
 1

1. OPTIMIZATION AND SURROGATE
CONSTRAINTS

Problem:

Maximize ox c x
Subject to A x b

x O

=
≤

≥ ≥U

Alternative Notation:

 { } { }

Maximize ox jc
j N

jx

Subject to

ija
j N

jx ib i M

jxj O j N

N n M m

=
∈
∑

∈
∑ ≤ ∈

≥ ≥ ∈

= =

,

,

, , , , ,

U

K K1 1

 2

 Example:

Maximize
0x = 18x ─ 23x + 12x3

Subject to 12x + 25x + 11x3 ≤ 160
 14− x ─ 29x ≤ -90
 17x + 22x ─ 3x ≤ 100
 1x ≤ 20
 2x ≤ 12
 3x ≤ 12
 1,x 2,x

3x ≥ 0

The constraints of the problem have been separated
into 3 groups, showing upper and lower bounds
separately. These bounds are not included in
forming surrogate constraints because they are
included directly within the surrogate constraint
problems, as part of the problem information.

Weight vectors for Examples on Page 4:

1. ω = (1 1 2) 2. ω = (1 1 1)
3. ω = (1 2 1) 4. ω = (2 1 1)

 3

Surrogate Constraints

Select a Weight Vector

w = w1,…, wm ≥ 0
The constraint is:

())wA x wb≤

or

j N M
iw ija

M
iw ib

i
x

i
j

∈ ∈

 ≤

∈
Σ Σ Σ

or

j N
oa x obj j

∈
≤Σ

For oa
i M

ijiw a

ob
i M

iiw b

j =
∈

=
∈

Σ

Σ

 4

Examples

A. Identify the surrogate constraint for each w

vector on page 2.

B. Identify the Surrogate Constraint Problem for

each of these surrogate constraints; the problem

where the constraints Ax ≤ b are replaced by

(wA)x ≤ wb.

C. Guess an optimal solution to each problem.

(Variables here are allowed to be continuous

– i.e. they do not have to be integer – i.e.

they can take "fractional" rather than "whole

number" values.)

 5

Conversion for Surrogate Constraints
– To Solve Easier

Use upper bounds to make all cj of c nonnegative.

 Example: Consider the surrogate problem

for w = (1 1 1). From page 2 we have:

Maximize x x x x
x x x

To change c to c

o = − +
− + ≤
= − ≥

1 2 3

1 2 3

2

8 3 12
5 2 10 170

3 02 :

2 2 2 212 12 0x x y y≤ → + = ≥,

 2 2

2 2

12 0
12 0

y x
x y
= − ≥
= − ≥

(using x2 bound information from page 2)

 Substitute for x2 from expression above:

Max x x y x
x y x

o = − − +
− − + ≤

1 2 3

1 2 3

8 3 12 12
5 2 12 10 170

()
()

 6

 What does this give after clearing terms?

Exercise 1.1:

A. Guess an optimal solution to this new

problem (where y2 replaces x2).

B. What value results for x2?

C. How does this compare to previous

guess? (From Examples, Part C, on page

4.)

Exercise 1.2:

 Convert each of the other surrogate constraint

problems.

 Carry out A, B & C of Exercise 1.

 7

Exercise 1.3:

 Can you identify a rule that will always solve a

single constraint LP problem like this? (Assume

all variables are nonnegative and have upper

bounds.)

Terminology: A single constraint LP is called a

Continuous Knapsack Problem.

 When the variables are integer (i.e., required to

be integer-valued), the problem is called an Integer

Knapsack Problem – or simply a

Knapsack Problem

 8

Exercise 1.4: For the Continuous Knapsack

Problems previously examined, identify one that is

stronger than the others, in the sense of giving an

optimum value for xo that is closer to the optimum

value when all constraints of the original problem

are considered (i.e. where the original problem

itself is solved).

Hint 1: A surrogate constraint is always valid
for the original problem. Why?

Hint 2: If the surrogate constraint replaces the

original constraints, the problem is relaxed – the set
of feasible solutions can only increase in size, or
stay the same. Why?

Hint 3: The observation of Hint 2 implies that

the optimum objective (xo) value for the surrogate
problem will always be "Better" (≥) than for the
original problem. Why?

 9

2. STRONGEST SURROGATE CONSTRAINTS
& THEIR USES

 Integer programming (IP) problems are much

harder to solve than linear programming (LP)
problems.

