Reprinted from OPERATIONS RESEARCH
Vol. 16, No. 4, July-August, 1968
Printed in U.S.A.

SURROGATE CONSTRAINTS

Fred Glover
The University of Texas, Austin, Texas

(Received August 11, 1967)

A surrogate constraint is an inequality implied by the constraints of an
integgr program, and designed to capture useful information that cannot be
extracted from the parent constraints individually but is nevertheless a con-
sequence of their conjunction. The use of such constraints as originally
propoged by the author has recently been extended in an important way by
EcoNn Bavas and ARTHUR GEOFFRION. Motivated to take advantage of
inforﬂ‘nation disregarded in previous definitions of surrogate constraint
strength, we build upon the results of Balas and Geoffrion to show how to
obtain surrogate constraints that are strongest according to more general
criteria. We also propose definitions of surrogate constraint strength that
further extend the ideas of the author in 1965 by means of ‘normalizations,’
and show how to obtain strongest surrogate constraints by reference to these
definitions also. .

ASUKROGATE constraint is an inequality implied by the constraints

of an integer program, and designed to capture useful information that
cannot b{e extracted from the parent constraints individually but is never-
theless a. consequence of their conjunction. The use of such constraints
has receq&.ly been extended in an important way by Econ Baras™ and
ArTHUR GEOFFRION.” By modifying the definition of surrogate con-
straint strength given in reference 6, they have shown how a strongest
surrogate constraint can be obtained (according to their respective criteria )
by solving a linear program.

A limiting feature of the definition of surrogate constraint strength pro-
posed in reference 6, and also of the modified definitions suggested by Balas
and Geoffrion, is an implicit presupposition that information is to be ex-
tracted from these constraints only by reference to the lower and upper
bounds on the problem variables (assumed to be 0 and 1). However, other
restrictiops on the problem variables have been shown to yield useful in-
formation via the approach of the Multiphase Dual Algorithm.!® 7 Thus
we are motivated to build upon the results of Balas and Geoffrion to pre-
scribe strongest surrogate constraints that accommodate additional restrie-
tions. We also propose definitions of surrogate constraint strength that
further extend the ideas of reference 6 by means of ‘normalizations,” and

show how to obtain strongest surrogate constraints by reference to these
definitions also.
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In this note we represent the 0-1 integer programming problem as
Maximize ¢z subject to Az<b, z<e, and 7 integer,

z20, 1)

where z= (zl,xﬂi _._’xn)T, €= (1; 17 "':I)T, c= (Cl,Cz,"',Cn,), b=
(b, by, - -+, bm), and A= (a;;) for =1, ---,m and j=1,-.--,n. A sur-
rogate constraint is defined to be any inequality Y ajz;<b, implied by the
constraints of (1) (including =0 and integer ), where Az <b is permitted
to include additional inequalities that may be introduced as part of a
strategy for solving (1).f In particular, Az<b is usually assumed to
include —cx = —cy— 1, where ¢, is the value of ¢x for the best known feasible
discrete solution (we assume the ¢; are all integers). Throughout this
paper, however, we will be concerned with surrogate constraints obtained
as a nonnegative linear combination of the given problem constraints, that
is, ax by will be defined by a=wA and by=wb, where w is a nonnegative
m vector.

In reference 6, the strength of a surrogate constraint is defined as follows.
Definition 1. The surrogate constraint a*z<b," (obtained from w=w") is
stronger than the surrogate constraint a'z<b, (obtained from w=w') if
maxX.»o {cx subject to a*z<by*, z<e and z integer} is smaller than max,5o
{cz subject to a’z<by, z<e and z integer}.

A theorem of reference 6 shows how to obtain the strongest surrogate
constraints according to Definition 1 when restricting attention to nonnega-
tive linear combinations of two inequalities, and the procedure embodied in
this theorem is extended to obtain surrogate constraints as linear combina-
tions of more than two inequalities, although the resulting constraint is not
necessarily strongest.

Because of the difficulty of determining strongest surrogate constraints
according to Definition 1 when there are more than two parent constraints,
Egon Balas and Arthur Geoffrion have proposed other similar but more
useful definitions. Balas’ definition is
Definition 2. The surrogate constraint a*z=<b,* is stronger than the sur-
rogate constraint a’z <b, if it is stronger by Definition 1 when the require-
ment ‘“‘z is integer” is dropped.

