variables that are different than found by the 
heuristic. A rule may be regarded as only "halfway accurate" if it instead 
selects 20 variables as candidates to change their values. But if these 20 
variables include the 10 that the MIP method determined should be changed, 
then the rule is extremely powerful – because the MIP method can be applied 
to a 20 variable problem and still do as well as applying it to a considerably 
larger problem. In short, if the rule is used in conjunction with the AMP 
method, then the method will always find the desired solution. Clearly, a 
good AMP method can result from a rule that is not this effective. But target 
analysis can be a useful supplement in the design stage, in order to devise a 
rule for the AMP method that performs better than those that might otherwise 
be employed. 

 

 References 
Ahuja, R.K., O. Ergun, J.B. Orlin and A.P. Punnen (2002) “ Survey of Very 

Large-Scale Neighborhood Search Techniques,” Discrete Applied 
Mathematics 123:75–102. 

Danna, E. and L. Perron (2003) Structured vs. Unstructured Large 
Neighborhood Search: A Case Study on Job-Shop Scheduling Problems 
with Earliness and Tardiness Costs, ILOG Technical Report, ILOG, S.A. 

Danna, E., E. Rothberg and C. Le Pape (2003) Exploring Relaxation Induced 
Neighborhoods to Improve MIP Solutions. ILOG Technical Report, ILOG, 
S.A. 

Fischetti, M. and A. Lodi (2002) “Local Branching,” Research Report, DEI, 
University of Padova and DEIS, University of Bologna. 

Glover, F. (1977) “Heuristics for Integer Programming Using Surrogate 
Constraints,” Decision Sciences, 8(1):156–166. 

Glover, F. (2000) Multi-Start and Strategic Oscillation Methods – Principles 
to Exploit Adaptive Memory. Computing Tools for Modeling, 
Optimization and Simulation: Interfaces in Computer Science and 
Operations Research, M. Laguna and J.L. Gonzales Velarde, eds., Kluwer 
Academic Publishers, 1–24. 

Glover, F. and M. Laguna (1997) Tabu Search, Kluwer Academic Publishers. 
Glover, F., M. Fischetti and A. Lodi (2003) Surrogate Branching Methods for 

Mixed Integer Programming. Report HCES-04-03, Hearin Center for 
Enterprise Science, University of Mississippi.  

Mautor, T. and P. Michelon (1997) Mimausa: A New Hybrid Method 
Combining Exact Solution and Local Search. MIC’97, 2nd 
Methaheuristics International Conference, Sophia Antipolis. 



16 

 
Mautor, T. and P. Michelon (2001) Mimausa: An Application of Referent 

Domain Optimization. Technical Report, Laboratoire d’Informatique 
d’Avignon.  

Shaw, P. (1998) Using Constraint Programming and Local Search Methods to 
Solve Vehicle Routing Problems. In M. Maher and J.F. Puget, eds., 
Proceeding of CP ’98, Springer-Verlag, 417–431.  