 It is valuable to have bounds on xo for solving

IP problems. It is also valuable to have bounds
on other variables.

 Surrogate constraints can be used to give such

bounds.

 Stronger surrogate constraints give tighter
(more restrictive) bounds, and hence are more
useful for bounding.

NOTE: How would you define a stronger

surrogate constraint for an IP problem? (How is
the definition similar to, and also different from,
the definition for an LP problem?)

 10

Additional Surrogate Constraint Features

For IP Problems

 They can be used to suggest "Trial Values" for

integer variables.

 They can be used as source constraints for

cutting planes, i.e. for additional constraints

implied by the integer restrictions.

 Cutting plane inequalities, or "cuts," can be

added to the original constraints to generate

new (and possibly better) surrogate

constraints.

Additional Uses Will be Considered Soon

 11

Exercise 2.1: Apply the ideas of the exercises of

Section 1 to reformulate the example problem in

the form

Minimize x cx
subject to Ax b

x
where x x c c

A A b b

o

o o

=
≥

≥ ≥
= − = −
= − = −

U 0
,
, .

Then transform the problem so that c o≥ , intro-

ducing "y variables" as appropriate.

Finally, identify the surrogate constraints for the
four w vectors of shown on page 2.
A. Demonstrate these are equivalent to the original

surrogate constraints.

B. Identify optimal solutions to the resulting

surrogate problems.

 12

Exercise 2.2:

 How does the rule for solving a continuous

knapsack problem of the form

Minimize c x
Subject to a x b x
where a wA b wb

o o

o o

≥ ≥ ≥
= =

, ,
, ,

U 0

compare to the rule for solving the earlier

"maximize" form?

Heuristic Methods for Knapsack Problems

 It is useful to have a very fast method to obtain

"good" solutions to Knapsack Problems. Such a

heuristic method, which has the goal of obtaining

 13

an optimal or near-optimal solution in many

instances (but is not guaranteed to do so), is often

based on the same ratio calculations used to solve

LP Knapsack Problems.

Exercise 2.3: Formulate an explicit set of rules,

expressed as a set of instructions or a flow diagram

or a pseudo code, for two different heuristics for a

Knapsack Problem in "Maximizing Form." Do the

same for a Knapsack Problem in "Minimize Form."

 14

Illustrative Heuristics (for the "Maximize Form")

Heuristic 1 (Classical "Greedy" Knapsack

Heuristic)

1. Order the variables so that

1 1 2 2c a c a c ao o n on≥ ≥ ≥K

(These ratios are sometimes called “Bang-for-

Buck” ratios.)

Define where to beginJ j N xj= ∈ ={ : },1

J = φ. Finally, let o ob b' .=

2. Let jnext Min j N J a boj o= ∈ − ≤(: ')

3. If jnext does not exist (i.e., J = N or

oj oa b j N J> ∈ −')for all then stop. Otherwise,

add jnext to J, set o o jnextb b a' : ' ,= − and return to

step 2.

 15

(Note, each jnext added to J is larger than

the one added before.)

Exercise 2.4 Apply Heuristic 1 to the Knapsack

Problem where

 c = (13 10 17 20 8 10 4 2)

 oa = (4 5 9 11 6 8 4 2)

 ob = 19.

Improved Heuristic 1: A simple improvement of

Heuristic 1 is as follows. When the method stops,

assuming J ≠ φ, let jmax = max (j ∈J). (Hence,

jmax was the last index added to J.) Remove jmax

from J, setting o o ojb b a' : ' ,max= + and let jbest be an

index j ≥ jmax that gives the largest cj value subject

 16

to oj oa b≤ ' . Then add jbest to J. (At "worst," jbest

= jmax, which is the same solution already found.)

Exercise 2.5: Apply the Improved Heuristic 1 to

the problem of Exercise 2.4.

Exercise 2.6: Transform the problem of Exercise

2.4 into a minimization problem (i.e., with the

"Minimize Form"). Write instructions for a version

of Heuristic 1 (including its Improved Variant) that

applies to this "Minimize Form," and which will

yield a solution that is the same (after converting

the variables back to their original identities) as the

solution obtained by Heuristic 1 for the "Maximize

Form."

 For our next heuristic we require some notation.