Geoffrion’s definition of surrogate constraint strength insists that
—cx < —co— 1 be given a unit weight and excluded from Az<b. Observing
this convention about the form of Az <b, Geoffrion’s definition is
Definition 3. The surrogate constraint (a*—c)x £be* —co— 1 is stronger than
the surrogate constraint (a’'—c)z< be —co—1 if max,ze{be"— (@*—c)z

t We also allow for (1) to represent an updated form of some original groblem in
which some of the variables have been assigned specific values by an algorithm such
881,2,3,6,and 7. .
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subject to x<e (and z integer)} is smaller than max,so {bo — (@' —¢)x
. subject to z=<e (and z integer)}.
We have placed the words “and z integer” in quotations since the
- definition is unchanged with this stipulation removed. A correspondence
- between Definition 1 and Definition 3 may be observed as follows. A
- strongest surrogate constraint by Definition 1 is determined by finding
a w t0 minimize,»o {MaXz;m0 or 1 €& subject to by—az =0}, and by Definition
3 by finding @ w to minimize,yzo {MaX;— or1 cz+ (bo—az )} where Geoffrion
. adds the inequality —cz < —co—1toax<by. The second minimax problem
- may clearly be viewed as an approximation to the first in the context of the
Lagrange multiplier technique. The approximation becomes precise if the
integer requirement of Definition 1 is dropped as in Balas’ Definition 2.
- In fact, if ax=<b, is a strongest surrogate constraint by Definition 2, then
- (@a—c)x=by—co—1 is a strongest surrogate constraint by Definition 3, and
conversely. (That is, Balas’ relaxed minimax problem and Geoffrion’s
relaxed minimax problem are equivalent.) Nevertheless, Balas’ and
Geoffrion’s definitions of surrogate constraint strengths are different, and
were motivated by different considerations (see below).
To state the results due to Balas and Geoffrion we write the dual of ( 1)
(interpreted as a linear program) in the form

minimize,, .z wh-ue subject to wd +uec. 2)

- Let w*, « denote an optimal solution to 2).

TreorEM D2. (Balas). A surrogate constraint that is sirongest in the sense

of Definition 2 is obtained by letting w=w’. Moreover, the value of cx in an

optimal continuous solution fo (1) is unchanged if Axz=<b is replaced by
w’Az Sw’b.

- TueorEm D3. (Geoffrion). A surrogate constraint that is strongest in the

- sense of Definition 3 is oblained by letting w=w" and adding —cx < —co—1 to
w'Ar <w’b.

The significance of these theoremst lies in the fact that max,yo {bo—az

- subject to z=<e} and max.zo{cz subject to ax<b, and 2=<¢} can readily be

~ determined, and used to expedite the progress of a branch-and-bound

algorithm.} The use of the former information was proposed by Balas in

reference 1. Geoffrion™ has found that using his surrogate constraint im-

- proves the efficiency of a branch-and-bound algorithm that is chiefly or-

| ganized to exploit such information by a factor of 3 to 20. The use of the

t In reference 9 Linus ScuraGe is also credited with the observation that a
:strongest surrogate constraint can be obtained by solving (2).
‘ I Geoffrion’s Definition 3 is aimed at getting a good surrogate constraint for
‘exploiting the former information (whene=wA —c, by=wb—c,—1), and Balas’ Defini-
tion 2 is aimed at getting a good surrogate constraint for exploiting the latter. Also,
Balas proposes using a single such constraint whereas Geoffrion uses several (as
suggested in reference 6).
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latter information was proposed in connection with the Multiphase Dual
Algorithm and also suggested by BerTiER, NerIEM, AND Rov."™ To-
gether with Balas’ surrogate constraint theorem, it forms a key part of
Balas’ promising new Filter Algorithm.®

In seeking other definitions of surrogate constraint strength, we are
motlvatéd by the fact that surrogate constraints can be exploited efficiently
not only by reference to z=<e, but also by reference to other inequalities,
as, in particular, Uo2e "r2= Lo o and Up2 D jes, 252 Ly, where the S are
nested sdts of indices.”” We shall represent a set of ‘exploiting’ inequalities
in matrix form by Qz<d. Then we are in general interested in solving

maximize; »o cx subject to Az<b and Qz=d, 3)

where some or all of the components of x are constrained to integer values.
The dual of (3) interpreted as a linear program may be written

minimize,, .o wb4-ud subject to wA +uQ=c. 4

An optimal solution to (3) (as a hnear program) will be denoted by 2° and
an optlmal solution to (4) by w*, u*.

We will first propose an 1mmedlate generalization of Balas’ definition of
surrogate constraint strength and then give a corresponding generalization
of his theorem that provides a strongest constraint in the sense of the new
definition. For the purpose of the discussion to follow, we assume that
a=wA+uQ and bo=wb-+ud.

Definition 4. The surrogate constramt a*z<be* (for w, u=w"*, u*) is
stronger than a’z<b, (for w, u=w’, v’) if max,»o {cz sub]ect to a*z<be*
and Qz<|d} is smaller than max,, {cx subject to a’z<b, and Qr=dj.
T‘HEORW D4. 4 strongest surrogate constramt in the sense of Definition 4 1s
obtained by setting w=w" and w;=u;" or 0 (as desired ) for each component
u; of w. + Moreover, the value of cx in an optimal continuous solution to (3)
s unchanged by replacing Az <b with the resulting strongest ax < h,.

