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1 Introduction

In this paper, we consider a combinatorial optimization problem in a graph
G(V, E) where V represents the node set and E denotes the edge set. V' is
partitioned into two subsets V7 and V5, which denote the “Steiner” node set
and “Target” node set respectively. Similarly, £ is partitioned into sets of
Ey and FE5, where E; is the set of edges that join two Steiner nodes, and
E5 is the set of edges that join one Steiner node and one target node. No
edges exist between two target nodes. The problem is to select a non-empty
Steiner set S C V; such that each target node must be linked to exactly one
selected Steiner node. Meanwhile, all selected (active) Steiner nodes must
be connected to form a Hamiltonian tour of minimum connection cost which
is called Traveling Salesman (TSP) tour. The objective of the problem is to
minimize the total costs (which we will describe in detail subsequently).

This problem can be viewed as a variant of the Steiner Tree family. (See
for example the survey by Chopra and Rao [1] and Duin and Vog [2].) Our
problem is an extension of a simpler “predecessor” problem which stipulates
that all active Steiner nodes must form a minimum spanning tree. The
predecessor problem can be formulated as a degree constrained Steiner tree
problem with both node and edge costs, where the target nodes form a star
topology around the active Steiner nodes, and carries the name Steiner Tree
Star (STS) problem. Similarly, we call our problem the Steiner Ring Star
(SRS) problem.

The STS and SRS problems are critical in designing Digital Data Ser-
vice (DDS) networks in the telecommunications industry. These networks
use permanent connections and dedicated transmission facilities to provide
high quality services. In addition, the ring-based SRS model prevails since
it provides better reliability than the tree-based STS model. In the DDS
application, we have input elements which include a set of end offices, a
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set of digital hubs and a set of customer locations that are geographically
distributed on a plane. The target nodes consist of the customer locations
while the Steiner nodes represent the digital hubs. Each customer location
is connected directly to its own designated end office which in turn needs to
be connected to exactly one selected hub. Then the selected hubs must be
connected by a ring. Each hub has a fixed cost for being chosen and each
link has a connection cost for being included in the solution.

The connection cost between the two selected digital hubs, and the con-
nection cost between the customer location to a selected hub (via its uniquely
designated end office), are distance sensitive and can be pre-calculated ac-
cording to the tariff charges established by Federal Communications Com-
mittee (FCC). (See Xu, Chiu and Glover [19] for more detail on calculating
these costs.) The FCC requests the telecommunications companies to pro-
vide the least-cost network design to customers, and the SRS model can be
used to provide such a network design at minimum cost.

For real world instances, the number of customer locations (or end of-
fices) can vary from 2 to over 100, and the number of potential hubs can
be as large as 300. Telecommunications companies require an automatic
quoting system that allows the sales representative to give the customer a
quote based on the SRS model over the phone within one minute. A sig-
nificant challenge is to develop an algorithm that not only achieves such a
response time, but that also provides optimal or near-optimal solutions for
DDS design.

The STS and SRS problems have received some attention from oper-
ations researchers recently. Lee et al. [12] show that the STS problem
is strongly NP-hard and identify two mixed zero-one integer programming
formulations for this problem. Lee, Chiu and Ryan [13] further propose a
branch and cut algorithm for the STS problem. Xu, Chiu and Glover ([15],
[16]) conduct a series of studies on solving the STS problem using an ad-
vanced Tabu Search (TS) heuristic. More recently, Xu, Chiu and Glover
[20] extend their TS studies by exploring the use of Scatter Search (SS)
for the STS problem, which they find to be competitive with the advanced
tabu search algorithm in terms of solution quality and times. For the SRS
problem, Lee, Chiu and Ryan [14] again propose a branch and cut algo-
rithm similar to the one for the STS problem, and Xu, Chiu and Glover [19]
provide a comprehensive research on developing an advanced TS heuristic.
Numerical tests reported show that for the 175 smaller test problems (up
to 100 nodes), a simple variant of the TS algorithm yields optimal solutions
in all cases while using only a very small fraction of the CPU time required
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by the exact method proposed by Lee, Chiu and Ryan (running about three
orders of magnitude faster). For the 105 larger problems, the tabu search
algorithm consistently outperforms the best local search heuristic previously
available, including a probabilistic enhancement of this heuristic.

This paper extends our research in Xu, Chiu and Glover ([19], [20])
by exploring an implementation of Scatter Search (SS) for the SRS prob-
lem. Scatter search and its generalized form called path relinking (PR)
are evolutionary methods that have recently been shown to yield promising
outcomes for solving combinatorial and nonlinear optimization problems in-
cluding the STS problem. Based on formulations originally proposed in
the 1960s ([3], [4]) for combining decision rules and problem constraints,
the methods use strategies for combining solution vectors that have proved
effective for scheduling, routing, financial product design, neural network
training, optimizing simulation and a variety of other problem areas (see,
e.g., the survey of [8]).

Our goal is to determine if it is possible to create a simple implementation
of SS that can compete with the best approach previously devised. The
previously best method, based on tabu search, is the outgrowth of a lengthy
and intensive development and testing process. One of the useful features
of scatter search is that it is highly compatible with tabu search, and in fact
arises from common underlying principles, by which scatter search can be
viewed as a method to achieve a certain integration of intensification and
diversification (in tabu search terminology).

Consequently, if a straightforward implementation of scatter search can
be documented to provide a strong performance in relation to tabu search,
the outcome will motivate future research to integrate these two approaches
in a more sophisticated procedure. We do not undertake to fully detail the
elements of such a more advanced procedure, since there are a number of
possible variations. Rather, we seek to establish whether the effort to create
such an advanced method may be warranted, and to provide an indication
of the fundamental character of the scatter search component of such a
procedure.