 17

 For any number (value) v, define:

 v = the largest integer ≤ v

 v = the smallest integer ≥ v

Example 1: 2.3 =2, 2 = 2, -2.3 = -3.

Example 2: 2.3 = 3, 2 = 2, -2.3 = -2

Define the effective coefficient ojb associated with

oja by oj o o ojb b b a= / . Note that

 o oj o ojb b b a= / , hence o oj o ojb b b a= and

this ojb identifies the "effective size" of oja in terms

of the integer number of times that oja divides ob .

 Heuristic 2A. (Greedy Method Using Effective

Coefficients). The method is the same as Heuristic

1, except that the variables are ordered so that

1 1 2 2c b c b c bo o n on≥ ≥ ≥K .

 18

Define the effective profit for variable xj by

 j o ojc b a . Note, this is the profit that would

result if xj could be assigned the integer value

 o ojb a , which would be possible if xj was not

bounded to satisfy xj ≤ 1. Hereafter, we call

 o ojb a the effective multiple for xj, and denote it

by mj. Hence the effective profit for xj is cjmj.

 Heuristic 2B. (Greedy Method Using Effective

Profits). The method is the same as Heuristic 1,

except that the variables are ordered in descending

order of effective profits.

 19

Exercise 2.7: Show algebraically that Heuristic 2A

and Heuristic 2B are identical (and that their

Improved Variants are also identical).

Exercise 2.8: Apply Heuristic 2B to the Knapsack

Problem of Exercise 2.4. Also apply the Improved

Variant.

Exercise 2.9: Carry out the instructions of Exercise

2.6, replacing Heuristic 1 by Heuristic 2B.

(However, the solution need not be the same as for

the "Maximization.")

 For our final illustrative heuristic, define the

updated effective multiple jm' to be the same as mj,

except that the updated value ob' replaces ob , i.e.,

 20

 j o ojm b a' ' .= Correspondingly, define the

updated effective profit to be j jmc ' .

 Heuristic 3: (Greedy Method Using Updated

Effective Profits.) The method is the same as

Heuristic 2B, except that the variables are ordered

in descending order of updated effective profits.

Since the updated effective profits change each

time ob' changes, instead of pre-ordering the

variables, the choice of jnext is given by

jnext jnextc m' = Max (j jmc ' : j ∈N - J and oj oa b≤ ').

Exercise 2.10: Apply Heuristic 3 to the problem of

Exercise 2.4.

Exercise 2.11: Carry out the instructions of

Exercise 2.9, replacing Heuristic 2B by Heuristic 3.

 21

Exercise 2.12: As a rule, which of the three

knapsack heuristics do you think is likely to be

best? Can you construct three different examples,

where Heuristic 1 works best on the first, Heuristic

2B works best on the second, and Heuristic 3

works best on the third?

3. HOW TO CREATE GOOD SURROGATE

CONSTRAINTS

 This section helps to develop intuition about

normalizing original constraints – as one way to

create weights to produce surrogate constraints.

Later, page 41 gives normalization rules.

 22

I. Intuitive Normalization Methods

Consider the following three systems of

constraints.

A x x x

x x x
x x x

. 1 2 3

1 2 3

1 2 3

20 30 40 250

400 200 300 2500
3 2 4 25

+ + ≤
+ + ≤
+ + ≤

B x x
x x x

x x x x

. 1 2

1 3 4

2 3 4 5

1 1 1
1 1 1 1

1 1 1 1 1

+ ≤
+ + ≤
+ + + ≤

C x x
x x x

x x x x

. 1 2

1 3 4

2 3 4 5

1 1 1
1 1 1 1

1 1 1 1 1

+ ≥
+ + ≥
+ + + ≥

 23

Exercise 3.1: Identify possible ways to

"normalize" the constraints of systems A, B & C

(multiply or divide each constraint by a positive

quantity) so that, if the normalized constraints are

summed, each one contributes an appropriate

influence to the resulting surrogate constraint.

Exercise 3.2:

(1) How might you normalize inequalities of the

following system

1 2

1 3 4

2 3 4 5

1 1
1 1 1

1 1 1 1 1
1 1 5

x x O
x x x O

x x x x
where x O for jj

− ≤
+ − ≤

− + − + ≤ −
≥ ≥ = , ,K

 24

(2) Same question, but reverse the direction of the

constraint inequalities.

(3) How does your answer compare to the answer

to Exercise 3.1 for system B? Is that system

related to this one?