We need only prove D4 for the case u=0, since we may assume that
any subset of the constraints of Qr=<d (w1th index set T, say) is also in-
cluded in Az<b. Hence by setting w=w* and u=0 relative to such an
augmentbd A matrix we accomplish the same thing as by setting w=w" and

us=8;u;" for a nonaugmented A matrix, where §;=1 if 7T and 0 otherwise.

The theorem is proved most easily (for u=0) by stating it in a slightly
different form. Consider the dual problems

maximize,zo ¢z subject to a’z<b' and Qz=d; (5)
Minimize.,, .qz0 wob'+-ud subject to wea’+uQ=c, (6)

where a*=w*A and b*=w'd. Let z° denote an optimal solution to (5) and
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wot, u® denote an optimal solution to (6). Then an equivalent statement
of Theorem D4 is
TreorEM D4'. c2® = cz’.
Proof. Note that we=1, u=u"is feas1b1e for 6). Thus wo b +u fd<
w'b-+u'd. On the other hand, w=wuow', w=u" is clearly feasible for (4);
and hence the foregomg inequality also holds in the opposite dJrectlon,
implying cz®=cz® by the dual theorem of linear programming.t

We remark that an application of Theorem D4 that is partlcularly useful
in the cohtext of references 6 and 7 occurs by replacing ¢z with ez,

We will now extend Geoffrion’s result by similarly considering what
happens when Qr<d replaces r<e. However, we will go beyond this by
also presecribing surrogate constraints that are strongest aceording to other
kinds of ﬂeﬁnitions.

The generalized definition of surrogate constraint strength in Geoffrion’s
sense is
Deﬁmtwn 5. The surrogate constraint (a* -—c)x<bo —co=1 18 stronger
than (¢’ —c)z=<by —co—1 if max,so {be*— (a*—c)z subject to Qr=d (and
z integer)} is smaller than max,so {by — (&’ —c)z subject to Qz=d '('a,nd x
integer)},

As before, we have stipulated “and z integer” in quotations since, for
the particular inequalities Qz<d relevant for references 6 and 7, \the deﬁm-
tion is equivalent.if  is allowed to be continuous. : .

It might be guessed from our foregomg remarks that Geoﬂnon’s theorem
D3 genetalizes by replacing w=w’ with w= w* and u;=wu;" or 0; and this is
true. Instead of proving this directly, we turn now to cons1deratlons that
wyield this result as a byproduct. S

To mbotivate our discussion, let us examine Definition 5 from a dlfferent
perspective. Instead of segregating —cz<—cy—1 from Az=b, assume
that it is the first constraint of this matrix inequality. =Definition 5 can then
be seen to define a strongest surrogate constraint as one that always assigns
w,; the vaﬂue 1 and then picks the remaining ;2 0 to minimize bo— ax, where
lz is selected in turn to maximize this quantity subject to Qz<d. However,
instead of requiring w,=1, it would sometimes seem more appealing to
measure surrogate constraint strength by requiring a normalization such
as bp=1 or —1, thus reflecting the notion that 99=a *2<100 is a txghter
inequality than 1<a ‘<2 (which is clearly true, for example, if a*=50a").
'One might also (or alternatively) require wAe=Fko for some ‘constant ko,

1 Theorem D4’ can also be viewed as a direct consequence of the sufficiency. theo-
rem for Ligrange multxphers By invoking the strong complementary.slackness, the-
iorem one ¢an observe, in the spirit of Balas, ! that there exists an optimal pair #2, z8
.such thatiz;#=0 1mp11es z;5=0and Qu*= d, implies Q2%=d; , (where @; is the ‘Lth row
of Q)
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which has the interpretation ) |a;l =4k, if the coefficients a;; all have the
same sign.

To permit ourselves flexibility, we will in general express a ‘desirable

normalization’ by the matrix inequality wP=h. We will also allow 4Az<b
to include some of the constraints of Qzr<d, and stipulate that the surrogate
constraint ax <b, be given by a=wA and by=wb.{
Deﬁmtwn 6. Given the normahzatlon wP2h satisfied by w=w* and
w= w the surrogate constraint a*z < b, is stronger than o'z <by if mMaX,»o
{be* —a*z subject to Qr=d} is smaller than max,so {by —a'z subject to
Qz<d}.

To obtain a strongest surrogate constraint according to Definition 6,
note that we seek a vector w to

min,>p MaxX,»o wb — wAZ. 7
wPz2h Qz<d

The expression (7) is closely related to that of a constrained game, and
may be expressed as a linear program by an essentially analogous procedure
to that given by CrarNEs," provided the proper assumptions are acecom-
modated. We give these assumptions and their implications in the next
theorem.