In the following development, we will not only describe our SS approach,
but also give background details of the tabu search method that has pro-
duced the best performance to date in solving these problems, as a basis for
clarifying elements of compatibility between the approaches and for under-
standing the alternatives that exist for creating a higher level integration of
the procedures.

This paper is organized as follows. We first describe the tabu search
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algorithm for the SRS problem in Section 2. We further describe the SS/PR
based heuristic for the SRS problem in section 3 and examine several relevant
issues, such as the diversification generator, the reference set update method,
the subset generation method, the solution combination method and the
improvement method. In section 4, we report computational results on a
set of carefully designed test problems, accompanied by comparisons with
the solutions obtained by the TS algorithm [19] which has been documented
as the best heuristic available prior to this research. In the concluding
section, we summarize our methodology and findings. To further improve
the readability, we present the mathematical formulation of the SRS problem
in Appendix A.

2 The Tabu Search Heuristic

Tabu Search is an aggressive search procedure that proceeds iteratively from
one solution to another by moves in a neighborhood space with the assistance
of adaptive memory. To exploit this memory effectively, the method makes
use of several key strategic principles and associated algorithm designs. The
TS framework can also be used to guide choices made in successive passes
of multi-start methods, or to control the process of selecting neighborhood
moves for multiple neighborhood methods. In the subsequent subsections,
we briefly describe the tabu search algorithm first proposed in Xu, Chiu
and Glover [19]. Our purpose is to provide a basic knowledge of a form of
that has worked well in the present setting, and to disclose similarities and
differences between our TS method and the scatter search/path relinking
method that is the focus of our current investigation. The paper by Xu,
Chiu and Glover [19] provides further details of our TS method for the
SRS problem, and the survey by Glover and Laguna [9] provides a complete
review of TS.

2.1 Elementary Tabu Search Procedure

Tabu search is an iterative search method which can be used to guide tra-
ditional local search methods to escape the trap of local optimality. At
each iteration, a set of candidate moves is extracted from the neighborhood
for evaluation, and a ”best” (highest evaluation) move is selected, thereby
generating a new solution. During each iteration, certain neighborhood
moves are considered tabu and excluded from the candidate list. A best
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non-tabu move can be identified either by deterministic or probabilistic se-
lection mechanisms. Aspiration criteria are typically introduced that can
override the tabu status of move to allow a tabu move to be selected if it
is sufficiently attractive by these criteria. The algorithm proceeds until a
pre-defined number of iterations elapses and then terminates to output the
all-time best solution found.

Neighborhood Structure and Moves

We make use of the following two elementary types of neighborhood
moves for the SRS problem: a constructive move which changes an inactive
Steiner node to an active one (by inserting the node into the current TSP
tour); a destructive move that changes an active Steiner node to an inactive
one (by deleting the node from the current TSP tour). We also use the
pairwise exchange (swap) moves, which exchange one active Steiner node
with one inactive Steiner node. A swap move can be viewed as a combination
of a constructive and a destructive move. It introduces a more significant
change to the current TSP tour, and possesses a larger neighborhood space
than the constructive and destructive moves. To reduce the number of swap
moves to be evaluated, we construct a candidate list to restrict attention
to pairs consisting of (up to) ten best destructive and (up to) ten best
constructive moves, considered in isolation.

We blend these three different types of moves to produce the complete
neighborhood search. Swap moves are performed more sparingly, taking the
roles of producing periodic perturbation and conditional oscillation. In this
application, swap moves are executed either once every seven iterations or in
a block of five consecutive iterations when no “new best” solution is found
during the most recent 100 iterations. This approach of cyclying among
multiple neighborhoods, invoking the more complex neighborhoods less fre-
quently or when progress in simpler neighborhoods slow down, is one of the
early forms of strategic oscillation used in tabu search (see, e.g., Glover and
McMillan [10]).

Tabu Search Memory

Short Term Tabu Search Memory. Elementary moves are classified tabu as
follows: if the node x is currently dropped from the active Steiner node set,
we forbid this node to move back to the active set for a prescribed number
of iterations. Similarly, if the node x is currently added to the active Steiner
node set, we forbid this node to be dropped by moving to the inactive
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set for a specified number of iterations. For swap moves, we impose these
restrictions on moves in both direction. If an active node x is swapped with
an inactive node y in the current move, the restriction inhibits both moving
node x back to the active set and moving node y back to the inactive set.

We determine the duration (called the tabu tenure) over which the
tabu status of a move remains in effect by sampling uniformly from a pre-
determined interval at each iteration. We use the simple aspiration criterion
that overrides the tabu restriction if the current candidate move would lead
to a new best solution.

Short term memory to exploit these restrictions is implemented using
a recency based memory structure as follows. Let iter denote the current
iteration number and let tabu_add(x) and tabu_drop(y) denote the future
iteration values governing the duration that will forbid a reversal of the
moves of adding node x and dropping node y (i.e. by preventing node x
from being dropped and node y from being added). Let U(a,b) be the
tabu tenure which is uniformly generated from the interval [a,b]. Initially,
tabu_add(x) and tabu_drop(x) are set to zero for all nodes x, and iter starts
at one. When the TS restriction is imposed, we update the recency memory
as:

tabu_add(x) = iter + U(1,3) (for the constructive move of adding node x),
tabu_drop(y) = iter + U(2,5) (for the destructive move of dropping node y).