Exercise 3.3: How would you normalize…?

1 2

1 3 4

2 3 4 5

1 1 1

1 1 1 2

1 1 1 1 3
1 1 5

x x
x x x

x x x x
where x O for jj

+ ≥
+ + ≥
+ + + ≥

≥ ≥ = , ,K

Compare your answer to that for Exercise 3.1, for
system B. Should these answers be related?

 25

4. Multidimensional 0-1 Knapsack Problem

Consider the problem

Maximize ox cx
Ax b
x is binary

=
≤

in detached coefficient form

x
c

A

b

 26

Example
 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 b

C= 36 83 59 11 43 67 23 52 93 25
5 9 17 23 10 12 11 15 12 15 57
3 15 5 15 11 9 15 17 10 25 61

A={ 13 21 11 25 12 23 15 12 9 10 65

A problem such as this, where c > O, b > O and

A ≥ O, is called a Multidimensional Knapsack

Problem.

Exercise 4.1. Create 3 different surrogate
constraints:

() (),
() (),
() ()

1 1 1 1
2 2 1 1
3 1 1 3

w
w
w

=
=
=

 27

Exercise 4.2:

 Use two Heuristic Rules (your favorites, subject

to not being too complex or hard to apply), to

generate 0-1 solutions for the surrogate constraint

Knapsack Problems from Exercise 4.1.

(A) Check each solution to see if it is feasible

for the original problem ─ or to see how

much it violates feasibility.

(B) Based on (A) and on the value of xo, pick

the 2 solutions you like best.

 28

Exercise 4.3: Transform the original problem into
the form

Minimize oy c y

A y b
y is binary

j j j Ny x

=

≥

= − ∈using 1 , .

Exercise 4.4: Apply Exercise 4.1 to the trans-

formed problem, except let w2 = 3 in (2) and (3).

Exercise 4.5: Apply Exercise 4.2 to the surrogate

constraint Knapsack Problems of Exercise 4.4.

Exercise 4.6: Compare the best solutions from

exercises 4.2 and 4.5. Are they the same after

being expressed in terms of x?

 29

MORE ADVANCED HEURISTICS

Exercise 4.7:

 Start with the best infeasible solution from

previous exercises.

 Now consider setting xj = O for any xj that is 1

in this best solution but = O in the 2nd best solution.

Do this one variable at a time, using any choice

rule you want to choose such an xj from available

possibilities. Repeat until obtaining a feasible

solution. (If not enough variables can be changed

from 1 to O by this rule to make the best solutions

become feasible, continue by considering the 3rd

best solution as a source for xj = O.)

 30

Remark: This is a special case of the evolutionary

approach for combining solutions called path

relinking.

Exercise 4.8:

 Apply Exercise 4.7, but reverse the roles of the

best and 2nd best solutions.

Conditional Surrogate Constraints

 For the following, chose a (single) rule for

generating a surrogate constraint, wi = 1/bi for each

i∈M.

Exercise 4.9: Use 2 rules to generate a heuristic

solution, but then let the rules "vote" by picking

 31

(A) xj = 1 for a variable xj that both rules select

for xj = 1, if possible.

(B) Given the priority of (A), chose xj = 1 for

the xj that has xj = 1 in at least one

(preferably both) solution, and which has

the largest bang for buck ratio.

 Do (A) and (B) just to choose a single best

xj = 1 assignment. Then, set this xj = 1 and thereby

remove this xj from the problem. (This changes b

and removes a column from A.)

 For each new (smaller) problem, repeat the

process.

 As soon as choosing xj = 1 produces an

infeasible solution, remove this and all other

variables that will create an infeasible solution

 32

by setting xj = 1. (Is there an easy way to

identify them?) Then do (A) and (B) just for

remaining variables.

 Once it is necessary to remove one or more

xj variables as just described, continue to

remove such variables that create infeasible

solutions on each subsequent step.

 Finally, when no xj can be set to 1, return to

the last step where a feasible solution was

produced by setting xj = 1. If this xj does not

have the largest cj among all xj that can be set

to 1, then, change this choice by picking

instead xj = 1 for this largest cj. (Note: the

solution is feasible.)

 33

Exercise 4.10: Compare this solution to the best

feasible solution found in exercises 4.7 & 4.8.

