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A surrogate constraint is an inequality implied by the constraints of an
integ~r program, and designed to capture useful information that cannot be
extra~ted from the parent constraints individually but is nevertheless a con-
sequepce of their conjunction. The use of such constraints as originally
propo~ed by the author has recently been extended in an important way by
EGON! BALAS and ARTHUR GEOFFRION. Motivated to take advantage of
info~ation disregarded in previous definitions of surrogate constraint
strength, we build upon the results of Balas and Geoffrion to show how to
obtain surrogate constraints that are strongest according to more general
criteria. We also propose definitions of surrogate constraint strength that
further extend the ideas of the author in 1965 by means of 'normalizations,'
and show how to obtain strongest surrogate constraints by reference to these
defini~ions also.

A SURjROGATE constraint is an inequality implied by the constraints
of ajn integer program, and designed to capture useful information that

cannot b~ extracted from the parent constraints individually but is never-
theless a: consequence of their conjunction. The use of such constraints
has receqtly been extended in an important way by EGON BALAS [2) and
ARTHUR iGEOFFRION.[5) By modifying the definition of surrogate con-
straint stength given in reference 6, they have shown how a strongest
surrogate constraint can be obtained (according to their respective criteria)
by solving a linear program.

A ~ting feature of the definition of surrogate constraint strength pro-
posed in ~ference 6, and also of the modified definitions suggested by Balas
and Geoffrion, is an implicit presupposition that information is to be ex-
tracted ftom these constraints only by reference to the lower and upper
bounds o~ the problem variables (assumed to be 0 and 1). However, other
restrictiofs on the problem variables have been shown to yield useful in-
formatio~ via the approach of the Multiphase Dual Algorithm.[6, 7) Thus
we are motivated to build upon the results of Balas and Geoffrion to pre-
scribe strongest surrogate constraints that accommodate additional restric-
tions. We also propose definitions of surrogate constraint strength that
further eitend the ideas of reference 6 by means of 'normalizations,' and
show ho~ to obtain strongest surrogate constraints by reference to these
definitions also.
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In this note we represent the 0-1 integer programming problem as
Maximize cx subject to Ax~b,x~e, and x integer,

x~O, (1)

where X=(Xl,X2,...,xn)T, e=(I,I,...,I)T, C=(Cl,C2,.",Cn), b=
(b1,bi, ...,bm), and A=(ai;) for i=I, .",m and j=l, "',n. A sur-
rogate constraint is defined to be any inequality L: a;x;~bo implied by the
constraints of (1) (including x~O and integer), where Ax~b is permitted
to include additional inequalities that may be introduced as part of a
strategy for solving (1). t In particular, Ax ~ b is usually assumed to
include -cx~ -co-I, where Co is the value of cx for the best known feasible
discrete solution (we assume the c; are all integers). Throughout this
paper, however, we will be concerned with surrogate constraints obtained
as a nonnegative linear combination of the given problem constraints, that
is, ax~bo will be defined by a=wA and bo=wb, where w is a nonnegative
m vector.

In reference 6, the strength of a surrogate constraint is defined M follows.
Definition 1. The surrogate constraint a*x~bo* (obtained from w=w*) is
stronger than the surrogate constraint a' x ~ bo' (obtained from w = w') if
maxx~O Icx subject to a*x~bo*, x~e and x integer} is smaller than maxx~o
Icx subject to a'x~bo', x~e and x integer}.

A theorem of reference 6 shows how to obtain the strongest surrogate
constr~ints according to Definition 1 when restricting attention to nonnega-
tive liQear combinations of two inequalities, and the procedure embodied in
this theorem is extended to obtain surrogate constraints as linear combina-
tions of more than two inequalities, although the resulting constraint is not
necessarily strongest.

Because of the difficulty of determining strongest surrogate constraints
according to Definition 1 when there are more than two parent constraints,
Egon BalM and Arthur Geoffrion have proposed other similar but more
useful definitions. BalM' definition is
Definition~. The surrogate constraint a*x~bo* is stronger than the sur'"
rogate constraint a'x~bo' if it is stronger by Definition 1 when the require-
ment "t is integer" is dropped.