Then the restriction to prevent x from being dropped is enforced when
tabu_add(x) > iter, and the restriction to prevent y from being added is en-
forced when tabu_drop(y) > iter. For the swap move, we impose this restric-
tion by comparing iter with both tabu_add and tabu_drop memory. At each
iteration, we select the move with the highest move evaluation (lowest cost),
requiring the move to be non-tabu unless the evaluation is high enough to
permit the aspiration criteria to apply. Details of the move selection pro-
cedure incorporating the TS restrictions and aspiration criterion, including
the pseudo code, are available in Xu, Chiu and Glover [19].

Long Term Tabu Search Memory. The long term TS memory we employ
makes use of a frequency based memory structure to achieve a diversification
effect, encouraging the search to explore regions less frequently visited. We
use a transition measure to record the number of times each Steiner node
changes from an active status to an inactive status or vice versa. This
measure is normalized to lie in the interval [0,1] and then is linearly scaled
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by a selected constant to create a penalty term, which is added to the
corresponding move evaluation. In this application, the penalty term is
calculated by multiplying 320 by the normalized frequency for elementary
moves, and multiplying 135 by the sum of the two respective normalized
frequencies for swap moves. The long term memory is activated after 500
iterations to allow the frequency information to be more reliable.

2.2 Advanced TS Components

Several advanced TS components were developed for the SRS problem which
significantly enhanced the overall performance of the method.

Hierarchical Move Evaluation

For a neighborhood move where the active Steiner node set is deter-
mined, it is trivial to calculate the connection cost for assigning each target
node to its nearest active Steiner node, and to calculate the sum of all (ac-
tive Steiner) node costs. Thus the core of the move evaluation is to find an
optimal TSP tour over the active Steiner nodes. We devised a hierarchical
evaluation mechanism which employs the heuristic evaluators at three dif-
ferent levels (basic, intermediate, advanced) as follows.

Basic Fvaluator. The basic evaluator is used to evaluate each constructive,
destructive and swap move in the candidate list. For constructive moves, the
evaluator identifies the minimum insertion cost, i.e. the cost that results by
inserting the new node into its cheapest insertion position. For destructive
moves, the evaluator identifies the cost of removing the given node and sim-
ply connecting its two adjacent nodes in the current tour. For swap moves,
the evaluator identifies the cost of first removing the given node and then
inserting the new node as described above.

Intermediate Evaluator. The intermediate evaluator employs a standard 2-
opt heuristic to improve the current tour. The 2-opt progressively improves
the tour by considering possible ways of removing two arcs from the current
tour and then reconnecting the two resulting chains to form a new TSP tour,
terminating when no improvement can be obtained. The 2-opt procedure
in this application can be significantly simplified with our destructive and
constructive moves. Suppose the current tour is already locally optimal.
Then we need to evaluate only the options that remove new edges that the
destructive move and the constructive move introduce to the tour (one new
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edge in the case of destructive moves, two new edges in the case of construc-
tive moves). For swap moves, which change the tour in a more complex way,
we simply apply the standard 2-opt procedure. In this application, we apply
the intermediate evaluator to the top ten best candidate moves identified by
the basic evaluator at each iteration.

Advanced Evaluator The advanced evaluator uses more complicated search
techniques for improvement. First, it applies 3-opt local search to improve
the current tour. Then it employs a stand alone simple TS algorithm for
the TSP (TS-TSP), which uses simple node ejection and swap moves, and
a rudimentary short term memory structure to search for solutions beyond
local optimality. The TS-TSP method was first successfully used as a tour-
improvement tool in the Vehicle Routing Problem (VRP) by Xu and Kelly
[21]. Computational experience showed that the TS-TSP approach often
produced shorter TSP tours than 3-opt for moderate or large sized prob-
lems. Therefore, we execute this evaluator to correct the costs estimated by
the two simpler evaluators. We run the advanced evaluator in this applica-
tion whenever: (1) a “new best” solution is found; (2) the current solution
accumulates three moves whose costs were estimated by the intermediate
evaluator; (3) an “elite solution” has been on the list of the top thirty best
solutions for 100 iterations and has not yet been processed by the advanced
evaluator to correct its estimation errors. The advanced evaluator is not ac-
tivated before iteration 200, and is not executed if the current tour contains
less than ten nodes.

Probabilistic Move Selection

We apply probabilistic tabu search [6] to combat ”noise” caused by cost
estimation in the move evaluation. To do this, we evaluate all moves from
the candidate lists and rank them by their estimated costs. (7Tabu moves
are penalized to received high costs unless the aspiration criterion applies.)
In the selection phase, we first examine the move with the lowest cost.
If the move satisfies the aspiration criterion, it is automatically selected.
Otherwise, we select the move with the probability 1 — p. If the current
move is rejected, we examine the move with the next lowest cost and repeat
the process until a move is selected.

The probability of choosing one of the d best moves in the candidate list
is 1 — (1 — p)9. In practice, we set d = 10 by keeping the top 10 best move
evaluations for selection. In the rare case where all 10 moves are rejected, we
simply select the move with the lowest cost by default. We also fine-tune the
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value of p as 0.377%1> where r is the ratio of the move evaluation currently

examined to the value of the best solution found so far. This allows “good”
moves an increased chance to be selected.