TaEorREM D6. If {r=0: Qr=d} 7s nonempty and bounded, then w s optimal
for (7) (and hence gives a strongest surrogate constraint by Definition 6) if
and only if w is optimal for the linear program '

MINIMI2e4, w30 Wh+ud subject to wA+uQ=0 and wP=h. (8)
Moreover, if there is a finite feasible optimum for (7) lor (8)), then
min, (max,)=max, (min,).
Proof:t To prove w is optimal for (7) if and only if u is optimal for (8)

minyze [wb+max,>¢ —wAz]= mm,,,zo [wb4-min.zo ud]
wP>h Qz=< <d wPZ uQ>—wA

=INiNy, upo [Wh4ud].
wPz=h
wA+uQZ0

To prove
min,, (max,)=max, (min,):
the dual of (8) is ‘

t We nevertheless retain the preference for excluding Qz<d from Ax<b so that
the solution set {x|ax<bo, Qr<b and £=0} will be as small as possible for the surrogate

constraints defined to be strongest.
$I am indebted to EcoN Baras and ArTHUR GEOFFRION for suggesting the

present concise form of this proof.
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MAaXy, >0 by =max, [max,s o hy]
Py+Az§g Qr=<d Py<b—Az
Qz<

9)
=MaX,>¢ [Min,, o wb—wAz].
Qr=d wPZh

It may bé remarked that the assumption of the theorem that x> 0,
Qz = d implies z is finite is consistent with the kinds of inequalities that are
generally exploited in reference 7, and, of course, immediately aceords with
z=U and e"22 U,.

Given this property of Qz=d, wP2h can represent any of the normali-
zations expressed by D i kavi=ky and D s havi=hy, where § is any
subset (possibly empty) of {1,2, .-+, m} and kok;>0 for some ZeS and
hoh;> 0 for soq‘ne %4S. Using such normalizations, (8) will be assured of a
finite feasible? solution whenever problem (3) has a feasible solution.
(Of course, S may also be replaced by several disjoint sets.) Specific
instances of the foregoing are Geoffrion’s wi=1 and the suggested wh=1
and wb= —1 (respectively if b <0 and b20). It may also be seen that if
wP2h is w,=1 then (8) is precisely the dual of (3), and Theorem D6 thus
implies a generalized version of Geoffrion’s Theorem D3. ‘

It is perhaps worthwhile to point out that Definition 6 can itself be
generalized by allowing the normalization wP 2h to be replaced by wP+-
tMzh for w, dg 0, and the inequality Qz<d to be replaced by Qz+Rz=<d
for z, 220. (The new inequalities can simultaneously include the old
inequalities plus others.) Theorem D6 then correspondingly generalizes
by replacing (8) and (9) with

mMinimize, .30 wb-+ud subject to wA +uQ> 0,

wP+oM2=h, and uR2 0,
maximize,,y -»0 by subject to Az+Py< b,

Qz+Rz=d, and My=0,

where we now assume that z> 0,220, and Qz+Rz=<d implies both 2 and
z are finite.

An applicatjon for the generalized version of Theorem D6 occurs, for
example, when|it is desired to obtain a svrrogate constraint only from
some of the rows of 4 (as when these rows have all nonnegative coeflicients

. . . A
and the normalization ) |aj|=k, is desired). Then write 4 as (M) ,
where the new A consists of the rows from which the surrogate constraint
is to be obtained. In order to reflect the influence of the remaining part
(M ) of the original A matrix inequalities a normalization involving v may
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be used such as ve=1. The generalized version of Theorem D6 then pre-
scribes a strongest surrogate constraint relative to this normalization.
Our final definition of surrogate constraint strength is based on the ides
that it may sometimes be useful to replace a min (max) objective with a
min [(Expected Value) objective.
Definition 7. Given the normalization wP2h satisfied by w=w"* and
w=1', the surrogate constraint a*z <b;* is stronger than a’z<by if E (b —
a*z)<E (b0 —a'z), where E denotes expected value.
To apply this definition, we assume for each J that 0=2,2U; and
probabilities p*=pr (z;=k) have been assigned for k=0, 1, ---, U,.}
Let g be the column n-vector whose jth component is g;= Z;’f.il pi
Then we may write E (bo—az)=by—ag. Thus to obtain a strongest sur-
rogate constraint in the sense of Definition 7, we wish to solve the linear
program |
minimize,»o w (b—Ag) subject to wP=h. | (10)

Note that if it is desired to assure E(—cz)Z —co—1 it is reasonable
to assign the constraint —cz=<—co—1 a relatively large weight. For
example, one possibility for wP>h is a set of constraints of the form
wi=k>0, w;<k; for 1>1, and wb=<ko (or ZK,). Then problem (10) is
simply a knapsack problem without integer requirements on the variables,
and is quickly solved by taking ratios (see, e.g., reference 6).
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