Geoffrion's definition of surrogate constraint strength insists that
-cx~ -co-I be given a unit weight and excluded fromAx~b. Observing
this convention about the fonn of Ax~b, Geoffrion's definition is
Definition 3. The surrogate constraint (a*-c)x~bo*-Co-l is stronger than
the surrogate constraint (a'-c)x~bo'-co-I if maxx~olbo*- (a*-c)x

t We also allow for (1) to represent an updated form of some original problem in
which some of the variables have been assigned specific values by an algorithm such
asl,2,3j6,and7.
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subject to x~e (and x integer)} is smaller than max,,~o {bo'- (a'-c)xsubject to x~e (and x integer)}. -

We have placed the words "and x integer" in quotations since the
definition is unchanged with this stipulation removed. A correspondence
between Definition 1 and Definition 3 may be observed as follows. A
strongest surrogate constraint by Definition 1 is determined by finding
a w to minimizex~o {max,,;-=o or 1 cx subject to bo-ax~O}, and by Definition
3 by finding a w to minimizew~o {max,,;=o or 1 cx+ (bo-ax)} where Geoffrion
adds the inequality -cx~ -co-1 to ax~bo. The second minimax problem
may clearly be viewed as an approximation to the first in the context of the
Lagrange multiplier technique. The approximation becomes precise if the
integer requirement of Definition 1 is dropped as in Balas' Definition 2.
In fact, if ax~bo is a strongest surrogate constraint by Definition 2, then
(a-c)x ~ bo-co-1 is a strongest surrogate constraint by Definition 3, and
conversely. (That is, Balas' relaxed minimax problem and Geoffrion's
relaxed minimax problem are equivalent. ) Nevertheless, Balas' and
Geoffrion's definitions of surrogate constraint strengths are different, and
were motivated by different considerations (see below).

To state the results due to Balas and Geoffrion we write the dual of (1)
(interpreted as a linear program) in the form

minimize".w~owb+ue subject to wA+u~c. (2)

Let w2, u2 denote an optimal solution to (2).
THEOREM D2. (Balas). A surrogate constraint that is strongest in the sense
of Definiticn 2 is obtained by letting w = w2. Moreover, the value of cx in an
optimal continuous solution to (1) is unchanged if Ax ~ b is replaced by

2A < 2bw x=w.
THEOREM D3. (Geoffrion). A surrogate constraint that is strongest 2n the
sense of Definition 3 is obtained by lethng w = w2 and adding -cx ~ -Co -1 to

2A < 2bw x=w.
The significance of these theoremst lies in the fact that max,,~o lbo-ax

subject to x~e} and max,,~o{cx subject to ax~bo and x~e} can readily be
determined, and used to expedite the progress of a branch-and-bound
algorithm. ~ The use of the former information was proposed by Balas in
reference 1. Geoffrion[5] has found that using his surrogate constraint im-
proves the efficiency of a branch-and-bound algorithm that is chiefly or-
ganized to exploit such information by a factor of 3 to 20. The use of the

t In reference 9 LINUS SCHRAGE is also credited with the observation that a
strongest surrogate constraint can be obtained by solving (2).

t Geoffrion's Definition 3 is aimed at getting a good surrogate constraint for
exploiting the former information (whena=wA-c, bo=wb-co-l), and Balas' Defini-
tion 2 is aimed at getting a good surrogate constraint for exploiting the latter. Also,
Balas proposes using a single such constraint whereas Geoffrion uses several (as
suggested in reference 6).
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latter information was proposed in connection with the Multipha.oo Dual
Algorithm and also suggested by BERTIER, N GHIEM, AND Roy. [I] To-
gether with Balas' sun-ogate constraint theorem, it forms a key part of
Balas' promising new Filter Algorithm.[2]

In ~king other definitions of sun-ogate constraint strengt,h, we are
motivattjd by the fact that sun-ogate constraints can be exploited efficiently
not only' by reference to x ~ e, but also by reference to other inequalities,
as, in p~icular, Uo~eTx~Lo[6] and Uk~ L;'Sk x;~Lk, where the Sk are
nested s~ts of indices. [7] We shall represent a set of 'exploiting' inequalities

in matri~ form by Qx ~ d. Then we are in general interested in solving

maximize,,~ocx subject to Ax~b and Qx~d, (3)

where some or all of the components of x are constrained to integer values.
The dual of (3) interpreted as a linear program may be written

minimizetD.u~owb+ud subject to wA+uQ~c. (4)

An opt~ solution to (3) (as a linear program) will be denoted by X3 and
an opti~al solution to (4) by W4, u4.

We v,till first propose an immediate generalization of Balas' definition of
sun-ogat~ constraint strength and then give a corresponding generalization
of his theorem that provides a strongest constraint in the sense of the new
definition. For the purpose of the discussion to follow, we assume that
a=wA+luQ and bo=wb+ud.
Definition 4. The surrogate constraint a*x~bo* (for w, u=w*, u*) is
stronger ~han a'x~bo' (for w, u=w', u') if maxz~o {cx subject to a*x~bo*
and Qx ~ d} is smaller than maxz~o (cx subject to a' x ~ bo' and Qx ~ d}.
THEORE¥ D4. A strongest surrogate constraint in the sense of Definition 4 is
obtained by setting W=W4 and Ui=Ui4 or 0 (as desired) for each component
Ui of u. ; Moreover, the value of cx in an optimal continuous solution to (3)
is uncha4Yed by replacing Ax ~ b with the resulting strongest ax ~ boo

We $ed only prove D4 for the case u=O, since we may 38sume that
any sub~t of the constraints of Qx~d (with index set T, say) is also in-
cluded m Ax~b. Hence by setting w=w4 and u=o relative to such an
augmentbd A matrix we accomplish the same thing as by setting w=w4 and
u,= O,U,4 :for a nonaugmented A matrix, where 0,= 1 if iET and 0 otherwise.