Advanced Solution Recovery Strategy

We apply an advanced solution recovery strategy for intensification pur-
poses. In this application, we start recovery of elite solutions at iteration
1800. Each recovered solution launches a search that continues for 80 iter-
ations before selecting the next solution to recover. Solutions are recovered
from the elite list (consisting of the top 30 best solutions found so far, sorted
by their cost estimates) in reverse order, that is, by starting from the solu-
tion with the worst evaluation and working toward the solution with the best
evaluation. The list is updated dynamically whenever a solution is found
that is better than the worst solution in the list. Then the new solution is in-
serted into the proper position in the list and the worst solution is dropped.
The elite list for advanced recovery is implemented as a circular list, that is,
when the last solution in this list is recovered, we move back around to the
first (current worst) solution and work toward the best solution again. For
each solution recovered, all previous tabu restrictions are dropped and the
search begins again from the solution with a “pure slate”.

3 The SS/PR Algorithm

In the following subsections, we first describe the general form of our SS/PR
algorithm, and then describe each component which is specifically designed
for the SRS problem.

3.1 General Form of the SS/PR Procedure

In general, SS/PR methods consist of the following components:

(1) A Diversification Generator: to generate a collection of diverse trial
solutions, using an arbitrary trial solution (or seed solution) as an input.
(2) An Improvement Method: to transform a trial solution into one or
more enhanced trial solutions. (Neither the input nor output solutions are
required to be feasible, though the output solutions will more usually be
expected to be so. If no improvement of the input trial solution results, the
”enhanced” solution is considered to be the same as the input solution.)
(3) A Reference Set Update Method: to build and maintain a Reference
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Set consisting of the b best solutions found (where the value of b is typically
small, e.g., between 20 and 40), organized to provide efficient accessing by
other parts of the method.

(4)A Subset Generation Method: to operate on the Reference Set, to
produce a subset of its solutions as a basis for creating combined solutions.
(5) A Solution Combination Method: to transform a given subset of
solutions produced by the Subset Generation Method into one or more com-
bined solution vectors.

All aforementioned components come from a standard template used in
scatter search and path relinking. The framework consists of two phases:
an initial phase and the SS/PR phase. In the initial phase, we create one or
more initial solutions, then use the Diversification Generator to generate
diverse trial solutions from the seed solution(s). For each trial solution pro-
duced, we use the Improvement Method to create one or more enhanced
trial solutions. During this procedure, we maintain and update a Refer-
ence Set consisting of the b best solutions found. We repeatedly execute
this procedure until producing some designated total number of enhanced
trial solutions as a source of candidates for the Reference Set.

The SS/PR Phase proceeds iteratively as follows. At each iteration, we
use the Subset Generation Method to generate subsets of the Reference
Set as a basis for creating combined solutions. For each subset X produced,
we apply the Solution Combination Method to produce a set of new
combined solutions C'(X). For each solution in C(X), we improve it using
the Improvement Method while continuing to maintain and update the
Reference Set. We repeat the procedure until the termination conditions are
met.

We describe in detail each of the components of the foregoing template
in the subsequent subsections.

3.2 Diversification Generators

As implied before, an SRS solution can be conveniently represented by an
0-1 vector of the decision variables which determine if the corresponding
Steiner node is active or not. We supply a seed vector X (0) = x1, ..., Zp,
from which a set of diversified solution vectors is produced using the follow-
ing Diversification Generator for Zero-One Solutions. . Let NumSolutions
represent the number of unique solution vectors currently collected, and
MazNumSolutions indicate the maximum number of unique solutions re-
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quired for the Reference Set. hx and ¢* are two integer parameters require
for the algorithm. Then the Diversification Generator proceeds as follows.
NumSolutions = 0
X (NumSolution) = x1,..., Ty
for h =1 to hx
Let ¢gx =1 if h < 3, and otherwise let ¢gx = h
for ¢ =1 to ¢x
let kx = |(n—q)/h]
let ' and 2" be two zero n-vectors. Set z} = 1.

for kK =1 to kx
Taikn = 1= Tqikh
end k
If h > 1 then
ol =1—-2) Yi=1,...,n

X (NumSolution + 1) =), ...,z

n
X (NumSolution +2) = 2, ... z!

n
NumSolutions = NumSolutions + 2

else
X (NumSolution + 1) = z!,...,z),
NumSolutions = NumSolutions + 1
end if
If NumSolutions >= MaxzSolutions, then stop generating
solutions.
end ¢
end h
In the above algorithm, if we fix gx = 1, the diversification generator
first produces solution vectors associated with an integer h = 1,2,..., hx,

where hx < n — 1. We recommend that hx < n/5 since as h becomes
larger, the solutions for two adjacent values of h differ from each other
proportionately less than when A is smaller. Then the integer ¢ = 1,...,¢gx
shifts the resulting solution vectors to the right by adding ¢ leading zeros.
This creates more diversified solution vectors.

The number of solutions z’ and z” produced by the preceding generator
is approximately ¢ * (¢ * +1). Thus if n» = 50 and hx = n/5 = 10, the
method will generate about 110 different output solutions, while if n = 100
and hx = n/5 = 20, the method will generate about 420 different output
solutions. To prevent the number of output solutions from growing too fast
as n increases, while creating a more diverse subset of solutions, we can skip
over various g values between 1 and gx. The greater the number of values
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skipped, the less ”similar” the successive solutions (for a given h) will be.
Similarly, A itself can be incremented by a value that differs from 1. In our
implementation, we set MaxSolutions equal to the number of ”empty slots”
in the reference set, so the procedure terminates either once the reference
set is full, or after all of the indicated solutions are produced.

3.3 Improvement Method

We apply a local search heuristic to improve any initial solution or trial solu-
tion fed into the Improvement Method. The trial solutions include those
produced by the diversification generator and the combination method. The
local search heuristic is an iterative method which employs the same neigh-
borhoods of moves used for the tabu search algorithm, i.e., constructive
moves, destructive moves and swap moves. At each iteration, we in turn
evaluate the candidate lists of destructive moves, constructive moves and
swap moves. The swap moves are paired from the 10 best destructive moves
and 10 best constructive moves from the current iteration.