Exercise 4.11: List ways to reduce the computation

effort of a strategy like Exercise 9. (What change

in the strategy might give about the same result, but

faster? When might it be ok to choose xj = 1 for

more than a single xj?)

Exercise 4.12: How might you change the strategy

of Exercise 4.9 if you used more than one surrogate

constraint to generate solutions? (Since different

surrogate constraints give different "Bang for

Buck" ratios, how would you modify (B) of

Exercise 4.9? Also, given that there are more than

two trial solutions to "vote" on setting xj = 1, how

else might you change the "priorities" of voting?)

 34

Exercise 4.13: Use the minimization formulation of

Exercise 4.3, and then apply a "counterpart" of

Exercise 4.9 to this formulation. (How do some of

the instructions of Exercise 4.9 change? Write

down the changed instructions.)

 35

5. Adaptive Generation of Surrogate Constraints

Problem Reduction by Logical Implications

 It is often valuable to check problem constraints

and surrogate constraints for logical implications

that can simplify and "reduce" the problem. These

logical implications can be checked both before

undertaking to solve the problem, and also at each

step after assigning a value to a variable in a

constructive (or destructive) heuristic process.

(Depending on the problem and the stage of

solution, several variables may be selected and

assigned values between two successive steps of

checking for logical implications.)

 36

 For convenience, the following describes the

logical implication tests for the problem in its

original form, before assigning values to any of the

variables, since the updated problem after making

such assignments has this same form.

 We consider the 0-1 problem using both the "≤

representation" and the "≥ representation," where

all constraint coefficients ()ija are assumed non-

negative. As already seen, any constraint can be

given either of these representations and the non-

negativity assumption can be assured by the usual

transformations. Define sum() .i
j N

aij=
∈
Σ

 37

Zero-One Logical Implications for "≤ Constraints":

(A)

 j N
ija jx ib

ija O jx
∈
∑ ≤

≥(,)all all binary

1. If ib O< , the problem has no feasible

solution.

2. If isum i b() ,≤ the constraint is redundant.

3. If ija b x Oi j> =, .then

 38

Zero-One Logical Implications for "≥ Constraints"

(B)

 j N
ija jx ib

ija O jx
∈
∑ ≥

≥(,)all all binary

1. If sum i ib() ,< the problem has no feasible

solution.

2. If ib O≤ , the constraint is redundant.

3. If ija sum i ib xj> − =() , then 1.

Note that it is easy to keep updated values of sum(i)

(as well as of ib) as variables are selected and

assigned values, to facilitate checking for

associated logical conditions. Removing redundant

 39

constraints from consideration can be important for

determining surrogate constraints, since redundant

constraints should receive a O weight. (Such

constraints are not permanently removed from

consideration, of course, but should be reinstated if

the partial solution that created their redundancy is

changed.)

Linked Implications

 Surrogate constraints can be subjected to the

preceding tests as readily as other problem

constraints. If a variable is compelled to receive a

particular value by one of the preceding tests, then

it is possible that this may uncover new

implications ─ by reference to a constraint that has

not been checked since the variable was assigned

 40

such a value. Consequently, it can be useful to re-

check a constraint for a possible logical implication

if a variable was assigned a value since the last

time the constraint was checked.

Note: Stronger logical implications than the

ones illustrated above, making use of bounded

sums of variables, are given in the original 1965

surrogate constraint paper, and implications of

additional strength using nested sums are given in

the 1971 paper “Flows in Arborescences.”

(References appear at the end of these notes.)

 We now review the rules for creating surrogate

constraints by normalizations, i.e., where assigning

a normalized constraint a weight of 1 automatically

implies an associated weight to be assigned to the

 41

form of the constraint that is not subjected to

normalization. The rules differ according to

whether the constraint has the form of (A) or (B) in

the description of the tests for logical implications.

After examining outcomes produced by these

normalizations, we consider adaptive rules for

generating surrogate constraints.

Type 1 Normalization Rules:

 The weight wi for normalizing is given by

 wi = (∑ aij – bi) / bi for (A)

 wi = bi / (∑ aij – bi) for (B)

These rules are symmetric, in that they yield the

same normalization regardless of whether the

original constraint is put in the form of (A) or (B)

(by complementing variables, as necessary).

 42

The next rules considered are not symmetric. (They

are not necessarily better or worse than the Type 1

rules, in general. But in certain settings the Type 1

rules can be shown to be preferable.)