The iheorem is proved most easily (for u= 0) by stating it in a slightly
differentiform. Consider the dual problems

maximizez~ocx subject to a4x~b4 and Qx~d; (5)

minimizewo,uo~owob4+ud subject to woa4+UQ~C, (6)

where a4=w4A and b4=w4b. Let x5 denote an optimal solution to (5) and
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'U'O6, U6 d~note. an optimal solution to (6). Then an equivalent statement
of Theor~m D4 is

, 3 5THEOREM D4. cx = cx .
Proof; Note that Wo= 1, U=U4 is feasible for (6). Thus w~6b4+U6d~

rw4b+U4d. On the other hand, W='U'O6W4, u=1.t is clearly feasible lor (4);
and hen(je the foregoing inequality also holds jn the opposite direction,
implying; cx3 = CX5 by the dual theorem of linear programming. t

W e ~ark that an application of Theorem D4 that is particularly usefuJ
in the co~text of references 6 and 7 occurs by replacing cxwith e T x.

We Will now extend Geoffrion's result by similarly considering what
happens when Qx~d replaces x~e. However, we wilJgo beyond this by
also pres~ribing surrogate constraints that are strongest aacqrding to other
kinds of ~efinitions.

The ~eneralized definition of surrogate constraint strength in Geoffrion's
sense is
Definition 5. The surrogate constraint (a*-c )x~bo* -co-'-1 is stronger
than (a' ;'-c)x~bo'-co-1 if maxz~o {bo*- (a*-"c)x subject to Qi~d (and
x integer:)} is smaller than maxz~o {bo'- (a'-c)x subject to Qx~d tand x

integer)},
As b(jfore, we have stipulated "and x integer" in quotations, since, fo~.

the particular inequalities Qx ~ d relevant for references 6 and 7; I the d~fini;.
tion is equivalent if x is allowed to be continuous. ..'

It might be guessed from our foregoing remarks that Geoffriorl's theorem
D3 geneItalizes by replacing W=W2 with W=W4 and U;=U;4 or OJ and this is
true. 1I1stead of proving this directly, we turn now to considerations that
,yield thi$ result as a byproduct. ' ..

To mbtivate our discussion, let us examine Definition 5 from a different
perspect~ve. Instead of segregating -cx~ -co-1 from Ax~b, assume
that it is the first constraint of this matrix inequality. Definition 5 can then
be seen tt> define a strongest surrogate constraint as one that always assigns
WI the vailue 1 and then picks the remaining w;~O to minimizebo~ax, where

,IX is selected in turn to maximize this quantity subject to Qx ~ d. However,
instead ~f requiring WI = 1, it would sometimes seem more appealing to
measure surrogate constraint strength by requiring a normalization such..
as bo= 1 'or -1, thus reflecting the notion that 99~a*x~ 100 is a tighter
inequality than 1~a'x~2 (which is clearly true, for example, if a*=50a').
'One might also (or alternatively) require wAe=ko for some constant ko,

t The~rem D4' can also be viewed as a direct consequence of the sufficiency theo-
rem for L$grange mult~pliers. ~1 invoking thestrongcomp~ementary. slackne;ss,ihe-
orem one tan observe, III the SpIrIt of Balas, 12) that there exIsts an optImal pair ~2, X5
such that, Xj3=O implies Xj5=O andQ;x3=d; implies Q;x6=d; , (whereQ; is the itlfrow

lofQ). ; j
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which has the interpretation L lail = ko if the coefficients ail all have the
same sign.

To permit ourselves flexibility, we will in general express a 'desirable
normalization' by the matrix inequality wP?th. We will also allow Ax~b
to include some of the constraints of Qx ~ d, and stipulate that the surrogate
constraint ax~bo be given by a=wA and bo=lwb. t
Definition 6. Given the normalization wP~h satisfied by w=w* and
w=w', the surrogate constraint a*x~bo* is stronger than a'x~bo' if max,,~o
{bo*-a*x subject to Qx~d} is smaller than max,,~o {bo'-a'x subject to
Qx~d}.