The basic evaluator is applied for evaluating all types of moves, while
the intermediate evaluator is used for 10 best destructive moves, 10 best
constructive moves and 10 best swap moves. Then the advanced evaluator
is further employed to correct estimation errors for the 10 best moves of all
types at the current iteration. The lowest cost move is selected and executed.
If the current solution improves the solution from the previous solution, the
search proceeds to the next iteration. Otherwise, the local search heuristic
terminates with the current solution.

Since the local search improvement method always stops upon reaching
a local optimum, it is very likely to terminate with the same solution for
different starting solutions. This accentuates the importance of the method
that avoids placing duplicated solutions in the reference set, as described in
section 3.5.

3.4 Maintaining And Updating The Reference Set

The Reference Set Update method is an important component in the SS/PR
template which keeps records of the b all-time best solutions. Several issues
are relevant. First, since the Reference Set is a collection of the top-ranked
solutions, it can be implemented as a sorted list. Initially, the list is empty.
Then, unique solutions are added into the list and the list is kept sorted on
solution evaluations whenever a new solution is added. Once the list is full
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(i.e., the number of elite solutions in the list reaches its pre-defined limit, of
b), the solution currently under consideration is added to the list only if it
is better than the current worst solution and does not duplicate any of the
other solutions on the list. In this case it replaces the worst solution, and is
inserted into the proper position based on its evaluation.

It is critical for the SS/PR heuristic to make sure that the Reference Set
does not contains duplicated solutions. The check-for-duplication procedure
first checks the values of total cost and total non-ring cost. If two solutions
have the same total cost value and the same total non-ring cost value, then
their Steiner node vectors are compared against each other to determine
if the two solutions are the same. The Reference Set contains only the
solutions which are processed by the Improvement Method.

Finally, it is useful to collect some types of statistics throughout the
execution of the Reference Set Update method. These statistics include the
number of times the Update method is called, as well as the number of times
a new solution is added, which we use to control the progress of the SS/PR
method. Other auxiliary statistics include a count of the number of partial
duplication checks, full duplication checks, and the number of occurrences
where duplications were found. These statistics can play important roles in
developing further diversification criteria, though they are not implemented
in the current application.

3.5 Choosing Subsets of the Reference Solutions

We now describe the method for creating different subsets X of the ref-
erence set (denoted as RefSet), as a basis for implementing Step 5 of the
SS/PR Template. It is important to note the SS/PR Template prescribes
that the set C'(X) of combined solutions (i.e., the set of all combined solu-
tions we intend to generate) is produced in its entirety at the point where
X is created. Therefore, once a given subset X is created, there is no merit
in creating it again. Therefore, we seek a procedure that generates subsets
X of RefSet that have useful properties, while avoiding the duplication of
subsets previously generated. Our approach for doing this is organized to
generate the following four different collections of subsets of RefSet, which
we refer to as SubSetType = 1, 2, 3 and 4. Let bNow denote the number
of solutions currently recorded on RefSet, where bNow is not permitted to
grow beyond a value bM ax.
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SubsetType = 1:  all 2-element subsets.

SubsetType = 2 : 3-element subsets derived from the 2-element subsets
by augmenting each 2-element subset to include
the best solution not in this subset.

SubsetType = 3:  4-element subsets derived from the 3-element subsets
by augmenting each 3-element subset to include
the best solutions not in this subset.

SubsetType = 4 : the subsets consisting of the best ¢ elements, for s = 5
to bNow.

We choose the aforementioned four types of subsets of RefSet based
on the following reasons. First, 2-element subsets are the foundation of the
first ”provably optimal” procedures for generating constraint vector combi-
nations in the surrogate constraint setting, whose ideas are the precursors
of the ideas that became embodied in scatter search (see, e.g., [4]; [11]).
Also, conspicuously, 2-element combinations have for many years dominated
the genetic algorithm literature (in ”2-parent” combinations for crossover).
We extend the 2-element subsets since we anticipate the 3-element subsets
will have an influence that likewise is somewhat different than that of the
2-element subsets. However, since the 3-element subsets are much more
numerous than the 2-element subsets, we apply an intensification strategy
by restricting consideration to those that always contains the best current
solution in each such subset. Likewise, we extend the 3-element subsets to
4-element subsets for the same reason, and similarly restrict attention to a
sub-collection of these that always includes the two best solutions in each
such subset. In addition, to obtain a limited sampling of subsets that con-
tain larger numbers of solutions and achieve an additional intensification
effect, we create the special subsets (designated as SubsetType = 4), which
include the b best solutions as b ranges from 5 to bMazx.

The methods which create the four types of subsets where RefSet is
entirely static (i.e., where bNow = bMaz and the set of bM ax best solutions
never changes) are trivial. However, these algorithms have the deficiency
of potentially generating massive numbers of duplications if applied in the
dynamic setting (where they must be re-initiated when RefSet becomes
modified). Thus we create somewhat more elaborate processes to handle a
dynamically changing reference set.