Type 2 Normalization Rules:

Normalize (A) and (B) by first dividing through by

bi. Then, representing the new coefficients as if

they were the original ones, and for some power

k ≥ 1, define

D = ∑

∈j N ija
k

(i.e., the coefficients above are those after dividing

by bi). Then, to complete the normalization:

Rule 1, for (A): Multiply through by D.

Rule 2, for (B): Divide through by D.

 43

Exercise 5.1: Identify wi for the Type 2

Nomalization Rules 1 and 2. Show algebraically

that the outcomes of Rules 1 and 2 are similar but

not identical to each other. Compare the outcomes

to the expressions for wi in the Type 1 rules.

Exercise 5.2: In the Type 2 rules, choose k = 1 and

2, and in each case apply Rules 1 and 2 to

normalize the ≤ form and the ≥ form of each

constraint in system B at the beginning of Section

3. Show that the relative sizes of wi for the 3

constraints are similar by Rules 1 and 2, but not

precisely the same. Apply the Type 1 rules in the

 44

same way and compare their wi values to those of

the Type 2 rules.

Basis for Adaptive Weighting

Let x* be a candidate solution for the problem,

not necessarily feasible. (For example, x* may be

obtained by a surrogate constraint heuristic, with or

without updating.) If x* is infeasible, and the

surrogate constraint

∑ ≤
∈j N ooja j bx

was used to generate x*, then increase the weights

on constraints violated by x*.

 45

Exercise 5.3: What type of rule(s) might be used to

do this? (weights on satisfied constraints might also

be decreased. How would your rule(s) change in

this case?) Demonstrate your rules by a numerical

example.

Exercise 5.4: If you generate a new x* for the new

surrogate constraint ─ i.e., by a heuristic or

algorithm using this constraint and repeating the

process ─ then:

 Can you use info from previous applications

of the process to help choose (or restrict the

choice of) the weights?

 How would you decide when to stop?

 Which surrogate constraint would you

choose?

 46

Again, demonstrate by a numerical example.

An Adaptive Surrogate Constraint Method

 Suppose x* is "representative" of the kinds of

trial solutions produced by a particular method you

are using. For example, x* might be a weighted

average of the r best of these trial solutions (for r =

10, 20, 30, etc.) with a threshold t such that any jx*

that is greater than t is rounded to give jx* .= 1 For

present purposes, it is appropriate to set t small,

including the possibility t = 0 (in which case

 47

jx* = 1 results if jx = 1 in any solution x that is

included in the average).

Then, instead of normalizing the i th constraint

by dividing or multiplying through by ()Σ
j N ija k
∈

,

divide or multiply through by

Σ
j N

ija jx
k

∈

* .

This may give a more "realistic" set of normaliza-

tions. Explain why. (Note that the previous

normalization results from the new "adaptive" one

if x* is the vector of all 1's)

Exercise 5.5: In a method that updates the problem

information at each step of assigning a value to a

 48

variable, how might the basis for choosing x* also

change at each step? (Or periodically?)

Exercise 5.6: What benefits could result from

having several different surrogate constraints? In

your answer consider constraints that result both by

choosing different values of the power k and by

choosing different ways of determining x*. How

would you use more than one surrogate constraint

to make decisions about values to assign to

variables?

 49

Additional "Frequency" Memory

 Consider an approach that keeps track of

feasible "good" solutions x(1), x(2),…,x(H), and for

each solution x(h), keeps track of

si h bi
j N

aij xj h i() () .= −
∈
∑ for each

That is, si(h) is the "slack value" for constraint i in

solution x(h).

Exercise 5.7. How might you use the si(h) values

to weight constraints? What is the reason for your

rule?

 50

Exercise 5.8. Should your approach of Exercise

5.7 also include other influences ─ as illustrated

from previous exercises ─ to determine weights?

Which ones?

Exercise 5.9. Illustrate how you would implement

your ideas of Exercises 5.6, 5.7 and 5.8, by apply-

ing them to the multidimensional Knapsack

Problem shown in Section 4.

REFERENCES:

F. Glover (1965). “A Multiphase-Dual Algorithm for Zero-
One Integer Programming Problems,” Operations Research,
Vol. 13, No. 6, pp. 8789-893.

F. Glover (1971). “Flows in Arborescences,” Management
Science, Vol. 17, No. 0, pp. 568-586.