To obtain a strongest surrogate constraint according to Definition 6,
note that we seek a vector w to

minw~o maxz~o wb -wAx. (7)
wP~h Qz~d

The expression (7) is closely related to that of a constrained game, and
may be expressed as a linear program by an essentially analogous procedure
to that given by CHARNES,[4] provided the proper assumptions are accom-
modated. We give these assumptions and their implications in the next
theorem.
THEOREM D6. If { x ~ 0: Qx ~ d} is nonemptyand bounded, then w is optimal
for (7) (and hence gives a strongest surrogate comtraint ~ Definition 6) if
and only if w is optimal for the linear program

minimizew.u~owb+ud subject to wA+uQ~O and wP~h. (8)

Moreover, if there is a finite feaStole optimum for (7) [or (8)], then

min.. (maxz)=maxz (min..).

Proof:t To prove w is optimal for (7) if and only if u is optimal for (8)

min..~o [wb+maxz~o -wAx]=min..~o [wb+min,,~o ud]
..P~h Qz~d ..P~h "Q~-..A

=min...,,~o [wb+ud].
..P~h

..A+UQ~O

To prove
mill", (maxz)=maxz (min",):

the dual of (8) is

t We nevertheless retain the preference for excluding Qx~d from Ax~b so that
the solution set {xla.x~bo, Qx~b andx~O} will be as small as possible for the surrogate
constraints defined to be strongest.

t I am indebted to EGON BALAS and ARTHUR GEOFFRION for suggesting the
present concise form of this proof.
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It may b~ remarked that the assumption of the theorem that x~O,
Qx ~ d implies x is finite is consistent with the kinds of inequalities that are
generally exp~oited in reference 7, and, of course, immediately accords with
x~U and eT:Jt~Uo.

Given this! property of Qx~d, wP~h can represent any of the normali-
zations expr~sed by LiES kiwi= ko and Li~S h.Wi= ho, where S is any
subset (possiijly empty) of {1, 2, .", m} and koki>O for some iES and
hohi> 0 for so~e i~S. Using such normalizations, (8) will be assured of a
finite feasible' solution whenever problem (3) has a feasible solution.
(Of course, 8 may also be replaced by several disjoint sets.) Specific
instances of tie foregoing are Geoffrion's WI= 1 and the suggested wb= 1
and wb= -1 (respectively if b.1;;O and bJ:O). It may also be seen that if
wP ~ h is WI = 1 then (8) is precisely the dual of (3), and Theorem D6 thus
implies a generalized version of Geoffrion's Theorem D3. !

It is perhaps worthwhile to point out that Definition 6 can itself be
generalized by! allowing the normalization wP~h to be replaced by wP+
vM~h for w, ~~O, and the inequality Qx~d to be replaced by Qx+Rz~d
for x, z~O. (The new inequalities can simultaneously include the old
inequalities plUs others.) Theorem D6 then correspondingly generalizes
by replacing (8) and (9) with

~l

if

minimize".w.u~o wb+ud subject to wA +'UQ~ 0,

wP+vM~h, and uR~O,
maximizez.lI.z~o hy subject to Ax+Py~b,

Qx+Rz~d, and My~o,

t
e

wh",e we now '88ume that x~O, ,~O, and Qx+R";d implies both x and

, are finite

An application fo, the gen",alllied ve"ion of Theorem D6 occn", fo,
example, when it is de,ired to obtain a """ogate conat'aint cnly uom
,ome of the rows of A (M when these row, have all noncegative coefficienw

and the nonnali,ation L Icjl~k, i, desi,ed) Then write A M (~),

where the new A conai,w of the rows from which the ,umgate conat,oint
" w be obtoined. In orne' w reflect the influence of the remaining part
(M) of the original A mat,ix inequalities a nonnali'ation involving, may
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be u$ed such 88 ve= 1. The generalized version of Theorem D6 then pre-
scrib~ a strongest surrogate constraint relative to this normalization.

Oqr final definition of surrogate constraint strength is based on the idea
that ,it may sometimes be useful to replace a min (max) objective with a
min KExpected Value) objective.
Defi~ition 7. Given the normalization wP~h satisfied by w=w* and
w=~', the surrogate constraint a*x~bo* is stronger than a'x~bo' if E (bo*-
a*x)!<E (bo' -a'x), where E denotes expected value.

110 apply this definition, we assume for each j that O~Xj~ U j and
prob$,bilities pt=pr (xj=k) have been assigned for k=O, 1, ..', U j. t

Let g be the column n-vector whose jth component is gj= Ef.!l pjk.
Then we may write E(bo-ax)=bo-ag. Thus to obtain a strongest sur-
rogate constraint in the sense of Definition 7, we wish to solve the linear

I

program !

minimizew~ow(b-Ag) subject to wP~h.! (10)

Note that if it is desired to assure E (-ex) ~ -co-l it is reasonable
to a$Sign the constraint -cx~ -co-l a relatively large weight. For
example, one possibility for wP~h is a set of constraints of the form
wl=k1>0, wi~ki for i>l, and wb~ko (or ~Ko). Then problem (10) is
simply a knapsack problem without integer requirements on the variables,
and i~ quickly solved by taking ratios (see, e.g., reference 6).
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