A basic part of the Subset Generation Method is the iterative process
which supervises the method and calls other subroutines to execute each
subset generation method for a given subset type (for SubsetType = 1 to
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4, then circularly return to 1). Inside each individual subset generation
method, once a subset is formed, the solution combination method C(X)
(Step 6 of the SS/PR template) is immediately executed to create one or
more trial solutions, followed by the execution of the improvement method
(Step 7 of the SS/PR template) which undertakes to improve these trial so-
lutions. When these steps find new solutions, not previously generated, that
are better than the last (worse) solution in RefSet, RefSet must be up-
dated. Since the solution combination method and the improvement method
are deterministic, there is no need to generate the same subset X produced
at some earlier time. To avoid such duplications, we organize the procedure
to make sure that X contains at least one new solution not contained in any
subset previously generated.

At the beginning of each iteration, we sort the new solutions in Ref Set.
Any combination of solutions that contains at least one new solution will be
generated as a legal subset of Ref Set for a given SubsetType. The iterative
process terminates either when there is no new solution in RefSet (Ref Set
remains unchanged from the last iteration), or when the cumulative number
of executions of the Improvement Method, as it is applied following the
solution combination step, exceeds a chosen limit.

3.6 Solution Combination Method

Once a subset of the reference set is determined, we apply a simple solution
combination method to produce a series of trial solutions. Let S* denote
the subset we consider which contains & distinct vectors (represented by
z(1),...,z(k)). Then the trial points are produced by the following steps.

(1) For each subset containing K — 1 vectors, generate the centers
of gravity y(i), such that y(i); = 3, #(p);/(K — 1)
fori=1,....,kand 5 =1,...,n.

(2) For each pair (z(i),y(z)) , consider the general form of the line
connecting z(7) and y(i) denoted by z(w) = z(z) + w(y(i) — z(7)).
We restrict the attention to the two interior points z(1/3), z(—1/3)
and two exterior points z(2/3) and z(4/3).

(3) Transform each of the above four points to an 0-1 vector by
applying the round-by-threshold rule, that sets the value of an
element to 1 if it exceeds a pre-defined threshold u, and set it
to 0 otherwise.

Since the trial points are "rounded” by the simple threshold in (3), it is
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inevitable that different S* may end up with the same trial vector. These
trial vectors are first converted to trial solutions (e.g., by finding a local
minimum ring by applying 3-opt on the active Steiner nodes, and calculat-
ing the total cost) and then are fed to the Improvement Method. Without
monitoring, this procedure can generate large numbers of “useless” repeti-
tions by constructing and improving solutions already generated. Therefore,
a key issue to produce a highly effective overall heuristic is to avoid such
repetitions by subjecting a trial vector to a duplications checking procedure
before it is submitted to the constructive and improving heuristics. To do
this, we store only the r = rNow most recent solutions generated (allow-
ing rNow to grow to a maximum of rMax different solutions recorded),
following a scheme reminiscent of a simple short-term recency memory ap-
proach in tabu search. In particular, we keep these solutions in an array
zsavelr], r =1 to rNow, and also keep track of a pointer rNexzt, which
indicates where the next solution will be recorded once the array is full, i.e.,
once all rMaz locations are filled. Let EO and Hash0O be the evaluation
and hash function value for solution z’, and denote associated values for the
zsavelr] array by Esave(r) and Hashsave(r). These are accompanied by a
”depth” value, which is 0 if no duplication occurs, and otherwise tells how
deep in the list - how far back from the last solution recorded - a dupli-
cation has been found. For example, depth = 3 indicates that the current
solution duplicates a solution that was recorded 3 iterations ago. (This is
not entirely accurate, since, for example, depth = 3 could mean the solution
was recorded 5 iterations ago and then 2 other duplications occurred, which
still results in recording only 3 solutions.) The pseudo code to check for the
duplications is shown as follows.

Initialization Step:
rNow =0
rNext =0
CountDup(depth) = 0, for depth = 1 to rMax
Duplication Check Subroutine.
Begin Subroutine.
depth =0
if rNow = 0 then:
rNow =1; rNext =1,
xzsave[l] =z’ (record z' in zsavell)),
Esave(l) = EO0; Firstsave(l) = FirstIndez0
Exit the Subroutine
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elseif r Now > 0 then:

(Go through the solutions in ”depth order”, from the one
most recently stored to the one least recently stored. When a duplication is
found, the loop index r (below) indicates the value of rMax that would have
been large enough to identify the duplication.)

1 =rNext
for r =1 to rNow
if Esave(i) = EO then:
qquad if HashO = Hashsave(i) then:
If ' = z[i] then:
(' duplicates a previous solution)

depth[i] =r
exit the Duplication Check Subroutine
Endif
Endif
Endif
1=1—1
if ¢ <1 then 1 =rNow

End r
(Here, no solutions were duplicated by ' . Add z’ to the list in
position rNext, which will replace the solution previously in rNext if the
list is full.)
rNext =rNext + 1
If rNext > rMaz then rNext = 1
If rNow < rMax then rNow = rNow + 1
xsave[rNext] = x'
Esave(rNezst) = EO
Hashsave(r Next) = HashQ
Endif
End of Duplication Check Subroutine

4 Computational Results

To provide a direct comparison with results of Xu, Chiu and Glover [19],
we report our computational outcomes for a sets of test problems generated
randomly from distributions whose parameters are selected to create the
most difficult problem instances. Two set of such problems were examined
in [19]. The first set of test problems is restricted to problems of relatively
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small dimensions so they were capable of being solved by the exact branch
and cut approach method. Problems from the second test set have larger
dimensions, and are beyond the ability of current exact methods to solve. In
this paper, we focus on the second test set which contains harder problem
instances than the first test set. We report the results produced by our
SS/PR method and compare them to those obtained with our TS method.
In the following tables, we represent the problem dimensions by m and n,
which identify the number of target and Steiner nodes respectively.

4.1 Parameter Description

In addition to the parameter setting of the tabu search heuristic (which we
describe in Section 2), we have few parameters to choose for the scatter
search heuristic. The maximum number of solution in Reference Set is set
to be 30, the A value is set to 5, and threshold value for rounding the trial
points is set to 0.75. The heuristic terminates either after 100 iterations,
or there is no change for reference set after one iteration. Since our prob-
lem sizes are big, it makes the regular diversification generator create many
inferior solutions which possess too many active Steiner nodes, therefore af-
fects the overall performance of the algorithm. To overcome this, we replace
the regular diversification generator by the random start method, that is,
instead of using the regular diversification generator to produce the initial
pool of reference set, we fill the initial reference set with the solutions whose
active Steiner nodes are selected randomly and only 10% of the total Steiner
nodes are selected as active. However, we need to point out that the reg-
ular diversification generator works more effectively than the random start
method for the ST'S problem, as reported in our previous research.

All parameters values are selected intuitively or based on several pre-
liminary experiments, without any attempt at fine tuning. An effort to
fine-tune these parameters can be based, for example, on a systematic sta-
tistical testing procedure (see [18]), and may significantly improve the per-
formance of our algorithm. Compared with the tabu search algorithm, the
SS/PR heuristic incorporates much less numbers parameters to be selected
and fine-tuned.

4.2 Test Results

We test our scatter search heuristic and the tabu search heuristic, and list
the results on the second set in Table 1. The results obtained by the scatter
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search heuristic are listed in the “SS” column while the tabu search results
are listed in the “T'S” column.

Problem TS SS

(m x n) Cost | CPU (min.) | Cost | CPU (min.)
100 x 100 | 16740 0:48 16740 2:35
150 x 100 | 20109 1:52 20172 8:49
200 x 100 | 25703 2:49 25703 12:01
125 x 125 | 16811 1:54 16811 9:09
175 x 125 | 21693 2:30 21693 13:34
225 x 125 | 26735 2:44 26735 12:17
150 x 150 | 19874 2:03 19874 11:59
200 x 150 | 24944 3:08 26928 30:01
250 x 150 | 29001 4:12 31138 38:21
175 x 175 | 21657 3:27 21657 24:41
225 x 175 | 25653 3:56 25653 29:12
275 x 175 | 28267 5:00 28267 19:03
200 x 200 | 23418 3:32 23418 32:38
250 x 200 | 26920 5:48 26920 35:19
300 x 200 | 30518 5:55 30518 41:21
250 x 250 | 26170 6:44 26170 43:23
300 x 250 | 29821 9:09 29821 50:45
350 x 250 | 32772 11:41 32772 52:47
100 x 300 | 13584 2:14 13584 11:45
200 x 300 | 21825 6:02 21825 16:55
300 x 300 | 29193 10:33 29193 59:32

Table 1: Computational Results on Larger Size Problems

From Table 1, we observe that the indicated implementation of the
SS/PR method can yield nearly the same solution quality as the TS method.
It ties 18 solutions out of the 21 test problems with the T'S method, and
produces solutions marginally inferior to those given by the T'S method for
the remaining three cases. However, our SS heuristic takes somewhat more
CPU execution times than the TS method. This efficiency gap comes from
the fact that the embedded TSP problem in SRS is time-consuming to eval-
uate (our statistics show that 97% of the execution time is spent on the local
improvement method), and the recency-based T'S memory is more effective
to avoid unnecessary move evaluation.

One of the important findings in our prior research on the STS (see
[20]) is that the performance of SS/PR can potentially be improved using a
customized solution combination method. More specifically, we replace the
threshold rounding rule by designating the ith component of the trial point
to receive the assignment z; = 1 if and only if at least ¢ of its r parents have
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z; = 1. For example, we test the following rules which simplify the creation
of the trial point z from the 2-element subset (with two parents y and z):

(1) z; =1ify; =1 and 2z; = 1;

(2) z; =1ify; = 1 and 2z; = 0;

(3) z; =1if z; =1 and y; = 0.

We report the results from the above three tests (marked as SS1, SS2
and SS3) in Table 2 and we also provide a comparison with our SS results
in the same table.

Problem SS SS1 SS2 SS3

(mxmn) | Cost | CPU | Cost | CPU | Cost | CPU | Cost | CPU
100 x 100 | 16740 | 2:35 | 16740 | 2:04 | 16740 | 1:32 | 16740 | 1:35
150 x 100 | 20172 | 8:49 | 20172 | 5:28 | 20172 | 4:23 | 20172 | 4:12
200 x 100 | 25703 | 12:01 | 25703 | 10:01 | 25742 | 8:33 | 25812 | 8:13
125 x 125 | 16811 | 9:09 | 16811 | 7:49 | 16811 | 7:01 | 16811 | 6:52
175 x 125 | 21693 | 13:40 | 21693 | 10:44 | 21693 | 8:56 | 21693 | 9:11
225 x 125 | 26735 | 12:17 | 26735 | 8:57 | 27003 | 8:02 | 27003 | 7:54
150 x 150 | 19874 | 11:59 | 19874 | 9:22 | 19874 | 8:21 | 19923 | 8:03
200 x 150 | 26928 | 30:01 | 26928 | 24:37 | 26928 | 21:20 | 26928 | 21:45
250 x 150 | 31138 | 38:21 | 31138 | 31:29 | 31138 | 29:48 | 31138 | 29:56
175 x 175 | 21657 | 24:41 | 21657 | 20:14 | 22343 | 18:32 | 22276 | 18:55
225 x 175 | 25653 | 29:12 | 25653 | 23:41 | 25653 | 21:37 | 25653 | 20:32
275 x 175 | 28267 | 19:03 | 28267 | 16:33 | 28267 | 13:02 | 28267 | 14:38
200 x 200 | 23418 | 32:38 | 23418 | 29:38 | 23418 | 25:25 | 23418 | 25:12
250 x 200 | 26920 | 35:19 | 26920 | 31:01 | 26920 | 28:47 | 26920 | 28:27
300 x 200 | 30518 | 41:21 | 30518 | 36:35 | 30518 | 31:01 | 30518 | 30:47
250 x 250 | 26170 | 43:23 | 26170 | 36:13 | 26170 | 33:29 | 26170 | 34:45
300 x 250 | 29821 | 50:45 | 29821 | 40:45 | 29886 | 35:33 | 29886 | 33:58
350 x 250 | 32772 | 52:47 | 32772 | 40:47 | 32772 | 38:01 | 32772 | 38:44
100 x 300 | 13584 | 11:45 | 13584 | 9:55 | 13584 | 8:02 | 13584 | 7:59
200 x 300 | 21825 | 16:55 | 21825 | 12:13 | 21825 | 10:33 | 21825 | 10:21
300 x 300 | 29193 | 59:32 | 29193 | 47:51 | 30004 | 43:26 | 29839 | 44:55

Table 2: Comparisons of results with the simplified solution combination
rules (the time unit of CPU is min.)

Table 2 produces results very similar to those shown in [20], thus pro-
viding a useful improvement over the outcome shown in Table 1. All three
simplified rules can effectively reduce the execution time of the SS method.
SS1 obtains the same solution quality as SS does. SS2 and SS3 can pro-
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duce greater savings in time at the expense of five inferior solutions. Our
analysis in [20] shows that the rules (2) and (3) tend to produce more as-
signments of x; = 1, therefore causing the method to evaluate and execute
more destructive moves which are less expensive.

5 Conclusion

In this paper, we have described a variant of the Steiner tree family, the
”Steiner Ring-Star” problem with application to leased-line network design.
The problem involves selecting a subset of hubs to form a least-cost ring
backbone network, while connecting each customer site to one of the se-
lected hubs. We have reviewed an advanced tabu search algorithm which is
documented as the best heuristic available for the SRS problem.

Our purpose has been to develop and test a scatter search method for the
SRS to determine the potential of this procedure for becoming a strategic
component of a more advanced method that melds SS with TS. This first
level testing to discover the independent strength of the SS approach also has
the utility of expanding our knowledge about the type of performance that
is likely to result in applying SS on its own in other settings. In addition, it
affords an opportunity to verify whether previous findings about SS in the
context of STS problems are supported in the more difficult and challenging
environment of the SRS problem.

The outcomes were extremely encouraging. Not only does the SS method
perform well, but the outcomes from its independent operation come remark-
ably close to matching those of the T'S method, both in solution quality and
execution time. The same type of strategy that improved execution time in
the STS context also proved its merit in the current SRS setting, although
with some degradation of solution quality in the case of two variants other
than the best variant we devised.

In sum, we conclude that the SS approach is a potentially strong partner
for TS for the purpose of creating a more advanced method, and is also a
highly viable solution procedure in its own right. By endowing the SS frame-
work with the ability to take advantage of memory-based processes such as
provided by TS, the prospects appear promising for achieving additional
gains. Such issues provide an inviting area for future research.
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Appendix A Mathematical Formulation for the SRS Problem

The problem addressed in this paper can be formulated as a 0-1 integer
programming problem as follows. First the input data are:

M : set of target nodes;

N :  set of Steiner nodes;

cij :  cost of connecting target node ¢ to Steiner node j;
dji - cost of connecting two Steiner nodes j and k;

bj:  cost of using Steiner node j.

The decision variables are:

x;j : a binary variable equal to 1 if and only if target node 4 is
linked to Steiner node j;

Yjk : a binary variable equal to 1 if and only if Steiner node j is
linked to Steiner node k (j < k));

zj:  a binary variable equal to 1 if and only if Steiner node j is
selected to be active.

Then the formulation is

minimize Z Zcz‘jﬂvi]‘ + Z Z djkyjk + ijzj (1)

iEM jEN JEN k> JEN
keN
subject to:
me = 1? 1€ Ma (2)
JEN
Tij < Zj, ’iEM, jEN, (3)
Yjk < (Z] + Zk)/27 ] < ka ]7k € Na (4)

keN keN
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Z y]k: S Z Zj+1—zt, ZEH, HCN, (6)
j€EH keH je{H-1}
|H| >3, te N —-H,

Lij € {07 1}7 (S M7 .7 € Na (7)
Yik € {071}7 k>j7 ]7k EN? (8)
5 e {01} jEN. (9)

In this formulation, the objective function (1) seeks to minimize the sum
of the connection cost between target nodes and Steiner nodes, the connec-
tion cost between Steiner nodes, and the setup cost for the Steiner nodes.
Constraint (2) specifies that each target node must be connected to exactly
one Steiner node. Constraint (3) indicates that the target nodes can only
be connected to the active Steiner nodes. Constraint (4) stipulates that
two Steiner nodes can be connected if and only if both nodes are active.
Constraints (5) and (6) express the ring (or tour) structure over the active
Steiner nodes. In particular, (5) specifies the condition that each active
Steiner node must have a degree of two, while (6) is an subtour-eliminating
constraint that compels all active Steiner nodes to form a single tour. Fi-
nally, all decision variables are defined as binary.



